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Abstract. We present a novel framework for automatically evaluat-
ing building conditions nationwide in the United States by leveraging
large language models (LLMs) and Google Street View (GSV) imagery.
By fine-tuning Gemma 3 27B on a modest human-labeled dataset, our
approach achieves strong alignment with human mean opinion scores
(MOS), outperforming even individual raters relative to the MOS bench-
mark in terms of SRCC and PLCC. To enhance efficiency, we apply
knowledge distillation, transferring the capability of Gemma 3 27B to a
smaller Gemma 3 4B model, which attains comparable performance with
a 3× speedup. Further, we distill the knowledge into a CNN-based model
(EfficientNetV2-M) and a transformer (SwinV2-B), delivering close per-
formance while achieving a 30× speed gain. Our framework offers a flex-
ible and efficient solution for large-scale building condition assessment,
enabling high accuracy with minimal human labeling effort.

Keywords: Building condition evaluation · Street-view imagery · Com-
puter vision · Machine learning · Multimodal large language models.

1 Introduction

The persistent shortage of affordable housing in the United States, aging infras-
tructure, and rising energy costs burden low-income households [2]. Retrofitting
existing housing stock has emerged as a more feasible and cost-effective alter-
native to new construction, offering opportunities to improve thermal comfort,
reduce utility bills, and mitigate health risks from extreme heat and cold [12].
Assessing the physical condition of buildings, especially the exterior envelope
(i.e., façades), is critical to determining retrofit needs. However, audits remain
resource-intensive, requiring manual inspections and data collection, limiting
their practice at a nationwide scale.

Advances in computer vision [21, 6, 26, 7] have enabled automated analysis of
street-view imagery, such as Google Street View (GSV) images, to identify passive
design indicators (PDIs) like window-to-wall ratios, shading devices, and exte-
rior material types. While these approaches leverage standard computer vision
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models (e.g., ResNet) or vision-language models (e.g., BLIP) to classify exterior
features with high accuracy, their capacity to simultaneously consider diverse vi-
sual elements indicating various features (e.g., paint, window, and structural con-
ditions) and provide interpretable assessments remains limited. Large language
models (LLMs), especially multimodal LLMs that integrate visual and textual
reasoning, present a promising new frontier for interpretable and generalizable
assessment. Aligning LLMs with human rater evaluations through fine-tuning on
annotated street-view imagery could enable accurate and scalable assessments
of building conditions, thereby supporting data-driven passive retrofit strategies
across diverse urban contexts.

This paper presents a novel method for fine-tuning multimodal LLMs to
automate exterior condition assessments for residential buildings, leading to a
pipeline that fine-tunes multimodal LLMs to interpret building exteriors, en-
abling scalable, automated, and cost-effective assessments.

2 Related Work

Automated visual assessment of the built environment has become an increas-
ingly active area of research, driven by the growing availability of street-view im-
agery and advances in machine learning. Traditional computer vision approaches,
such as CNNs, have been employed to extract architectural features from images
for estimating building condition [9, 1, 27]. However, these models often rely on
narrow indicators, such as wall paint cracks, and struggle with low accuracy
when integrating multiple factors due to limited generalizability.

More recently, vision-language models have demonstrated impressive zero-
shot classification performance on visual tasks by leveraging cross-modal align-
ment between images and text. These models have been applied to identify
building components or construction materials [26], as well as to estimate phys-
ical walkability [17] and perceived safety [25], directly from street-view imagery
without needing extensive labeled data. However, their effectiveness in structured
assessment tasks, such as condition scoring guided by formal criteria, remains
limited due to insufficient capacity for multi-factor reasoning.

