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Abstract

Due to its ability to create novel views and bypass conventional rendering, visualization generation has become a trending topic
of deep learning for scientific visualization research. Given a set of direct volume rendering (DVR) images for training, existing
solutions design neural networks to learn the mapping between input parameters and output images. Once learned, the network
can synthesize novel views from unseen parameters. However, no attempt is made to reconstruct the underlying volumes for
more flexible downstream visualization synthesis. In this paper, we introduce neural reconstruction of volumes for visualization
enhancement (ReVolVE), a new framework based on the neural radiance field that reconstructs high-quality density and color
volumes from unlit DVR images to enable novel view synthesis with various visualization enhancement options. Leveraging a
compact volume representation with an efficient vector-matrix decomposition scheme and a color-based volume segmentation,
ReVoIVE can effectively separate density and color volumes that cover prominent visual content implicitly represented by a generic
transfer function mapping, paving the way for subsequent visualization enhancement via neural rendering or conventional rendering.
We demonstrate the effectiveness of ReVolVE across multiple volumetric datasets, showcasing its visual enhancement outcomes
and comparing its superior performance against representative state-of-the-art methods (DiffDVR, Plenoxels, 3DGS, TensoRF, and

Instant-NGP).
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1. Introduction

In scientific visualization, as a process that transforms 3D
volume data into 2D images, volume rendering enables the
visualization, analysis, and interpretation of large underlying
datasets. This technique has become indispensable in advanc-
ing many scientific, engineering, and medical fields. Volume
rendering can be primarily categorized into two types: isosur-
face rendering (IR) and direct volume rendering (DVR).

IR uses polygonal surfaces to represent volumes, focusing
on specific isovalues. This method allows for efficient shad-
ing using conventional graphics shaders, making it a popular
choice for applications requiring clear surface delineation. In
contrast, DVR treats a volume as a semi-transparent medium
with physical properties that influence its interaction with light,
such as absorption, emission, and scattering [1], which provides
a more comprehensive view of the volume’s internal structure.
Beyond the physics-based optical model, researchers have cre-
ated a range of enhancement techniques [2, 3, 4, 5, 6] that pro-
vide various visual cues (e.g., depth, contour, and silhouette) to
improve the perception of regions of interest.

Since DVR relies on volume ray casting, the volume data
must be available during rendering. These volume data could
be large-scale, making them costly to produce, store, and dis-
tribute. Besides data generation [7, 8, 9, 10, 11, 12] and neu-
ral compression [13, 14, 15, 16, 17], the recent surge of deep
learning techniques [18] for visualization generation provides
a promising alternative for creating DVR images [19, 20, 21,
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22, 23, 24, 25]. One group of works [22, 24, 25] use scene
representation networks (SRNS) to represent the raw volume it-
self, similar to how neural compression works. They require
access to the full volume during training. Another group of
works [20, 21, 23] are trained on DVR images and can gen-
erate new views without needing the original data. The key
advantage of this second group of works is that, for large-scale
simulations, scientists can render and store DVR images in situ
as the simulation runs, avoiding the costly I/O and storage de-
mands associated with saving the raw volume data. As shown
in Section 4.4, the memory usage of these methods is not di-
rectly influenced by the size of the original volume, as they are
only trained on the rendered images. These works also show
an additional advantage in scenarios where the original volume
data cannot be shared due to privacy or security constraints.
However, they are limited to synthesizing DVR images with
the same volume appearance as the training images. Although
the geometry-aware stylization of DVR images [26] can modify
the appearance to match the style of a reference image, the po-
tential of deep learning techniques that apply established visual
enhancements to volume visualization remains underexplored.

This paper introduces ReVolVE, neural Reconstruction of
Volumes for Visualization Enhancement, an innovative neural
radiance field (NeRF)-based framework that efficiently recon-
structs high-quality density and color volumes from DVR im-
ages and creates novel volume visualizations with various vi-
sual enhancement options. We assume the original volume data
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is unavailable during training or inference. Moreover, the input
training DVR images are unlit, only reflecting color and opacity
mappings determined by some generic transfer function (TF)
without any lighting applied. The camera poses associated with
these input training images are known, but the TF is unknown.

ReVoIVE employs a hybrid representation of the volume
data, which combines a vector-matrix decomposed volume [27]
to store features with a compact multilayer perceptron (MLP)
decoder. The MLP computes color and opacity from the given
features to enhance the expressiveness of explicit representa-
tion. Upon completing its training, ReVolVE leverages a clus-
tering algorithm to extract representative colors from the vol-
ume. These representative colors guide the production of seg-
mentation masks that partition the volume into separate seg-
ments to support targeted edits. We provide visualization en-
hancement options that enable the neural network to infer en-
hanced DVR images directly. These options streamline the pro-
cess of neural rendering, improving the visual quality of syn-
thesized images. To further the flexibility of ReVolVE, we offer
an alternative route that exports segmented density volumes for
employing conventional rendering on these derived volumes.
The contributions of our ReVolVE are the following

e ReVOIVE is the first NeRF-based approach that directly
enhances visualization without requiring access to the
original volume data, using only DVR images. This in-
novation introduces new possibilities for feature enhance-
ment and visual adjustment.

e ReVolVE outperforms representative state-of-the-art
methods (DiffDVR [28], Plenoxels [29], 3DGS [30],
TensoRF [27], and Instant-NGP [31]) for scene recon-
struction and novel view synthesis of DVR images, both
quantitatively and qualitatively.

e We comprehensively showcase visualization enhancement
scenarios to highlight the versatility of ReVolVE and con-
duct ablation and hyperparameter studies to evaluate their
impact and determine the optimal setup.

2. Related Work

Differentiable volume rendering. Differentiable render-
ers [32, 33, 34, 35, 36] are designed to optimize 3D scene repre-
sentations by leveraging the gradients generated during the ren-
dering process, using 2D supervision from sources like depth
maps or multi-view images. Differentiable rendering is sel-
dom explored in volume visualization, but recent research has
demonstrated its significant potential. Nimier-David et al. de-
signed Mitsuba 2 [37], a differentiable renderer with a wide
range of rendering algorithms with the Markov Chain Monte
Carlo sampling method. While its reverse-mode automatic dif-
ferentiation allows 3D scene optimization, Mitsuba 2 signifi-
cantly increases GPU memory usage for storing intermediate
states. Moreover, unlike a neural network, direct gradient-based
optimization on volume is prone to low-quality local minima,
requiring careful initialization.

Weiss and Westermann introduced DiffDVR [28] to opti-
mize all continuous parameters in the volume rendering pro-

cess. DiffDVR recomputes intermediate states instead of stor-
ing them, allowing gradient calculation through automatic dif-
ferentiation while conserving GPU memory for handling larger
volumes. It applies to various volume visualization tasks, such
as optimal viewpoint selection, TF reconstruction, and volume
reconstruction. Notably, DiffDVR also supports density and
color volume reconstruction from DVR images, closely match-
ing the setup used in our ReVolVE framework. In Section 4, we
render the volumes reconstructed using Diff DVR and compare
the results with ReVoIVE in terms of rendering quality.

Scene representation networks. In scientific visualization,
several SRNs [22, 24, 25] have been effectively used to re-
duce the size of volume data by learning compact neural rep-
resentations. These methods enable seamless integration with
renderers that utilize the neural network directly for rendering,
without requiring full reconstruction of the original volume, un-
like traditional data compression techniques, which typically
require decompressing the entire volume before visualization.

While ReVolVE may be seen as part of the broader SRN fam-
ily, it fundamentally differs in that it represents pre-shaded vol-
umetric scenes rather than raw volumetric data. ReVolVE is
trained solely on a small number of unlit DVR images, elimi-
nating the need for access to the original volume. This approach
significantly reduces storage and data transfer demands, mak-
ing it well-suited for large-scale or restricted-access scenarios.

Neural radiance fields. NeRF [38] represents a 3D scene
by modeling a continuous volume of densities and direction-
dependent colors through the differentiable volume rendering
process. By utilizing an implicit representation of the 3D scene
through a deep, fully connected neural network, NeRF cap-
tures and represents complex real-world geometry and appear-
ance with a much more compact model size compared to tradi-
tional voxel-based (explicit) approaches. Subsequent research
has concentrated on key improvements, such as enhancing ren-
dering quality [39, 40, 41], minimizing the number of training
images [42, 43], learning dynamic scenes [44, 45], enabling
inverse rendering [46, 47, 48], and integrating compositional-
ity [49, 50]. Apart from these improvements, our focus is on
further exploring efficient 3D scene representations to optimize
NeRF for volume reconstruction from DVR images.

Efficient 3D scene representations. The original NeRF, as
a purely implicit approach that relies entirely on a deep MLP,
incurs slow convergence, often requiring hours to days to train.
To achieve orders of magnitude speedup, fully explicit methods
such as NSVF [51], PlenOctrees [52], and Plenoxels [29] have
been developed to represent radiance fields by directly storing
densities and colors within the voxels of a 3D grid. Still, al-
though optimization techniques such as skipping and omitting
empty voxels have been employed to reduce memory footprints
and storage costs, the overall demands still escalate rapidly as
the volume resolution increases, echoing the limitations ob-
served in the aforementioned differentiable renderers.

