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Numerical Algebraic Geometry

Andrew J. Sommese and Charles W. Wampler

ABSTRACT. We discuss the well developed theory for finding isolated complex
solutions of polynomial systems, and show how it leads to probabilistic al-
gorithms for analyzing the full possibly positive dimensional solution sets of
polynomial systems.
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Introduction

There is a well developed theory for finding all smooth or at worst isolated
solutions of a system of N polynomial equations on CV which is “small” in an
appropriate sense. Almost all papers on finding the numerical solutions of a system
of polynomials assume that we have the same number of equations as unknowns.
This restriction is not necessary and in fact obscures what we actually know how
to do numerically. This wouldn’t matter so much except that in practice it very
often happens that the number of equations and the number of unknowns differs.
Moreover there are natural engineering problems which require us to “find” all
irreducible components of an algebraic set.

In this article we don’t make the assumption that the number of equations
equals the number of unknowns, nor do we restrict ourselves to smooth or isolated
solutions of systems. This numerical analysis of algebraic sets we call numerical
algebraic geometry. Numerical algebraic geometry is to algebraic geometry what
numerical linear algebra is to linear algebra.
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Our algorithms are probabilistic—as are most of the fast numerical methods for
solving systems of n polynomials in n variables. They hold except for a probability
zero “set” of choices. This is acceptable from the point of view of engineering
problems where we are trying to find all solutions and are willing to give up complete
mathematical certainty that we have found all of them.

In §1 we discuss algebraic sets and their decomposition into irreducible alge-
braic sets. We discuss also general or generic points. This concept is modeled
very precisely by the concept of random points. It is through this modeling that
probability enters into the numerical algorithms.

In §2 we discuss what we can compute using current numerical methods for
finding the smooth or isolated solutions of a system of polynomials. We start by
considering what we call square systems, i.e., systems with the same number of
equations as variables. These are the systems that most of the software and papers
on continuation treat. We then turn to systems with more equations than variables.
We discuss a probabilistic way of reducing the system to a square system, which
lets us compute much of the information contained in the original system.

The emphasis on the number of variables and equations is usual, but somewhat
unnatural. Indeed a square system might have a number of equations that are
functions of the preceding equations. In this case we will have no isolated solutions.
Therefore we take a more intrinsic look in §3 at the algebraic set X defined by
the equations. From this point of view what we want to find are a finite set of
zeroes of an arbitrary system that includes at least one “general” point of each
irreducible component of X. Since every isolated solution of the original system
is an irreducible component of X we see that the solution set we are searching for
includes the classical solution set found for square systems by continuation.

In §3.1 we give a probabilistic algorithm to do this based on the standard
algorithms for solving N equations in N unknowns with probability 1. We use the
classical technique of slicing by linear spaces. The slicing technique is a common
tool in algebraic geometry, e.g., see [SS, BS].

In §3.2 we use the results of §2 and §3.1 to give a probabilistic algorithm for
finding the dimension of an arbitrary algebraic set in CV .

In §3.3 we use the results of §2 and §3.1 to give a probabilistic algorithm for
finding the maximum dimension of an irreducible component of a given algebraic
set X C CV at a point p € X.

In §3.4 we give an algorithm for deciding inclusion of reduced algebraic sets.

In §3.5 we discuss briefly some of the problems from the theory of mechanisms
that motivate our numerical study of positive dimensional algebraic sets.

In §4 we discuss the methods and some of the questions that should be looked
at next.

We would like to thank General Motors Research and Development Center
for making this work possible. The first author would also like to thank the the
University of Notre Dame.

1. A brief review of algebraic sets

First let us review the concept of irreducible components of an algebraic set.
For simplicity we work only with affine algebraic sets, i.e., closed subsets of CV.
This is sufficient for the purposes of this paper, and for numerical analysis problems
there is a simple device we discuss in §4 to reduce general algebraic sets to affine
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algebraic sets. For a more detailed introduction to this material with references we
refer to the appendix of [MS].

A reduced algebraic set is the subset of common zeroes in CV of a set of poly-
nomials:

fl(.z'l,... ,.'L'N)
(1) : =o.
fr(z1,... ,ZN)

An algebraic set in CVV is a reduced algebraic set with addition of a possibly nonre-
duced structure, a sheaf of germs of algebraic functions, that is derived from the
defining equations f;. This extra structure is related to multiplicities.

