
Fig, 2 Example 1, minus-one geared five-bar. The synthesized ilnl<age 
and its generated path (solid lines); the starting linkage and its locus 
(brolcen lines). 

of an ellipse. The resultant coupler curve deviates so much over 
the remaining three quarters, that one hardly can talk about an 
approximation to an ellipse. A better method is to prescribe as 
many intersections as possible with the desired curve in order 
to get a better approximation [4] and then select the solution 
out from the infinite many possible solutions. The result I have 
obtained is an approximation to the desired arbitrary ellipse so 
that it is almost impossible to separate the two curves by the 
eye. Even better approximations than those I have obtained by 
the first try are possible. (The method is not limited to specific 
curves.) 

From my own experience with coupler curves I have found 
what I call the invariance of coupler curves, i.e. by changing the 
dimensions of the links but maintaining certain initial synthesis 
requirements the resultant coupler curves change very little [5] . 
This leads me to think that this phenomenon is causing the 
many multiple solutions found in Wampler et al. 

Certainly there is not always a solution when the nine points 
are chosen arbitrarily and this was the problem originally stated 
by H. Alt [1]. When the points are separated along the entire 
curve and not too close to each other there seems to be only 
one solution if there is a solution (plus, of course, the Robert's 
cognates and the geared double cranks with a transmission ratio 
o f -h l : l ) . 

The number of precision points can be increased considerably 
when the problem at hand calls for symmetrical coupler curves. 
Using geometrical methods a solution is obtained on a PC in 
no time. I have obtained 12 precision points [3] by a four-bar 
linkage. The number of precision points I have achieved for the 
centric slider-crank is 10 and for the eccentric slider-crank 8 
[5]. Geometrical methods often allow one to see whether there 
is a solution to the problem and within what range, and the 
solutions are found more easily. The writing of equations after 
equations do not allow this kind of a deeper insight into the 
problems. 

Summary 
Obviously the conclusion to what is the general requirement 

to be imposed on the precision points is, that the points must 
lie on a curve the shape of which is characteristic for the coupler 
curves for the desired type of linkage. 
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Authors' Closure 
C. Wampler,^ A. Morgan/ and A. Sommese' We ap­

preciate the interest that Prof. Jensen has taken in our work and 
the opportunity to clarify the contribution made by our paper 
(Wampler et al., 1992). At our request. Prof. Jensen sent copies 
of several of his articles, so we have also gained the chance to 
become more familiar with his ingenious methods. 

While there is an element of truth underlying some of Prof. 
Jensen's comments, there are also some misleading statements 
and some misdirected criticisms. We will attempt to sort these 
out and to address in brief how our methods can be applied to 
several of the problems mentioned in his commentary. 

Prof. Jensen contends that, contrary to the claim of our title, 
our solution is not complete. Lest there be any confusion on 
the point, we do not claim to offer a comprehensive method 
for designing four-bar linkages for path generation. Rather, we 
offer a complete solution to the long-standing nine-point prob­
lem; that is, given nine points in the plane, find all four-bar 
linkages whose coupler curves pass through the points. We 
use the adjective "complete" to distinguish our method from 
previous approaches, which only find a partial list of solutions, 
such as the methods published by Roth and Freudenstein (1963) 
and Tsai and Lu (1990). The situation is analogous to the well-
known Burmester problem of finding all centerpoint-circlepoint 
pairs that guide a body through five given positions in the plane. 
A complete solution to the Burmester problem generates a list 
of four centerpoint-circlepoint pairs, 0, 2, or 4 of which may be 
real. In the nine-point problem, our numerical evidence strongly 
indicates that taken over the complex numbers, a complete solu­
tion list consists of 1442 triples (Roberts cognates), some subset 
of which will be real. In the same manner that solution methods 
for the Burmester problem are useful in designing four-bars for 
body guidance, our solution method for the nine-point problem 
can aid in the design of four-bars for path generation. 

Prof. Jensen's chief criticism of our methodology lies in a 
supposed inadequacy in our example Problem 1, drawn from 
Roth and Freudenstein (1963). He complains that the points 
have not been selected "arbitrarily." We cannot answer Prof. 
Jensen's questions concerning the etiology of this example, but 
we must stress that it has no bearing whatsoever on the validity 
of our numerical experiment. As we stated on page 156, our 
initial solution was computed using random, complex precision 
points. These were generated using a random number generator, 
which is as arbitrary as one could imagine! Roth and Freu-
denstein's problem is merely an example application which, 
being the only previously published solved example, we felt 
obliged to treat. 

