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Summary. Given a system of analytic equations having a singular solution, we show 
how to develop a power series representation for the solution. This series is com- 
putable, and when the multiplicity of  the solution is small, highly accurate estimates 
of  the solution can be generated for a moderate computational cost. In this paper, a 
theorem is proven (using results from several complex variables) which establishes 
the basis for the approach. Then a specific numerical method is developed, and data 
from numerical experiments are given. 
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1. Introduction 

Let f(z) = 0 denote a system of n analytic equations in n unknowns with a (possibly 
singular) solution z*. In this paper we develop a method to generate an accurate 
approximation to z*. 

In [16] we showed that z* can be expressed as an integral of  a nonsingular curve. 
This integral method works well but is relatively expensive to compute. In this paper 
we generalize the approach of  [16], presenting a more fundamental power series 
representation. This results in two advances: First, the integral method is simplified 
(in practice) via the circular sample (Sect. 3.3 below). Second, a new method distinct 
from the integral method can now be developed. The new method is less expensive 
to implement and often just as effective. Thus, by generalizing the result of [16] we 
obtain a new flexibility. The underlying theoretical structure from several complex 
variables is the same as before, but its expression in Theorem 1 here is clarifying and 
useful numerically. 

The theorem which establishes the new framework is stated in Sect. 2 and proven 
in the Appendix. The resulting numerical methods exploit ideas from homotopy con- 

Correspondence to: A.J. Sommese 



392 A.P. Morgan et al. 

tinuation [1, 6, 10, 20, 25, 26] and standard techniques for fitting polynomials to 
data. This is described in Sect. 3. Section 4 gives a particular implementation and 
the details of numerical experiments in solving two simple test problems. The results 
of solving two difficult polynomial systems from the kinematics of mechanisms are 
presented in Sect. 5. Our summary and conclusions are in the final section. 

The context of  this paper is essentially the same as [16], which is recommended for 
expository and background material. The paper [17] puts forward a different approach 
(with a similar theoretical basis) in the more restricted context of  polynomial rather 
than analytic systems. 

Although the theory is cast in a complex analytic context, the resulting numerical 
method can be developed in an entirely real analytic framework, if the problem being 
solved is real. Consequently, homotopy and path tracking software already developed 
in real arithmetic need not be converted to complex. See, for example, the second 
test problem in Sect. 4. 

For background on other methods of  computing singular solutions, see [2-5, 7, 
8, 18, 19], most of  which address Newton's method variants which can be proven to 
converge under restrictions on the rank of the Jacobian matrix of  the system at the 
solution (e.g., co-rank 1). 

2. Theory  

See [16] for the definitions of a geometrically isolated solution and the multiplicity of 
a solution. Note that the multiplicity of  a solution is defined only if it is geometrically 
isolated. 

As in [16], let h(z, t)  be a system of complex analytic functions, with z E D 
where D is an open set in C '~ and t E Do C_ C 1, where Do is an open set in C 1 
containing [0, 1], and h(z, t) E C n for all (z, t) E D • Do. Assume J 
1. h(z, O) = f (z )  for all z E D, 
2. z*,z  ~ E D with h(z*,O) = 0  and h(z ~, 1) = 0 ,  
3. h - l (0 )  contains a connected complex curve K C D • Do containing z ~ and z*, 

so that there is a smooth path z(t) with t E [0, 1] and z([0, 1]) C_ K such that 
z(1) = z ~ z(0) = z*, and dh(z(t),t) has rank n for t E (0, 1]. 

Here dh(z, t) denotes the n • (n + 1) complex matrix of  partial derivatives of  h with 
respect to Zl , . . . , z~  and t. Note that h(z(t),t) = 0 for t E [0, 1]. It is routine to 
generate such an h, given f ,  z ~, and z*, if z* is a geometrically isolated solution to 
f ( z )  = 0 and z ~ is close enough to z*. See [16], Sect. 3. 

We now have our main theorem: 

Theorem 1. 

(1) 

There is a t5 > O, a smallest positive integer c, and a power series 

Z(s)  = ~ aks k 
k=O 

convergent for Is[ < 6 such that 

(2) Z(a )=z (8  c) 

t We have made one change of notation from [16]: "t" in this paper is "l-t" in [16]. 
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f o r  s E [0, 5]. 

The proof is given in the Appendix. 

Remarks.  
1. It follows that a0 = z(0) = Z(0)  = z*. 
2. Informally, Theorem 1 says that z( t )  is "analytic in the c th root of t." Gener- 

ally, z ( t )  will not be "analytic in t." 
3. The c is the cycle number  of the path z ( t )  as defined in [16]. If  z* is geomet- 

rically isolated, then z* has a multiplicity, m, and c _< m. 
Here is a simple example that illustrates the theorem: Let f ( z )  = z m, with singular 

solution z* = 0 of  multiplicity m. Let 

h ( z , t )  = t ( z  m - 1)+(1  - t ) z  m. 