By a Zariski open subset U of a reduced algebraic set X we mean a set of the
form U = X — A where A is a closed subset of X which is a reduced algebraic
set also. The set of smooth (i.e., manifold) points of a reduced algebraic set X
is denoted Xieg. Xieg is Zariski open in X and the closure of X,¢, in the usual
topology inherited from Euclidean space is X. We define the dimension of a reduced
algebraic set X to be dim X,¢;. Here we follow the convention that the dimension of
a manifold is the maximum of the dimensions of the connected components of the
manifold. We define the dimension of an arbitrary algebraic set to be the dimension
of the underlying reduced algebraic set.

The next result is the analogue of the decomposition of a manifold into its
connected components.

1. The set, X;eg, of smooth points of X is a union of finitely many connected

components, X/, i =1,...,r;

2. each X/ is Zariski open in its closure, X;, which is a reduced algebraic set.

3. X = UX;.

The X; are called the irreducible components of X, and if X consists of one com-
ponent then X is called irreducible.

In actual practice, it is important to work not just with reduced algebraic sets,
but with algebraic sets and keep track of the extra structure. In this case, we still
have the decomposition of the underlying reduced algebraic set, but in addition
there will be multiplicities for the components.

To understand this extra structure let us give a few typical examples.

Let the system of polynomials be

z2=0

on C. In this case, the algebraic set is the point 0 and the structure is the set of
relevant functions on the point, i.e., the complex numbers C. Usually we think of
the algebraic set as the point 0, and forget about the functions on the point. We
don’t lose anything by doing this.

As a second more complicated example, let the system of polynomials be

22=0

on C. In this case the algebraic set is the point 0 and the structure is the set of
relevant “functions on the point,” i.e., C[z]/(22), the Taylor series, cq +¢; 2, of order
1 at 0. We say the point 0 has multiplicity 2, and we think of the set as a fuzzy
point. In this case we lose nothing by forgetting about the functions and thinking
of the algebraic set as a point counted twice.
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In higher dimensions things get a bit more complicated, and a single number
like the multiplicity, doesn’t capture everything. A good example is the system of

polynomials
22 = 0
w = 0.

on C?. Here the algebraic set is the point (0,0) with the set of “functions,”
C[z,w]/(2?,w), i.e., co + c1z. Again we have a point of multiplicity 2, but that
single number doesn’t uniquely specify the algebraic set. Indeed consider the sys-

tem of polynomials
w? = 0
z = 0.

on C2. Here the algebraic set is still the point (0,0) but this time with the set of
“functions,” Clz,w]/(w?,2), i-e., co + ciw. The different multiplicity 2 algebraic
set structures on (0,0) are parameterized by a P! (for much more on this type of
example see [G]).

The irreducible decomposition with the multiplicity structure can be looked
at as a generalization of the factorization of a polynomial p(z) on C. Indeed if
Z1,...,%, are distinct points of C with p(z) = cII}_, (x — x;)™ for some ¢ # 0
and with n; > 0 for all 4, then the irreducible decomposition of the algebraic set
associated with p(z) = 0 is the set z1,...,z, with multiplicities n4,... ,n,. For
a single polynomial on CV the corresponding picture is the similar. A polyno-
mial p(z1,...,2zn) cannot be factored into lower degree polynomials if and only if
the algebraic set associated with p(z1,...,2zn) = 0 is irreducible with multiplicity
1. In general every polynomial p(z1,...,2n) has a factorization into polynomi-
als p(z1,...,2n) = I_,pi(#1,... ,2n)™ with n; > 0 for all ¢, where for each i
the polynomial p; cannot be factored into polynomials of lower degrees (the fac-
torization is unique up to multiplying the factors by nonzero constants). The
irreducible components of the algebraic set associated to p(z1,... ,2n) = 0 are the
sets p;(z1,...,2n) = 0. The extra structure is given by the multiplicities of the
irreducible components which are just the numbers n; in the factorization.

The irreducible components of the set of zeroes of a single nonconstant poly-
nomial f(z1,...,2,) each have dimension N — 1. In general, if we have a system
of the form (1) giving rise to an algebraic set X, we can only say that if X is not
empty, then dim X > N —n.

When we talk about points on an algebraic set X C CV being near and don’t
specify otherwise, we are using the complex topology, i.e., the topology induced on
the closed set X from the usual topology on CV induced by the Euclidean metric.

