
Numerical Irreducible Decomposition

using Projections from Points on the Components

Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler

Abstract. To classify positive dimensional solution components of a polyno-
mial system, we construct polynomials interpolating points sampled from each
component. In previous work, points on an i-dimensional component were
linearly projected onto a generically chosen (i + 1)-dimensional subspace. In
this paper, we present two improvements. First, we reduce the dimensionality
of the ambient space by determining the linear span of the component and
restricting to it. Second, if the dimension of the linear span is greater than
i + 1, we use a less generic projection that leads to interpolating polynomi-
als of lower degree, thus reducing the number of samples needed. While this
more eÆcient approach still guarantees | with probability one | the correct
determination of the degree of each component, the mere evaluation of an in-
terpolating polynomial no longer certi�es the membership of a point to that
component. We present an additional numerical test that certi�es membership
in this new situation. We illustrate the performance of our new approach on
some well-known test systems.

1. Introduction

Polynomial systems occur in various �elds of science and engineering. In many
applications we encounter positive dimensional components of solutions. The prob-
lem then is to decompose the solution set into irreducible components, identifying
for each component the dimension and the degree.

This manuscript is the fourth paper in a sequence that started with Numeri-

cal Algebraic Geometry [15], followed by [13, 14]. Our aim is to eÆciently solve
the above problem using numerical homotopy continuation [1], [7], [8]. An eÆ-
cient homotopy to �nd generic points on each component was given in [13], and
in [14] we presented a general algorithm to classify these points into the irreducible
components.
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Since this paper departs directly from the results of [14], we �rst sketch how we
decompose the solution set into irreducible components by means of an example.
Suppose we are given three points as intersection points of a general line with a
curve of degree three in the plane. The problem is to detect whether this curve is
a genuine cubic, or whether it decomposes into a conic and a line, or even further
degenerates into three lines. We proceed as follows. Start at the �rst given point
and produce another sample point on the curve by moving the general intersecting
line and tracing the intersection point as the line moves. By repeating this process,
any number of generic sample points on the same component can be found. With
two points, we construct the equation for the line passing through both. We then
obtain a third sample and test if it satis�es this equation. If so, the component is a
line, and we proceed to analyze the next component in a similar manner, starting
at the second given point. Otherwise, we conduct three more samples, enough to
get the equation for a conic passing through �ve points, and test whether the sixth
sample satis�es this quadratic equation. If so, the curve breaks up in a conic and
a line, otherwise the curve is a cubic. A similar procedure works for components of
any degree and dimension.

It often happens that a component of the solution set lies in a linear subspace
smaller than the ambient space. The smallest such subspace is called the span of
the component. The �rst improvement of this paper over its predecessors is to
take advantage of the di�erence between the span and the ambient space. If n
general samples of the component are found to span a linear subspace of dimension
s < n � 1, then we are assured that the entire component lies in this subspace.
We can therefore restrict all further computations to this subspace. Since the
dominant cost in sampling the component is the solution of linear systems in Newton
iterations, we get a reduction in computational cost from O(N3) to O(s3), where
N and s are the dimensions of the ambient space and the span, respectively.

In [14], a key step in handling an i-dimensional component is to linearly project
the samples onto a generic (i+1)-dimensional subspace, thereby mapping the com-
ponent to a hypersurface within this space. The hypersurface is described by one
equation, whose coeÆcients are found by interpolation. The second improvement of
this paper is to replace the linear projection operator of [14] by central projections,
i.e., projections from points on the component. To project a component onto a gen-
eral hyperplane H , �rst pick a general point x on the component as the center of
the projection. Then, the projection of an arbitrary point y 6= x is the intersection
of the unique line through x and y with the hyperplane H . With this projection,
the degree of the component drops by one. To project onto a linear subspace of
codimension m, one may concatenate central projections from m di�erent central
points. This is equivalent to a single simultaneous projection from m distinct cen-
tral points, determined by the aÆne linear space generated by the set of points.
This is described in greater detail below.

The advantage of using central projections is that the interpolation requires
fewer samples; for components that span many more dimensions than their inherent
dimension, the eÆciency gain is considerable. To uniquely determine a hypersurface
of degree d in a space of dimension n, at least (d + n)!=(d!n!) sample points are
needed. (This includes one extra point for testing.) Since the central projection
decreases the degree of the hypersurface, the amount of computation is reduced
accordingly. The decrease in degree is equal to s� (i+ 1), the di�erence between
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the dimension of the span of the component and the dimension of the �nal linear
subspace after projection.