Representing the 3D scene with 3D Gaussians is another ex-
plicit approach that does not use neural networks and accel-
erates training and inference [30, 53, 54]. While 3D Gaus-
sians are optimized to avoid computation and storage costs for
empty space, rasterization allows efficient real-time rendering.
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Figure 1: The overview of our ReVolVE framework. ReVoIVE first (a) learns a NeRF model from a set of plain, unlit DVR images produced from a generic TF.
The reconstructed color volume from the NeRF model is then used to (b) extract representative colors. The representative colors are used to (c) create volume
segmentation masks, with each color mapping to a distinct region. With the segmentation masks, ReVolVE (d) enables the editing and enhancement of individual
volume segments in the NeRF space. It also offers the capability to (e) export the density volume of an individual segment as scalar field data or its isosurface as a

triangle mesh for conventional rendering.

However, since DVR scenes usually contain complex, semi-
transparent structures, 3D Gaussian splatting (3DGS) [30] may
not perform effectively without using an excessive number of
Gaussians.

Hybrid 3D representations are better suited for volume re-
construction from DVR images, as they accelerate the model by
incorporating explicit representations while still utilizing neu-
ral networks to maintain 3D scene continuity. Instant-NGP [31]
integrates a multiresolution hash table (MHT) of trainable fea-
ture vectors with a small network, exemplifying an excellent
way for hybrid representation. Nevertheless, when applied to
volume or surface reconstruction, this method can introduce
noticeable noise and artifacts that are difficult to mitigate due
to the nature of MHT encoding. An alternative hybrid solution
generates an explicit 3D voxel grid representing the 3D scene.
As a CNN-based approach, convolutional occupancy networks
(CONet) [55] generate the occupancy volume with a 3D U-Net
as the volume decoder. This method also implements a multi-
plane decoder that decomposes the 3D representation into three
planes. The concept of decomposition has been applied in radi-
ance field generation, such as GSN [56] and EG3D [57], which
utilize 2D CNNs to generate feature planes.

Based on this concept, TensoRF [27] further incorporates a
vector-matrix decomposition to the radiance fields. Unlike gen-
erative methods that rely on neural networks to generate the
decomposed representation, TensoRF uses an explicit decom-
posed representation of trainable features, much like the MHT
features used in Instant-NGP. TensoRF, similar to Instant-NGP,
combines explicit feature grids with a small MLP; however,
in TensoRF, the MLP decoder is dedicated solely to comput-
ing view-dependent color, while density is directly obtained
from the feature grid’s voxel values. Like Instant-NGP, Ten-
soRF shows noticeable artifacts due to its vector-matrix de-
composed 3D grid representation. ReVolVE employs a hy-
brid 3D scene representation incorporating vector-matrix de-
composition to optimize volume reconstruction. We also pro-
vide strategies for ReVolVE to minimize artifacts, resulting in
superior renderings and more accurate volume reconstructions.

Neural rendering. Researchers have proposed replacing the
whole rendering process with a neural network as an alterna-

tive to classical rendering techniques. We refer readers to the
recent survey by Tewari et al. [58] for a general overview of
neural rendering. As an example, RenderNet [59] replaces the
mesh rasterizer with a combination of convolutional and fully
connected networks. In scientific visualization, the works by
Berger et al. [20] and He et al. [21] fall into the same line of
research. GAN-VR [20] trains a network on DVR images and
rendering parameters and uses the network to predict new vi-
sualizations using only the camera and TF parameters. InSi-
tuNet [21] lets a network learn the relationships between the
input simulation parameters and rendering output. Then, this
network directly synthesizes images from the new input pa-
rameters during inference. GAN-VR requires many render-
ing images (200,000) for training, and InSituNet only works
with low-resolution (256x256) images. More recently, Han and
Wang designed CoordNet [23], which employs an MLP based
on SIREN activation functions [60] to infer high-resolution
(1024x1024) DVR images from novel viewpoints. Li et al. [61]
presented ParamsDrag, a model inspired by DragGAN [62],
which facilitates parameter space exploration through direct in-
teraction with visualizations.

ReVolVE is more robust and flexible than other methods [20,
21, 23] because it not only generates high-fidelity novel views
by reconstructing volumes but also enables targeted visualiza-
tion enhancements to specific regions by creating color-based
volume masks. Additionally, our method requires significantly
fewer images and trains faster, making it more convenient and
efficient.

3. ReVolVE

The primary goal of ReVolVE is to achieve high-fidelity
enhancement of DVR images rendered using an emission-
absorption model [1], without access to the volume data or
knowledge of the TF. As illustrated in Figure 1, ReVolVE starts
with learning a NeRF model from a set of plain, unlit DVR im-
ages. By leveraging the NeRF model, it represents the 3D scene
of these DVR images as a reconstructed volume consisting of
densities and colors. ReVolVE further extracts representative
colors from the color distribution of the reconstructed color vol-



ume. These colors serve as the basis for segmentation masks,
allowing precise identification of different regions within the
volume. ReVoIVE can apply targeted edits or visual enhance-
ments to specific volume segments with these masks. While
ReVoIVE includes various visualization enhancement methods
that can directly utilize NeRF outputs, users also have the op-
tion to export, from the reconstructed volume, high-quality den-
sity volumes or isosurfaces from selected segments and follow
the conventional rendering workflow.

3.1. Direct Volume Rendering with Radiance Field

Our model begins by taking a camera pose as a transforma-
tion matrix. A ray is cast from the camera through each pixel
on the screen toward the volume. As the ray traverses the vol-
ume, it samples features from matrices and vectors representing
the volume along its path, following TensoRF [27]. These sam-
pled features are then processed by a small MLP to determine
the density and color of each sample point. The densities and
colors sampled along each ray are combined to compute the fi-
nal color rendered at the corresponding pixel. This rendering
process mirrors the method used for rendering DVR images,
following the rendering equation

C(r) = f f T (o (x()c(x(n)dt,
fn y (h
where 7 (¢) = exp(— f o'(r(s))ds).

n

In Equation 1, C(r) denotes the color sampled along the ray
r(f) = o + td, where o is the origin, d is the ray direction,
and t, and f; are near and far bounds, respectively. The ac-
cumulated transmittance function 7 (¢) indicates the probability
that no particle obstructs the ray between ¢, and . The vol-
ume density function o (x) gives the probability that the ray is
intercepted by a particle at location x by a particle. The color
term c¢(x) corresponds to the particle that terminates the ray at
location x.

In practice, we use discrete sampling along the ray to ap-
proximate the integral, following the quadrature rule [1]. To
estimate the color C(r), n points are sampled along the ray and
computed using the formula

Cr) = ) Till - exp(=oi6))ei,
! i1 )
where 7; = exp(— O'jéj).
1
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In Equation 2, the ray marching step size 6; equals the distance
between the locations of contiguous samples, i.e., §; = t;.1 — 1;.
During ReVolVE training, we use stratified sampling along the
ray, where points are randomly sampled within evenly spaced
intervals, to improve the model convergence during training.
We switch to deterministic sampling with fixed, evenly spaced
points for inference, to ensure consistent results.
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Figure 2: Volume decomposition and feature decoder. ReVolVE takes (a) a
location in 3D space and samples on the (b) matrices and (c) vectors to get a
feature. These features are (d) concatenated and (e) fed to a neural network
decoder to obtain (f) density and color outputs.
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3.2. Volume Representation

Vector-matrix decomposition. As discussed in Section 2,
using a voxel-based 3D grid to represent the volume is an in-
tuitive method that facilitates fast learning and straightforward
volume reconstruction. However, this approach is constrained
by substantial memory demands, preventing the reconstruc-
tion of high-resolution volumes. Following ViSNeRF [63], we
adopt the block-term tensor decomposition [64] to factorize the
3D volume V € R¥*Y*Z ag the sum of vector-matrix outer prod-
ucts [27]

R, R, R3
_ XY VA XZ Y YZ X
V= E M;" ovy + E M/ “ov, + E M;“ovy, 3)
r=1 r=1 r=1

where MXY, M*4, and M!Z represent the matrices correspond-
ing to the XY, XZ, and YZ planes, as shown in Figure 2. Simi-
larly, v¥, v¥, and v are the vectors along the X, Y, and Z axes,
respectively. The term MXY o vZ denotes the outer product of
the matrix MX? and vector v2. R;, Ry, and R3 correspond to
the numbers of low-rank components, i.e., MXY o vZ, M¥2 o v,
and M o vX. These numbers can be adjusted based on the
complexity and size of the represented volume.

By applying factorization, the memory complexity for repre-
senting the radiance field can be reduced from O(N?) to O(N?),
where N is the resolution and N > R; + R; + R3. We simplify
the method by assuming uniform complexity across all three
dimensions, using an identical number of components in each
dimension, i.e., R = Ry = R, = R3. The factorization can then
be formulated as

R
_ XY VA XZ Y YZ X
V=Y MY ovZ+MZov + M7 oV, 4)

r=1

Feature decoder. As a trade-off for compactness, the vector-
matrix decomposition inevitably sacrifices some expressiveness
compared to a voxel-based 3D grid. To enhance the represen-
tation’s capability, we employ a neural network as a feature de-
coder. Unlike other radiance field approaches [27, 31], which
take point locations and view directions in addition to sampled
features from the explicit representation, our decoder uses only
sampled features as input. When learning a volume from DVR
images, incorporating point locations and view directions into
the MLP can cause interference rather than complement the
output generation. Relying solely on the features helps improve
the robustness of ReVolVE, particularly when working with a
limited number of training images.



