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Complete Solution of the Nine-
Point Path Synthesis Problem for 
Four-Bar Linkages 
The problem of finding all four-bar linkages whose coupler curve passes through 
nine prescribed points has been a longstanding unsolved problem in kinematics. 
Using a combination of classical elimination, multihomogeneous variables, and 
numerical polynomial continuation, we show that there are generically 1442 non-
degenerate solutions along with their Roberts cognates, for a total of 4326 distinct 
solutions. Moreover, a computer algorithm that computes all solutions for any given 
nine points has been developed. 

Introduction 
The approximate synthesis of a given path by use of four-

bar linkages has been studied extensively. Formulations in 
terms of four or five precision points along with specifications 
on crank angles or the position of the hinges of the mechanism 
have been solved (Freudenstein and Sandor, 1959; Shigley and 
Uicker, 1980; Erdman and Sandor, 1984; Morgan and Wamp­
ler, 1989; Subbian and Flugrad, 1989). However, the problem 
of finding four-bar linkages whose coupler curve passes through 
nine precision points, which was formulated as early as 1923 
(Alt), has until now defied complete solution. Since nine gen­
eral precision points is the largest number that can be pre­
scribed, this formulation gives a designer maximum control 
over the shape of the coupler curve. 

The first serious attempt to solve the nine-point problem 
appears to have been conducted by Roth and Freudenstein 
(1963), as a special case of their treatment of geared five-bar 
mechanisms. They employed a type of numerical continuation, 
which they called the "bootstrap procedure," to find some 
solutions. More recently Tsai and Lu (1989) applied a new 
continuation method, called the "cheater's homotopy," to 
increase the reliability of the procedure, but they also did not 
attempt to find all solutions. Since the problem has many 
solutions, most of which are either degenerate or have branch 
or order defects, it is often difficult to find an acceptable 
solution by trial-and-error procedures. Only by finding all 
nondegenerate solutions can one be sure to find the best mech­
anism or, in some cases, verify that no acceptable solution 
exists. 

We solve the problem using a combination of analytical and 
numerical tools. First, we reformulate the problem to analyt­
ically reduce the polynomial system of equations that describe 
the problem. We then use numerical polynomial continuation 
in multihomogeneous variables (Morgan and Sommese, 1987) 
to solve a problem with randomly generated precision points, 
thereby determining the generic structure of the solution set 
for these problems. In addition to 1442 sets of Robert's cognate 
triples, the solution set includes several higher-dimensional sets 
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of degenerate solutions. By the theory of "parameter poly­
nomial continuation" (Morgan and Sommese, 1989), we may 
ignore all the degenerate solutions and use only the nonde­
generate ones as start points in subsequent continuations to 
find all nondegenerate solutions to any other problem of the 
class. Thus, we have not only established the generic number 
of nondegenerate solutions to the problem, but also have de­
veloped an efficient computer algorithm for finding them. 

In any particular example, not all of the 1442x3 = 4326 
solutions are useful. Most give linkages with complex link 
lengths, whereas others give real linkages that exhibit branch 
or order defects, or that have poor transmission angles, etc. 
We discuss these issues in the context of several test problems. 

The papers (Wampler, Morgan and Sommese, 1990; Wamp­
ler and Morgan, 1990) contain tutorial material on the math­
ematical techniques we have used. In particular, the reader 
may wish to consult these papers for discussions of the multi-
homogeneous Bezout number and the method of numerical 
reduction (via parameter continuation; also referred to as "the 
method of the generic case"). 

Problem Formulation and Reduction 
The most concise formulation of the problem is obtained 

by representing the links as vectors in the complex plane. Our 
derivation follows that of Roth and Freudenstein (1963), but 
with a change of variables that allows for subsequent reduction. 
Referring to Fig. 1, let P0 be the first precision point, at which 
the four-bar is given by quadrilateral ABCD with coupler tri­
angle CP0D. Summing the vectors around the left-hand loop 
gives 

u=x-a. (1) 

Figure 2 shows the four-bar after a displacement of 5, to pre­
cision point Pj, with corresponding angular displacements 0,-, 
\j, fij of the coupler triangle, link AD and link BC, respectively. 
Now, the vector loop equation becomes 

ue'y=xe"'j+8i-a. (2) 
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Fig. 1 Four-bar ABCD with coupler triangle CP0D at the initial precision 
point P0 

Substituting equation (1) and performing the same derivations 
for the right-hand side of the mechanism, we obtain 

(x-a)eiXJ = xeieJ + SJ-a (3) 