There is a growing interest in using LLMs to extract features of the built
environment from street-view images. Several recent studies [4, 14, 19, 15] have
employed ChatGPT to capture detailed building information, including external
features and nearby environmental elements. However, ChatGPT’s closed-source
nature, lack of support for fine-tuning, and the high cost of API usage at scale
limit its practicality for large datasets. Alternatively, fine-tuned open-source
LLMs can be trained on labeled datasets for post-earthquake structural damage
assessment, successfully performing tasks such as identifying damage severity
and classifying affected components [13]. In this work, we fine-tune open-source
LLMs for building condition assessment by leveraging diverse visual features that
reflect natural aging and property upkeep. These include indicators like the state
of windows, façade paint, and roof materials. Our system produces assessments
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consistent with expert judgment by aligning model outputs with mean opinion
scores (MOS) derived from multiple human raters.
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Fig. 1. Overview of our framework for evaluating building conditions.

3 Our Approach

We aim to evaluate the condition of a building from its GSV image. Experts in
architectural research have established formal criteria for condition assessment
using a five-point scale (higher ratings indicate better condition). Each rating is
defined by detailed descriptors, covering various aspects such as the building’s
main structure, wall integrity, paint condition, roof, and window quality.

One possible approach is replicating human evaluation by training individ-
ual models for each component (e.g., roof, windows, façades), followed by a
secondary algorithm to combine these assessments into an overall rating. How-
ever, this approach presents several limitations. First, many components may be
partially occluded or absent from the image due to angle or visibility. Second,
creating labeled datasets for each component would require significant manual
effort from experts. Finally, integrating multiple separate models into a single
scoring pipeline is complex and inefficient.

To address these challenges, we adopt a more direct strategy: evaluating the
entire building holistically using a single model. This method assumes the model
can effectively incorporate the full evaluation rubric and infer a corresponding
rating. Following the method outlined in [26], and as illustrated in Figure 1, we
preprocess images using GroundingDINO to isolate and crop individual buildings
from street-view scenes. As found in the experiment in Section 4.2, we choose
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Gemma 3 [23] as the multimodal LLM backbone to process each cropped image
alongside a structured text prompt. In practice, in addition to the query, we
include the formal rating criteria in the text prompt as follows:

– 1: Uninhabitable – Likely unsuitable for rehabilitation; abandoned, fire-
damaged, boarded-up, or vacant. Requires demolition.

– 2: Poor – Requires substantial improvements, including major roof repairs,
broken windows, bulging walls, or sagging foundations.

– 3: Adequate – Requires basic cosmetic repairs, with no more than two
issues such as painting/siding, trim, porch, minor roof improvements, or
fence repair.

– 4: Good – Structurally sound with good maintenance and no immediate
repairs required. There may be no more than one minor issue, such as limited
painting/siding replacement, minor porch repair/painting, or minor fence
repair/painting.

– 5: Excellent – Recently rehabilitated or remodeled; no repairs needed. New
paint and roof in very good condition.

Formatting instructions for the expected output are also indicated in the text
prompt, enabling the model to evaluate different aspects of the building, includ-
ing paint, window, structure, and maintenance, according to the criteria, and
then provide an overall numerical rating. Figure 2 shows five examples corre-
sponding to ratings 1 to 5, respectively. This overall rating is directly compared
with the MOS provided by human experts.

1 - Uninhabitable 2 - Poor 3 - Adequate

4 - Good 5 - Excellent

Fig. 2. Examples of buildings corresponding to each condition rating.

Within this framework, we employ two strategies to leverage Gemma 3: fine-
tuning with expert supervision and knowledge distillation for efficiency.

First, to bring the model’s predictions closer to the mean opinion of hu-
man experts, we fine-tune a strong base model using a small set of human-
labeled data. Given the substantial size of modern LLMs and the computational
constraints of our local hardware environment, full fine-tuning is not feasible.
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To address this, we adopt a parameter-efficient fine-tuning (PEFT) [10] strat-
egy, which selectively updates a small subset of the model’s parameters while
keeping the majority fixed. Specifically, we apply quantized low-rank adaptation
(QLoRA) [5], a technique that enables fine-tuning using low-precision weights
and low-rank adapters. This approach significantly reduces memory consumption
and training cost, while preserving model performance.

Second, to enable efficient large-scale evaluation, we distill the capabilities of
the largest Gemma 3 model (teacher) into smaller, more efficient models (stu-
dents). For tasks requiring detailed text output, we train a smaller Gemma 3
to replicate the teacher’s reasoning and formatting. We transfer knowledge to
lightweight vision models for rating-only tasks for faster inference. Distillation
is performed using pseudo-labels generated by the teacher on unlabeled building
images, removing the need for additional human annotation while preserving
alignment with expert judgments.

