Homotopies for connected components of algebraic sets
with application to computing critical sets
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Abstract

Given a polynomial system f, this article provides a general construction for homotopies that
yield at least one point of each connected component of the set of solutions of f = 0. This
approach is then used to compute a superset of the isolated points in the image of an algebraic
set which arises in many applications, such as computing critical sets used in the decomposition
of real algebraic sets. Examples are presented which demonstrate the efficiency of this approach.
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Introduction

For a polynomial system f with complex coefficients, the fundamental problem of algebraic geom-
etry is to understand the set of solutions of the system f = 0, denoted V(f). Numerical algebraic
geometry (see, e.g., [0, 23] for a general overview) is based on using homotopy continuation methods
for computing V(f). Geometrically, one can decompose V(f) into its irreducible components, which
corresponds numerically to computing a numerical irreducible decomposition with each irreducible
component represented by a witness set. The first step of computing a numerical irreducible de-
composition is to compute witness point supersets with the algorithms [11} 20, 22] relying upon
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a sequence of homotopies. By considering connected components of V(f) rather than irreducible
components, one can use a single homotopy derived from [I7, Thm. 7] to compute a finite set
of points in V(f) containing at least one point on each connected component of V(f). This is
complementary to methods for computing a finite set of points in the set of real points in V(f),
denoted Vgr(f), containing at least one point on each connected component of Vg(f) [I}, 9, 19, 27].

Standard homotopy methods applied to f produce a finite set of points in V(f), including
all of the isolated points in V(f). This new approach permits a similar approach for numerical
elimination theory [5, Chap. 16]. In particular, suppose that f(z,y) is a polynomial system that is
defined on a product of two projective spaces. Let X = 7(V(f)) under the projection 7(x,y) = x.
If S C V(f) is a finite set of points containing a point on each connected component of V(f), then
m(S) is a finite set of points in X containing the isolated points of X. The new approach enables
one to compute such a set S using a single homotopy; one does not need to separately consider
each possible dimension of the fiber over the isolated points of X.

In the classical setting, one can construct the set of isolated solutions from a superset by using,
for example, either the global homotopy membership test [21] or the numerical local dimension
test [3]. In the elimination setting, a homotopy membership test was developed in [10] building on
the membership test of [2I] while a local dimension test in this setting remains an open problem.

This approach based on connected components also has many other applications, particularly
related to so-called critical point conditions. For example, the methods mentioned above in relation
to real solutions, namely [1l 9, 19} 27], compute critical points of V(f) with respect to the distance
function (see also [8]). In [6 [7], critical points of V(f) with respect to a linear projection are used to
numerically decompose real algebraic sets. Other applications include computing witness point sets
for irreducible components of rank-deficiency sets [2], isosingular sets [12], and deflation ideals [15].

The rest of the article is organized as follows. The homotopies derived from [I7, Thm. 7] are
developed in § [1] for computing at least one point on each connected component of V(f). The
extension to elimination theory is presented in § [2| with § |3 focusing on computing critical sets
of projections of real algebraic sets. An example illustrating this approach and its efficiency is
presented in §[4]

1 Construction of homotopies

Our method of constructing a homotopy for finding at least one point on each connected component
is based on [I7, Thm. 7]. In this section, we consider the algebraic case of this theorem, and for
the convenience of the reader, sketch a proof. We refer to [23] for details regarding algebraic and
analytic sets with [17, Appendix] providing a quick introduction to basic results regarding such sets.
Let &£ be a complex algebraic vector bundle on an n-dimensional irreducible and reduced complex
projective set X. Denote the bundle projection from &£ to X by mg. A section s of £ is a complex
algebraic map s : X — £ such that gos is the identity, i.e., (mgos)(x) = me(s(z)) = x for allz € X.
There is a nonempty Zariski open set U C X over which £ has a trivialization. Using such a
trivialization, an algebraic section of £ becomes a system of rank(€) algebraic functions. In fact,
all polynomial systems arise in this way and results about special homotopies which track different
numbers of paths such as [14] [I8| 24] are based on this interpretation (see also [23, Appendix A]).
To help the reader, we specialize this to a concrete situation.