(y-b)ei"J=yeieJ + SJ-b (4) 

Multiplying each side of these equations by its complex con­
jugate and letting 

yj = eieJ-l, (5) 

we get 

(a* -6/)xyj+ia-bj)x*yf + bj(a*-x*) 

+ 8f(a-x)-8j8f=0 (6) 

(b* - 6/ )yyJ+ (b- 8j)y*y? + 8j(b* -y*) 

+ 6f(b-y)-6j&f = 0 (7) 

where the asterisk indicates complex conjugation. From equa­
tion (5), we also have the identity 

yjy! + yj+y}=o. (8) 
Since conjugation is not algebraic, some modification of the 

proceding equations is necessary to make them polynomial, 
which is a prerequisite to finding all solutions. The usual ap­
proach is to explicitly write each variable in terms of its real 
and imaginary parts, for example, we may replace x with 
X\ + ix2, and so on. Of course, x* is then replaced by x\ - ix2. 
If we then treat x{ and x2 as complex variables and solve the 
polynomial system, only those solutions for which X\ and x2 

are both real have physical meaning. Note that X\ + ix2 and 
X\ - ix2 are complex conjugates of each other if, and only if, 
X\ and x2 are real. A simpler treatment is to retain x as a 
complex variable and replace x* by an independent complex 
variable, say x, and so on. Now, the condition for a solution 
to have physical meaning is that x* =x, etc. 

Although Roth and Freudenstein used the real and imaginary 
parts of x, a, y, b as variables, a set of synthesis equations 
essentially the same as theirs is obtained as follows. For each 
precision point Pj, j= 1 8, treat equations (6, 7) as a pair 
of linear equations in yj and y*, solve these using Cramer's 
rule, and substitute into equation (8). This gives eight equations 
in eight unknowns. Solutions to this set of equations corre­
spond to four-bar linkages whose coupler curve passes through 
the nine precision points Pj, j = 0,. . . ,8. Each of the eight equa­
tions is a seventh degree polynomial, yielding a total degree 
for the system of 78 = 5,764,801. 

Reduction. We reduce the polynomial system by intro­
ducing some new variables and using multihomogeneous co­
ordinates. As discussed above, we first replace x*, a*, y*, b*, 

Fig. 2 Displacement of the four-bar to a new precision point P} 

y* with x, a, y, b, yj, respectively, in equations (6, 7, 8) to 
make them polynomial. Moreover, we can reduce the degrees 
of the equations by introducing the new variables n, n, m, 
m defined as follows 

n = ax, n = ax, m = by, rfi = By. (9) 

Finally, we eliminate some solutions at infinity by partitioning 
the variables into 10 groups: 

[x, x, a, a, n, n], [y,y, b, b, m, m\, [yj, yj},j = 1.....8 

and introducing homogeneous coordinates for each group, 
respectively, as x°, y°, yj, y= 1 8. With all of these modi­
fications, we may rewrite equations (6-9) as 

nx°-ax, nx° = dx, my° = by, my° = Sy (10) 

(n-SjX)yj+ (n-bjX)yj+ [bj(a-x) 

+ bj{a -x)- bjbjX0]yj = 0 (11) 

(m - Sjy)yj+ (m - bjy)yj+ [bj(6-y) 

+ 8j(b-y)-bjSJy°]y° = 0 (12) 

y/Yj + Yy7° + yjyj = 0 (13) 

Equations (10-13) are a set of 28 equations in 28 unknowns. 
To reduce the number of variables, we solve equations (11, 

12) using Cramer's rule to obtain for j= 1,...,8 

yr-

yj= 

n~SjX bj(d-x)+Sj(a-x)-8j§jX 

m - bjy bj(b-y) +bj(b-y)- bjbjy0 

bj(d^x)+bj(a-x)- bjbjX0 n - SjX 

bj(b-y)+Sj{b-y)-bjbjy0 m-bjy 

yj= 
n-SjX n — bjX 

rh - bjy m - bjy 

(14) 

(15) 

(16) 

Substituting these expressions into equation (13) and retaining 
equations (10), we have a system of 12 equations in 12 un­
knowns. 