4 Experiments

4.1 Dataset and Metrics

We collected 12,063 GSV images from six states: California, Florida, Georgia,
Indiana, New York, and Texas. The images capture a wide range of building con-
ditions and styles. We invited seven human raters to independently evaluate the
building condition of 1,281 randomly selected images on a 1–5 scale. As a result,
the labeled images received MOS ratings of 5 for 229 images, 4 for 582 images,
3 for 345 images, 2 for 105 images, and 1 for 20 images. The remaining 10,782
unlabeled images are used for knowledge distillation experiments. Though reso-
lution varies due to cropping, all images are clear enough for reliable assessment,
with a minimum resolution of 600×300.

Since the label distribution is imbalanced (e.g., 1’s and 2’s are scarce), we
emphasize correlation-based evaluation, which is suitable for ordinal MOS labels
and robust to skewed class frequencies. We employ the Spearman’s rank cor-
relation coefficient (SRCC) to evaluate the alignment between model-predicted
ratings and human assessments. This non-parametric metric measures the mono-
tonic relationship between two ranked variables, capturing how well the predicted
ratings preserve the relative ordering of the ground truth ratings. SRCC is es-
pecially well-suited for subjective tasks, where the precise numerical rating may
vary across raters, but the relative ranking remains meaningful. In equation,

SRCC = 1−
6
∑N

i=1(xi − yi)
2

N(N2 − 1)
, (1)

where xi and yi denote the model-predicted rating and MOS from human ratings
for the i-th image, respectively, and N denotes the number of images. A higher
SRCC value indicates stronger agreement in ranking between the model and
human raters, with ρ = 1 indicating perfect rank correlation.
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To assess the linear agreement between model predictions and human ratings,
we also compute the Pearson’s linear correlation coefficient (PLCC). Unlike
SRCC, which measures monotonic rank alignment, PLCC quantifies the strength
of a linear relationship between predicted ratings and ground truth ratings. It is
defined as

PLCC =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
, (2)

where xi and yi denote the model-predicted rating and MOS for the i-th image
respectively, and x̄, ȳ are their corresponding means. N denotes the number of
images. A PLCC value of 1 indicates perfect linear correlation, 0 indicates no
correlation, and -1 indicates perfect inverse correlation. PLCC is useful when
assessing whether the predicted ratings follow the correct ordering and approx-
imate the correct magnitude.

4.2 Zero-shot Evaluation of Multimodal LLMs

We compare the zero-shot performance of multimodal LLMs on building con-
dition evaluation and assess their inference costs. We select the latest open-
source models from the LLaVA [16], Mistral [20], LLaMA [24], Qwen [3], and
Gemma [23] families. We evaluate two model sizes for LLaVA, Qwen, and Gemma
to provide additional reference points. Experiments are run on a system equipped
with four NVIDIA A40 GPUs (48 GB VRAM each). While most experiments
are performed on a single GPU, models exceeding the memory capacity of one
device in our system are run on two GPUs for inference. Note that the multi-
GPU execution did not impact inference speed in our experiments. The test set
comprises all 1,281 GSV images along with their MOS ratings. All models are
given the same text prompt instructing them to evaluate paint, windows, struc-
ture, and maintenance, followed by an overall rating from 1 to 5 representing
the building condition, which is compared with the MOS to calculate SRCC and
PLCC.