Figure 3: Extraction of representative colors and volume segmentation. (a)
RGB values are extracted from the voxels in the color volume. (b) K-means
clustering is performed on the sampled colors to identify distinct groups. (c)
We use the cluster centers as representative colors, which are used to create
masks for volume segmentation.

3.3. Color-Based Volume Segmentation

To deliver visualization enhancement in a flexible and user-
friendly way, ReVoIVE focuses on enabling the ability to edit
different colored regions of unlit DVR images separately. It dis-
entangles the alpha-blended color in DVR images by learning
aradiance field, allowing for accurate reconstruction of density
and color volumes.

As illustrated in Figure 3, we leverage the color volume to
estimate the color distribution within the scene. A clustering
algorithm, such as k-means, can be applied to group colors by
calculating the Euclidean distances in the RGB space. The cen-
troid of each cluster serves as the representative color. Note
that we exclude color samples from points with low density to
improve the overall accuracy of the process.

After extracting representative colors, volume segmentation
masks are generated by mapping sampled voxels to the closest
representative colors. This is determined by calculating the Eu-
clidean distance between the voxel’s color and each representa-
tive color in the RGB space. As shown in Section 4, our volume
segmentation has proven highly effective. Other methods like
PaletteNeRF [65] prefer to learn a palette to segment the vol-
ume, which would add extra training overhead and may not be
an optimal approach for segmenting volumes learned from unlit
DVR images.

3.4. Loss Functions

A straightforward way to supervise ReVolVE is to compute a
color loss, which measures the difference between the rendered
outputs and the training DVR images. For each training batch, a
subset of rays R is randomly selected from the pool of all train-
ing image pixels. For each ray r, as described in Equation 2, n
samples are queried along the ray, and the corresponding pixel
color C (r) is predicted. The color loss is then calculated as the
mean squared error (MSE) between the predicted colors C(r)
and the ground truth (GT) colors C(r) for the batch of pixels,
and is defined as

1 R
Lran = 0 >l - Cw|fs. )

reR

However, as shown in Figure 4, without proper regulariza-
tion, the visualized matrices of ReVolVE and the generated im-
ages exhibit significant noise and grainy artifacts. To mitigate
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Figure 4: TV regularization enables Re Vol VE to produce rendering results with
less noise and higher accuracy.
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them, we leverage a total variation (TV) loss as a regulariza-
tion term alongside the color loss. The TV loss reduces noise
in the vectors and matrices by penalizing high variations and is
defined as

Lry = LTVI + LTVZ, where

_ 1 i Gi-1]]?
‘ETVI - VIQl g;,(“"q Yy ”2) and
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where v e V, M € M, and g € Q. Here, V represents the
set of vectors, M is the set of matrices, Q denotes the feature
channels, / is the length of the vector, and / and w are the height
and width of the plane, respectively. The complete loss function
is given by

L= Lrgs + ALy, @)

where A is the weight of the TV regularization term.

3.5. Neural Visualization Enhancement

ReVOIVE includes visualization enhancements within the
PyTorch framework, enabling direct rendering with neural vol-
umes and eliminating the efforts of exporting and handling re-
constructed volumes for enhanced rendering. The workflow is
streamlined and simplified by adapting traditional enhancement
techniques for neural representations.

Isosurface enhancement. Isosurface enhancement renders
the volumetric scene to appear as a fully opaque isosurface.
However, since the original volume data is unavailable, the iso-
value corresponds to the density value in the NeRF space rather
than the original data value. Consequently, the rendered isosur-
face should be regarded as approximating an isosurface from
the original volume corresponding to a peak in the TF.

To streamline the rendering process, ReVolVE renders the
isosurface implicitly using the neural volume instead of raster-
izing extracted surface triangles [66]. Specifically, rays are cast
towards the neural volume and terminated at the first instance
where the density value of the current sample exceeds a pre-
defined threshold while the previous sample’s density value is
below it. The midpoint between these two sample points is an
approximate location on the isosurface.

Figure 5 (d) shows the isosurface-enhanced rendering of a
segmented volume. Figures 5 (b) and (c) further illustrate the
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Figure 5: Isosurface enhancement applied to the red region of the head dataset.
(a) DVR input. (b) Surface normals where XYZ directions are colored as RGB.
(c) AO volume. (d) Isosurface enhancement with Blinn-Phong lighting, AO,
and feature grid upscaling and smoothing. (¢) With smoothing but no upscaling.
(f) With upscaling but no smoothing.

estimated surface normals and ambient occlusion (AO) derived
from the neural volume. As illustrated in Figure 5 (d), (e), and
(f), ReVoIVE leverages neural representation to minimize arti-
facts and enhance surface smoothness through feature grid up-
scaling and smoothing. Detailed explanations of these tech-
niques are provided in Appendix A.
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Figure 6: Local front-to-back averaging for depth enhancement. Yellow points
are consecutive primary sample points along the ray, and green points denote
intermediate sample points for averaging. Green arrows indicate front-to-back
accumulation.

Depth enhancement. As explained in [6], we can see the
inner structure when rendering the volume semi-transparently
with DVR, but the depth-ordering perception is ambiguous.
Following the shader implementation in [67, 68], during the
DVR process, as illustrated in Figure 6, we perform a local
front-to-back averaging within each ray segment. Such a seg-
ment is the interval between two consecutive sample points
along the ray. As more steps are taken in the ray segment aver-
aging process, the density at each sample point increases, mak-
ing the visible volume appear less transparent. Low-density
regions appear darker, creating an AO-like effect, and high-
density regions become more distinguishable. This technique
is formulated as

D D
o(x;) = Z w(y; ;) and c(x;) = Z c(yi j)w(yi,j), where
" 7 ®)

Wy = oy, ,-)(1 - w(y,-,k)) and w(yi0) = o (¥:0),

j-
k=0

where x; is the i-th primary sample point along the ray, y; ; is

the j-th secondary sample point starting from x;. D denotes the
number of sampling steps, i.e., the number of secondary sam-
ple points taken for each primary sample point. Functions o
and ¢ denote the density and color at the sample point loca-
tion. The weighted density function w determines the contribu-
tion of the density at each secondary point to the accumulated
density at the corresponding primary point. It also controls
how the color at each secondary point affects the color at the
primary point. Additionally, we incorporate the same lighting
method into the rendering, as higher density causes the volume
to resemble semi-transparent surfaces with perceptible thick-
ness. The normals and lighting at primary sample points are
computed after averaging.

(a) Instant-NGP

(b) ReVol VE (¢) GT

Figure 7: The surface extracted from a volumetric region of the chameleon
dataset using Instant-NGP and ReVolVE. The GT is an isosurface obtained at
the isovalue representing the region.

3.6. Volume and Surface Extraction

For volume extraction, we first sample a feature grid at the
desired resolution. The sampled grid is then decoded to ob-
tain the density and color volumes, following the procedure
described in Figure 2. The density volume is segmented into
multiple volumes based on the representative colors (refer to
Section 3.3) and exported to individual files. This enables users
to render segmented density volumes with preferred tools for
greater visualization flexibility.

ReVOIVE can also extract a surface from each segmented
density volume using the marching cubes algorithm [69]. Dur-
ing this process, feature grid upscaling and smoothing are ap-
plied. As shown in Figure 7, the surface generated by ReVolVE
demonstrates greater detail and clarity than that by Instant-
NGP, both reconstructed from a 5123 resolution volume. Re-
VOIVE excels at capturing finer details, particularly in regions
such as the eye socket and head crest. This makes it reliable for
reconstructing volumes and surfaces from DVR images.

4. Results and Discussion

In this section, we provide details of the datasets and network
training, and then discuss the baselines and metrics employed
in the comparison. We present ReVolVE’s novel view syn-
thesis results and compare them with baseline methods. Next,
we showcase visualization enhancement results enabled by Re-
VolIVE. Finally, we point out the limitations of ReVolVE. The
ablation and hyperparameter study results are furnished in Ap-
pendix B and Appendix C.



4.1. Datasets and Network Training

Table 1 lists the datasets for evaluating ReVolVE and com-
paring it with baseline methods. These datasets are also used to
showcase visualization results enhanced by ReVolVE. The sizes
of these datasets range from small (8 MB) to large (4.2 GB).
To achieve an even distribution of training viewpoints around
the volume data, the camera positions are determined using the
spherical Fibonacci point set [70], which employs a Fibonacci
spiral to ensure a near-uniform arrangement without clustering.
Doing this allows for selecting an arbitrary number of view-
points, enabling us to choose an optimal number to learn a neu-
ral volume representing the scene effectively.

Table 1: Dataset details: data and training image information.

volume volume # training image
dataset resolution size (MB) images size (MB)

vortex 128x128x128 8 6 1.53
five jets 128x128x128 8 12 3.50
head 256X%256x256 64 12 5.26
supernova 432x432x432 308 18 8.48
combustion 480x720x120 158 18 6.02
chameleon 1024x1024x1080 4320 18 7.99

In all cases, we use a resolution of 1024x1024 for DVR im-
ages in training and inference. The training images are pro-
duced from generic color TFs (e.g., blue-red for vortex, head,
supernova, and combustion, blue-green-cyan-red for five jets,
and blue-green-red for chameleon) without any lighting ap-
plied. Alternative color schemes in TFs for the five jets and
combustion datasets are used to assess the generalizability of
color-based segmentation. As reported in Table 1, the number
of training images ranges from six for a simple scene to 18 for
a complex one. With the same number, the image size varies
as they are saved in PNG format. To perform 360-degree in-
ference, we create 181 new views following a spiral path on a
spherical surface, beginning at an azimuth of -180 and eleva-
tion of -90, progressing through azimuth 0 and elevation 0, and
concluding at an azimuth of 180 and elevation 90.