The system consists of 4 quadrics and 8 quartics for a total 
degree of 2448= 1,048,576. However, the 2-homogeneous Be-
zout number is only 286,720. This number is the result of a 
certain combinatorial calculation that can be mechanized as 
follows. First construct Table 1, listing the degree of each 

• equation with respect to each of the two groups of variables, 
arbitrarily named the a-group and the /3-group. Then, form a 
single term for each equation, being the sum of the degrees 
times either a or /3, as appropriate, and multiply all these terms 
together to get the polynomial (2a)2(2/3)2(2a + 2/3)8. Now, since 
there are 6 variables in each group, we want the coefficient of 
a6/?6 in this polynomial, which turns out to be 2128!/(4!4!) = 
286,720. (The ratcoef command in Macsyma and similar com­
mands in other symbolic manipulation programs can perform 
this calculation.) Thus, from the original figure of 7s, our re-
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Table 1 Degree table for 2-homogeneous Bezout count 

Equation 

nx° = ax 
nz° — ax 
my° = by 
my" = by 
.Eq. (13) 

j = l , . . . , 8 

a-group 
{x, xyatayn^h\ 

2 
2 
0 

0 

2 

/J-group 
{y,y,6,6, m,m} 

0 
0 
2 

2 

2 

Terni 

2a 
2a 

2/3 

20 
(2a + 2/3)8 

duction has cut the number of possible solutions by a factor 
of slightly more than 20. 

We remark as an aside that the 10-homogeneous Bezout 
number for equations (10-13) is also 286,720, but we prefer 
the formulation with a fewer number of variables. 

Roberts Cognates. A well-known result due to Roberts 
(1875) is that every four-bar linkage has two four-bar cognates; 
that is, there are two other four-bar linkages that produce the 
same coupler curve. Clearly, if a four-bar linkage solves our 
nine-point problem, then so will both of its cognates. Referring 
to equations (3, 4), suppose that a linkage and its angular 
displacement are given by z = (x, a, y, b, dj, X,-, nj) for a dis­
placement of the coupler point of <5/. Then, the corresponding 
position of one of its cognates is given by the formula 

r(x, a, y, b, dj, X,-, ^ ) 

/(x-a)y bx-ay ^ \ ,„„, 
= {- - , *-,a-x,a,\jHj,6j). 17 

y x-y x-y ) 
This may be confirmed by noting that if we rewrite equations 
(3, 4) a s / ( z ) = 0 and g(z)=0, respectively, then f(r(z)) 
= (xg(z)-yf(z))/(x-y) and g(r(z))=f(z), so that if z 
satisfies the equations then so does r(z) . The fact that cognates 
come in triples can be confirmed by showing that 
r(r(r(z)))=z. 

In our polynomial formulation of the problem, the angles 
have been eliminated and variables (x, a, y, b) have been in­
troduced. To compute a cognate of a solution in these vari­
ables, we drop the angular entries from the formula of equation 
(17) and apply it to both (x, a, y, b) and (x, a, y, B) inde­
pendently. The corresponding values of n, n, m, m are then 
calculated from their definitions in equation (9). For brevity, 
we do not write out the complete formula, but simply refer to 
it hereafter as R{z). 

Symmetry. In addition to the cognate groups, our equa­
tions contain a two-fold symmetry. If we simply exchange the 
variables in the two homogeneous groups, that is, if we replace 
z by S(z) where 

S{x, x, a, a, n, n, x°, y, y, b, 6, m, m, y°) 

= (y> y> b, 6, m, m, y°, x, x, a, a, n, n, x°), (18) 

the new point also satisfies the equations. This operation simply 
exchanges the rows in each determinant in equations (14-16), 
thereby changing the sign of each of yjt yj, yj, which leaves 
equation (13) unchanged. The physical interpretation of this 
symmetry is that we may exchange the labels on the left and 
right sides of the four-bar linkages, thereby exchanging the 
values of x with y, etc., while the linkage itself remains the 
same. 

For a general point z, the Roberts cognate formula and the 
symmetry formula give a group of six points as follows: z, 
R(z),R(R(z)),S(z),S(R(z)),S{R(R(z))).Becauseofthe 
identity R(S(z)) =S(R(R(z))), the group is closed. 

Degenerate Solutions. Our set of equations admits several 
types of degenerate solutions. One of these occurs when 
z = S(z), that is x=y, a=b, etc. In that case, the mechanism 
degenerates into a two-degree-of-freedom linkage that can reach 
any point inside an annulus centered on the fixed pivots, which 
are coincident. Another degenerate case occurs when x=y = 

h=m = Q, which makes yj = 7°= 0. This case is purely a math­
ematical figment, since the coupler triangle becomes a point 
and the linkage does not move. In either case, we are not 
interested in such linkages. 

In fact, there are several other sets of degenerate solutions, 
but they all obey one of the following conditions: 

x = 0 o r 7 = 0 o r f = 0 or y = 0, (19) 

x=y or x=y. (20) 

Again, we are not interested in linkages satisfying these con­
ditions. 