The notion of a general or a generic point is basic but also a bit slippery. The
desire is for the concept to capture the idea of “a point of an algebraic set which has
no special properties not possessed by the whole algebraic set.” For example, we
would like to say that if a function vanishes at such a point, it vanishes everywhere
on the algebraic set. As stated, this is nonsensical, but there are a number of ways
to make the concept precise.

First it is a concept about irreducible algebraic sets. For an arbitrary algebraic
set we talk only about generic points of the irreducible components.

In modern scheme theory the problem is finessed by defining the generic point
to be a nonclosed point corresponding to the whole irreducible algebraic set. Such
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a point has no coordinates and doesn’t directly translate into anything numerical
about the variety.

Another approach which is closer to our needs is to say that a generic (respec-
tively general) point on an irreducible algebraic set X is any point that is contained
in the complement U in X of a proper algebraic subset of X (respectively a count-
able union of proper algebraic subsets of X). This makes good sense. Also X — U
is very thin, i.e., real codimension 2 and of measure zero. Often this captures what
we want, but it still doesn’t give us a good numerical interpretation of the point.

The third and most classical meaning of generic is very close to numerical
analysis. Here every irreducible algebraic set X in CV is defined over a subfield
of the complex numbers. Indeed there are finitely many equations defining the set
and there are finitely many coefficients for the equations and adding those to the
rationals generates a field much smaller than C. We can further add all coefficients
of the equations defining each of the finite number of algebraic objects entering the
discussion at hand to get a subfield F' C C relevant to the given discussion. Any
point on the set X C C with at least one coordinate a point in C not algebraic
over F'is a generic point. This is the classical approach taken to algebraic geometry
by A. Weil in his very useful introductory text [W]. There is also a brief but helpful
discussion of this in [Mu]. From this point of view, a generic or general point of
X is modeled very nicely by a point in X with random coordinates. Moreover in
numerical problems we often have equations with real coeflicients and work with
irreducible algebraic sets (such as CV) in which the real points are Zariski dense. In
this case we can model a generic point by a point in X with random real coordinates.
Since the points on a computer are only finite we have a possible problem, but it is
a problem common to much of scientific computing. We discuss this further in §4.

We use the term generic point throughout this paper. An objection that might
be raised to using generic points in numerical analysis is that we have no way of
knowing that a point is a generic point. Using generic points puts us in the same
“state of sin” as users of random numbers [Kn, quote of Von Neumann on page
1]. What we can do is design “random number generators” which output streams
of numbers satisfying properties random numbers would satisfy. This is of course
nontrivial but random numbers are too useful not to use [Kn]. Based on algebraic
geometry our algorithms output “generic points” using random number generators.
We considered using the term random points instead of generic points, but decided
against it because generic point is a useful classical concept in algebraic geometry
with a clear connotation to an algebraic geometer. Our concept of generic points
is about as close to the algebraic geometry notion as you can get using a system of
finite arithmetic.

2. Finding isolated solutions by continuation

In this section we discuss the system (1) of n polynomials on CV. We first
deal with square systems, i.e., systems where n = N. These are the systems which
the current software solves. Next we turn to overdetermined systems, i.e., n > N,
and show how to reduce them to square systems—this is easy when working with
probabilistic methods. In §3 we turn to the study of algebraic sets, which includes
the study of underdetermined systems, i.e., systems with n < N.

2.1. Finding isolated and smooth solutions of square systems. In this
section we only deal with “square systems,” i.e., systems of N polynomials in N



6 ANDREW J. SOMMESE AND CHARLES W. WAMPLER

variables:

fl(flfl, [N ,.’L'N)

f(z) = : =0.

fN(;z;l, N ,.CL'N)
Assuming that the system is not too “large” the current state of the art lets us find
a set solutions on CV which include all isolated and in particular smooth solutions
on CN. We refer to [WMS1] for a survey of the continuation methods we use. Our
basic reference for continuation methods is [MS]. One important point to note is
that when the continuation method leads to a solution that is isolated but singular
there are methods (“endgames”) based on Cauchy’s integral and fractional power
series for accurately computing the solution [MSW1]. When we are talking about
large, we are talking about a priori bounds on the size of the Bezout number. What
is too large is a function of time, dependent on the given technology. Currently a
Bezout number bound by total degree or multihomogeneous degree of a few hundred
thousand is on the boundary of what can be done. See [WMS2] for the solution of
a large problem by this technology. The references [AG, MSW2, VVC] give more
up to date information on what can be done. Since the continuation algorithms we
use parallelize naturally, it is reasonable to expect in the near future an increase in
the maximum size of a system that can be handled by a few orders of magnitude.