Table 2: Model configuration: the maximum number of voxels in the vector-
matrix feature grid and the number of low-rank components R.

dataset ‘ vortex five jets head supernova combustion chameleon
max # voxels | 128 1283 256 320° 3843 3843
R 8 16 16 16 24 16

ReVolVE is implemented using PyTorch without relying on
custom CUDA kernels. All training is conducted on a single
NVIDIA A40 GPU with 48 GB of video memory. We train
ReVoIVE for 30,000 iterations for each dataset. The process
begins with a feature grid of 1283 voxels, which expands at
2,000 iterations and reaches the maximum voxel count by the
7,000-th iteration. The number of sample points along the ray
is adjusted according to the voxel count, allowing for efficient
and detailed rendering. At 2,000 iterations, the bounding box is
refined, and by 4,000 iterations, an alpha mask is generated to
skip empty space, further improving training efficiency.

The MLP decoder in ReVolVE consists of a single hidden
layer with 64 channels, remaining consistent across all experi-
ments. We use the Adam optimizer, with an initial learning rate

of 0.02 for the learnable features (vectors and matrices) and
0.001 for the MLP decoder. Both training and inference use the
same batch size (4096) to balance performance and memory
usage. Additionally, TV regularization with 4 = 1.0 is applied
to smooth the features. Table 2 reports the maximum number
of voxels in the feature grid and the number of low-rank com-
ponents R in volume factorization (i.e., the depth of features
sampled from the vectors and matrices). As discussed in Ap-
pendix B, these values are empirically determined by finding
the point where further parameter increases no longer improve
quality significantly. We observed that a higher-resolution vol-
umetric scene does not always require additional voxels or a
larger R, as factors like scene complexity and variation could
also play a role.

4.2. Baselines and Metrics

We choose DiffDVR along with four representative radiance
field rendering methods as baselines for comparison.

e DiffDVR [28] makes the volume rendering process dif-
ferentiable, allowing for optimization of parameters like
viewpoint, transfer function, and voxel value.

e Plenoxels [29] uses a sparse voxel grid to represent radi-
ance fields without using neural networks, enabling fast
training and rendering while maintaining the same level of
fidelity as NeRF.

e 3DGS [30] utilizes Gaussian ellipsoids to represent radi-
ance fields efficiently and achieves faster optimization and
real-time rendering with high visual quality.

e TensoRF [27] employs tensor factorization to accelerate
NeRF and improve the quality of image details.

o Instant-NGP [31] leverages MHT for fast training and real-
time performance for neural scene representations.

We evaluate the quality of synthesized images by peak
signal-to-noise ratio (PSNR), structural similarity index mea-
sure (SSIM), and learned perceptual image patch similarity
(LPIPS) [71]. To ensure fairness, we increase the model size
of all baseline methods to enhance their overall performance
when the scene complexity increases. As the complexity grows,
the configurations of baseline models are adjusted in the fol-
lowing ways: Plenoxels uses a higher resolution for its sparse
voxel grid; 3DGS increases the density of Gaussians; Instant-
NGP boosts the feature grid resolution and the hash table size;
and TensoRF, while matching ReVoIVE in feature grid resolu-
tion and depth, maintains an approximately doubled model size
compared to ReVolVE, due to the use of separate grids for den-
sity and color. The model configurations and training settings
are reported in Table 3. For 3DGS, the maximum number of
Gaussians ranges from 100,000 to 800,000, while for Instant-
NGP, the size of the hash table is set between 2!° to 222, both ad-
justed based on dataset complexity. All other hyperparameters
remain the same as the default settings provided in the official
code repository. For example, Instant-NGP employs multires-
olution hash grids with resolutions ranging from 16> to 20483
across eight levels.



We are aware of the modified 3DGS variant, cinematic Gaus-
sian splatting (CGS) [53], designed for photorealistic path-
traced images. In our experiments with unlit DVR datasets,
including supernova and chameleon, CGS does not outperform
the standard 3DGS, so we only show comparison results based
on the vanilla 3DGS. Please refer to Appendix D for a detailed
comparison among 3DGS, CGS, and ReVolVE.

Table 3: Novel view synthesis: model configurations and training settings for
baselines.

max # feature training batch
method features depth length size
DiffDVR | 256% to 5123 4 50 epochs 1 view
Plenoxels | 256° to 512° 10 128k steps 5,000 rays
3DGS 100k to 800k 59 30k steps 1 view
TensoRF 128 t0 3843 8to24 30k steps 4,096 rays
Instant-NGP 219 t0 222 4 35k steps 256k samples

Table 4: Novel view synthesis: average PSNR (dB), SSIM, and LPIPS values
across all 181 synthesized views, and training time (TT, in minutes), average
inference time (IT, in seconds) of a view, and model size (MS, in MB). The best
ones are highlighted in bold.

dataset method PSNRT SSIMT LPIPS| TT| IT| MS|
DiffDVR 31.81 0.938 0.088 2238 191 256.09
Plenoxels 27.55 0.908 0.185 11.08 0.44  91.90

vortex 3DGS 21.20 0.860 0.275 570 0.28 18.61

TensoRF 33.14 0.970 0.038 1642 292 3.43
Instant-NGP | 32.31 0.955 0.099 292 071 2354
ReVolVE 45.56 0.994 0.007 7.60 247 1.81

DiffDVR 25.31 0.935 0.110 26,57 298 256.09
Plenoxels 2222 0.918 0.107  13.17 042  93.38
five jets 3DGS 26.52 0.951 0.072 7.88 022 26.03
TensoRF 29.23 0.964 0.050 1642 2.68 6.49
Instant-NGP | 31.86 0.973 0.046 2.02 1.01 23.12
ReVolVE 39.08 0.991 0.009 1143 255 3.37
DiffDVR 29.55 0.928 0.138 2530 1.58 256.09
Plenoxels 23.22 0.860 0.164 1298 0.56 559.74
head 3DGS 26.04 0.895 0.148 923 040 46.87
TensoRF 30.60 0.929 0.090 3822 641 2494
Instant-NGP | 32.14 0.936 0.116 342 164 2423
ReVolVE 38.38 0.979 0.032 1645 371 12.68
DiffDVR 31.54 0.931 0.118  97.33  9.47 2048.09
Plenoxels 29.17 0.903 0.120  33.83 1.09 839.27
supernova 3DGS 29.39 0.907 0.093 1283 036  89.62
TensoRF 31.78 0.923 0.096  55.18 6.41 38.79
Instant-NGP | 34.36 0.946 0.083 358 144 4115
ReVolVE 36.57 0.957 0.046 25.15 454 1973
Diff DVR 25.85 0.912 0.102  97.28 8.10 2048.09
Plenoxels 26.12 0.923 0.062  30.65 090 611.75
combustion 3DGS 29.38 0.956 0.033 10.80 0.30 99.94
TensoRF 32.71 0.968 0.023  40.60 3.87 100.40
Instant-NGP | 34.54 0.982 0.019 498 123 11096
ReVolVE 39.48 0.993 0.004 28.05 3.69 42.66

DiffDVR 28.06 0.912 0.082 96.88 9.25 2048.09
Plenoxels 29.66 0.925 0.051  31.83 098 2057.75
chameleon 3DGS 29.90 0.932 0.037 17.57 030 195.73

TensoRF 32.21 0.952 0.026 3238 3.87 6145
Instant-NGP | 32.92 0.962 0.020 6.15 126 207.01
ReVolVE 36.04 0.979 0.010 27.75 3776  30.09

4.3. Novel View Synthesis

We begin our evaluation with DiffDVR, as it offers a rela-
tively straightforward approach for learning density and color
volumes from unlit DVR images. As shown in Figure 8 (a),
while the rendered scenes are structurally accurate, they appear
noticeably blurry across all datasets. This is partly because,
unlike the original DiffDVR setup that uses 64 training views,

our experiments rely on fewer views. Additionally, the lim-
ited expressiveness of the explicit voxel grid representation con-
tributes to the lack of fine detail. Beyond reconstruction quality,
DiffDVR also presents less desirable training speed, inference
speed, and most importantly, model size. For example, when
optimizing volumes at higher resolutions such as 5123, the GPU
memory usage exceeds 28 GB. This high memory consumption
stems from its explicit volumetric representation, which poses
a significant limitation to scalability when reconstructing high-
resolution volumes.

Similar pattern could be observed in Plenoxels, which also
uses a sparse voxel grid to represent 3D volumes. The re-
liance on an explicit voxel grid limits its capacity to capture
fine-grained details, particularly in complex scenes, and leads
to significantly larger model sizes compared to ReVoIVE. In
contrast to DiffDVR, Plenoxels incorporates several strategies
aimed at mitigating its inherent limitations. Plenoxels tries to
improve image quality with fewer training views using TV reg-
ularization, but as suggested by the results in Table 4, if train-
ing views are insufficient, it struggles to reconstruct the vol-
umes accurately and produces inferior rendering images. An-
other drawback of Plenoxels lies in model size. Even skipping
empty parts of the voxel grid, the size is still quite large com-
pared to ReVoIVE and other methods. Additionally, as high-
lighted in Figure 8 (b), it is difficult for Plenoxels to handle
dense semi-transparent regions, such as the cyan dome in the
five jets dataset and the red skull in the head dataset.