There is a downside of using this less generic projection: we can have positive
dimensional sets of points not on the component but satisfying the interpolating
polynomials. These bad sets cannot be avoided by choosing di�erent central points
for the projection. Fortunately, C. Ciliberto came to our rescue, pointing out that
for the case of central projection from a single point, results of Segre [10, 11], ensure
that these bad sets are of a lower dimension than the dimension of the component.
Moreover, he and A. Calabri [3] showed that, in the case of central projection from
a �nite set of points, Segre's result still holds true. So in breaking up solution sets
we can use these new projections, but there are bad sets, which are mildly enough
behaved that we could develop an additional test to certify whether a point belongs
to a component.

One important side e�ect of this new test is that we now have an e�ective
method to check the multiplicity of a point on an irreducible component. Never-
theless, our current implementation still assumes all components are of multiplicity
one. How to handle singularities will be the subject of a future paper.

The paper is organized as follows. In the next section we give a mathematical
description of our methods. Pseudocode for our new algorithms is given in Section
3. In the last section we compare the performance of our new approach with the
algorithms of [14].

Acknowledgments. We thank C. Ciliberto for pointing out B. Segre's results,
and generalizing them with A. Calabri to cover our situation. We are grateful to
C. Ciliberto and C. Keem for pointing out independently the useful consequences
of the trisecant lemma. We thank T.-Y. Li for a number of suggestions that have
improved this paper. We thank B. Sturmfels for mentioning the systems of adjacent
minors to us.

2. Central Projection from Points

Let

f(x) :=

2
64

f1(x1; : : : ; xN )
...

fn(x1; : : : ; xN )

3
75 ;(2.1)

be a system of polynomial equations in C
N , where for simplicity we assume that

not all of the fi are identically zero.

Let Z = V(f) be the union

Z :=

N�1[
i=0

Zi :=

N�1[
i=0

[
j2Ii

Zij(2.2)

where Zi is the union of all i-dimensional irreducible components Zij of Z, and the
index sets Ii are �nite and possibly empty. Note that Z is the reduction of the
possibly non-reduced algebraic set de�ned by the equations f1; : : : ; fn.

Let cW = f cWi j i = 0; : : : ; N � 1 g denote the set of witness points produced

by the routine WitnessGenerate of [14]. Each cWi contains generic points on
each i-dimensional component, plus additional junk points which will be �ltered
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out, i.e., points lying on irreducible components of dimension > i. In particular,

we showed in [14] how to do a breakup of each cWi of cW as cWi := ([j2IiWij)[ Ji,
where

1. Wij consists of degZij generic points of Zij each occurring �ij times, where
�ij is a positive integer. Moreover, �ij � �ij , where �ij is the multiplicity
of Zij in the possibly nonreduced algebraic set f�1(0), and �ij = 1 if and
only if �ij = 1; and

2. Ji � [k>iZk.

This classi�cation is accomplished by the construction of �ltering polynomials

f pij j 0 � i � N � 1 ; j 2 Ii g:(2.3)

The genericity of this set of polynomials comes from the genericity of the linear
projections involved in their construction. Letting P denote the product of the
N � 1 spaces of linear projections Pi from CN ! C i with 1 � i � N � 1, this
genericity amounts to a choice of a general point on P . Given a �nite set of points
S, it follows with probability one, i.e., for the polynomials pij dependent on the
choice of a point in a nonempty Zariski open set of P , that s 2 S lies on Zij if and
only if pij(s) = 0.

In this article, we construct the same type of breakup of the cWi, but with a
possibly lower degree set of �ltering polynomials on lower dimensional Euclidean
spaces. The time savings of this new method are considerable, but we must give
up some of the genericity of the �ltering polynomials.

The restricted class of projections we use are described as follows. Given an
i-dimensional irreducible variety X � CN , let Span(X) denote the smallest linear
subspace of CN containing X , and let s := dimSpan(X), i := dim(X). If s = i,
thenX = Span(X), and we need go no further. If s = i+1, thenX is a hypersurface
in Span(X), and we interpolate it without projection. In the case s � i+2, we wish
to project onto a linear subspace of dimension i+1. To do so, choose s�i�1 general
points fx1; : : : ;xs�i�1g of X as central points of the projection, and pick an (i+1)-
dimensional aÆne linear subspace L of Span(X) with L \ hx1; : : : ;xs�i�1i = ;,
where hx1; : : : ;xs�i�1i denotes the aÆne linear span of the points x1; : : : ;xs�i�1.
We take L as the target of the central projection, de�ned by sending any y of X
not in hx1; : : : ;xs�i�1i to the unique intersection of hx1; : : : ;xs�i�1;yi with L.

In the original procedure of [14], we use two key facts about linear projections.

A) Given an i-dimensional irreducible variety X � CN and a general linear
projection � : CN ! C i+1 , the restriction �X of � to X is generically one-
to-one on X , i.e., there exists a dense Zariski open set U of �(X) such that
� gives an isomorphism between ��1(U) and U .