If we try to solve the problem by applying Newton's method 
from an initial guess, there is a high likelihood that it will 
converge to one of these degenerate cases. This is one of the 
motivations for developing a more sophisticated numerical 
approach. 

Precision Points. It is known (Roth and Freudenstein, 1963; 
Primrose and Freudenstein, 1963) that a four-bar coupler curve 
can intersect a circle or a line at most 6 times. Therefore, of 
the nine precision points, no more than 6 can lie on a circle 
or line. This conclusion can easily be derived from our for­
mulation. After substituting from equations (14-16) into (13), 
we note that for a given four-bar linkage, equation (13) can 
be viewed as a polynomial equation in dj, 5,-. We then ask how 
many solutions this equation shares with an arbitrary circle in 
the plane, which has the form 

/MySy-H 026,- +1838,+04 = 0. (21) 

Treating equations (13, 21) as 2-homogeneous, we note that 
equation (13) is bi-cubic and equation (21) is bilinear, so that 
the Bezout number is the coefficient of era in the polynomial 
(3a + 3a)(a + a), which is 6. For a line, we have the special 
case 0i = 0 and the argument still holds. 

Summary. Using only analytical means, we have shown 
that the nine-point problem has at most 286,720 isolated 
solutions and, because of the two-fold S symmetry, these 
represent at most 143,360 distinct mechanisms. Moreover, 
these mechanisms must appear in groups of three according to 
Roberts theorem. The fact that 143,360 is not a multiple of 3 
is not a problem because this Bezout calculation includes many 
degenerate solutions and for most of these the Roberts cognates 
are not well-defined. Finally, while we can solve the problem 
for nine generally placed precision points, no more than six 
of the points can lie on a circle or a line. 

Numerical Reduction by Continuation 

If the nine-point problem actually had 143,360 solutions, 
it would seem impractical to compute all the solutions as a 
matter of routine in real design problems. However, it turns 
out that the vast majority of this Bezout number is due to the 
degenerate solution sets, which can be eliminated numerically. 
The method of reduction requires a one-time computation of 
the full set of 143,360 solutions for a generic set of precision 
points. These solutions are then sorted as to whether or not 
they satisfy the side conditions, equations (19, 20), defining 
degeneracy. Only the nondegenerate solutions can lead to non-
degenerate solutions for other sets of precision points, so the 
number of these solutions determines the cost of solving sub­
sequent problems. Thus, we can reduce the problem to man­
ageable proportions by a single, albeit expensive, numerical 
computation. This approach is justified by the theory of pa­
rameter continuation (Morgan and Sommese, 1989) and is 
developed in the context of a robotics problem in Wampler 
and Morgan (1990). 

We proceed as follows. L e t / ( p , z) = 0 represent our poly­
nomial formulation of the nine-point problem, equations (10, 
13), where z is the set of 12 variables and/? is the set of path 
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increments, 8j, Sjj= 1,...,8. First, we construct a polynomial 
system g(z) that has the same 2-homogeneous degree structure 
as f(p, z), such that g(z) = 0 has a full set of 286,720 non-
singular solutions. Then, to solve the problem for a particular 
set of precision points p0, form the homotopy 

h(p0, z, t) = ttl-t)g(z) + tf(Po, z), (22) 

where f is arandom, complex number. To satisfy the "generic" 
requirement of the reduction procedure, we choose p0 to be 
random, complex numbers. Note than any point za satisfying 
S(zo) = 0 also satisfies h (p0, z0, 0) = 0. Starting from each such 
point, we numerically track the solution to h (p0, z, t) = 0 from 
/ = 0 to t=\. 

The upshot of this is that every nonsingular nondegenerate 
solution of f(pa, z)=0 will be the endpoint of one of these 
continuation paths. Only these solutions, which we expect to 
be a relatively small proportion of the whole, will be used as 
start points in a parameter continuation to solve any subse­
quent problem, s a y / ( p i , z ) = 0 , as discussed further below. 
This is why we refer to the initial calculation as a numerical 
reduction. 

Start System. To carry out the numerical reduction, we 
need a two-homogeneous start system g (z) with all nonsingular 
solutions. Furthermore, we need to be able to compute all of 
its solutions inexpensively. In addition, we can save half of 
the computation time by incorporating the two-fold S sym­
metry. A start system that meets all of these requirements is 
the following: 

/ 2 2 - l = 0 , « 2 - l = 0 , w 2 - l = 0 , m 2 - l = 0 (23) 

lj (x, x, a, a)lj(x, X, a, a) lj (y, y, b, S)lj(y, y, b, b)=0, 

j=l 8 (24) 

where /,• and lj are linear expressions whose coefficients have 
been chosen general enough to yield all nonsingular solutions. 