3DGS has recently gained significant attention, inspiring nu-
merous follow-up works. Initially, we anticipated leveraging its
potential for real-time rendering. However, our experiments re-
veal that representing volumes with 3D Gaussians is challeng-
ing. Unlike surfaces, where Gaussians can efficiently and ac-
curately capture surface details, continuous and densely semi-
transparent volumes require a complete filling of space with
color and density values to be properly represented. Filling the
entire volume with millions of Gaussians, however, is ineffi-
cient and will drastically reduce the efficiency of 3DGS. As a
workaround, 3DGS tends to concentrate Gaussians on the sur-
face of visible regions and relies on view-dependent coloring
to simulate the internal structure of semi-transparent regions.
The cyan dome in the five jets dataset, shown in Figure 8 (c),
exemplifies this limitation. As another example, the supernova
dataset illustrates how 3DGS attempts to fill the volume with
Gaussians but struggles to capture the correct structure. Thus,
while 3DGS can effectively depict surfaces, it is not ideal for
accurate volume reconstruction or visualization improvement
with plain, unlit DVR training images.

Our next candidate, TensoRF, has been selected for its com-
pact and efficient representation of the radiance field through
vector-matrix decomposition. Our experiments show its strong
stability with just six training views on the vortex dataset, and
TensoRF handles complex scenes with good overall quality.
However, one issue we encountered was the blurriness of ren-
dered images. While TensoRF supports TV regularization, its
hybrid design brings some complications. Since the neural net-
work also uses the sample point’s location as input, the impact
of TV regularization is reduced, as it only applies to features



(a) DiffDVR

(b) Plenoxels (c) 3DGS

(d) TensoRF

(e) Instant-NGP (f) ReVolVE (g) GT

Figure 8: Novel view synthesis from unlit DVR images produced from generic TFs. Top to bottom: vortex, five jets, head, supernova, combustion, and chameleon.
The corner images indicate the perceivable pixel-wise differences (ranging from purple to green for low to high differences).

in the vectors and matrices. The location input tends to domi-
nate, making it harder for the network to utilize the regularized
features in the vectors and matrices fully. This mismatch can
result in conflicts, especially when capturing fine details in the
volume, as illustrated in Figure 8 (d). To overcome this, we
use only the features sampled from the vectors and matrices
as inputs to the neural network. This adjustment enhances the
model’s stability and reduces computational cost.

For Instant-NGP, its MHT encoding significantly boosts
training and rendering speeds, as shown in Table 4. Despite
its highly efficient architecture, it struggles with stability when
training views are insufficient. We must adjust training configu-
rations and run multiple attempts to ensure proper convergence
and achieve high-quality results. When it does converge cor-
rectly, the performance is impressive, especially considering the
short training time. However, a huge limitation of the hash grid
is that it cannot apply TV regularization to reduce the required
training views. TV regularization requires a tensor-based rep-
resentation, such as a volume or a plane, whereas Instant-NGP
stores its features in the MHT. Additionally, as seen in Figure 8
(e), the thin blue layer in the supernova dataset appears incom-
plete on the right side. This issue arises in Instant-NGP because

voxels corresponding to small or distant objects are visited in-
frequently by training rays, resulting in fewer gradient updates.
Due to the limited capacity of the hash table, these infrequently
accessed entries are also more likely to be overwritten by those
corresponding to dominant, high-frequency regions. As a re-
sult, small objects located far from the main scene structures
tend to be undertrained or ignored during optimization. As the
training speed improves with an increased learning rate, such
an issue occurs more frequently.

Figure 8 (f) shows that the visual quality of DVR images syn-
thesized by ReVolVE is the best. While most methods strug-
gle to accurately render the scene with only six images of the
vortex dataset, ReVolVE produces visualizations nearly iden-
tical to the GT. As shown in Table 4, ReVolVE achieves no-
ticeably higher PSNR values for the synthesized images than
other methods across all datasets. This suggests that ReVolVE
requires only a small set of images to reconstruct accurate den-
sity and color volumes. In contrast, other methods typically
need several times more images to ensure results with similar
fidelity. For example, our experiment shows that Instant-NGP
needs about 54 training views of the chameleon dataset to de-
liver a similar rendering quality to ReVolVE, which only needs



18 views. We also want to point out that ReVolVE offers ex-
cellent model compactness, with sizes as small as under 2 MB
when representing a 1283 volumetric scene and around 30 MB
for a 1024 x 1024 x 1080 scene, all while maintaining a render-
ing quality above 35 dB in PSNR. Therefore, ReVoIVE is ex-
cellent for accurately reconstructing volumes and synthesizing
high-quality DVR images, making it well-positioned for apply-
ing subsequent enhancement options.

4.4. SRNs vs. ReVolVE

Since ReVolIVE is closely related to SRNs, we include a com-
parison between ReVolVE and three SRNs for volume visual-
ization, including fV-SRN [22], APMGSRN [24], and Instant-
VNR [25]. To best highlight the differences, we use supernova
and chameleon, the two most complex datasets in our experi-
ments. In addition to metrics that evaluate the quality of the
rendered images, we also compare training time, single-frame
inference time, and model size. ReVolVE uses the same train-
ing configuration described in Section 4.3, so the reported re-
sults remain consistent. For fV-SRN and APMGSRN, we eval-
uate both the base and large versions to provide a more compre-
hensive assessment of their performance, as their feature grid
resolutions are relatively small. The configurations for both
the base and large models follow those specified in the original
papers [22, 24]. For Instant-VNR, we use the default config-
uration provided by the original code, which has a resolution
sufficient to handle both datasets. The details of model config-
urations and training settings are summarized in Table 5.

Table 5: SRNs: model configurations and training settings.

fV-SRN APMGSRN
method (base/large)  (base/large) Instant-VNR
feature grid resolution 323/643 323/643 163 to 20483
feature grid depth 16 2 8
# of feature grids 1 16/32 8
# of hidden layers in MLP 4/2 2 4
# of channels in each layer 32/128 64 64
hash table size - - 219
training length 200 epochs 100k steps 1,000k steps
batch size 524,288 1,048,576 65,536

Table 6: SRNs vs. ReVolVE: average PSNR (dB), SSIM, and LPIPS values
across all 181 synthesized views, and training time (TT, in minutes), average
single-frame inference time (IT, in seconds) of a view, model size (MS, in MB),
as well as CPU memory (RAM, in GB) and GPU memory usage (VRAM, in
GB). The best ones are highlighted in bold.

dataset method PSNRT SSIMT LPIPS| TT| IT| MS| RAM| VRAM]|
fV-SRN (base) 3145 0923 0.051 267 6.08 2.02 5.54 337
fV-SRN (large) 33.03 0.948 0.049 487 9.76 16.09 5.52 4.81
supernova | APMGSRN (base) | 32.18 0.934 0.056 048 0.80 4.03 3.13 1.75
APMGSRN (large) | 33.31 0.943 0.055 125 086 64.04 3.12 2.13
Instant-VNR 3135 0939 0049 202 038 4672 0.72 4.73
ReVolVE 36.57 0.957 0.046 25.15 454 19.73 3.62 5.13
fV-SRN (base) 30.05 0.936 0.052 260 428 2.02 9.54 8.18
fV-SRN (large) 3148 0948 0075 492 977 1609 9.59 9.55
chameleon | APMGSRN (base) | 29.58  0.933 0.040 050 092 4.03 8.62 5.76
APMGSRN (large) | 30.88 0.948 0.029 138 112 64.04 8.67 6.15
Instant-VNR 31.03 0952  0.023 198 037 4672 633 773
ReVolVE 36.04 0979 0010 2775 376 30.09 3.49 6.07

From the results shown in Table 6, we observe that ReVolVE
outperforms all SRNs in terms of PSNR, SSIM, and LPIPS, in-
dicating superior rendering quality. This improvement stems
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from ReVoIVE’s approach of learning the volumetric scene
from DVR-generated images, with optimization based on pixel-
wise image loss. In contrast, SRNs learn directly from the orig-
inal volumetric data and are optimized based on voxel-wise er-
rors. While voxel errors may be numerically small (all above
40 dB in PSNR of the reconstructed volume compared to the
original volume), they often lead to significant discrepancies
in the rendered images, especially for high-resolution datasets
like supernova and chameleon. As Figure 9 suggests, SRN-
generated results tend to appear blurry and less geometrically
accurate. In contrast, ReVolVE demonstrates a stronger ability
to reconstruct the visible volumetric scene with higher fidelity
to the original visualization.

As indicated in Table 6, the CPU memory (RAM) and GPU
memory (VRAM) usage of SRNs scales with the size of the vol-
ume data. This trend is evident in our tests on supernova and
chameleon, where larger volumes result in significantly higher
RAM and VRAM usage. Unlike SRNs, ReVolVE’s RAM us-
age is determined solely by the size of the DVR images, which
is only indirectly influenced by the size of the original volume
data. Notably, increasing image resolution or the number of
views typically results in a much smaller image size increase
compared to the substantial growth in volume data size. Its
VRAM usage is driven mainly by the model size, specifically
the feature grid resolution and the depth of the feature grid (i.e.,
the number of feature channels). Notably, for the chameleon
dataset, even though fV-SRN maintains a lightweight design by
limiting its feature grids to 32° in the base model, its VRAM
usage can still surpass that of ReVolVE, which supports a 3843
feature grid at the same feature depth. ReVolVE also demon-
strates lower VRAM usage compared to Instant-VNR and the
large model of APMGSRN on the chameleon dataset.