B) The intersection of the algebraic sets ��1
�
�(X)

�
as � runs over the set of

general linear projections � : CN ! C i+1 equals X . Here Y denotes the
closure in projective space of algebraic set Y .

For the class of central projections that we are using in this paper, assertion A
is still true, but the second assertion B is false. In what follows, we �rst prove
assertion A for central projections, i.e., that a generic central projection is generi-
cally one-to-one. Then we turn to a weaker variant of assertion B that is true for



NUMERICAL IRREDUCIBLE DECOMPOSITION USING PROJECTIONS FROM POINTS 5

central projections, and show how to adapt the algorithm of [14] to give the same
decomposition, while using only the this weaker assertion.

The analogue for central projections of assertion A above follows from the
classical trisecant lemma. Before we state and prove the analogue, we make a few
observations that are useful in passing back and forth between PN and CN � PN .

1. An r dimensional aÆne linear space in CN closes up to be a linear Pr � PN ,
and given a linear L := P

r � P
N , not contained in P

N n CN , the set L\ C
N

is aÆne linear. Moreover, a general linear Pr � PN is not contained in
PN n CN .

2. Given an i dimensional variety X � CN , and a general aÆne linear space L
of dimension N � i, then it follows that L \ X = L \X , since the (i � 1)-
dimensional set X nX is missed by any general Pr � P

N with r � N � i.

Lemma 2.1. Let X � CN be an irreducible i-dimensional variety. Assume

that X belongs to no aÆne linear hyperplane CN�1 � CN . For a set K of k �
N � i� 1 general points of X, it follows that the central projection �K : X ! Pi+1

is generically one-to-one, and in particular, that there is a non-empty Zariski open

set U � �K(X) such that �K : ��1K (U)! U is an isomorphism.

Proof. This would follow if we knew that the smallest linear space spanned by
K and another general point x of X , has dimension k and meets X in K[fxg. This
would follow if we knew that a general linear L := PN�i meets X (or equivalently X
by the remarks before the lemma), in a set of cardinality degX with the property
that

1. no subset of L \ X of cardinality k + 2 � N � i + 1 lies on a linear Pk; or
equivalently

2. given any k + 2 � N � i + 1 points of L \X , the linear span of the points
is a Pk+1.

Noting [12, Theorem 3.44] that, if dimX � 2, the intersection of X with a general
linear P

N�i+1 is an irreducible algebraic curve, we are reduced to the classical
trisecant lemma [2, General Position Theorem, page 109].

One consequence of Lemma 2.1, that follows from [9, Theorem 5.11, page 76],
is that there is a Zariski open dense set U � Xs�i�1 such that for (x1; : : : ;xs�i�1) 2
U and any (i+1)-dimensional aÆne linear space L of C s disjoint from hx1; : : : ;xs�i�1i,
it follows that under the central projection � : C s nhx1; : : : ;xs�i�1i ! L, associated
to hx1; : : : ;xs�i�1i, deg(�(X)) = degX�(s� i�1). Note that � is a meromorphic
mapping on X , and by �(X) is meant the closure of �(X n hx1; : : : ;xs�i�1i \X).

As noted above, assertion B, one of two key facts about generic linear pro-
jections used in [14], is false for the class of central projections, but fortunately
the generalization [3] of classical results of B. Segre [10, 11] show that a slightly
weakened variant of assertion B is true for central projections.

To be precise, given an irreducible algebraic setX � CN , let Cone(X;x1; : : : ;xs�i�1)
be the closure of the set of all aÆne linear spaces generated by the distinct points
x1; : : : ;xs�i�1 of X , where s = dimSpan(X), and a point of y varying over X . Let

B(X) :=
\

(x1;::: ;xs�i�1)2Xs�i�1��

Cone(X;x1; : : : ;xs�i�1);(2.4)
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where � is the set of (s � i � 1)-tuples of points whose aÆne linear span is of
dimension less than s� i� 2. It is a consequence of the trisecant lemma [2, page
109] that � is a proper algebraic subset of Xs�i�1.

For the case of cones from a single point x1, it is a classical result of Segre
[10, 11] that B(X) = X[X 0 where dimX 0 < dimX . We refer to [3] for the general-
ization of Segre's result needed in our algorithm, i.e., that in general, B(X) = X[X 0

where dimX 0 < dimX .