2.2. Overdetermined systems. In this section we assume that the system
(1) on CV satisfies n > N. There is a natural procedure for obtaining a square
system from the above system, f(z) = 0. Given a matrix of complex numbers

A1 0 A
A=
AN 0 AN

)

we can form a square system
Aafi+ -+ Aafn
A-f= : =0.
ANafi+ -+ ANnfa
This system is equivalent to the system
g-A-f=0
where g is an invertible N x N matrix. Thus the Grassmannian Gr(N,n) of N

dimensional vector subspaces of C" parameterizes a natural family of square systems
derived from our original system. Systems of the form

i+ AnNpifnai+F Anfa

(2) : =0.
v+ AvnNtifNer+ oo F AvaSn
with
ALNFL 0 An
ANN41 0 AN

a matrix of complex (respectively real) numbers form a Zariski open dense (respec-
tively Zariski dense) set in the systems parameterized by Gr(N,n).
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What is the relation between the solutions of the original system (1) and the
square systems (2) derived from it?
The next result is a straightforward consequence of the results in [MS].

ProrosITION 2.2.1. There are nonempty Zariski open dense sets of parame-
ters \;; € CN(=N) o Aij € RN("=N) such that every isolated (respectively non-
singular) solution of

fl(SL'l,... ,.’EN)

fn(T, ... ,zN)

is an isolated (respectively nonsingular) solution of
fl(wla"' J'Z.N) + E;:N+1A1,jfj($l7"'7$N)
fN(xla"'axN) + Z;L:N-i-l)‘Najfj(xla---axN)

Moreover for any k > 0, a variety V is an irreducible k dimensional component of
g = 0, if and only if it is a k dimensional component of f = 0. If V occurs with
multiplicity 1 as an irreducible k dimensional component of f = 0, then it occurs
with multiplicity 1 as an irreducible k dimensional component of g = 0.

We can choose which of our equations we want to play the role of fi,..., fn.
This choice is dictated by the form of the equations so as to achieve the lowest
Bezout number.

The randomization introduced by the parameters J; ; is necessary. For example
consider the system:

Ty =0
zz+y) = 0
ylzx+y) = 0.

Any two of the 3 equations have a 1 dimensional solution set, but all three together
have the origin (with multiplicity 3) as the solution set.

It is important to note that although an irreducible component of f = 0 is an
irreducible component of the randomized square system, g = 0, it’s multiplicity
as an irreducible component of g (if not 1) might be larger than as an irreducible
component of f = 0. The following system, which is equivalent to the above system,
illustrates this:

zy = 0
z2 = 0
y2 = 0.
The origin is an isolated solution of multiplicity 3. The randomized square system
is:
zy+mz) = 0
y(@+py) = 0.

It has the origin as an isolated solution of multiplicity 4.

3. Probabilistic algorithms about algebraic sets

3.1. An algorithm for finding generic points. Let X C CV be the al-
gebraic subset defined by the system of polynomials (1), and let X = U;crX; be
the decomposition of X into irreducible algebraic sets. We would like to give a
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prescription to choose at least one general point from each of the X;. Noether’s
normalization theorem combined with Bertini’s theorem shows that if Y is an ir-
reducible k-dimensional closed algebraic subset of CIV, then a general affine linear
subspace C™ of CV meets Y only if m + k > N and in this case C™ meets ¥
in a set of dimension m + k — N. Moreover, C™ is transverse to Y in the sense
that, if letting Sing(Z) denote the singular set of an algebraic set Z, we stratify ¥
using Y D Sing(Y") D Sing(Sing(Y)) ..., then C™ is transverse to ¥ — Sing(Y"), to
Sing(Y") — Sing(Sing(Y)),. ..

Assume we are looking for generic points of the A-dimensional irreducible com-
ponents of X. Assume we have a generic affine linear C¥—4. This will meet X in
generic points of the A-dimensional irreducible components of X. To find one of
these points it suffices by the above to find the isolated solutions of the system (1)
restricted to a generic affine linear C¥V~4. We refer to this as “solving the system
restricted to CV=4.” But what does this mean in numerical terms?