However, we must acknowledge the strengths of SRNs. They
generally offer faster training speed, and more importantly, they
retain the original data fidelity, allowing the use of TFs and
other rendering techniques with full control and confidence.
APMGSRN and Instant-VNR can achieve interactive render-
ing speeds for 1024 x 1024 images, which is significantly faster
than ReVoIVE. Still, ReVolVE provides a promising alternative
that relies solely on rendered images, making it especially valu-
able in scenarios where the original volume data is unavailable
or too large to store immediately after every simulation run.

4.5. Visualization Enhancement

With synthesized novel views, we further apply visualization
enhancements to each dataset, demonstrating the practical ap-
plications of ReVolVE. This special feature of ReVolVE uses
the neural representation of the volume learned from DVR im-
ages. It can work effectively because the learned volume is
high-fidelity, allowing faithful application of visualization en-
hancements. We did not implement this feature for baseline
methods, as they are not optimized for accurate volume recon-
struction. In Section 4.3, we demonstrate that ReVolVE outper-
forms the baselines in synthesized novel views.

All results presented in this section are neural visualiza-
tion enhancement outcomes, except for the chameleon dataset,



(a) fV-SRN (base)

(b) fV-SRN (large) (c) APMGSRN (base) (d) APMGSRN (large)

(e) Instant-VNR (f) ReVolIVE (g) GT

Figure 9: Rendering results of representative SRNs and ReVolVE. Top and bottom: supernova and chameleon. The corner images indicate the perceivable pixel-wise

differences (ranging from purple to green for low to high differences).

where we present a mixed visualization from extracted density
volumes via conventional rendering techniques.

strate an example where the red region is assigned a smaller
shininess value a, thus yielding more specular highlights (Fig-
ure 11 (¢)).

(a) before
Figure 10: Visualizations of the vortex dataset enhanced by ReVolVE.

(b) after (c) after (lower opacity)

Vortex. As shown in Figure 10, we aim to demonstrate depth
ordering in these DVR images by applying depth enhancement
techniques. After enhancing the depth of the blue and red re-
gions, we observed that the blue region appeared too thick, ob-
scuring the inner red region. Therefore, we reduce the opacity
of the blue region and sharpen its shape by squaring the opac-
ity, which makes it appear thinner. Furthermore, we add Blinn-
Phong lighting to both regions, shading them like surfaces to
convey the volume’s shape better. As a result, the overall per-
ceptual quality of the visualization is improved.

(a) before
Figure 11: Visualizations of the five jets dataset enhanced by ReVolVE.

(b) after (c) after (more highlights)

Five jets. As shown in Figure 11 (a), since the cyan dome
is too dense and blocks other regions in the DVR result, we
lower the opacity of this region. We recolor the dome to grey to
further lower its interference with the red color region beneath.
The blue region, which initially had a darker tone after applying
depth enhancement, is brightened to cyan for improved contrast
and clarity. Additionally, lighting is introduced to highlight the
red region, which previously lacked details at the top. With the
lighting applied, the surface-like features of the red region (five
jets) become much more apparent, offering a better depth per-
ception of the overall structure (Figure 11 (b)). We also demon-
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(a) before (b) after
Figure 12: Visualizations of the head dataset enhanced by ReVol VE.

(c) after (different view)

Head. For a CT scan like the head dataset shown in Fig-
ure 12, our focus is typically on the internal structures, such
as the skull, colored in red in the original unlit DVR images.
Since the skull is naturally perceived as a solid object, we use
isosurface enhancement for display, adding AO and feature grid
upscaling and smoothing. The surface shown in Figure 12 re-
tains a smooth appearance yet still preserves clear details, such
as the teeth and joints. Moreover, we change the blue color to
a skin tone for clarity, providing a better sense of the head’s
contour.

(a) before
Figure 13: Visualizations of the supernova dataset enhanced by ReVolVE.

(b) after

(c) after (custom light)

Supernova. The supernova dataset exhibits a high level of
complexity. To better visualize the internal structure of the
red region with depth ordering, we apply depth enhancement
specifically to that region. As illustrated in Figure 13, illu-
minating a semi-transparent volume with Blinn-Phong lighting
causes the internal structure to appear differently when the light
source is moved (refer to (b) with a headlight and (c) with a
custom light), providing additional visual cues. We also ad-
just the red region to a brighter shade of yellow to increase the
contrast. Meanwhile, the blue region is changed to purple, as



purple and yellow are complementary colors that create a strong
visual contrast and make each other stand out more.
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(a) before
Figure 14: Visualizations of the combustion dataset enhanced by ReVol VE.

(b) after

(c) after (higher opacity)

Combustion. As shown in Figure 14, the combustion dataset
contains numerous thin, semi-transparent layers that overlap,
making it challenging to discern their spatial relationships, es-
pecially when the layers are in the same color. To address this,
we swap the two colors and apply depth enhancement to intro-
duce a subtle color gradient to the outer regions. This adjust-
ment helps better distinguish individual layers. Additionally,
depth enhancement makes the inner regions appear more solid
and easier to see. We also present an example where increas-
ing the overall opacity enhances the outer blue regions’ lighting
effect but reduces the inner red regions’ visibility.

(a) DVR (c) skin

Figure 15: Visualizations of the reconstructed volume (flesh) and isosurfaces
(skeleton and skin) of the chameleon dataset using ReVolVE and rendered via
ParaView.

(b) flesh & skeleton

Chameleon. We use the chameleon dataset to demonstrate
the quality of both the reconstructed volumes and the surface
extracted using the marching cubes algorithm [69]. Like the
head dataset, we represent the skeleton as a surface by extract-
ing it from the red region’s density volume. Unlike the head
dataset, which uses isosurface enhancement without extracting
surface geometry, for this dataset, an isosurface representing
the skeleton is extracted for subsequent rendering via conven-
tional rendering techniques. The green region is exported as a
volume, partially covering the skeleton to represent the flesh.
As shown in Figure 15, we use ParaView to render the com-
bined scene, applying its global illumination model to enhance
the visual effects. The enhanced visualizations make its de-
tailed texture visible, and the skeleton stands out with a smooth
surface. We also present an isosurface extracted from the blue
region of the volume, representing the skin, which reveals fine
details. These results show that ReVolVE reliably reconstructs
high-quality density volumes, giving users the flexibility to ren-
der them using preferred tools.

Summary. These scenarios show that ReVol VE can enhance
the visualizations in various ways using synthesized, plain DVR
images as the starting point. Its ability to enhance and fine-tune
specific regions offers high flexibility, allowing for targeted ad-
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justments. This makes ReVoIVE a versatile solution for refining
and enhancing DVR results, especially when the original vol-
ume data is unavailable or the rendering cannot be easily recre-
ated. For large datasets (e.g., the chameleon dataset), the ratio
between raw volume and training image sizes can be signifi-
cant (540x for chameleon), making it particularly meaningful
for efficient visualization enhancement via ReVolVE.

4.6. Limitations

ReVoIVE outperforms the selected baselines in generation
quality and model size across all datasets, showcasing its supe-
rior performance. It is fully implemented in the PyTorch frame-
work, providing easy integration and strong adaptability for fu-
ture deep learning advances, including semantic volume seg-
mentation and text-guided visualization enhancement. How-
ever, this choice brings a limitation of slower rendering speed
than CUDA-based methods like Plenoxels, 3DGS, and Instant-
NGP. The underlying reason is the difference in strategies for
parallel ray computation. In the CUDA framework, those mod-
els compute individual rays across different cores and can ter-
minate early when the accumulated alpha reaches its upper
bound, significantly enhancing inference speed. In contrast, the
PyTorch-based implementation processes ray batches simul-
taneously, necessitating the computation of all sample points
without the possibility of early termination. Future work may
focus on implementing ReVolVE within a CUDA framework to
enhance rendering speed and user experience.

Another limitation of ReVolIVE is its reliance on emission-
absorption DVR for accurate volume reconstruction. Any pre-
applied enhancements in the training images will likely distort
the reconstruction quality, preventing accurate reconstruction of
the original volumetric scene before the enhancements. More-
over, we assume the DVR images are generated using a TF de-
signed to depict meaningful regions clearly, even though the
images are plain and unlit. ReVolVE would not know any data
content where the corresponding value ranges are of zero opac-
ity and, therefore, could not reconstruct it in the resulting neural
volume. Given another set of DVR images for the same volu-
metric dataset but under a different TF highlighting previously
unseen content, ReVolVE needs retraining.

5. Conclusions and Future Work

We have presented ReVolVE, a novel framework designed
to enhance the visualization of plain DVR images without re-
quiring access to the original volume data. Leveraging a NeRF
with vector-matrix decomposition, ReVolVE efficiently recon-
structs the volumetric scene from unlit DVR inputs. Compared
to other mainstream NeRF-based methods, ReVolVE achieves
significantly higher performance, even with limited training
views. Once trained, ReVolVE can extract representative col-
ors from the reconstructed volume and create segmentation
masks for targeted volume editing and visual enhancements.
ReVoIVE implements various visualization enhancement op-
tions that fully leverage NeRF. ReVolVE can also employ opti-
mization techniques like feature grid upscaling and smoothing



to enhance rendering quality while exporting high-quality den-
sity volumes and isosurfaces. Therefore, ReVolVE provides
a reliable and versatile way for high-fidelity visualization en-
hancements of unlit DVR images in the NeRF space.