Fix an irreducible i-dimensional component Zij of V (f) and set Bij := B(Zij) =
Zij [ Z 0

ij with dimZ 0
ij < i. The new �ltering polynomials qij , which are only con-

structed when s := dimSpan(Zij) � i + 2, have the property that, given a �nite
set of points S, making a generic choice of points x1; : : : ;xs�i�1 on Zij , it follows
with probability one that s 2 S lies on Zij [ Z 0

ij if and only if qij(s) = 0. To make
up for the loss of generality, i.e., to decide whether or not s 2 Zij and not just
in Zij [ Z 0

ij , we need a simple numerical test. It is based on the following lemma,
which summarizes some facts about linear spaces in general position. We will apply
it with A being one of the Zij and C a being Span(Zij).

Lemma 2.2. Let A0 and A be reduced and irreducible algebraic subsets of C a

with dimA0 < dimA, e.g., let Span(A) = C a , a � dimA + 2, and let A0 be the

algebraic set as above such that B(A) = A [ A0. For s 2 A [ A0, choose a general

linear subspace L � C a of dimension a�dimA containing s. Then L\A0 contains

at most the point s, and therefore (A [A0) \ L consists of either

1. degA distinct points of A not including s if s 62 A; or
2. s plus m < degA distinct points of A if s 2 A. In this case the multiplicity

of s as a point of A is degA�m.

To make this into a membership test for s in the set Zij , �rst check membership
of s in Span(Zij). Next take the general linear space LN�i of [13] which meets Zij
in Wij , which consists of a set, Wij;red , of degZij distinct generic points of Zij
each occurring �ij times. Note that by induction we have already determined the
junk Ji and the breakup Wi = [j2IiWij . With probability one, LN�i misses the
set [k2IiZ

0
ik. Apply homotopy continuation to move the set Wij;red (equal as a set

to LN�i \ Span(Zij)) within Span(Zij) to a general linear space K � Span(Zij)
of dimension dimSpan(Zij) � i containing s. (This step is only implemented nu-
merically in this paper for the components of multiplicity one.) Among the set
of points obtained with this continuation, let m denote the number of points in
the set, excluding s, on which qij is zero. If m < degZij , then s 2 Zij , and if
m = degZij , then s 62 Zij . For components of multiplicity one, we will make this
construction precise in the second part of the following section.

3. The algorithms

In this section we detail the computation of central projections. Then we give
the revised algorithm to compute the �ltering polynomials. We end this section
with a description of the new membership test.

The computation of a central projection �(y) of a point y 2 X (i = dim(X) >
0) may proceed as follows. First, restrict the problem to Span(X) by a linear
change of coordinates. Next, homogenize the problem and work on projective
space, hence points are represented by s+ 1 coordinates, where s = dimSpan(X).
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Let the linear subspace L be given by s � i � 1 linear equations on Ps; that is,
L = fq 2 PsjAq = 0g for some full-rank matrix A 2 C (s�i�1)�(s+1) . Further,
let P be a (s + 1) � (s � i) matrix given as P = (x1 � � � xs�i�1 y), so that the
span of the central points fx1; : : : ;xs�i�1g and y 2 Ps may be represented as
hx1; : : : ;xs�i�1;yi = fq 2 Psjfor some b 2 Ps�i�1;q = Pbg. The intersection
of the span and L is given by the solution of APb = 0, which we denote by b0.
Then the projected point is �(y) = Pb0. It is suÆcient to keep only the �rst
i+ 1 coordinates of �(y) to determine the irreducible decomposition of X . When
A is chosen generically, all of the operations in this procedure are nonsingular with
probability one.

As in (2.3), for each Zij , we construct one �ltering polynomial pij de�ned as
pij(x) = qij(�ij(x)), where �ij is the central projection operator for that compo-
nent. Here, qij is a polynomial that interpolates projected points of the component.
There are three cases, depending on the di�erence between s = dimSpan(Zij) and
i = dimZij :

1. Case s = i. Then Zij = Span(Zij), and we have a complete description of
Zij as the linear combination of s+ 1 points in Zij .

2. Case s = i + 1. Then Zij is a hypersurface in Span(Zij), so �ij is just the
identity and the projected point �ij(x) can be represented by s coordinates.

3. Case s � i+2. In this case, we use the central projection as described in the
previous paragraph to project x into an (i+1)-dimensional linear subspace.

The pseudocode to �nd the interpolating polynomials is given next. The dif-
ference with the Interpolate of [14] is the restriction to the spanning subspace
of the component and the central projection once this restriction has been done.
The subroutine #monom(d; n) =

�
d+n
n

�
gives the number of monomials of a dense

polynomial of degree d in n variables; Sample generates new generic points on the
component; and Fit constructs an interpolating polynomial through the samples.

The procedureCentralSample generates new samples on the component which
will be used as central points in the projection. Therefore the argument modi�ed
by this routine is the projection operator �. For a list S, we use �(S) to denote the
list of projected points; S(a; : : : ; b) collects those points of S on positions ranging
from a till b.