As shown in Table 1, LLaMA 4 Scout 17B×16E (‘B’ denotes the number
of parameters in billions, while ‘E’ stands for experts in a mixture of experts
architecture) achieved the highest correlation with MOS, with an SRCC of 0.78
and a PLCC of 0.79, demonstrating strong agreement with human ratings, which
has the same SRCC and PLCC as the average of human raters shown in Table
2. However, because the model requires more than 64 GB of memory, it had
to be run on two GPUs in our setup. In comparison, Gemma 3 27B followed
closely in performance, achieving a value of 0.77 for SRCC and PLCC. Notably,
it requires only 18 GB of VRAM, making it compatible with a single commercial-
grade GPU and therefore more practical for deployment on local machines with
constrained computational resources. In this comparison, Gemma 3 27B shows
the closest alignment with human ratings for building condition evaluation on a
single GPU, outperforming larger models such as Mistral Small 3.2 24B, LLaVA
1.6 34B, Qwen 2.5 VL 32B, and Qwen 2.5 VL 72B.
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Table 1. Comparison of multimodal LLMs. We report SRCC and PLCC with respect
to the MOS, along with inference speed (tokens per second), GPU memory usage
(VRAM, in gigabytes), and the number of GPUs (nGPU) used to run each model.
Inference speed is expressed in tokens per second, ensuring consistency across models
regardless of the length of generated text. The best values are highlighted in bold.

model SRCC ↑ PLCC ↑ inference speed ↑ VRAM ↓ nGPU ↓

Mistral Small 3.2 24B 0.63 0.67 33.86 23.75 1
LLaMA 4 Scout 17B×16E 0.78 0.79 37.28 64.58 2

LLaVA 1.6 7B 0.41 0.41 88.46 5.52 1
LLaVA 1.6 34B 0.61 0.61 25.83 25.92 1

Qwen 2.5 VL 32B 0.68 0.72 23.66 22.32 1
Qwen 2.5 VL 72B 0.73 0.76 11.02 49.77 2

Gemma 3 4B 0.45 0.46 97.37 4.87 1
Gemma 3 27B 0.77 0.77 26.64 18.48 1

Table 2. Comparison of individual human raters to the MOS, excluding each rater’s
own ratings to ensure fairness. We report SRCC and PLCC for each rater, as well as
the average across all human raters.

rater A B C D E F G average

SRCC ↑ 0.78 0.80 0.80 0.76 0.76 0.74 0.81 0.78
PLCC ↑ 0.80 0.80 0.81 0.78 0.77 0.76 0.82 0.79

Performance consistently declines among LLaVA, Qwen, and Gemma as
model size is reduced. For Qwen 2.5 VL, the drop in both SRCC and PLCC
from 72B to 32B is less than 0.1, which is much smaller than the 0.2 drop ob-
served from 34B to 7B for LLaVA 1.6 or the drop of more than 0.3 from 27B to
4B for Gemma 3. As a result, although Gemma 3 4B demonstrated the highest
efficiency in inference speed and the lowest VRAM usage, its predicted ratings
deviate substantially from human ratings, making it unsuitable for use.

Overall, Gemma 3 27B is the most practical out-of-the-box open-source
choice for building condition evaluation on a single GPU, combining near-human
MOS alignment with moderate speed and GPU memory requirements.

Table 3. Comparison of different output formats. We report SRCC and PLCC, along
with the average number of tokens in the response generated, the average response
generation time (in seconds), and the prompt processing time per image (in seconds).
The best values are highlighted in bold.

output details & number details & word single number single word

SRCC ↑ 0.77 0.77 0.70 0.78
PLCC ↑ 0.77 0.78 0.66 0.78

# response tokens ↓ 87.82 79.89 2.00 2.00
response time ↓ 3.29 3.00 0.08 0.08

processing time ↓ 1.06 1.04 0.96 1.13
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4.3 Optimization of Gemma 3

Building on the findings in Section 4.2, we investigate flexible ways to leverage
Gemma 3 for building condition evaluation. We first examine whether different
output formats in the prompt affect the performance of the Gemma 3 27B model.
As shown in Table 3, we experiment with alternative formats for the overall
rating, including using a word instead of a number, and restricting the model to
output only a single number or word without additional text. This latter case is
motivated by the fact that the number of tokens in the response directly impacts
inference time. All experiments are evaluated on the same set of 1,281 images.
The results in Table 3 indicate that when detailed descriptions are provided,
the model’s accuracy remains almost consistent regardless of whether the overall
rating is expressed as a word or a number. When only the rating is needed, using
a single word yields nearly the same accuracy but with much faster responses due
to fewer generated tokens. However, accuracy drops significantly when restricted
to outputting only a single number. We attribute this phenomenon to numbers
with less semantic context than descriptive words, making it harder for the model
to link to specific building conditions when used alone.