Example 1. Let X C H;Zl P"% be an irreducible and reduced n-dimensional algebraic subset of
a product of projective spaces. For example, X may be an irreducible component of a system of
multihomogeneous polynomials in
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where zj0,...,2jn; are homogeneous coordinates on the ™ projective space. Fach homogeneous
coordinate z; 1 has a natural interpretation as a section of the hyperplane section bundle, which we
denote by Lpn; (1). The d™ power of the hyperplane section bundle is denoted by Lpn;(d). A multi-
homogeneous polynomial defined on H;Zl P™ with multidegree (di,...,d,) is naturally interpreted
as a section of the line bundle EH;IIP"]‘ (dis...,dy) = @%_ym; Lpn; (d;), where mp, : [[j_ P9 — P
is the product projection onto the k™ factor. A system of n multihomogeneous polynomials
fi
f=1: (1)
In

where f; has multidegree (di1,...,d;n,) is interpreted as a section of

E = @ £H;:1 P™i (di,la e ,diﬂn).
=1

The solution set of f = 0 is simply the set of zeroes of the section f.

We denote the n*® Chern class of £, which lies in the 2n*" integer cohomology group H?*"(X,7Z),
by ¢, (€). Define d = ¢, (€)[X] € Z, i.e., d denotes the evaluation of ¢, (€) on X.

Example 2. Continuing from Example let c = 2521 n; —n denote the codimension of X. Using
multi-index notation for o = (ou, ..., 0q) with each o > 0 and |a| = >, o, we have that X is
represented in homology by the sum

Z eaH®

la|=c
where H; = m; '(H;) with hyperplane H; C P and H* = H' - HE". Moreover, d := c,(E)[X]

is simply the Bézout number of the system of multihomogeneous polynomials restricted to X, i.e.,
the coefficient of H§:1 Z;Lj in the expression

Z eaza . ﬁ zr:diyjzj'

la|=c i=1 \j=1
This is exactly the number of zeroes of a general section of € restricted to X.

A vector space V of global sections of £ is said to span £ if, given any point e € £, there is a
section o € V of € with o(m(e)) = e. We assume that the rank of £ is n = dim X. If V spans &,
then Bertini’s Theorem asserts that there is a Zariski dense open set U C V with the property that,
for all 0 € U, ¢ has d nonsingular isolated zeroes contained in the smooth points of X, i.e., the
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Figure 1: Ilustration of the terminology of the paper. The upper space is in terms of the variables
of the problem, with solid lines representing solutions paths, starting at the finite nonsingular zeros
of 7, and ending at some zero of . We show here many 7 systems, which all are deformed into o.
At the bottom, the patch represents the vector space V', and the lines ¢ interpolate from 7 to o.

graph of o meets the graph of the identically zero section of £ transversely in d points in the set of
smooth points of X.

Let |V| := (V' \ {0})/C* which is the space of lines through the origin of V. Given a complex
analytic vector bundle £ spanned by a vector space of complex analytic sections V', the total space
Z C X x |V] of solution sets of s € V' is

Z:={(z,s) e X x |[V|| s(z) =0} .

Denote the map of Z to X induced by the product projection X x |V| — X by p and the map of
Z to |V| induced by the projection X x |V| — |V| by q.
Since V spans &£, the evaluation map

X xV =€

is surjective, and hence the kernel is a vector bundle of rank dim V' — rank(£). Let K denote the
dual of this kernel and P(K) denote (K*\ X)/C*, the space of lines through the vector space fibers
of the bundle projection of £* — X. The convention of denoting (K* \ X)/C* by P(K) (and not
P(K*)) is convenient in calculations and followed by a majority of algebraic geometers.