Algorithm 3.1. [p; S] = Interpolate(f;x; i)

Input: Polynomial system f ; Solution point x; Working dimension i > 0.
Output: Interpolating polynomial p; Sample points S; Equations for Span(S).

Parameter: Oversampling numbers k1 � 0, k2 � 1 (integers).

restricted:= false; [true if restricted to subspace]
S := ;; d := 1; [start at degree 1]
n� := 0; [#central projection points]
loop

ms := #monom(d; i+ 1)� 1 + k1 + k2; [#sample points]
if restricted
thenS := S [ Sample(fjL;x; i;ms �#S); [expand S using fjL]
else S := S [ Sample(f;x; i;ms �#S); [expand S using f ]
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L := Span(S); [subspace spanned by S]
if dimL = N or dimL < #S � 1
then restricted := true; [working space becomes L]

S := SjL; [restrict S to L]
n� := dimL� i� 1; [#central projection points]

end if;
exit when dimL = i; [linear component found]
if n� > 0
then CentralSample(fL;x; i; n�; �); [sample n� central points]

n� := 0; [do this only once]
end if;
p := Fit(d; i; �(S(1; : : : ;#S � k2)); [�t degree d polynomial]
exit when (p(�(S(#S � k2 + 1; : : : ;#S))) � 0); [test k2 extra points]
d := d+ 1; [no good �t, continue loop]

end loop.

The � 0 in the algorithm above indicates the test succeeds if the absolute value
of the evaluation result does not exceed a given tolerance.

Once we know for an i-dimensional component that dimSpan(S) = i+ k, then
its degree is at least k + 1. Therefore, we sample the central points all at once.
To get the actual degree of the component, we have to add to the degree of the
interpolating polynomial the number of central points.

To illustrate the workings of Interpolate, we consider the 7-bar mechanism
described in [14], which has a one-dimensional solution component of degree six
that spans a four-dimensional space. In terms of the algorithm, we have i = 1,
s = 4, and d = 6. Also, the ambient space is size N = 12. The dimension of the
target space for the projection is i+1 = 2, so we use s� (i+1) = 2 central points.
So the two improvements of the new algorithm are: (1) after �nding that s = 4,
we restrict all further computation to four dimensions instead of 12, and (2) the
degree of the �ltering polynomial is reduced from d = 6 to d� (s� (i+1)) = 4. To
make the algorithm clear, we follow through the steps of Interpolate, as follows
below. For the purpose of counting samples, we assume the minimum requirements
of k1 = 0 (no oversampling for Fit) and k2 = 1 (only test one extra point). The
inputs to the routine are the system f , a witness point x that has been con�rmed
to lie on a component of dimension i = 1. (That is, x 2 W1, where W1 has been

extracted from cW1 by �ltering out the junk J1.)

init: No restriction, S is empty, d = 1, n� = 0.
loop: First pass through loop

1. ms = 3, so sample 3 points, making #S = 3.
2. dimSpan(S) = 2, which is equal to #S � 1, so no restriction.
3. Fitting and testing �nds that points do not lie on a d = 1 curve.
4. Increment to d = 2 and loop back.

loop: Second pass through loop
1. ms = 6, so sample 3 more points, making #S = 6.
2. s = dimSpan(S) = 4, which is less than #S � 1, so restrict the

problem.
-: Restrict all further computation to the span.
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3. Sample n� = 2 central points. Use central projection for all future
�ts.

4. Fitting and testing �nds that points do not lie on a d = 2 curve.
5. Increment to d = 3 and loop back.

loop: Third pass through loop
1. ms = 10, so sample 4 more points, making #S = 10.
2. Fitting and testing �nds that points do not lie on a d = 3 curve.
3. Increment to d = 4 and loop back.

loop: Fourth pass through loop
1. ms = 15, so sample 5 more points, making #S = 15.
2. Fitting and testing �nds that points lie on a d = 4 curve.
3. Exit with d = 4 and return the �tted polynomial.

The total number of samples, including those for the central projection, equals 17.
Without central projections we need 28 samples to construct an interpolating poly-
nomial of degree six on a two-dimensional space. Computation times for this ex-
ample are reported in the next section.

The algorithm Interpolate yields the spanning subspace and | if the compo-
nent is nonlinear | a �ltering polynomial for one component Zij . To obtain the
complete irreducible decomposition of all i-dimensional components Zi, we apply

this algorithm repeatedly to all points x 2 cWi that are not members of a known
component of dimension i or higher.

The numerical irreducible decomposition outlined in [14] is performed byWit-

nessClassify which processes the output of WitnessGenerate. Completion of
an algorithm for the irreducible decomposition requires a membership test, which
we describe in the remainder of this section.