The full set of solutions to equations (23, 24) is found as 
follows. First, equations (23) have 24 solutions given by n = ± 1, 
etc. Then, partition equations (24) into two groups of four, 
which can be done in 8!/(4!4!) = 70 ways. For each equation 
in the first group, set either lj(x, x, a,d)=0 or lj (x, x, 
a, a ) = 0 and solve the resulting linear system. Do the same 
for the second group, but in terms of (y, y, b, b). Since for 
each partitioning of the equations, there are a total of 28 in­
dependent choices of /,• versus l), this entire procedure yields 
24-28-70 = 286,720 solutions. 

Due to the symmetries in g(z) and f(p, z), it is easy to see 
that if h(p, z, 0 = 0 then h(p, S(z), t)=0, so that our con­
tinuation paths appear in symmetric pairs. Thus, we can cut 
the computational cost in half by tracking only one of each 
pair. 

Path Tracking. Each path of equation (22) is tracked nu­
merically using the method described in Morgan (1987). This 
is a predictor-corrector path tracker which predicts along the 
tangent to the continuation path (the length of the prediction 
being variable and adaptive) and then corrects back to the path 
using Newton's method. The continuation parameter tis forced 
to be strictly increasing, as justified by the theory of polynomial 
continuation, and / is held fixed during correction. For more 
details, see the description of the program CONSOL8 in Mor­
gan (1987). Also, since some of the paths go to solutions at 
infinity, we use the projective transformation technique (Mor­
gan, 1986). All of the calculations were done in double pre­
cision complex FORTRAN. 

The main possibility for failure in polynomial continuation 
is to take too large a prediction step, resulting in a large enough 
prediction error that the corrector may converge to one of the 
other paths. Our path tracker attempts to prevent such path-
crossings without sacrificing too much efficiency by adjusting 

the prediction step to keep the correction steps sufficiently 
small. 

Results. We chose random, complex path increments p0 

with magnitudes around unity (for good scaling). After com­
puting all 143,360 path endpoints of the continuation, we then 
eliminated the degenerate solutions. Ideally, such a solution 
should exactly satisfy one of the degeneracy conditions in equa­
tions (19, 20), but the numerically computed endpoints are 
never exact. This is especially true of singular endpoints, which 
are often difficult to compute accurately. Thus, the sifting 
process must be handled carefully. 

The first step was to recompute in extended precision any 
path with a suspicious endpoint. Since singular endpoints are 
often also degenerate, any endpoint simultaneously having a 
high condition number (>106) without satisfying one of the 
degeneracy conditions to within 10~3 fell into this category. 
So did any endpoint for which 11/(p0, z)l l>10"6 . In total, 
about 1 percent of paths required this treatment. 

Next, we estimated the accuracy of each solution by com­
puting a correction to it using Newton's method. If the Newton 
correction is small, the solution is accurately computed. Typ­
ically, all nonsingular solutions quadratically converge to small 
final Newton corrections. Among all the accurate endpoints 
(final Newton correction smaller than 10"10), we eliminated 
those that were both degenerate and singular (degenerate to 
< 10~5 and condition number > 1012). This left 4327 endpoints. 
These appeared to be both nondegenerate and nonsingular. 

To check that there were not any meaningful solutions hiding 
among the inaccurate endpoints, those with condition numbers 
< 108 or with all degeneracy conditions >10~3 were refined 
in extended precision. All of these then became clearly degen­
erate and singular. Further testing using variations on these 
criteria convinced us that the list of 4327 endpoints was com­
plete. 

Now, nonsingular solutions should be distinct and the 
Roberts cognates of every nondegenerate solution should be 
present. Checking for distinctness, we found that 2 of the 
solutions appeared twice. The corresponding paths were re­
computed with a tighter path-tracking tolerance, and one of 
each pair then went to a degenerate endpoint, as expected. 
This left 4325 distinct solutions (no two agreed to more than 
2 digits). Checking for Roberts cognates and declaring a match 
between two solutions Z\ and zi if, for example, Zi = R(z{) to 
at least 8 digits, we found that the 4325 solutions divided into 
1441 groups of cognate triples plus one cognate pair. Ob­
viously, the third cognate of the lonely pair was missed due 
to a path-crossing, but since the missing solution can be re­
constructed by applying the cognate formulaR(z) to the pair, 
we have a complete list of 1442 cognate triples. While some 
path-crossing has taken place, the occurrence of only one in­
complete pair and the absence of incomplete singles in the 
cognate check indicates that its incidence rate is very low. 
Therefore, it seems unlikely that all three points of a cognate 
triple were missed. In conclusion, we feel confident that the 
problem has 4326 nondegenerate solutions appearing in 1442 
cognate triples. Furthermore, all nondegenerate solutions are 
also nonsingular. We will present further evidence below that 
this is the complete solution. 