Then 
z( t )  = u " ~ ,  

where u is a primitive mth root of unity. Here, c = m, a0 = O, al = u, and s m = t. 
Note that z ( s  c) is defined only for real s, but Z ( s )  is defined and holomorphic 

for all complex s. By the theorem, z ( s  ~:) = Z ( s )  on an interval, so h ( Z ( s ) ,  s c) = 0 on 
that same interval. Thus, by the analyticity of h and Z ,  

(3) h ( Z ( s ) ,  s ~) = 0 

for all complex s with Isl < (5. We have z* = Z(O). The essence of  our numerical 
method will be to sample Z ( s )  in a (possibly but not necessarily complex) neighbor- 
hood of s = 0, fit a power series to the sampled points, and evaluate the series at s = 0. 
We will be able to carry this out by applying standard numerical prediction-correction 
methods to Eq. (3). 

3. The numerical method: creating an adaptive end game 

3.1 Overv iew 

In the numerical method we are considering, a homotopy is chosen that obeys the 
three conditions given at the beginning of  Sect. 2 (see [16], pp. 673--674]). Then the 
path converging to z* is tracked from t = 1 to t = r ,  where r is close to 0 but not too 
close. Finally, an adaptive end game,  constructed using the framework established by 
Theorem 1, completes the path tracking and gives a numerical estimate of z*. 

Tracking paths (solutions to h(z ,  t) = 0) is a standard numerical procedure. Using 
the Jacobian dh(z ,  t), we predict ahead along the tangent to the path and then correct 
back to the path using Newton 's  method. An adaptive step size in the predictor 
provides stability and efficiency. Without an adaptive end game, the selection of  r 
would be critical to success. However,  with the adaptive end game in place, we need 
only pick a conservatively large r to initiate it. (Typically, we might take the 3- to be 
10 -2  or 10-3.) 

The end game samples z for t E [0, r ]  and uses this sample to estimate c, then 
samples Z to obtain the best estimate of z*. The following tasks must be accom- 
plished: 
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A : Find the end game operating range. 
B : Estimate c. 
C : Estimate z*. 
D : Evaluate the quality of  the estimate of  z*. 

The end game operating range is defined below. There are several strategies for 
accomplishing these tasks, and we shall discuss in general terms what is involved in 
this subsection. Then, in Sects. 3.2-3.5, several topics of special interest and utility 
are presented in more detail. 

In developing numerical methods based on Theorem l, it is helpful to have the 
concept of the end game operating range. A complex number s is in the end game 
operating range if Is] is small enough so that Theorem 1 holds (i.e., [s] < ~5) and 
at the same time Is] is large enough so that the numerical processes we want to 
evoke are still well conditioned enough to yield the results we want to the accuracy 
we need (see Fig. 1). In a typical case of  z(~) converging to a singular solution as 

~ 0, the condition number of  the Jacobian matrix of h(z(t), t) is blowing up and 
the number of  digits of  accuracy in the computed values for z(t) is decreasing. Other 
numerical processes we want to evoke (e.g., curve fitting, prediction, correction) are 
being degraded concurrently as the round-off error increases. In practice, neither the 
upper bound defined by Theorem 1 nor the lower bound defined by round off is a 
priori available. 

Finding the end game operating range has to do with discovering for what values 
of s the power series (1) is valid. Typically, this is done by advancing ~ from ~- to 
0 in steps and at each step evoking some test derived from (1), the test consisting 
of determining if some behavior predicted by (1) is occurring. (It is this feature of 
discovery that makes the end game adaptive.) Often, the pattern over steps of the 
test results will be used, and some sample of z(t) is involved. One way to do this is 
to simply advance t to an arbitrary value (but perhaps based on previous numerical 
experience), conjecture that we are now in the range, and go on to parts B, C, and 
D. The success or failure of these later parts is then the "test." If we fail to obtain 
a satisfactory estimate of  z*, we then advance t. further and try B, C, and D again. 
This is a valid and systematic scheme for determining the range (and carrying out the 
other Parts), although computationally wasteful. In 3.4 a more sophisticated approach 
is suggested based on the prediction error. 

If z* is nonsingular, then the operating range has a lower bound of zero, the nicest 
case. On the other hand, the operating range might be quite narrow, which will limit 
our options. For example, we might be forced to use the circular sample (Sect. 3.3). In 
fact, the operating range might be empty, in which case all our ways of implementing 
Theorem 1 will fail. This might be interpreted as implying that we need more digits 
of arithmetic to get the results we need. 