Membership is determined by three tests. Failure of any of the three indicates

nonmembership. The tests for whether point w 2 cWk is in component Zij , i � k
are organized in three steps:

Step 1: Point w must lie in Span(Zij).
Step 2: It must satisfy the �ltering polynomial: pij(w) = 0.
Step 3: If i > k, we must check by homotopy continuation whether w 2 Zij or w 2

Z 0
ij , where Z

0
ij is the union of the lower-dimensional (less than i) irreducible

components of the bad set B(Zij), as described in section 2.

These steps are executed in the order listed, with termination at the �rst indication
of nonmembership. Of course, step 1 is suÆcient by itself if Zij is linear. Step 3 is
the most expensive one, therefore we only invoke it after the tests in step 1 and 2
fail. We note, however, that step 2 often must be done in higher precision than
step 3, because of the numerical conditioning of high-degree polynomials. Since
extra precision can be quite expensive, it is conceivable that in some cases it may
be preferable to skip step 2 and proceed directly with step 3.

Step 3 in the membership test requires a bit more explanation. The generalized
theorem of Segre guarantees that, although the set of all possible pij does not
necessarily cut out Zij exactly, they cut out a set of the form Zij [ Z 0

ij , with

dimZ 0
ij < i. Since the points in the set Wi � cWi are all general in their respective

components, and these components are of dimension i > dimZ 0
ij , we can assume
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that none of them lie on any of the Z 0
ij . This is why step 2 of the membership test

is suÆcient for k = i.

To motivate step 3 of the membership test we give a situation where it is
unavoidable, when Zi�1;l � Z 0

ij . Such examples are straightforward to construct:8<
:

�x2 + y2 + z2 = 0
y(x3 + y3 + z3 � 1) = 0
z(x3 + y3 + z3 � 1) = 0

(3.1)

The solution set of the system consists of the origin as a double isolated root and the
irreducible curve Z11 of degree six de�ned by �x2+ y2+ z2 = 0 = x3+ y3+ z3� 1.
This curve does not contain the origin. Note that given any solution (x; y; z) on the
curve, the point (bx; by; bz) with b a cube root of unity is also on the curve. The line
through these points contain the origin and therefore evaluation of the interpolation
polynomial with central projections at the origin will yield zero. Thus in this case
taking Z11 we have Z

0
11 equal to the set f(0; 0; 0)g.

Notice, if we choose a general (N � i + 1)-dimensional linear space through a
point x, it will contain exactly degZij points of Zij exactly when x 62 Zij , and if
x 2 Zij , then it will contain degZij ��Zij ;x points of Zij other than x (here �Zij ;x

is the multiplicity of the point x as a point on the reduced irreducible variety Zij).
Since for a point x on Zij , �Zij ;x = 1 if and only if x is a smooth point of Zij , this
also gives us a test for smoothness of any given point of Zij .

So, for a nonlinear component, in case x lies in Span(Zij) and satis�es pij ,
then we choose a general hyperplane L in Span(Zij) through x. If the number of
solutions y 6= x of fL that satisfy pij equals degZij , then x 62 Zij . Note that we
generate more samples in this way. If we have to test suÆciently many points, we
may use additional samples we found to construct �ltering polynomials of higher
degree.

The membership routine is given in pseudocode below, for testing whether a
point w, known to lie on some component of dimension at least k, actually lies on
component Zij , i � k. In the normal usage of the algorithm, w is a member of

the witness point superset cWk. However, one can also test an arbitrary point, not
necessarily belonging to a witness point set, by calling this routine with k = 0.

Algorithm 3.2. [ismember] =MembershipTest(f; pij ; Span(Zij); L;Wij ;w; k)

Input: Polynomial system f ; �ltering polynomial pij for component Zij ;
linear equations de�ning Span(Zij); slices L: dim(L) = N � i;
generic points Wij : Wij \ L � Zij , #Wij = deg(Zij);
test point w; current dimension k.

Output: ismember 2 ftrue; falseg.

if w 62 Span(Zij) or pij(w) 6= 0 [step 1 and 2]
then return false;
else if w 2 Span(Zij) and deg(Zij) = 1 [if Zij is linear]

then return true; [then test is conclusive]
end if;
if i � k [does Segre's result apply?]
then return true; [w 2 Span(Zij), pij(w) = 0]
else take general slices K: w 2 K, dimK = dimL; [slices K pass through w]
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H(x; t) :=

�
f
L

�
t+

�
f
K

�
(1� t); [homotopy between L and K]

trace paths x(t) : H(x(t); t) = 0, [invoke path tracker]
start at t = 1 with all x(1) 2 Wij to t = 0; [paths originate at Wij ]

W := f x j H(x; 0) = 0 g; [collect end points of paths]
return w 2W ;

end if;
end if.