Next, we fine-tune Gemma 3 27B using MOS labels to improve its alignment
with human ratings. Since the accuracy of the word-only response is comparable
to that of detailed responses (see Table 3), we adopt the word-only format for
these experiments to simplify loss computation based on MOS, which is trans-
lated from numerical ratings into their corresponding descriptive words. From
the dataset of 1,281 images, the first 800 images are allocated for training and the
remaining 481 for testing. As shown in Table 4, we vary the number of training
images by randomly sampling subsets from the 800 training images. The slightly
higher PLCC for the pre-trained Gemma 3 27B model compared to earlier re-
sults is attributable to the change in the test set. During fine-tuning, the model
is quantized to 4-bit precision to reduce memory usage. Following the Gemma
3 official guidelines, the LoRA configuration uses a scaling factor of 16 and a
dropout rate of 0.05 to prevent overfitting. The rank of the low-rank matrix is set
to 16, and the warm-up ratio is set to 0.03 to improve training stability. LoRA
limits training to roughly 16% of the model’s parameters. The learning rate is
set to 5× 10−5. The training batch size is 1, and only one epoch is run to avoid
overfitting. The model is optimized with a next-token prediction loss, calculated
as the cross-entropy between the predicted logits and the target labels.

Table 4. Comparison of different numbers of training images used to fine-tune the
Gemma 3 27B model. We report SRCC and PLCC, along with the training time (in
minutes). The best values are highlighted in bold.

# training images 0 100 200 300 400 500 600 700 800

SRCC ↑ 0.78 0.77 0.78 0.80 0.81 0.82 0.82 0.83 0.83
PLCC ↑ 0.79 0.78 0.79 0.81 0.81 0.83 0.81 0.82 0.82

training time ↓ — 4.52 8.20 12.68 16.57 21.48 25.38 30.52 34.68
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Table 4 shows that fine-tuning Gemma 3 27B on 500 labeled images yields
performance that surpasses the MOS alignment of all individual human raters
(see Table 2). Increasing the number of training images beyond 500 does not
yield definitive performance improvements, indicating that the model reaches
a performance plateau. These results suggest that a fine-tuned Gemma 3 27B
model trained on 500 images is sufficient to match or exceed human-level consis-
tency, making it a practical replacement for manual rating in automated building
condition evaluation.

4.4 Knowledge Distillation using Fine-tuned Gemma 3

We also experiment with response-based knowledge distillation using our Gemma
3 27B fine-tuned on 500 labeled images as a teacher model to fine-tune the
Gemma 3 4B model, as well as several efficient vision models, including ResNet [8],
MobileNetV3 [11], EfficientNetV2 [22], and Swin Transformer V2 [18]. For com-
parison, we prepare two training sets: one containing 10,782 building images
labeled automatically by the fine-tuned Gemma 3 27B, and another containing
800 human-labeled images. Both are evaluated using the same 481 images. For
the Gemma 3 4B model, we apply the same QLoRA fine-tuning procedure de-
scribed in Section 4.3. For the vision models, we optimize using mean squared
error (MSE) loss between the predicted ratings and the MOS, with a learning
rate of 1 × 10−4 during fine-tuning. The vision models are trained for up to 10
epochs on the Gemma 3–labeled dataset and up to 100 epochs on the human-
labeled dataset. We identify the epoch that achieves the highest SRCC on the
test set and report its performance.

Table 5. Comparison of models fine-tuned on two training datasets labeled respectively
by Gemma 3 27B and by human annotators. We report SRCC and PLCC for both
datasets, along with the batch size used during training, inference speed (in images
per second), and GPU memory usage at the inference stage (VRAM, in gigabytes).
Inference speed is expressed in images per second because models other than Gemma
3 produce numeric outputs instead of text. The best values are highlighted in bold.