The answer is straightforward. A generic CN~4 is defined by

Az + -+ A NN = A

AaiZ1+ -+ A NTN = A4

As earlier we can assume that the defining equations are of the form we would have
using Gaussian elimination

T1+ M Aaf1ZTa4+1 + - F A NTN = A
3) :
TA+ A4, A41Z441 + -+ AANIN = A4
with all the A\’s random numbers. By the above we must find the isolated solutions

of:

fl(.Z'l,... ,.’L’N) =0

folx1,...,zN) =0
1+ M Ap1Za41 + -+ A NEN = A1

TA+AAA41%Z441 + - F A NEN = A4

We can first use the linear equations to reduce the system to the the system of
the equations f; = 0 restricted to the C¥—4 defined by (3). This is a system of n
equations in N — A unknowns. We can use Proposition 2.2.1 to pass to a square
system.

We give pseudocode below for this algorithm. We work from irreducible com-
ponents of X of highest dimension down to lowest dimension.

Algorithm to find a finite set of points on an algebraic set including at least one
generic point of each irreducible component of the algebraic set

Given polynomials fi, ..., fn on CV defining an algebraic set X.

1. If 0 < n < N, then use N —n random linear equations to reduce to a system
of n polynomials in n unknowns. Set N :=n.
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2. If n > N > 0, then using a generic (u;;) € CN(=N) replace the system
with a new system (after possibly reordering to lower the Bezout number)

fil@wy, .o 2n) + 20 Ny i, .. TN)

=0.
In(z1,...,zN) + E?:N_H unifi(z1, ... ,ZN)
of N equations in N unknowns. Rename these equations fi,..., fn.
3. f N =n >0, then set A = N and do the following procedure. While A > 0:
fi(z1,... ,zN)
a) “Solve” : = 0 restricted to a general affine linear
fN(J}l, .. ,J}N)

CN-4,

b) Store those points from a) that give a solution to the original system.
c) Set A:=A-1.

3.2. An algorithm for the dimension of an algebraic set. Let X ¢ CV
be an d-dimensional algebraic subset of CV .

How do we find X’s dimension numerically? To do this we simply need a
stripped down version of the algorithm of §3.1 to find generic points.

Geometrically we know that a generic CV~4 meets X if and only if d > A.
Thus we can successively intersect X with CN=4’s with A = N, N —1,...,0 until
a solution is found or A = 0 and no solution is found. Note that this means that

3.2.1. for the largest A with CN=4 N X # ( for a generic C¥—4 we have a
finite intersection.

This is important because our solution procedure finds all isolated solutions of
a square system.

Numerically assume we have a system of the form (1) consisting of n polynomial
equations in N unknowns.

If n < N and there are any solutions, then they will form a set of dimension
at least N — n. Thus, cutting with a generic CV~" we will have solutions if and
only if the original system had a solution. Thus we can assume without loss of
generality that n > N. Starting with A = N and decrementing down to A = 0
it follows from 3.2.1 that for the first A where solutions appear, the solutions are
isolated. If n = N, we have solution procedures guaranteed to find at least the
isolated solutions. Thus we can run these procedures to check if there is a solution.

Algorithm to find the dimension of an algebraic set
Given polynomials fi,..., f, on C defining an algebraic set X.

1. Set d:=0

2. If 0 < n < N, then use N —n random linear equations to reduce to a system
of n polynomial equations in n unknowns. Set d := N — n and then set
N :=n.

3. If n > N > 0, then using a generic (u;,;) € CN(=N) replace the system
with a new system (after possibly reordering to lower the Bezout number)

filme,oon) + 25 Ny pgifila, - 2N)
: =0.

In(@y, - 2n) + Yy bNifi(T, - aN)
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of N equations in N unknowns. Rename these equations fi,..., fn.
4. Set A = N and do the following procedure. While A > 0:
a) Replacing A of the variables using random linear equations, “solve”
fl(:L'l, PN ,SEN)
: =0.
fN(xl, . ,JIN)
b) If there is at least one of these points from a) that gives a solution to
the original system, then
stop: the algebraic set X has dimension d + A.
c) Set A:=A—1.
5. X is empty.