Prof. Jensen's contention that a sequence of points in a zigzag 
pattern will lead to no solutions at all is valid, as no four-bar 
coupler curve can cross a line more than six times. By finding 
a complete solution list in which no suitable linkages appear, 
our method will confirm this impossibility and the designer will 
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Fig. 1 A solution to Problem 2 of Wampler et al. (1992). No four-bar coupler 
curve traverses this set of precision points in order on a single circuit. 

know that his precision point specification is unattainable. This 
can happen for points in a more reasonable pattern, and in fact, 
we showed just such an example in our Problem 2. Note that 
the solution list for that problem is not empty, but every linkage 
in the list either traversed the points out of order or else some 
points fell on each circuit of a bicursal (Grashof) coupler curve. 
As shown in Fig. 4 of our paper (reproduced here as Fig. 1), 
there is a solution which passes through 7 of the 9 precision 
points on one circuit, which suggests how the remaining points 
might be adjusted to obtain a feasible linkage. 

Prof. Jensen next turns his attention to the generation of elliptical 
coupler curves. His statement that a precision-point specification 
will not yield a curve having the least possible deviation is correct, 
although the same can be said of his own polode synthesis method. 
A close approximation generated by either approach could be 
refined iteratively using a direct measure of deviation as an optimi-
zafion criterion. No matter what approach is used, a designer must 
expect a trade-off between minimizing deviations and opfimizing 
transmission angles. These comments apply to any path approxi­
mation problem, not just ellipses. 

The criticism that our method has only approximated one 
quarter of an ellipse is unfair: in placing all nine precision points 
in one quadrant in our example Problem 4, we presumed a 
scenario where that portion of the ellipse should be approxi­
mated quite accurately while the return path was relatively free. 
To approximate an entire ellipse, one should of course distribute 
the precision points all the way around. Figures 2 and 3 show 
the best approximations that result from such a specification for 
an ellipse with major axis 90 and minor axis 52, as was consid­
ered in Jensen (1992). The mechanism shown in Fig. 2 is close 
to Jensen's solution, whereas the symmetric four-bar shown in 
Fig. 3 is quite different. For the latter, two precision points fall 
on the second circuit (light line), but the main circuit is still a 
good approximation to the ellipse. Unfortunately, the transmis­
sion angle of this linkage is unacceptable. In addition to Cardan 
(elliptical trammel) mechanisms, our method found 100 other 
real mechanisms, which vary greatly in accuracy of approxima­
tion and transmission angle. The computation took 12 minutes 
of CPU time on an IBM RS6000 workstation. 

Finally, Prof Jensen brings up the interesting issue of sym­
metric coupler curves. This too can be explored using our 
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Fig. 2 A solution to a nine-point problem for generating an ellipse 

method. First, one must determine the number of conditions 
imposed by the symmetry requirement, which reduces the num­
ber of precision points that can be independently specified. If 
the precision points and their mirror images are specified, the 
line of symmetry is determined. As can be seen in Fig. 4, this 
places four conditions on the mechanism, so only five indepen­
dent precision points can be given. While we would prefer to 
call this a five-point problem with symmetry, Jensen (1984) 
prefers to count both the independent precision points and their 
mirror images, in which case one may logically pose a "10-
point" problem. Jensen's claim of 12 precision points is mis­
leading, because he lets the line of symmetry float, so that 
the mirror images of the 6 independent points are not really 
determined until after the design is finished. (His "10-point" 
solution in the same paper suffers the same shortcoming.) 