The entire computational cost of the numerical reduction 
was 331.9 hours of CPU time on an IBM 3081. (The IBM 3081 
is about 1/3 as fast as an IBM 3090.) Fortunately, that is a 
one-time only expense, and subsequent solutions of the prob­
lem cost only a small fraction as much. 

Parameter Continuation 
The theory of parameter polynomial continuation (Morgan 

and Sommese, 1989; Wampler, Morgan, and Sommese, 1990) 
implies that we can find every nonsingular nondegenerate so­
lution for any nine-point problem, say/CPi, z) = 0, by starting 
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Table 2 Precision points for the example problems 

;' 
0 
l 
2 
3 
4 
5 
6 
7 
8 

Problem 1 

0.8961867 
1.2156535 
1.5151435 
1.6754775 
1.7138690 
1.7215236 
1.6642029 
1.4984171 
1.3011834 

-0.09802917 
-1.18749100 
-0.85449808 
-0.48768058 
-0.30099232 
0.03269953 
0.33241088 
0.74435576 
0.92153806 

Probl 

0.00 
0.30 
0.70 
0.82 
0.90 
0.90 
0.60 
0.10 
0.00 

:m 2 

0.0 
-0.1 
0.0 
0.2 
0.4 
0.7 
0.7 
0.5 
0.3 

Piob 

0.25 
0.52 
0.80 
1.20 
1.40 
1.10 
0.70 
0.20 
0.02 

em 3 

0.00 
0.10 
0.70 
1.00 
1.30 
1.48 
1.40 
1.00 
0.40 

Problem 4 

1.000 
0.875 
0.750 
0.625 
0.500 
0.375 
0.250 
0.125 
0.000 

0.00000000 
0.96824583 
1.32287565 
1.56124949 
1.73205080 
1.85404962 
1.93649167 
1.98431348 
2.00000000 

Table 3 Program statistics for the example problems 

Problem 
Number 

1 
2 
3 
4 

CPU (min.) 
IBM 3090 

123 
74 
69 

321 

CPU (min.) 
Transputer* 

46 
28 
25 

181 

Function 
Evaluations 

2.8 x 106 

1.8 X 106 

1.7 x 106 

9.5 x 106 

No. Real 
Mechanisms 

21 
45 
64 

120 

*T800, 48-nodes 

at the nonsingular nondegenerate solutions of f(p0, z)=0 (p0 
random, complex) and following the continuation paths of 

f((l-t)p0 + tpuz)=0 (25) 
from / = 0 to t= 1. Since, as discussed in the previous section, 
every nondegenerate solution off(p0, z) = 0 turned out to also 
be nonsingular, we will by this method find every nonde­
generate solution for any set of generally placed precision 
points. For some special cases, such as Problem 4 below, we 
will have nondegenerate solutions that lie on positive-dimen­
sional solution sets. The method will then find sample solutions 
in such sets. 

By the Roberts cognate and symmetry relations, iff(p, z)=0 
then f(p, R(z))=0 and f(p, S(z))=0, that is, the solution 
paths of equation (25) will appear in groups of 6 according to 
the cognate and symmetry relations. Therefore, by tracking 
one of each of the 1442 cognate triples, we will find all the 
solutions of our target problem. By applying the cognate and 
symmetry formulas, these 1442 representative solutions yield 
4326 distinct mechanisms and 8652 actual solutions. (Recall 
that z and S(z) give the same mechanism.) 

Our parameter continuation program used the same path 
tracking method as described above. Typically, about 1 percent 
to 5 percent of the paths presents some numerical difficulty 
(depending, for example, on the singularity of the endpoint 
set) in which case the program automatically tries one of the 
path's cognates. This strategy has proven to be very effective. 