3.3. An algorithm for the dimension of an algebraic set at a point.
Let X be an algebraic subset of CV defined by a system of polynomial equations
f=0.Letpe X,ie.,pe CN and f(p) = 0. In this section we give an algorithm to
compute the dimension of X at p, i.e., if X = U]_,; X; is the decomposition of X into
irreducible components, then the dimension of X at p € X is maxy;,¢cx,} dim Xj;.
In particular:

1. if p is a generic point of an irreducible component X; of X, then this algo-
rithm computes dim X;;
2. this algorithm lets us decide whether a solution p of a system f = 0 is
isolated.
To check if p is a smooth solution, a simple check of whether the Jacobian matrix
of f at p is of rank N suffices, but to our knowledge the algorithm below gives
the first numerical algorithm in the literature to check whether a possibly singular
solution is isolated.

The algorithm proceeds as follows. If X; is an irreducible component of X
containing p, then affine CV—4im Xi’s near a generic affine CN~4im Xi containing p
meets X; in at least one point near p. Moreover if dim X; is the maximum dimension
of any irreducible component of X containing p, then for A > dim X; affine CN—4’s
near a generic affine CV—4 containing p don’t meet X in any points near p. An
affine C# containing p := (p1,... ,pn) is specified by

N N
Ty + e a1 AT = Pt D ag APy
(4) :
N N
TA+ D jmat1 AiT; = PA+ i aq1 AP
To get a generic affine CV~4 we can choose a matrix

At,A+1 0 AN

Ad,A+1 0 AAN

with random complex entries (or real entries).
At the moment checking nearness and choosing nearby affine CV~4’s requires
judgement based on the given problem. This is not satisfactory: see Problem 4.1.

Algorithm to find the dimension of an algebraic set at o point
Given polynomials fi, ..., f, on CV defining an algebraic set X and a point p € X.
1. Set d:=0
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2. If 0 < n < N, then use N — n random linear equations vanishing on p to
reduce to a system of n polynomials in n unknowns. Set d := N —n and
then set N :=n.

3. If n > N > 0, then using a generic (p;;) € CN(n=N) replace the system
with a new system (after possibly reordering to lower the Bezout number)

fl(xla"' 7:1:N)+E?:N+1p’1,ifi($17"' 7"1:N)
: =0.
fN($17"' 7$N)+E?:N+1/J/N,ifi($17"' 7$N)

of N equations in N unknowns. Rename these equations fi,... , fn.
4. Set A = N and do the following procedure. While 4 > 1:
a) Using a system of random linear equations near a system of random
linear equations vanishing at p to replace A of the variables, “solve”
fl(.'El, PN ,mN)
: =0.
fN(ml, .o ,.Z'N)
b) If there is at least one of these points from a) that gives a solution to
the original system and is “near” to p then
stop: the dimension of the algebraic set X at p has dimension d + A.
c) Set A:=A—1.
5. the dimension of the algebraic set X at p has dimension d.

3.4. An algorithm for deciding inclusion and equality of reduced alge-
braic sets. Let X be an algebraic subset of CV defined by a system of polynomial
equations f = 0. Let Y be a second algebraic subset of CV defined by a system of
polynomial equations g = 0. Using the algorithm of §3.1

Algorithm for deciding if every solution of f = 0 is a solution of g =0

1. Find a finite set F' of points containing generic points of each irreducible
component of the algebraic set defined by f = 0.

2. Every solution of f = 0 is a solution of g = 0 if and only if g(x) = 0 for each
z € F.

To check if f = 0 and g = 0 have the same set of solutions (not counting
multiplicities) it suffices to use the above algorithm twice, first to decide if every
solution of f = 0 is a solution of g = 0, and if this is true then to decide if every
solution of g = 0 is a solution of f = 0.

We have not dealt with multiplicities in this algorithm. Thus this algorithm
gives a way of deciding if the reduced algebraic set defined by f = 0 is an algebraic
subset of the reduced algebraic set defined by g = 0.