Just as in the description of the Interpolate algorithm, we make abstraction
of the numerical tolerances needed in tests to decide whether computed results
evaluate to zero.

We conclude this section with the observation that if we are concerned only with

the breakupcWi =Wi[Ji for each i, and not with the breakupWi = [j2IiWij , then
using the implementation of Step 3 in MembershipTest the �ltering polynomials
pij become super
uous. If we ignore the numerical diÆculties of dealing with high
degree components, then this observation has little practical value. However, while
the cost of evaluating a polynomial might seem negligible compared to the cost
of path tracking, we emphasize that interpolating (and thus also evaluating) high
degree polynomials always requires multi-precision arithmetic, whereas standard
machine precision suÆces to perform the path tracking. EÆciency considerations
left aside, this observation has signi�cant implications if the coeÆcients of the input
polynomial system are contaminated by errors or only known with limited precision.

4. Computational Experiments

Our new algorithms are implemented under a separate module of PHC [16].
Timings concern a Pentium III 800Mhz running Linux with 512Mb internal memory.

The tables of timings have four columns:

1. \Generic points" is the time to compute generic witness points using the
algorithm WitnessGenerate from [13], also described in [14].

2. \Previous projection" is the time to break up the witness points into com-
ponents using the algorithm WitnessClassify from [14].

3. \Subspace restriction" is the time required when WitnessClassify is mod-
i�ed to �nd the linear span of components and using that result to work in
the possibly lower dimensional space of the span.

4. \New approach" is WitnessClassify modi�ed to use both the subspace
restriction and central projections.

In all cases, the correct top dimension was given on input. This means that, if
the top dimension equals k, the embedded polynomial systems that have the generic
points as their solutions are obtained directly by adding k random hyperplanes to
the original given systems.

4.1. The system Schwartz. We found the following system in the collec-
tion [4], related to constructing idempotents in group theory:
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8>>>><
>>>>:

�ab� b2 � 2de� 2ch = 0
�ac� 2bc� e2 � 2dh = 0
�c2 � ad� 2bd� 2eh = 0
�2cd� ae� 2be� h2 = 0
�d2 � 2ce� ah� 2bh = 0

This system yields a nice illustration of the calculation of the space spanned by the
components. In this case, there are 32 lines as solutions of this system. Our method
�nds representations for those lines as the equations of the spanning subspaces.
Finding 32 generic witness points takes 1s 410ms and in 980ms we get all spanning
subspaces representing the lines.

4.2. A 7-bar system and reduced cyclic 8-roots. Here we reconsider two
examples of [14]. The working precision was in both cases 40 decimal places. In
Table 1 we summarize the results for decomposing the solution set into irreducible
components.

generic points previous projection subspace restriction new approach

7barsys 18s 790ms 34s 370ms 22s 490ms 14s 250ms
redcyc8 9 m 8s 400ms 3m 36s 980ms 2m 15s 380ms 1m 37s 230ms

Table 1. CPU user times for the 7-bar system and the reduced
cyclic 8-roots.

The sextic of the 7-bar system lies in a 4-dimensional space, so we can project
twice from a point. This brings the number of samples down from 28 to 17 (15
for the interpolating �lter and 2 central points). Column four of the �ve column
Table 1 illustrates the eÆciency gain | when we compare with the time in the
third column | from taking samples in this 4-dimensional space, instead of in the
ambient space of dimension 12. In particular, 6 samples are used to determine the
span, which takes 5s 860ms. It takes then an additional 6s 540ms to compute the
remaining 22 samples in the restricted space needed to construct the interpolating
�lter of degree six. With the previous projection, the program did all 28 samples
in the ambient space, which took 5s 860ms + 21s 690ms = 27s 55ms.

For the 7-bar system we have to certify whether six solutions found as part ofcW0 are isolated or belong to J0 (which means they lie on the sextic). Step 3 in
MembershipTest requires on this system timings between 110ms and 170ms to
execute for one point, leading to a total of 920ms to test six points. If we have
an interpolating �lter of degree six, Step 1 and 2 in MembershipTest suÆces
and requires only 290ms to evaluate six points. We conclude the discussion of this
example by mentioning that standard 
oating point arithmetic would now already
suÆce | instead of working with 40 decimal places | because the use of two
central points leads to an interpolation �lter of degree four instead of degree six,
producing less roundo�. Constructing this quartic with standard arithmetic only
takes 480ms as opposed to 14s 250ms when working with 40 decimal places.
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The reduced cyclic 8-roots problems has two lines | for which we �nd the
explicit equations | and two curves of degree 8. Those curves each live in a 3-
dimensional space, so we can only project once of a point. Still this projection
brings the number of samples from 45 down to 39 (38 for the interpolating �lter
and 1 central point) for each curve. As before, we can draw similar conclusions
concerning the eÆciency gain from sampling in the lower dimensional spaces.