Gemma dataset human dataset batch inference
model SRCC ↑ PLCC ↑ SRCC ↑ PLCC ↑ size speed ↑ VRAM ↓

ResNet-50 0.68 0.66 0.52 0.53 32 69.41 1.87
MobileNetV3-L 0.65 0.66 0.45 0.46 32 69.91 1.72

EfficientNetV2-M 0.73 0.74 0.60 0.61 16 31.01 2.09
SwinV2-B 0.73 0.74 0.61 0.63 16 32.61 2.36

Gemma 3 4B 0.81 0.80 0.74 0.73 1 3.05 9.10

As shown in Table 5, knowledge distillation effectively transfers the capabil-
ities of the fine-tuned Gemma 3 27B model to smaller models. For all models,
fine-tuning on the automatically labeled dataset leads to consistently higher per-
formance than fine-tuning on the human-labeled dataset. The approach performs
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well across different architectures, including CNNs (ResNet-50, MobileNetV3-L,
EfficientNetV2-M), transformers (SwinV2-B), and multimodal LLMs (Gemma 3
4B). This result indicates that the fine-tuned Gemma 3 27B model can serve as
a dependable substitute for human annotators in creating a large-scale dataset
for building condition evaluation, helping to overcome the scarcity of annotated
data while significantly reducing labeling costs. Notably, EfficientNetV2-M and
SwinV2-B achieve SRCC and PLCC values above 0.7, comparable to the base
Gemma 3 27B model, while delivering more than 30× faster inference. Fine-
tuning Gemma 3 4B on the automatically labeled dataset enables it to achieve
SRCC and PLCC values exceeding the base Gemma 3 27B model, with the added
benefit of roughly 3× faster inference. In this experiment, the fine-tuned LoRA
adapters were not merged into the pre-trained model prior to inference. Instead,
they were loaded separately at runtime, allowing us to keep only the compact
LoRA files rather than full model checkpoints. This approach increased VRAM
usage from less than 5 GB to over 9 GB, as both the base model and the adapter
were held in memory during inference. Still, users can merge the adapters into
the base model, reducing the VRAM consumption to a level close to the pre-
trained model. Leveraging knowledge distillation from the fine-tuned Gemma 3
27B model enables scalable, fully automated evaluation with the flexibility to
select models for different performance–efficiency trade-offs, making it practical
to process datasets containing millions of images within reasonable timeframes.

5 Conclusions and Future Work

We present a novel framework for automated building condition evaluation from
GSV images across the United States using multimodal LLMs with minimal
human annotation. We benchmark multiple leading open-source multimodal
LLMs, identify the most effective model for aligning with expert ratings, and
explore techniques, such as prompt refinement, targeted fine-tuning, and knowl-
edge distillation, to enhance reliability and significantly improve efficiency, mak-
ing million-scale dataset evaluation practical. The framework provides a flexible
selection of methods, allowing users to balance performance and efficiency ac-
cording to task-specific priorities. While this approach is the first to evaluate
building quality at a large scale using LLMs, a promising future direction is to
explore their application to broader aspects of buildings.

Still, our methods have a few limitations. First, the MOS ratings are de-
rived from a specific group of skilled and novice raters, which may not fully
capture broader subjective consensus or ensure complete fairness. While this
may be sufficient for meeting the needs of a small target group, broader appli-
cation scenarios require input from a larger and more diverse rater pool. Sec-
ond, output-based knowledge distillation demands large quantities of raw im-
ages to generate pseudo-labeled image–rating pairs from real-world data. While
feature-based knowledge distillation may offer greater efficiency, differences in
network architectures introduce challenges in maintaining compatibility between
the teacher and student feature representations. We consider exploring this as
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a future research direction. Third, given that LLM performance is highly de-
pendent on prompt construction, future work will explore more sophisticated
prompt engineering strategies beyond the plain-language criteria, query, and
format descriptions used in this study. Finally, future work could examine po-
tential biases in LLM outputs stemming from various image attributes, both
low-level factors such as brightness and contrast, and high-level characteristics
such as architectural style or building type, to better understand influences on
model predictions.
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