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ABSTRACT and detecting relationships among multiple variables. The parallel
coordinate view has been integrated into our system and linked with

We present a statistical approach to study time-varying, multivari- other views of the data.

ate climate data sets. Aided by domain expertise from the NOAA

scientists, we have developed a solution for correlation analysis of 3.2 Time-Activity Curves

multivariate spatial-temporal climate data sets. ) N
To study the temporal aspect of the climate data, we utilized the

1 INTRODUCTION time-activity curve (TAC). The basic idea of TACs is to treat each
voxel in the volume as a temporal function, and the source of this
We present a statistical approach to study the climate data sets protemporal behavior varies with a particular modality [2]. If we could
vided by the scientists from the National Oceanic and Atmospheric compare TACs of different voxels and classify them into clusters
Administration (NOAA). Accurate climate forecast for an extended based on their similarity, we are able to gain insights as to how
period of time into the future has become a very important problem different regions of the data change over time. This knowledge
with far-ranging applications. Leveraging the statistical informa- would add to the understanding of the climate data, which is not
tion of data, we have designed a visualization system that providesreadily available to the scientists.
the scientists with insight into their data. Part of the excitement  The TAC collection of selected voxels (e.g., the use can select a
of discovering the implications of climate change is the fact that it 2p region from a data slice) is represented in a high-dimensional
involves so many different processes linked together into an intri- space (when the number of time steps is large). Therefore, dimen-
cate web. The challenge of discovering which processes matter thesjon reduction is needed for further analysis. One way for dimen-
most involves not only knowing how a given perturbation may dis- sion reduction is to derive a single variable from each TAC. For
rupt the climate but also how different time scales affect the analysis instance, we can use the variance of the TAC curve for every indi-
of change. Deciding what changes matter the most, and when andvidual voxel. Another way to reduce dimension is to use the prin-
where they occur, requires evaluation of how they are related to onecipal component analysis method.
another [1].

> PROBLEM STATEMENT 3.3 Principal Component Analysis

Principal component analysis (PCA) is a powerful tool for deriving
We held a number of exchanges with the NOAA scientists. It is the dominant patterns in a statistical field (e.g., a random vector,
our understanding that the scientists are severely limited by the vi- usua”y indexed by location in Space). PCA can be used to d|sp|ay
sualization tools that are currently in existence. Throughout this the data as a linear projection from the original data space to a sub-
paper, we use the EI Ko phenomenon as an example to explain  space that best captures the variances of data. In order to faithfully
the challenge that the scientists face in their data analysis and vi-represent the data in the low-dimensional space, it is preferable that
sualization. The El Nio phenomenon can only be found when 90% of the data variances are mapped on the first two principal
the analysis takes into consideration the correlation among multi- components. Our test results on the climate data set show that it is
ple variables over multiple time steps. Due to the complexity of jdeally suitable for PCA dimension reduction, as the first principal
the data in the spatial, temporal, and variable domain, the scientistscomponent already describes 80-90% of data variances.
are much more interested in visualization tools that allow them to
explore the multifaceted nature of their data. 3.4 Graph Partitioning

3 OUR APPROACH After dimension reduction, a suitable clustering method is needed

so that we can take distances between the data points in the reduced
We present a visualization system customized to address the needgimensions and generate clusters accordingly. In this paper, we use
raised by the scientists. Our system features an integrated user inthe normalized cut algorithm from image segmentation literature by
terface that allows the users to examine their data in 3D (volume treating data after dimension reduction (using either PCA or derived
rendering) and 2D (slices) spatial views, and variable views simul- statistics) as images. We have decided to use the normalized cut
taneously. The system also includes a correlation analysis functiondue to its ability to find perceptually significant groups first before
which produces clusters that partition the data into separate regionsdetecting smaller, less significant groups. The normalized cut takes
based on the similarity of temporal behaviors. Our approach in- three parameters as input: the image itself, the desired number of
cludes the use of parallel coordinate for the variable view, and a clusters, and the distances between image data points. We calculate
suite of techniques (i.e., time-activity curves, principal component these distances using two metrics: Euclidian and Manhattan.
analysis, and graph partitioning) for temporal activity study. The normalized cut, introduced by Shi and Malik [4], is graph
31 Paralld Coordinate partitioning method that b(eaks a graph into segments. The algo-

rithm represents the input image as a fully connected graph where
Dealing with multivariate data requires an intuitive way to visualize every pixel has a link to every other pixel. It was designed to over-
correlations between multiple variables. We have chosen to use par-come outliers. Instead of looking at the value of total edge weight
allel coordinates because it is a widely-used solution for displaying connecting the two partitionsandB (A|UB = Q), the method com-



putes the cut cost as a fraction of the total edge connections to all
nodes:
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Assuming the size of the input imagens< m, the product of
TAC or TAC variances, can be represented as 1D veQtof size
N =nxm We compute the weight matri/ € RN*N where
W(i, j) represents relationship between poingd j in Q. Given
the weight matriXxW and the number of clustecs we compute the
degree matrio = Diag(W1n), whereW y € RN and each element
is the sum of the corresponding rowswh

We then find the optimal eigensoluti@t by solving the leading
c eigenvectors using the standard eigensolver:
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wherev is the eigenvector andl is the eigenvalue. The clustering

Z*=D3V
id

(a) salinity (b) temperature

Figure 2: The clustering results corresponding to the 2D region se-
lected in the slice viewer in Figure 1 over 72 time steps (a six-year
span). Six and four clusters denoted by different colors are shown in
(a) and (b) respectively.

Figure 1 shows a screen shot of our user interface. The volume
renderer provides a 3D view of the data. The user can select a
slice of the data and the result is displayed in the slice viewer. In
Figure 1, we also show the selected region on the slice and their
corresponding voxel values highlighted in red in the variable view.
Figure 2 shows the clustering results with two different variables:
salinity and temperature. The TACs include 72 time steps (a Six-
year span) and the derived clusters help the scientists better un-
derstand their data. For example, the cluster boundaries shown in
Figure 2 (b) indicate a change of temperature activity towards the
west from the orange cluster (corresponding to a part of the South

results can be displayed in the principal component space, or theyAmerica), which is related to the El N@ phenomenon. Such a

can be displayed directly on the regions selected.

4 RESULTS
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Figure 1: Our user interface consists of a volume renderer (top), a
slice viewer (middle), and a variable viewer using parallel coordinate
(bottom). The salinity variable is used in the rendering.

trend is also detectable for the salinity variable when we increase
the number of clusters, as shown in Figure 2 (a).

5 CONCLUSION AND FUTURE WORK

In this paper we presented a study on how visualization can be used
to analyze complex climate data. In addition to presenting scien-

tific data in a way that makes it easier for visual analysis, we also

provided a correlation analysis tool. This tool, while still a work

in progress, enables the scientists to get an overview of their data
and to have a better understanding as to which regions of the data
change according to similar temporal patterns. This new knowledge
has been derived from the original data set based on TACs, PCA,
and other statistical information.

Our current implementation of the normalized cut algorithm re-
lies on Mat Lab, which has its strict memory limitation. In the
future, we will reimplement it in C++ so that larger data can be
processed. We also plan to incorporate the Nystmethod [3]
into our normalized cut implementation in order to significantly re-
duce the algorithm’s memory requirements. Performance speed up
can also be sought using the GPU implementation.
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