Real Problems. Given nine precision points, we compute 
the 8 path increment vectors 5y and let §,- = &*. Among the 
solutions we compute, only those with x=x* a = a* etc., are 
physically meaningful. (This is analogous to choosing only the 
real solutions in more typical formulations where the coeffi­
cients of the polynomial system are real.) Furthermore, by 
taking the complex conjugate of equations (10-13), one may 
verify that if S,- = 6/ then paired with any solution (x, x, 
a, &,...) is another solution (x* x* a*, a*,...), which we call its 
conjugate. Note that physical solutions are self-conjugate in 
this sense, while all other solutions must appear in conjugate 
pairs. 

We note that our original problem p0 was nonphysical in 
that Sj^&f. Accordingly, its solutions do not appear in con­
jugate pairs nor do the continuation paths of equation (25), 
but for a physical problem px the conjugate of each path 
endpoint should appear. Just as the number of physical (i.e., 
self-conjugate) solutions changes from problem to problem, 
the pairing between the nonphysical solutions also changes. 

For physical problems, our program checks for the presence 
of the conjugate of each solution in the fully expanded list of 
8652 solutions. After solving several such problems, we have 

Fig. 3 A new solution to Roth and Freudenstein's problem. (See the 
discussion of Problem 1.) 

Fig. 4 A solution to Problem 2. All solutions had branch or order errors. 

yet to discover a missing conjugate. Since the pairings change 
from problem to problem, this is further strong evidence that 
we have the complete nondegenerate solution list for problem 
Po-

Examples. The precision points for four example problems 
are listed in Table 2. The results of our program are sum­
marized in Table 3, which lists the number of physical cognate 
triples found for each problem, the CPU times for two ma­
chines, and the number of function evaluations. This last figure 
is equal to the total number of prediction and correction steps 
used in tracking all 1442 paths. The two CPU times are for 
an IBM 3090 (mainframe) and a 48-node Transputer network 
(desktop). Because each path is tracked independently, the 
multiple nodes of the Transputer network operate very effi­
ciently in parallel to exceed the speed of the mainframe. 

Our Problem 1 is Example 2 from Roth and Freudenstein 
(1963). The same problem was studied by Tsai and Lu (1989). 
Each of these papers presented one linkage for this problem. 
Our complete solution yielded 21 physical cognate triples (i.e., 
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Fig. 5 This mechanism and its cognates are the only viable solutions 
to Problem 3. 

Fig. 6 One of many viable solutions to Problem 4. The long link ex­
tending off the page is about 5.5 times longer than the crank. 

63 mechanisms), although most of them have branch or order 
errors. The problem is difficult because eight of the nine pre­
cision points lie near a circle. This means that it is nearly 
degenerate, so it is not surprising that this problem took a 
greater amount of CPU time: 46 min. As expected, the two 
previously published solutions were found, along with several 
others, such as the one shown in Fig. 3, that pass through the 
precision points in the proper order. However, assuming the 
intention is a coupler curve with a smooth arc through Px,... ,P8 
and a simple return through P0, none of the mechanisms would 
be acceptable. If this problem was part of an actual design, 
some reconsideration of the placement of the precision points 
would be in order. 

Problem 2 has points in an oval shape. It took 28 min and 
yielded 45 physical cognate triples. In this case, every coupler 
curve had either a branch or order defect. Figure 4 shows one 
solution with a branch defect. Having found all solutions, we 
know that an adjustment of the precision points is necessary. 
Otherwise, if we were using trial-and-error, we might attempt 
many trials before giving up, without knowing even then 
whether the problem was feasible. 

Problem 3 has three points on one circle and four on another 
so that by the addition of a suitably located dyad connected 
to the coupler point one would have a double-dwell six-bar 
linkage. This problem required 25 min and gave 64 physical 
cognate triples. Only the mechanism shown in Fig. 5 (and its 
cognates) give a simple curve through the points. 

Problem 4 has 9 points on the ellipse x?+y2/4= 1 taken at 
evenly spaced values of xin the first quadrant. Unlike the other 
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three problems, this one generated singular path endpoints, 
which accounts for the large CPU time: 181 min. Among the 
singular endpoints were various Cardan (elliptic) mechanisms 
of both crank-slider and slider-slider types. Neglecting these, 
we found 120 physical cognate triples, one of which is shown 
in Fig. 6. 

