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ABSTRACT

We present a statistical approach to study time-varying, multivari-
ate climate data sets. Aided by domain expertise from the NOAA
scientists, we have developed a solution for correlation analysis of
multivariate spatial-temporal climate data sets.

1 INTRODUCTION

We present a statistical approach to study the climate data sets pro-
vided by the scientists from the National Oceanic and Atmospheric
Administration (NOAA). Accurate climate forecast for an extended
period of time into the future has become a very important problem
with far-ranging applications. Leveraging the statistical informa-
tion of data, we have designed a visualization system that provides
the scientists with insight into their data. Part of the excitement
of discovering the implications of climate change is the fact that it
involves so many different processes linked together into an intri-
cate web. The challenge of discovering which processes matter the
most involves not only knowing how a given perturbation may dis-
rupt the climate but also how different time scales affect the analysis
of change. Deciding what changes matter the most, and when and
where they occur, requires evaluation of how they are related to one
another [1].

2 PROBLEM STATEMENT

We held a number of exchanges with the NOAA scientists. It is
our understanding that the scientists are severely limited by the vi-
sualization tools that are currently in existence. Throughout this
paper, we use the El Niño phenomenon as an example to explain
the challenge that the scientists face in their data analysis and vi-
sualization. The El Nĩno phenomenon can only be found when
the analysis takes into consideration the correlation among multi-
ple variables over multiple time steps. Due to the complexity of
the data in the spatial, temporal, and variable domain, the scientists
are much more interested in visualization tools that allow them to
explore the multifaceted nature of their data.

3 OUR APPROACH

We present a visualization system customized to address the needs
raised by the scientists. Our system features an integrated user in-
terface that allows the users to examine their data in 3D (volume
rendering) and 2D (slices) spatial views, and variable views simul-
taneously. The system also includes a correlation analysis function
which produces clusters that partition the data into separate regions
based on the similarity of temporal behaviors. Our approach in-
cludes the use of parallel coordinate for the variable view, and a
suite of techniques (i.e., time-activity curves, principal component
analysis, and graph partitioning) for temporal activity study.

3.1 Parallel Coordinate

Dealing with multivariate data requires an intuitive way to visualize
correlations between multiple variables. We have chosen to use par-
allel coordinates because it is a widely-used solution for displaying

and detecting relationships among multiple variables. The parallel
coordinate view has been integrated into our system and linked with
other views of the data.

3.2 Time-Activity Curves

To study the temporal aspect of the climate data, we utilized the
time-activity curve (TAC). The basic idea of TACs is to treat each
voxel in the volume as a temporal function, and the source of this
temporal behavior varies with a particular modality [2]. If we could
compare TACs of different voxels and classify them into clusters
based on their similarity, we are able to gain insights as to how
different regions of the data change over time. This knowledge
would add to the understanding of the climate data, which is not
readily available to the scientists.

The TAC collection of selected voxels (e.g., the use can select a
2D region from a data slice) is represented in a high-dimensional
space (when the number of time steps is large). Therefore, dimen-
sion reduction is needed for further analysis. One way for dimen-
sion reduction is to derive a single variable from each TAC. For
instance, we can use the variance of the TAC curve for every indi-
vidual voxel. Another way to reduce dimension is to use the prin-
cipal component analysis method.

3.3 Principal Component Analysis

Principal component analysis (PCA) is a powerful tool for deriving
the dominant patterns in a statistical field (e.g., a random vector,
usually indexed by location in space). PCA can be used to display
the data as a linear projection from the original data space to a sub-
space that best captures the variances of data. In order to faithfully
represent the data in the low-dimensional space, it is preferable that
90% of the data variances are mapped on the first two principal
components. Our test results on the climate data set show that it is
ideally suitable for PCA dimension reduction, as the first principal
component already describes 80-90% of data variances.