The space P(K) is easily identified with Z and the map p is identified with the map P(K) — X
induced by the bundle projection. From this identification, we know that Z is irreducible.

Let £ denote a rank n algebraic vector bundle on a reduced and irreducible projective algebraic
set spanned by a vector space V of algebraic sections of £. Suppose that ¢ € V and 7 € V have
distinct images in |V| and let ¢ := (o, 7) C |V| denote the unique projective line, i.e., linear P!,
through the images of o and 7 in |V|. Letting A and p be homogeneous coordinates on ¢, i.e, span-
ning sections of £4(1), we have the section H(x, A\, u) := Ao + ut of q;—l(e)ﬁf(l) ® p*E. Choosing a
trivialization of £ over a Zariski open dense set U and a trivialization of £y(1) over a Zariski open
dense set of £, e.g., the set where p # 0, H is naturally interpreted as a homotopy. See Figure
for an illustration.



With this general setup, we are now able to state and prove the theoretical underpinnings,
derived from [I7, Thm. 7], for computing a finite set of points containing at least one point on each
connected component of o~1(0).

Theorem 3. Let £ denote a rank n algebraic vector bundle over an irreducible and reduced
n-dimensional projective algebraic set X. Let V be a vector space of sections of € that spans &.
Assume that d == ¢, (E)[X] > 0 and 7 € V which has d nonsingular zeroes all contained in the
smooth points of X. Let 0 € V be a nonzero section of £, which is not a multiple of 7. Let ¢ and H
be as above. Then, there is a Zariski open set @ C £ such that

1. the map qz, of Zg = {H 1(0)N (X x Q)} to { is finite-to-one and
2. ZoN o 1(0) contains at least one point of every connected subset of o~1(0).

Proof. The map ¢ : Z — |V| may be Stein factorized [23, Thm. A.4.8] as ¢ = s o r, where
r: Z — Y is an algebraic map with connected fibers onto an algebraic set Y and s: Y — |V] is an
algebraic map with finite fibers. Since ¢ is surjective, it follows that s is surjective and therefore
dimY = dim |V|. Since Z is irreducible, Y is irreducible.

It suffices to show that given any y € Y, there is a complex open neighborhood U of y with
s(U) an open neighborhood of s(y). A line ¢ C |V is defined by dim |V| —1 linear equations. Thus,
s71(¢) has all components of dimension at least 1. The result follows from [23, Thm. A.4.17]. O

Remark 4. Note that if X is an irreducible component of multiplicity one of the solution set of a
polynomial system fi, ..., f. of codimension c in the total space, we can choose our homotopy so
that the paths over (0, 1] are in the set where df; A - - A df. is non-zero.

2 Isolated points of images

With the theoretical foundation presented in § [l this section focuses on using it to compute a
finite set of points containing at least one point on each connected component in the image of an
algebraic set and thus, in particular, a finite superset of the isolated points in the image. Without
loss of generality, we may consider projections of algebraic sets. This case corresponds algebraically
with computing solutions of an elimination ideal.

Theorem 5. Let f be a polynomial system defined on H§:1 P and m denote the projection

H§:1 P — H?:l P onto the first 1 < k < r spaces. If S is a finite set of points in V(f)
that contains a point on each connected component of V(f), then w(S) is a finite set of points
in 1(V(f)) which contains a point on each connected component of 7(V(f)). In particular, w(S) is

a finite superset of the isolated points in w(V(f)).

Proof. Suppose that C; C w(V(f)) is a connected component. Then, there is an irreducible compo-
nent X, C m(V(f)) contained in C. Hence, there is an irreducible component X C V(f) such that
m(X) = X,. Let C be the connected component of V(f) containing X. Thus, 7(C) C #(V(f)) is a
connected set containing X,. It immediately follows that X, C 7(C) C Cj since Cy is the largest
connected subset of 7(V(f)) containing X,. Since SNC' # ), we have 7(S) N w(C) C 7(S) N C # 0.