Comparison to Alternative Methods 
We wish to briefly contrast our method to two alternatives 

that have been proposed, both based on continuation. The 
"bootstrap" method (Roth and Freudenstein, 1963) used real 
variables. This had the advantage that it would never yield a 
non-physical complex answer. However, a continuation path 
between two real solutions to the nine point problem can have 
segments that branch into the complex domain, and thus the 
real portions of the path do not connect. Roth and Freudenstein 
proposed two heuristics to circumvent such difficulties: inter­
changing which precision point is used as P0, and redirecting 
the continuation path according to a quality index. Another 
aspect of their method is that they used a fixed step in the 
interpolation parameter /, which makes the procedure prone 
to path-crossing unless the step is very small. In fact, they 
reported obtaining different linkages by changing only the step 
size. Of course, the intent of their effort was only to find some 
linkages, not all of them, and the scope of the work included 
geared five-bars, not just the four-bar equivalent case. In this 
context, the work was very successful. 

Tsai and Lu (1989) studied only the four-bar case, as we 
also have done. Their principal improvement was to work in 
complex space. To solve a nine point problem, they proposed 
first selecting a subset of five points, solving a synthesis with 
prescribed crank angles, and picking four other points on the 
resulting coupler curves. This gave several starting linkages, 
all satisfying five of the desired nine precision points. Then, 
the precision points on the starting coupler curve were given 
a small random, complex perturbation to move the problem 
out of the reals. As justified by the "Cheater's Homotopy" 
(Li, Sauer, and Yorke, 1989), this guaranteed that the contin­
uation path from start to target would be nonsingular and 
would yield a nonsingular final solution. However, the final 
solution could be complex and therefore nonphysical. As in 
the bootstrap method, this method can find several different 
linkages, but because each starting linkage solves a different 
nine-point problem, the approach does not provide an orga­
nized way to find all solutions. Also, in either method, the 
final linkage often bears little resemblance to the initial one, 
and so it may have branch or order errors, bad transmission 
angle, etc. with no recourse except to try another initial guess. 
Tsai and Lu used the multiple solutions to their five-point 
problem, along with their Roberts cognates, to generate new 
initial guesses. 

By finding all solutions, we can pick the one with the most 
desirable characteristics. Any numerical method for finding 
all nondegenerate solutions will have to solve the entire prob­
lem, including many degenerate solutions, at least once. An 
alternative to our parameter continuation approach is the 
closely related Cheater's Homotopy (Li, Sauer, and Yorke, 
1989), which could also be used to find all solutions. However, 
the numerical reduction proposed there is to solve f(p *, 
z) + b * =0, where both the parameters p * and the additional 
constants b* are random, complex. Then, for a subsequent 
problem pu use the homotopy 

f((l-t)p*+tpuz) + (.l-t)b*=0, (26) 

using as start points only the finite solutions from the original 
calculation. This approach eliminates only the solutions at 
infinity and does not eliminate degenerate finite solutions. In 
the case of the nine-point problem, only about one-third of 
the degenerate solutions lie at infinity. Also, the additional 
constants b * destroy the Roberts cognate simplification. Con-
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sequently, the end result of the Cheater's Homotopy would 
be a program that tracked at least 90,000 continuation paths, 
rather than our 1442. 

Summary and Conclusion 
We have established that the nine point path synthesis 

problem for four-bar linkages generically has 4326 distinct 
nondegenerate linkages occurring in 1442 cognate triples, and 
we have developed a computer program to find all of them by 
tracking 1442 continuation paths. This is a reduction by a 
factor of nearly 4000 from the best total degree (78) previously 
reported for the problem. The reduction is accomplished in 
two stages: an analytical reduction based on both classical 
elimination and a 2-homogeneous formulation, and a numer­
ical reduction based on parameter polynomial continuation. 
The numerical reduction step tracked 143,360 solution paths 
and established that only 4326 of the endpoints were nonde­
generate. Numerical checks for Roberts cognates and complex 
conjugates provided strong evidence that the solution list is 
complete. 

Of the 1442 solution triples for a set of physical precision 
points, the number of physically meaningful linkages (i.e., real 
link lengths) varies. In the examples, this number ranged from 
21 to 120 cognate triples. 

While the numerical reduction was quite expensive (332 CPU 
hours, IBM 3081), the problem can now be solved in a man­
ageable time (0.5-3 hours by Transputer, 1-6 CPU hours by 
IBM 3090). Although these times might be reduced for these 
particular problems by fine tuning the code's run parameters, 
we believe it is more representative of the expected behavior 
not to do so. 

The rapid advances in recent years in techniques for poly­
nomial continuation and the fact that mainframe speeds can 
now be exceeded by a desktop computer assembled from com-
merically available parallel technology have brought about a 
great leap in the feasibility and affordability of solving this 
and other similarly difficult mechanism synthesis problems. 
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