Despite the success of ReVolVE, we envision four promis-
ing future directions. First, we will reimplement ReVolVE
within the CUDA framework to accelerate training and ren-
dering speeds. Alternatively, to enable real-time rendering, we
could also leverage 3DGS by optimizing it for learning from
unlit DVR images and incorporating enhancement features into
the 3D Gaussian rasterization process. With real-time render-
ing, we aim to create a toolkit with a graphical user interface for
ReVOIVE that supports interactive visualization exploration. It
will include widgets for tuning the visualization enhancement
settings as well as basic volume operations such as clipping,
slicing, segmentation, and color mapping. Second, integrating
advanced segmentation methods could allow for semantic seg-
mentation and targeted visual enhancements, particularly for
scientific and medical volume data. Third, our framework could
be extended to dynamic scenes, offering the potential to ap-
ply consistent visualization enhancements to time-varying vol-
umetric data. Finally, since ReVolVE’s visualization enhance-
ment options are fully implemented within the PyTorch frame-
work, we aim to explore the potential of integrating declarative
languages to streamline the process.
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Appendix A. Implementation Details

Feature grid upscaling and smoothing. To improve render-
ing quality, ReVolVE performs upscaling on the feature grid.
Since ReVolVE leverages a vector-matrix decomposition, we
upscale the feature grid by expanding the size of vectors and
matrices through linear interpolation. Using a higher-resolution
feature grid reduces the likelihood of sampling at locations with
abrupt feature transitions. As demonstrated in Figure 5 (d)
and (e) in the paper, this method provides anti-aliasing bene-
fits and mitigates ringing artifacts [72] while being more effi-
cient than supersampling. However, as illustrated in Figure 5
(f) in the paper, with only feature grid upscaling, we still render
an abrupt surface with a visible grid pattern. This happens be-
cause upscaling retains the noise from the lower-resolution grid.
Therefore, we apply bilateral filtering [73] to the feature grid to
smooth the surface while preserving edge details. Note that this
method is incompatible with certain radiance field representa-
tions, such as Instant-NGP and 3DGS. This is a key reason why
we opt for vector-matrix over other representations.

Normal computation. Next, we compute the gradient vec-
tor at the surface point to determine its normal for subsequent
lighting computation. As illustrated in Figure A.1, we follow
a numerical approach to estimate the gradient. Given a point
p on the surface, we sample a pair of points on opposite sides
of p along each axis, with a sampling interval of e. The differ-
ences between these points are then calculated to approximate
the partial derivatives, forming gradient vector components to-
gether. For example, the x-component of the gradient vector
can be computed as

1
Vo) = - (cpte)-op-e).  (AD

where V, is the x-component of the gradient vector, o(p) is
the density at p, and €, is a vector parallel to the x-axis with
length €. Note that we flip the direction of the gradient vector
to ensure the normal points toward the lower-density region.
For example, Figure 5 (b) in the paper visualizes the estimated
surface normals.

normal
v
o(x-e) — o0 ST o(x+€)
———@ Oe e
X-€ X X+€

Figure A.1: Numerical normal estimation (x-component). The yellow point
represents a point along the camera ray, the green points are sampling locations
used to compute the gradient, and the blue points represent features in grid
cells.

Since we estimate only at the surface point where the ray in-
tersects the isosurface, this introduces minimal computational
overhead to the rendering process. Although analytical gradi-
ent computation is available through the differentiable volume
renderer, which automatically computes gradients, the numer-
ical gradient approach offers more flexibility in normal esti-
mation with arbitrary sampling intervals. Additionally, as ob-
served in other surface rendering studies [74, 75, 76], the nu-
merical approach results in smoother surfaces, as the estimated

normals incorporate more voxels in the 3D grid when the sam-
pling interval exceeds the voxel size.

INlumination. We implement surface lighting using the
Blinn-Phong model [77], which locally approximates the illu-
mination to improve the visual appearance of volume visualiza-
tion. The Blinn-Phong model can be expressed as

1+
1=k, +kJd.(m-1)+kJ,(n-h)*, where h = ——

+v|

In Equation A.2, k,, k4, and k; are ambient, diffuse, and specular
coefficients, I is the light intensity, 1, n, and v are light, normal,
and view directions, and a denotes the shininess term.

(A.2)

surface
boundary

Figure A.2: AO approximation. At a ray-surface intersection point, ReVolVE
samples N points within a hemisphere above the surface. AO occurs when
certain sample points fall inside the surface, as shown in (b).

Ambient occlusion (AQO). We further include AO to enhance
the visualizations. The AO at a point p on the surface is com-
puted by integrating the visibility over a hemisphere above the
surface. The standard method [78] uses ray tracing to test
whether a ray originating from the surface intersects with any
other surface within the hemisphere. As sketched in Figure A.2,
our approach approximates the visibility by sampling points
inside the hemisphere and checks if the sample points fall in-
side the surface, determined by whether the sample’s density
exceeds the isosurface threshold. The approach for approxi-
mating AO is similar to screen-space AO [79], but instead of
using depth, we rely on voxel density and compute it as

1
AO(D.M) = o ) S (X),
xeX

0, if xis outside (A-3)

where S (x) = .
1, otherwise

where AO(p, n) represents the AO at point p on the surface with
normal n, X is the set of sample points within the hemisphere,
x is an individual sample point, and S(x) is a binary function
indicates whether the sample point is inside or outside the sur-
face. Figure 5 (c) and (d) in the paper show an AO volume and
rendering with an AO effect.

Table A.1: Quantitative comparison of with and without the feature decoder us-
ing the five jets dataset. Reported here and the rest of the tables in the Appendix
are average PSNR (dB), SSIM, and LPIPS values across all 181 synthesized
views, and training time (TT, in minutes), average single-frame inference time
(IT, in seconds) of a view, and model size (MS, in MB).

decoder | PSNRT  SSIMT  LPIPS| TT| IT] MS|
w/ 39.08 0.991 0.009 1143 255 337
w/o 26.40 0.918 0.165 9.25 2.88 3.47
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Figure A.3: Qualitative comparison of with and without the feature decoder
using the five jets dataset.

Table A.2: Quantitative comparison of different feature decoder inputs using
the vortex dataset. feat. denotes the grid feature, pt. represents the sample point
position, and dir. means the camera view direction.

decoder input ‘ PSNRT SSIM1?T LPIPS| TT| IT| MS|
feat. 45.56 0.994 0.007 7.60 247 1.81
feat. + pt. 4422 0.993 0.009 8.10 251 1.81
feat. + dir. 42.74 0.994 0.008 7.68 244 1.81

Appendix B. Ablation Study

In this section, we ablate the ReVolVE framework to analyze
the impact of each module. For each experiment, in the tables,
we present average PSNR (dB), SSIM, and LPIPS values across
all 181 synthesized views, and training time (TT, in minutes),
inference time (IT, in minutes), and model size (MS, in MB).
The best ones are highlighted in bold.

Feature decoder. To evaluate the effect of the feature de-
coder, we perform an ablation study that excludes it from the
ReVoIVE framework. We use the five jets dataset while keep-
ing all training configurations consistent. The concatenated
features sampled from vectors and matrices are then passed
through a fully connected layer to produce output density and
color. The results in Table A.1 and Figure A.3 suggest that the
feature decoder is essential for improving ReVolVE’s perfor-
mance, compared to using only the grid features.

Feature decoder input. To assess the impact of sample point
position or view direction as an additional input alongside the
grid feature for the decoder, we compare the outcomes of three
input combinations using the vortex dataset and the same hyper-
parameters. Note that we use positional encoding in NeRF [38]
to add extra expressiveness to position and view direction in-
puts. According to Table A.2 and Figure A.4, incorporating
position as an additional input to the decoder decreases model
performance and slightly increases training and inference time.
Adding view direction as an additional input to the decoder also
leads to a decrease in performance, but it has a minimal impact
on training and inference time. Therefore, using the grid fea-
ture as the sole input for ReVolVE is sufficient, avoiding inter-
ference from additional inputs. This could be one reason Re-
VOIVE performs better than TensoRF and Instant-NGP in terms
of rendering quality in our experiments.

Unified feature grid. TensoRF employs a split design, with
one feature grid and decoder handling densities and another set
for colors. ReVolVE, on the other hand, uses a single unified
feature grid and decoder for both densities and colors. To as-
sess the impact of these designs, we compare the performance
of the split vs. unified approaches using the head dataset. The
results in Table A.3 and Figure A.5 indicate that using a sin-
gle unified feature grid and decoder delivers significantly better
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= N
o, e,
£/ . 74 b
- ~ s s
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Figure A.4: Qualitative comparison of different feature decoder inputs using
the vortex dataset.

Table A.3: Quantitative comparison of different feature grid designs using the
head dataset.
type ‘ PSNRT SSIMT  LPIPS] TT| IT| MS|
unified 38.38 0.979 0.032 1645 371  12.68
split 33.83 0.943 0.077 2237 450 12.75

performance and more efficient training and inference. This
could also explain why ReVolVE outperforms TensoRF in re-
constructing volumes from DVR images.

Tensor decomposition. ReVolVE applies a vector-matrix
decomposition, but alternatively, volumes can be decomposed
using either a full vector or a full matrix. To assess the impact
of each, we ablate the components of vector-matrix decompo-
sition with the supernova dataset. All other training configu-
rations remain consistent except for the decomposition method.
The results in Table A.4 and Figure A.6 indicate that the vector-
matrix combination outperforms other decomposition methods.
The vector-matrix decomposition noticeably improves the per-
formance of ReVolVE compared to matrix-only decomposition,
with only a minimal increase in training and inference time.