3.4 Graph Partitioning

After dimension reduction, a suitable clustering method is needed
so that we can take distances between the data points in the reduced
dimensions and generate clusters accordingly. In this paper, we use
the normalized cut algorithm from image segmentation literature by
treating data after dimension reduction (using either PCA or derived
statistics) as images. We have decided to use the normalized cut
due to its ability to find perceptually significant groups first before
detecting smaller, less significant groups. The normalized cut takes
three parameters as input: the image itself, the desired number of
clusters, and the distances between image data points. We calculate
these distances using two metrics: Euclidian and Manhattan.

The normalized cut, introduced by Shi and Malik [4], is graph
partitioning method that breaks a graph into segments. The algo-
rithm represents the input image as a fully connected graph where
every pixel has a link to every other pixel. It was designed to over-
come outliers. Instead of looking at the value of total edge weight
connecting the two partitionsA andB (A

⋃
B = Q), the method com-



putes the cut cost as a fraction of the total edge connections to all
nodes:

Ncut(A,B) =
cut(A,B)

assoc(A,Q)
+

cut(A,B)

assoc(B,Q)
(1)

where

assoc(A,Q) = ∑
a,q

w(a,q), assoc(B,Q) = ∑
b,q

w(b,q) (2)

a ∈ A, b ∈ B, q ∈ Q

Assuming the size of the input image isn×m, the product of
TAC or TAC variances, can be represented as 1D vectorQ of size
N = n × m. We compute the weight matrixW ∈ R

N×N , where
W(i, j) represents relationship between pointsi and j in Q. Given
the weight matrixW and the number of clustersc, we compute the
degree matrixD = Diag(W1N), whereW1N ∈R

N and each element
is the sum of the corresponding rows inW.

We then find the optimal eigensolutionZ∗ by solving the leading
c eigenvectors using the standard eigensolver:

D−
1
2 (D−W)D−

1
2 v = λv (3)

Z∗ = D−
1
2 V[c] (4)

wherev is the eigenvector andλ is the eigenvalue. The clustering
results can be displayed in the principal component space, or they
can be displayed directly on the regions selected.

4 RESULTS

Figure 1: Our user interface consists of a volume renderer (top), a
slice viewer (middle), and a variable viewer using parallel coordinate
(bottom). The salinity variable is used in the rendering.

(a) salinity (b) temperature

Figure 2: The clustering results corresponding to the 2D region se-
lected in the slice viewer in Figure 1 over 72 time steps (a six-year
span). Six and four clusters denoted by different colors are shown in
(a) and (b) respectively.

Figure 1 shows a screen shot of our user interface. The volume
renderer provides a 3D view of the data. The user can select a
slice of the data and the result is displayed in the slice viewer. In
Figure 1, we also show the selected region on the slice and their
corresponding voxel values highlighted in red in the variable view.
Figure 2 shows the clustering results with two different variables:
salinity and temperature. The TACs include 72 time steps (a six-
year span) and the derived clusters help the scientists better un-
derstand their data. For example, the cluster boundaries shown in
Figure 2 (b) indicate a change of temperature activity towards the
west from the orange cluster (corresponding to a part of the South
America), which is related to the El Niño phenomenon. Such a
trend is also detectable for the salinity variable when we increase
the number of clusters, as shown in Figure 2 (a).

5 CONCLUSION AND FUTURE WORK

In this paper we presented a study on how visualization can be used
to analyze complex climate data. In addition to presenting scien-
tific data in a way that makes it easier for visual analysis, we also
provided a correlation analysis tool. This tool, while still a work
in progress, enables the scientists to get an overview of their data
and to have a better understanding as to which regions of the data
change according to similar temporal patterns. This new knowledge
has been derived from the original data set based on TACs, PCA,
and other statistical information.

Our current implementation of the normalized cut algorithm re-
lies onMatLab, which has its strict memory limitation. In the
future, we will reimplement it in C++ so that larger data can be
processed. We also plan to incorporate the Nyström method [3]
into our normalized cut implementation in order to significantly re-
duce the algorithm’s memory requirements. Performance speed up
can also be sought using the GPU implementation.
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