3.5. Some illustrative applications. As motivation for the algorithms dis-
cussed above, we briefly outline some questions in kinematics where the methods
could prove useful. First, consider the singularity problem for a serial-link robot arm
consisting of a chain of n moving links connected by rotational joints. The first link
in the chain is additionally connected to an immobile base link by a rotational joint.
By rotating the joints, the final “hand” link is moved around in space. Let § € T™
(the n-dimensional torus) be the joint angles and let z € SE(3) = R? x SO(3)
be the position and orientation of the hand. The forward kinematic function
f:T™ — SE(3) can be readily written down in terms of trigonometric functions
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using standard kinematic formulations. It is of considerable importance in the con-
trol of such a robot to identify points in the joint space where the Jacobian matrix
fo becomes rank deficient, because at such points the robot cannot produce end-
effector velocities in arbitrary directions in the tangent space. In the common case
that n = 6, fo € R5%8 is square and the singularity condition is det fo = 0. This
condition is trigonometric, but it can be converted to an algebraic condition with
the change of variables cos6; = (1—12)/(1+t2), sin; = 2t;/(1+t2) (i =1,...,6).
This is an example where the algebraic set under study is given by one equation in
six unknowns.

To be more specific, we consider the special case of a two-link planar robot arm
having link lengths 71,72 and joint angles 8;,60,. The first joint is at the origin and
the forward kinematic function gives the endpoint of the arm as

f(0) = (Tl cos 8y + ra cos (92,T1 sin 61 + r9 sin (92)

fo = ( —risinf; —79sin6s )
) =

r1 cos 01 79 COS 05

The Jacobian matrix is

and the singularity condition is
(5) det fy = —ry72(sin @) cos By — cos By sinfy) = 0.

This problem is easily treated by hand since by a trigonometric identity Eq.(5)
becomes

sin(01 — 02) = 0,
which implies 8; = 65 or §; = 6:+x. These describe the two irreducible components
of the singularity set.

To illustrate our algorithms, we treat the example numerically as follows. First,
convert Eq.(5) to a polynomial expression using the change of variables given above
to get
t(1—83) —(1—t)ty 0

1T+ +¢3)
Now, we use algorithms 3.1 and 3.2 to find generic points on the algebraic set

defined by this equation and to determine its dimension. We begin with n =1 and
N = 2. Step 1 is to add one random linear equation to make the system square:

.2338t; + 83742 + .4721 = 0.

In our accounting we now set d = 1 and N = 1. The linear equation is used to
eliminate one variable to obtain a cubic in the remaining variable. Next, we set
A =1 and test a random point in C°. Since the cubic is not trivially zero, there
are no solutions and the singularity set is not 2-dimensional. Hence, we decrement
A to 0 and solve the cubic equation to get three solutions (rounded to 12 decimal
places):

(6) —2’!‘1 T2

—3.154625658213,  .316994822316
(t1,t) = | —.440720672006, —.440720672006
1.135378430734, —.880763605271

From this result, we conclude that the singularity set is of dimension d+ A = 1 and
that the three solution points are close approximations to at least one point on each
irreducible component of the singularity set. An astute analyst might easily guess
from the second solution that one component is t; = t2 and upon converting the
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first and third solutions back to angles might also guess the second component as
01 = 63+ . (The latter case corresponds to the component ¢1t2 = —1.) Algorithm
3.4 can be used to test this hypothesis. Repeating the solution for a different
random linear equation (to ensure independence from our hypothesis) we will find
that the solutions do indeed fall on the hypothesized sets. This shows that the
singularity set is included in the union of ¢; = t2 and t1t2 = —1. To test the
opposite inclusion, we check random points from these two sets against Eq.(6). It
will be zero to high precision, thus indicating equality of the singularity set to the
two component sets. As always, these numerical conclusions do not carry the same
level of certitude as the analytical proof, but at a minimum, one may say that they
provide strong insight to the truth.

Another question in kinematics concerns the study of overconstrained mecha-
nisms. Consider again a serial chain of links, but this time additionally connect the
final link rigidly to the base link. The closure equation for the closed-loop linkage
is f(0,p) = id, where id is the identity element in SE(3), and where p represents
the geometric parameters of the links, such as link lengths, twists, and offsets. All
single-loop mechanisms with n > 7 joints will have internal motion, i.e., a positive
dimensional solution set in 6 with p held fixed. For n < 6, the closure equation
gives at least as many algebraic equations as there are joint variables, so the device
may or may not have internal motion depending on whether the link parameters
p are especially fortuitous. If the device has a 1-dimensional joint motion, it is
called an overconstrained linkage. It turns out that for n < 3 there are no overcon-
strained linkages of any interest. Delassus [D] showed that the three known families
of overconstrained linkages for n = 4 are exhaustive, and the classification has been
generalized to include other types of joints by Waldron [W2]. For n = 5,6, many
examples have been found, but it is not known yet if the classification is complete
[W1, MR1, MR2]. In such studies, it is useful to be able to verify a candidate
mechanism given by a set of parameters, say p*. If the dimension of f(6,p*) = id
as computed by Algorithm 3.2 is 1, then the device is a valid overconstrained link-
age. If the dimension is greater than 1, the device might still have a 1-dimensional
irreducible component. This can be checked by applying Algorithm 3.3 to each of
the generic points found by Algorithm 3.1.