Appendix C. Hyperparameter Study

This section evaluates various hyperparameter configurations
to determine the optimal setup for ReVolVE. For each experi-
ment, we show, in the table, the average PSNR (dB), SSIM,
and LPIPS metrics across 181 synthesized views, alongside the
training time (TT, in minutes), inference time (IT, in minutes),
and model size (MS, in MB). The best results in the tables are
highlighted in bold.

Number of training images. Identifying the minimum num-
ber of training images needed for ReVoIVE to produce solid
results would be valuable. We assess this using the five jets
dataset. Figure A.7 (a) and Table A.5 show that ReVolVE can
reach satisfactory quality (PSNR over 30 dB) using just five
DVR images for training. Fewer than five training images are
insufficient for ReVolVE to produce reliable visual enhance-
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(b) split
Figure A.5: Qualitative comparison of different feature grid designs using the
head dataset.

() GT

Table A.4: Quantitative comparison of different decomposition methods using
the supernova dataset. V represents vectors, and M denotes matrices.

scheme | PSNRT  SSIMT  LPIPS| TT] IT] MS|
VM 36.57 0.957 0.040 25.15 454 19.73
M 34.74 0.943 0.065 25.65 424 1971
v 28.18 0.885 0.175 2380 429 111

ments. As shown in Figure A.8, we used 12 images for training
on the five jets dataset, as the generation quality shows little
improvement beyond that number.

Number of training iterations. We use the supernova
dataset to assess the performance of ReVolVE across various
training iterations. As shown in Figure A.7 (b), Table A.6, and
Figure A.9, ReVoIVE can generate solid rendering results even
with just 10,000 iterations. This demonstrates the model’s abil-
ity to reach high accuracy relatively quickly, offering efficiency
in training time and resource use. We selected 30,000 iterations
as ReVolVE tends to converge around this point.

Number of channels in the hidden layer. We use the head
dataset to test different numbers of channels for the hidden layer
in the feature decoder. The results, as shown in Figure A.7 (c),
Table A.7, and Figure A.10, suggest that increasing the number
of channels could improve the performance of ReVolVE. We
chose 64 channels to obtain a balance between performance and
cost. Note that for ReVoIVE to produce reasonable results after
training, the number of channels must exceed the depth of the
feature grid.

Resolution of feature grid. We use the chameleon dataset
to investigate the effects of the maximum number of voxels for
the feature grid. As shown in Figure A.7 (d), Table A.8, and
Figure A.11, increasing the voxel count enhances ReVolVE’s
performance at the cost of greater training time, inference time,
and model size. We settled on 384> voxels to ensure optimal
performance with reasonable costs.

Depth of feature grid. We use the combustion dataset to
compare the performance of ReVolVE using various feature
grid depths. The results in Figure A.7 (e), Table A.9, and Fig-
ure A.12 show that increasing depth enhances performance at
the price of increasing training time and model size. Therefore,
we set the depth to 24 to achieve optimal results while main-
taining reasonable training time and model size.

Appendix D. Comparison with 3DGS and CGS

We evaluate ReVolVE against 3DGS [30] and CGS [53]
with different Gaussian counts to ensure a thorough com-
parison. Specifically, we increase the number of Gaussians
from 400,000 (0.4 M) to 1,600,000 (1.6 M) for the supernova

(a) VM

()M ©V (d GT
Figure A.6: Qualitative comparison of different decomposition methods using
the supernova dataset.

(@ (b)

© (d)

(e
Figure A.7: Plots of PSNR and LPIPS metrics versus (a) the number of training
DVR images using the five jets dataset, (b) the number of training iterations
using the supernova dataset, (c) the number of channels in the hidden layer of
the feature decoder using the head dataset, (d) the maximum number of voxels
for the feature grid using the chameleon dataset, and (e) the depth of the feature
grid using the combustion dataset.

dataset, and from 800,000 (0.8 M) to 3,200,000 (3.2 M) for the
chameleon dataset. This comparison aims to demonstrate that
the selected version of 3DGS used as a baseline in the paper
represents a fair benchmark within the context of scientific vi-
sualization. All methods are trained using the same set of input
views. For fairness, we exclude view selection and compres-
sion stages from CGS, focusing solely on core reconstruction
capabilities. As shown in Table D.10 and Figure D.13, Re-
VOIVE consistently outperforms both 3DGS and CGS across
both datasets. The number of Gaussians used in 3DGS and CGS
appears sufficient to represent the scenes, as further increases
yield no apparent quality improvement. Since CGS does not
outperform 3DGS in either dataset, we use the vanilla 3DGS as
a baseline method for comparison in the paper.



Table A.5: Quantitative comparison of different numbers of training DVR im-

ages of the five jets dataset.

#images | PSNRT  SSIMT  LPIPS| TT| IT] MS|
3 23.49 0.930 0.098 11.10 263 332
4 27.63 0.955 0.057 10.83 259 332
5 31.04 0.972 0.032 1140 258 334
6 33.06 0.979 0.024 1125 258 333
9 37.67 0.989 0.011 10.55 255 335
12 39.08 0.991 0.009 1143 255 337
18 39.76 0.991 0.008 11.05 254 333

©53
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Figure A.8: Qualitative comparison of different numbers of training DVR im-

ages of the five jets dataset.

Table A.6: Quantitative comparison of different numbers of training iterations

using the supernova dataset.

(do

® 12

(h) GT

iterations | PSNRT  SSIMT  LPIPS| TT| IT| MS|
10,000 34.52 0.941 0.079 7.22 462 1975
20,000 35.75 0.951 0.056 1742 462 1975
30,000 36.57 0.957 0.046 2515 454 19.73
40,000 36.71 0.957 0.046 3527 461 19.73

Table A.7: Quantitative comparison of different numbers of channels in the
hidden layer of the feature decoder using the head dataset.

# channels | PSNRT SSIMT LPIPS| TT] 1T] MS|
32 37.87 0.977 0.034 15.65  3.60 12.75
64 38.38 0.979 0.032 1645 371 12.68
128 38.87 0.980 0.027 19.38  3.87 12.76

(d) 40,000 (e) GT

Figure A.9: Qualitative comparison of different numbers of training iterations
using the supernova dataset.

(c) 128 (d) GT

Figure A.10: Qualitative comparison of different numbers of channels in the
hidden layer of the feature decoder using the head dataset.

Table A.8: Quantitative comparison of different maximum numbers of voxels
for the feature grid using the chameleon dataset.
max # voxels | PSNRT  SSIMT  LPIPS| TT] IT] MS|

256° 35.34 0.975 0.013 17.87 319 14.03
320 35.72 0.977 0.012 2237 343  21.01
3843 36.04 0.979 0.010 2775 376 30.09
4483 36.18 0.979 0.010 3250  4.04  40.72

e

(a) 256° (b) 320° (c) 3843

s

(d) 4483 (e) GT

Figure A.11: Qualitative comparison of different maximum numbers of voxels
for the feature grid using the chameleon dataset.




Table A.9: Quantitative comparison of different feature grid depths using the

combustion dataset.

depth | PSNRT SSIMT LPIPS| TT| IT| MS]
8 3428 0.979 0015  19.32 3.61 1525
16 38.24 0.991 0.005 2192 371 2977
24 39.48 0.993 0.004 2805 3.69 42.66
32 39.67 0.993 0.004 2962 381 5626

(d) 32

combustion dataset.

Table D.10: Quantitative comparison of ReVolVE against 3DGS and CGS with

(e) GT
Figure A.12: Qualitative comparison of different feature grid depths using the

different numbers of Gaussians using the supernova and chameleon datasets.

dataset method PSNRT SSIMT LPIPS| TT] IT| MS|
3DGS (04 M) | 29.39 0.907 0.093 12.83 036 89.62

3DGS (0.8 M) | 29.46 0.908 0.094 17.80 0.33 189.79

3DGS (1.6 M) | 29.18 0.907 0.104 2632 0.33 38254

supernova | CGS (0.4M) 28.76 0.918 0.116 1632 0.56 94.70
CGS (0.8 M) 28.56 0.919 0.118 2145 0.55 196.22

CGS (1.6 M) 28.89 0.920 0.118 2720 0.54 37898

ReVolVE 36.57 0.957 0.046 25.15 454 19.73

3DGS (0.8 M) | 29.90 0.932 0.037 17.57 0.30 195.73

3DGS (1.6 M) | 29.64 0.932 0.040 30.57 0.29 393.30

3DGS 3.2M) | 29.56 0.932 0.041 5387 0.29 771.10

chameleon | CGS (0.8M) 29.16 0.924 0.046 2447 031 200.59
CGS (1.6 M) 29.10 0.923 0.048 4657 034 403.96

CGS (32 M) 29.43 0.928 0.048 71.70 034 778.05

ReVolVE 36.04 0.979 0.010 27.75 3.76  30.09

(d) CGS (0.8 M) (e) CGS (1.6 M) (f)CGS 32 M)

28

(g) ReVolVE (h) GT

1) CGS (0.8 M)

(m) CGS (1.6 M)

(o) ReVolVE (p) GT

Figure D.13: Qualitative comparison of ReVolVE against 3DGS and CGS with
different number of Gaussians using the supernova and chameleon datasets.

(n) CGS (3.2 M)