[



Suppose now that f is a polynomial system defined on CV x PM. Let V(f) c CN x PM and
Z(f) € PN x PM be the closure of V(f) under the natural embedding of C"V into P%V. The approach
of Theorem [3| can be used to compute a point on each connected component of Z(f). In particular,
it may not yield a point on each connected component of V(f) as the point computed may be
at “infinity.” One special case is the following for isolated points in the projection of V(f) onto C¥.

Corollary 6. Let f be a polynomial system defined on CV x PM and © denote the projection
CN x PM — CN. By considering the natural inclusion of CV into PN, let Z(f) be the closure of
V(f) in PN x PM. If S is a finite set of points in Z(f) that contains a point on each connected
component of Z(f), then w(Sc) is a finite set of points in w(V(f)) which contains the isolated points
in T(V(f)) where Sc is the set of points of S contained in CN x PM,

Proof. Suppose that 2 € m(V(f)) € CV is isolated. Let y € PM such that (x,y) € V(f). By abuse
of notation, we have (x,y) € Z(f) so that there is a connected component, say C, of Z(f) which
contains (z,y). Since z is isolated in w(V(f)), we must have C' C {x} x PM. The statement follows
from the fact that C is thus naturally contained in CN x PM., O

Example 7. To illustrate the general approach, consider the polynomial system

Fla) = |F1@)] _ [e1 4 a3 4+ ag 4 ag
Fy(x) o} + a3 + 23 + 23

defined on C*. The set V(F) C C* is an irreducible surface of degree siz which contains a unique
real point, namely the origin, which is an isolated singularity. We can locate this point as follows.

At a singular point of V(F), the rank of dF falls, and in particular, the two rows of dF are
linearly dependent. Accordingly, consider the following system defined on C* x P':

B F(x)
Gle.v) = Ll ~dF () + g - dFQ(x)] |

Since G consists of 6 polynomials defined on a 5 dimensional space, we reduce to a square system
via mndomz’zatz’orﬁ which, for example, yields:

2} + 23 + 23 + ]

o3+ a3 + 23 + 23
o(z,v) = |vi(z1 + 24) + v2(327 + 24)
v1 (22 + 24) + v2(323 + 24)
vi(z3 + 74) + v2(323 + 74)

Tn usual practice, “randomization” means replacing a set of polynomials with some number of random linear
combinations of the polynomials. When the appropriate number of combinations is used, then in a Zariski-open
subset of the Cartesian space of coefficients of the linear combinations, the solution set of interest is preserved. See,
for example, [23] §13.5]. Here, for simplicity of illustration, we take very simple linear combinations involving small
integers. These happen to suffice, but in general one would use a random number generator and possibly hundreds
of digits to better approximate the probability-one chance of success that is implied in a continuum model of the
coefficient space.



As in the discussion in § |1, we use this o to form a homotopy H ((x,v), A\, u) = Ao(z,v) + pt(x,v),
with T corresponding to the linear product [2]|] system:

z}+ 23 + 23 + 2}

o3+ 23 + 23 + 23
T(z,v) == | (v1 +v2)(x1 —4xy — 1)(21 — 2)
(v — va) (w2 + 224 — 1)(x2 — 3)
(v1 + 2v9) (23 — 3z4 — 1)(23 — 4)

With this setup, 7-1(0) has ezactly d = T2 nonsingular isolated solutions which can be computed
easily, for example, using regenerative extension [13] starting with a witness set for V(F).

We used Bertini [J] to track the 72 paths along a real arc contained in the line £ = (o, 7). In
this case, 30 paths diverge to infinity and 42 paths end at finite points. Of the latter, 20 endpoints
are nonsingular isolated solutions which are extraneous in that they arose from the randomization
and not actually in V(G). The other 22 paths converged to points in {0} x P, 18 of which ended
with v = [0,1] € P, while the other 4 break into 2 groups of 2 with v of the form [1,a] and
[1, conj(a)] where a ~ —0.351 + 0.504 - \/—1. In particular, even though {0} x P! is a positive-
dimensional solution component of V(o) and also of V(G), we always obtain at least one point on
this component and thus observe that the origin is singular.