4. Closing remarks and open problems

One question is how to deal with general algebraic sets (in this paper we dealt
with affine sets, i.e., algebraic sets whose underlying set of points embeds as a closed
subset of CIV). This is straightforward. For example, here is a simple approach that
covers most questions that come up in practice. Let X be an arbitrary projective
algebraic set, i.e., a not necessarily reduced or irreducible algebraic subset X of
complex projective space PV. If we choose any linear hyperplane H of PV, then
PV — H, the complement of H in PV, is identified with CV. If H is chosen to be
general, then all isolated points of X belong to PV — H, and in fact no irreducible
component of X lies in H. Thus every irreducible component of H N X has real
codimension 2 in some irreducible component of X. Thus the affine algebraic set
X — HN X is—for numerical analysis questions about isolated points or irreducible
components—almost identical to X. This is in fact a standard and useful device,
e.g., see Morgan’s projective transformation [Mo]. A variant of this procedure
works for a quasi-projective algebraic set X, i.e., X is a projective algebraic set
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Y minus a closed algebraic subset Z. There is some degree d such that the ideal
sheaf of Z is generated by degree d homogeneous polynomials. Choose a general
polynomial p of that degree which vanishes on Z and note that Y — p~1(0) is
an algebraic set which can be embedded as a closed subset of a Euclidean space,
Y —p1(0) C X, and Y — p~1(0) contains all isolated points of X. Moreover
no irreducible component of X lies in p~1(0). Thus replacing X by Y — p=1(0)
reduces us for most numerical analysis purposes to the types of sets we have been
considering.

PROBLEM 4.1. How do we decide in our algorithms that some quantity is
“zero,” or that some point is “near” another point.

This problem, which is analogous to deciding when a matrix is “singular,”
has no easy answer. Large problems often require individual inspection of unclear
cases based on the special properties of a given problem. This is not an acceptable
solution of the problem.

PROBLEM 4.2. How secure are we using probabilistic algorithms of the sort we
describe?

Our experience with solving systems of polynomials using probabilistic algo-
rithms has been very good. Nevertheless a generic point might be close enough
to a point that we want to avoid that numerical analysis difficulties ensue. This
points out the need for some more quantitative measures of the size of numerically
bad sets. Though such bounds will likely not be so useful in practice, they will be
useful theoretically.

PRrROBLEM 4.3. Enumerate the irreducible components of an algebraic set de-
fined by the system (1) of n polynomials on CN .

We know by Algorithm 3.1 how to find generic points of irreducible components,
and by Algorithm 3.3 how to find the dimension of the irreducible component that
a generic point belongs to. What we don’t know how to do is to decide when two
generic points are on the same irreducible component.

PROBLEM 4.4. Let p € X be a generic point of an irreducible component Z of
the algebraic set X defined by the polynomial system (1) on CN. Give a numerical
algorithm to compute the multiplicity of Z in X.

It suffices to do this for isolated points. To see this note that Algorithm 3.3
finds the dimension A of Z. Restricting f = 0 to a generic CN~4 containing p
we obtain a system with p an isolated solution. The multiplicity of p for this new
system is equal to the multiplicity of Z for the original system. For square systems
the computation of the multiplicity is a byproduct of finding all isolated solutions.
The problem 4.4 thus reduces to the following problem.

PROBLEM 4.5. Let p € CN be an isolated solution of the system (1) of n poly-
nomials on CN with n > N. Give a probabilistic numerical algorithm to compute
the multiplicity of p.

Using continuation and an associated randomized square system computes an
upper bound for the multiplicity, but as the example system at the end of §2.2
shows this upper bound can be strictly larger.
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