Consider a nine-point problem composed of five independent 
points along with four mirror-image points. (It does not matter 
which four of the five are mirrored.) Among the 1442 solutions 
to the nine-point problem will be some symmetric linkages, 
which will also generate the fifth mirror point. In fact, any 
nonsingular solution to the symmetrical five-point problem will 
also be a solution to the symmetrically-posed nine-point prob­
lem. We have carried out this computation, using randomly 
selected precision points and their mirror images. After 6.5 
minutes of CPU time, the list of 1442 solution triples was 
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Fig. 3 Another solution for approximating an ellipse 
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{x1,y1) 

Table 1 Precision points for symmetric five-point example problem 

(x2,y2) 

X 

^ 0 

1.00 
0.02 

P^ 
0.17 
0.17 

P2 
0.43 
0.43 

Pz 
0.45 
0.45 

P, 
1.00 

-0.02 

P, 
0.17 

-0.17 

P. 
0.43 

-0.43 

P, 
0.45 

-0.45 

^ 8 

0.19 
0.19 

Table 2 Location of pivot points (see Fig. 5) 

A„ 
A 
B„ 
B 

X 

-0.7850 

0.1124 
-0.8620 

-0.8236 

y 
0.0000 

-0.4316 
-1.2586 

-0.7717 

Symmetry conditions: 

L1=L2, L3=L4 

x1=x2, y1=-y2 

Fig. 4 Conditions for a coupler curve to have a prescribed line of sym­
metry. Two cognates of the illustrated linkage are also possible. 

examined to find that 78 were symmetric. Subsequent symmetri­
cal five-point problems can be solved using just these symmetric 
solutions as startpoints in a 78-path parameter continuation. To 
do so, the points must be consistently numbered such that the 
lone un-mirrored point is last, so that a linear interpolation 
between the start and target point sets always displays the requi­
site symmetry. Such runs typically take less than two minutes 
of CPU time. This method can be applied to any symmetrical 
five-point problem, including the special example considered 
in Jensen (1984), in which two points lie on a common tangent 
line. As given in the table below, we approximated the double 
tangency condition by two pairs of closely spaced points and 
then added a fifth precision point near the line of symmetry to 
control the size of the return loop of the coupler curve. After 
1.8 minutes of CPU time, our method returned 11 real mecha­
nisms, one of which traverses the points in a simple loop and 
resembles Jensen's result, see Fig. 5. 

Prof Jensen's concluding remark is a tautology: to obtain a 
reasonable four-bar from a precision-point synthesis method, the 
precision points must be prescribed so as to lie on the coupler 
curve of a reasonable four-bar. However, the comment reflects a 
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Fig. 5 Solution to a symmetrical five-point problem found using our 
nine-point algorithm 

genuine difficulty. By prescribing the maximum number of preci­
sion points, one has the potential for maximal control of the coupler 
curve, but all control of the transmission properties of the linkage 
or of the region occupied by the links is relinquished. A natural 
answer to this difficulty is to prescribe fewer points. For example, 
one could assign only eight precision points and then plot the 
corresponding centerpoint and circlepoint curves, perhaps color-
coded according to transmission angle or other criterion. This is 
analogous to the centerpoint-circlepoint curves commonly drawn 
for the variant of the Burmester problem in which only four posi­
tions of the coupler hnk are given. Polynomial continuation could 
readily address this eight-point problem, but it would be improper 
to investigate it in this forum. 

We believe that the preceding examples establish the applicabil­
ity and generality of our nine-point solution method. Moreover, 
polynomial continuation has wide application in all kinds of mech­
anism design, both planar and spatial, as well as problems concern­
ing the kinematics of robots. We readily admit that geometrical 
methods can often yield significant insight, and we applaud Prof. 
Jensen's contributions in this area. However, the insight that can 
be derived from algebraic and numerical methods should not be 
discounted. For example, Roberts (1875) discovered the triple 
generation of four-bar curves using purely algebraic reasoning, 
while numerical experiments using polynomial continuation first 
demonstrated the existence of 16 solutions for the inverse kinemat­
ics of general six-revolute serial-link robots (Tsai and Morgan, 
1985) and 40 .solutions for the forward kinematics of general 
Gough-Stewart platform manipulators (Raghavan, 1993). Both 
of these latter results have now been confirmed analytically. A 
discussion placing polynomial continuation in context with other 
methods for solving kinematic equations can be found in Raghavan 
and Roth (1995). We feel that our results on the nine-point prob­
lem, and now on the related symmetrical five-point problem, make 
a significant contribution to the understanding of coupler curve 
generation, while also providing an example of the power of poly­
nomial continuation. 
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