3 Computing critical points of projections

One special case of Corollary |§| is when X is an irreducible curve of the solution set V(f) of a
polynomial system f := {f1,..., fnv_1} defined on CV which has multiplicity one. Let 7 : X — C
be a linear projection. A critical point of m with respect to X is a point z € X such that either

e 1 is a smooth point and dm is zero on the tangent space of X at z; or
e z is a singular point of X.

In [7], which includes an implementation of the curve decomposition algorithm of [16], we need to
compute the finite set of critical points of 7 that are isolated points of the subset of X not meeting
other components of V(f). In fact, the approach only needs to a finite superset of such points. The
extra points that are not critical points simply make the cellular decomposition of [7] finer, which
can be merged away in a post-processing step. Thus, we need to find a superset of the isolated
points of the solution set of € X not meeting other components of V(f) and such that

dm

d
ek | T enon 2)

dfn-1



Table 1: Decomposition of 12-bar spherical linkage.

dimension | degree | # components

3 8 2
4 2

8 14

12 12
2 16 1
20 4
24 1
4 6
L 6 2

It suffices to find at least one point in each connected component of the solution set of

f
o

dm =0
df1

dfnN-1

where ¢ € PV~1. The advantage here is that we obtain a finite superset of the critical points using
one homotopy regardless of the possibly different dimension of the corresponding null spaces, i.e.,
there is no need to cascade down the possible null space dimensions.

The setup above naturally extends to computing witness point supersets for the critical set of
dimension k£ — 1 of an irreducible component of dimension k, e.g., critical curves of a surface.

4 Example

Consider the 12-bar spherical linkage from [25, 26]. (The device can be viewed as 20 rigid rods
meeting in spherical joints at 9 points, or since a loop of three such rods forms a rigid triangle,
as 12 rigid links meeting in rotational hinges with the axes of rotation all intersecting at a central
point. The arrangement is most clearly seen in Figure [2(c).) The irreducible components of the
variety for the mechanism, which is contained in C!®, are summarized in Table [1] which was first
computed in [9]. Take X C C'¥ x P'7 to be the union of the eight one-dimensional irreducible
components, which has degree 36, crossed with P'7. We will use our new approach with Bertini
v1.4 [4] to compute a superset of the real critical points of the real projection defined in .

The 18 variables for the polynomial system F defining the 12-bar spherical linkages under
consideration are Py1, P12, P13, ..., Ps1, Ps2, Pes with P; = (P;1, P2, P;3) corresponding to the lo-
cation of the i*" point. The ground link is fixed by taking Py = (0,0,0), P; = (-1,1,—1), and



Py = (—1,—1,—-1). With this setup, F' = {G;;, H;} which consists of 17 polynomials:

Gij =P~ P —4
(4,7) € {(1,2),(3,4),(5,6),(1,5),(2,6),(3,7), (4,8),(1,3),(2,4),(5,7),(6,8) };
H,=|P* -3, ke{l1,2,3,4,56)}.

To compute a superset of the real critical points with respect to the real projection

3 13 5 26 1 1 3 7 3
n(P) = 5P11 + ﬁpm — EPIB + 2*71321 - EP22 + 6P23 + 5P31 + T7P32 + EP33+

1 4 1 18 14 12 17 5 13
“Py— -Pp+ -Pis+ —Py1 + —Psg — —Psg — —Pg; — —Pgy + —P, 3
TR 542+343+25 51+29 52 = 13493 T 35761 T 7 62+20 63) (3)

we consider the following system defined on X c C!® x P!7:

F(P)

A | P R:

Since the irreducible curves of V(F') have multiplicity one, we know that the irreducible components
of V(f) N X must be of the form {z} x L for some point x € V(f) and linear space L C P17, In
this particular case, we only aim to compute all such points x. However, before using the new
approach, we consider some other options for this computation. These other approaches do yield
additional information, namely witness point supersets for the irreducible components. One option
is to consider each possible dimension of P'7 independently. Since the zero-dimensional case is
equivalent in terms of the setup and number of paths to the new approach discussed below, we will
just quickly summarize without performing the full computation. For each 0 <4 < 16, starting with
a witness set for X, the corresponding start system, after possible randomization, would require
tracking 36 - (17 — 1), totaling 5508, paths related to moving linear slices and the same number of
paths to compute witness point supersets.

Rather than treat each dimension independently, another option is to cascade down through the
dimensions, e.g., using the regenerative extension [13]. The implementation in Bertini, starting
with a witness set for X, requires tracking 6276 paths for solving as well as tracking 3216 paths
related to moving linear slices. Using 64, 2.3 GHz processors, this computation took 618 seconds.

Instead of using a method designed for computing witness point supersets, our new approach
uses one homotopy to compute a point on each connected component. This is all that is needed
for the current application via Corollary [6] Since dr is constant and dF(P) is a matrix with linear
entries, we take our start system to be

F(P)
€o
gP&) = | L(P)-&

_f17(P') &7

which we restrict to X where each ¢; is a random linear polynomial. In particular, V(g)NX consists
of d =36-17 = 612 points, each of which is nonsingular with respect to g. Starting with a witness
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Figure 2: Solutions to the 12 bar spherical linkage obtained from the critical point computation:
(a) an equilateral spherical four-bar configuration, corresponding to a nonsingular critical point on
a degree four irreducible component; (b) a degenerate configuration, coming from the intersection
of such a component with a higher-dimensional irreducible component; (c) a rigid configuration
arising from the intersection of the irreducible curves of degree six.

set for the X, we can compute V(g) N X by tracking 612 paths related to moving linear slices.
Then, we can compute a point on each connected component of V(f) N X by tracking 612 paths.
This computation in total, using the same parallel setup as above, took 20 seconds.

Of the 612 paths, 120 converge to finite endpoints, while the rest diverge to infinity. Of the 120
finite endpoints of the form (P, ¢), 78 are real (i.e., have P € R'®), but there are only 22 distinct real
points. This is because some points appear with multiplicity, while others have a null space with
dimension greater than one so that the same P can appear with several different null directions, &.
In detail, the breakdown of the 22 real points is as follows:

e 14 real points are the endpoint of one path each. These points had rank dF = 17, so they
are smooth points on X. These are each on one of the degree 4 irreducible components of X,
and each is an equilateral spherical four-bar of the type illustrated in Figure (a).

e 2 real points are the endpoint of 2 paths each. In both cases, the two endpoints having the
d
same P are identical, as must be because although rank dF' = 16, they have rank [ d; ] =17,

so the null vector is unique in projective space. These points correspond to a rigid arrangement
as shown in Figure (c), one the mirror image of the other.

e 6 real points are the endpoint of 10 paths each. These points had rankdF = 12 with

d . . .
rank [ d;’ = 13. These points occur where some one of the irreducible components of
degree 4 intersects another irreducible component. At these points, the 12-bar appears as in
Figure [2|(b).

To clarify the accounting, note that 14-1+2-246-10 = 78.

10
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Conclusion

We have constructed a new approach for constructing one homotopy that yields a finite superset
of solutions to a polynomial system containing at least one point on each connected component of
the solution set. This idea naturally leads to homotopies for solving elimination problems, such as
computing critical points of projections as well as other rank-constraint problems. This method
allows one to compute such points directly without having to cascade through all the possible
dimensions of the auxiliary variables. This can provide considerable computational savings, as we
have demonstrated on an example arising in kinematics, where the endpoints of a single homotopy
include all the critical points on a curve even though the associated null-spaces at these points have
various dimensions.
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