4.3. Adjacent minors of a general matrix. This example was brought to
our attention by B. Sturmfels. As polynomial equations we take all adjacent minors
of a 2� (n+ 1)-matrix. For example, for n = 3 we have as matrix and polynomial
system:

�
x11 x12 x13 x14
x21 x22 x23 x24

� 8<
:

x11x22 � x21x12 = 0
x12x23 � x22x13 = 0
x13x24 � x23x14 = 0

(4.1)

A theorem proven in [5] states that the ideal of adjacent 2� 2-minors of a generic
2�(n+1)-matrix is the intersection of Fn prime ideals, Fn being the nth Fibonacci
number, and that the ideal is radical. Moreover all irreducible components of
the solution set to the system in (4.1) is pure dimensional, have as dimension
#variables { #equations = 2(n+1)�n; and the sum of the degrees of the irreducible
components equals 2n. In (4.2) we list the degrees of the irreducible components of
dimension, for n = 3; 4; : : : ; 8.

n = 3 : 8 = 4 + 2 + 2
n = 4 : 16 = 5 + 4 + 3 + 3 + 1
n = 5 : 32 = 6 + 6 + 6 + 4 + 4 + 2 + 2 + 2
n = 6 : 64 = 9 + 8 + 8 + 7 + 5 + 5 + 4 + 4 + 4 + 3 + 3 + 3+ 1
n = 7 : 128 = 12 + 12 + 10 + 10 + 8 + 8 + 6 + 6 + 6 + 6 + 6

+6+ 6 + 6 + 4 + 4 + 4 + 2 + 2 + 2 + 2
n = 8 : 256 = 16 + 15 + 15 + 12 + 12 + 12 + 12 + 12 + 9

+9+ 9 + 9 + 8 + 8 + 8 + 8 + 8 + 8 + 7 + 7 + 5 + 5 + 5
+4+ 4 + 4 + 4 + 4 + 4 + 3 + 3 + 3 + 3 + 1

(4.2)

In Table 2 we summarize our computational experiences. We observe that

computing the witness point superset cW , which is size 2n, does not take long
compared to the time needed for decomposing the solution set. This is mainly due
to the use of multi-precision arithmetic, with 40 decimal places as working precision.
For the n = 8 case, 56 decimal places were used. Comparing the third with the
fourth column of the �ve column table, we notice the advantage of sampling in
the appropriate spanning subspace. The di�erence between the �fth and the third
column illustrates the eÆciency gain between the projection used in [14] and our
new approach.

As a class of polynomial systems we found it an interesting test case for the
software and we present this here with the sole intent of comparing our approaches.
Since this system has so much additional structure, we expect our approach to
be inferior against methods like the ones discussed in [6](and the references cited
therein) which are dedicated to binomial systems. However, this class of examples
was previously unsolvable for numerical homotopy continuation methods.



14 ANDREW J. SOMMESE, JAN VERSCHELDE, AND CHARLES W. WAMPLER

n generic points previous projection subspace restriction new approach

3 570ms 20s 710ms 19s 950ms 17s 120ms
4 1s 740ms 1m 11s 550ms 59s 410ms 50s 160ms
5 8s 40ms 3m 58s 150ms 2m 54s 140ms 2m 11s 970ms
6 21s 530ms 14m 30s 660ms 9m 33s 230ms 6m 16s 690ms
7 1m 19s 40ms 1h 15m 30s 40ms 34m 30s 340ms 16m 30s 840ms
8 3m 56s 880ms 6h 40m 30s 630ms 4h 41m 35s 960ms 1h 26m 47s 400ms

Table 2. CPU user times for the system of adjacent minors.

5. Conclusions

This paper presents two improvements over the algorithms in [14] for the nu-
merical irreducible decomposition of the solution sets of systems of polynomial
equations. The �rst improvement is to check the dimension of the linear span of
a solution component as the component is being sampled. If it is found that the
span is smaller than the ambient space, computation is restricted to the spanning
space. The second improvement is the use of central projections to reduce the
degree of projections of the solution components, hence reducing the number of
samples needed to construct an interpolating polynomial. The overall reduction in
computation time for witness point classi�cation ranged from 17% to 78% on our
test problems, with the greatest percentage applying to the most diÆcult problem.
The two improvements are complementary in the sense that if the span is narrow,
then the subspace restriction pays dividends, and if the span is large compared to
the dimension of the component, then the central projection produces larger gains.
The improvement to be gained depends on the nature of the polynomial system
and its solution set, in particular, the size of the ambient space, the size of the
spanning spaces, and the degrees of the solution components.
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