For part B (estimating c), we might choose a sequence of test values and try each 
one by investigating if parts C and D can be completed successfully with that choice. 
We put forward several more efficient approaches, via the circular sample and the 
prediction error, in Sects. 3.3 and 3.4 below. In fact, each of these more effective 
ways of implementing Theorem 1 involves testing a limited range of  c values one 
by one. However, this is not required for all approaches. For example, if we evoke 
Newton's  method on a truncation of the power series (1) and solve for c along with 
the values for the coefficients, using some sample of  Z(s),  then we would not have to 
go through a range of  values for e. In our tests of this approach, however, it worked 
well only when the alternatives worked better. 
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Fig. l. Schematic illustrating the end game operating range 

For part C we might sample z(t) or Z(.s) further before fitting the data to a 
truncation of  (1). Sampling is discussed in Sect. 3.2. 

Part D involves having a way of evaluating the quality of a numerical estimate of 
z*. This evaluation is part of the adaptivity of  the end game, in that certain parts are 
repeated (usually alter t is advanced toward 0) until no further improvements in the 
evaluation of the estimate of  z* can be obtained, Part D is considered in Sect. 3.5. 

3.2 Sampling the path 

We have z(t) defined as the unique path satisfying h(z(t),t) = 0, z(1) = z", and 
E [0, 1], while Z(s)  is the unique power series defined by Z(s)  = z(s ~) for some 

(smallest) positive c and s C [0, 6) for some 6. Since we don' t  know c a priori, it is 
important to note that we can sample both with and without having an explicit value 
for c. 

Consider the case that we do not have c. First, sample points, z(t 3), can be taken 
with tj positive real, and then later converted to Z(s  3) (after an estimate of  c is 
obtained) via Z(.s3) = z(t~) where sj = ,~T~,~, and the root is the positive real root. 
Second, while z(L) is strictly defined only for non-negative real t, we may continue 
z(t) into the complex plane (that is, for non-real complex or negative t values) in a 
numerically straightforward way, obtaining new sample points (2j, tj). (This is in the 
spirit of analytic continuation from complex variables.) Some care must be taken in 
converting 23 to Z(s)  to assign the correct c th root of ~ to s. The simplest scheme is to 
evoke a substitution t +-- r(O)e 27ri~(0) where r(O) > 0 and a(0) are real-valued analytic 
functions, with i _= v/Z~. Then we can track the resulting homotopy continuation in 
0. The resulting sample points z(tj) for t 3 = r(Oj)e 27ria(03) are then converted to Z(sj)  
(after an estimate of c is obtained) via sj = ~ e  27ria(0j)/c where the root is the 
positive real root. 

After we have a candidate value for c, we can use it to sample Z(s)  directly. We 
can now predict and correct in s rather than t, and in fact we need not follow a path at 
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all to sample Z(s). Once we have established an approximation to (1) (via sampling 
and fitting with .s in the end game operating range), we can predict by using this to 
obtain approximations to Z(s) for any s in the range and then correct in the usual 
way. To see the advantages of  this, consider the following: Suppose we have some 
samples for z(t) with t positive real and we wish to predict from these values across 
the origin to z(t) for some negative real values of  t. The singularity at t = 0 prevents 
us from doing this. However,  in s we are not restricted. There is no singularity at 
s = 0 and we can (for example) predict to negative s points without difficulty. 

3.3 The circular sample 

The circular sample is an example of extending the continuation path via a substitution 
t ~ r(O)e 2~ic~(~ as discussed in the previous subsection. This sample is worthy of 
special consideration because it has some very powerful numerical properties. It is also 
closely related to the method of  [16]. These facts are established in this subsection. 

Suppose we choose r(O) =_ to for all 0, where to is a constant positive real number 
in the end game operating range and a(O) =- O. Then 

Z (t0 e27ri0) = Z ( ~ 0  e27riO/c) for a n y 0  

from which it follows that 

(4) z (toe 2~i~ = z (to) when 0 = c. 

(Cf. Theorem 1 of  [16].) Thus, we have a numerical way of  discovering c, yielding 
at the same time a sample of Z(s) .  We call this the circular sample, and it generates 
high-order approximations to z* as follows. 

Take evenly spaced sample points of  z(t) as 0 goes from 0 to c; more specifically, 
let no be a positive integer greater than 1, ns ~ noc, and u ~_ e 2rri/n.~ . Take the 
samples 

z (tou j~) = Z (~oou j) for j = 1 to n~. 

th root of unity. It follows that ~j~=s 1 u j O, and in fact Note that u is a primitive n s = 

~ j~ t  ujk = O, for any k that is not a multiple of  n , .  Now from Theorem 1 we have 

[- 

- - a o +  E a ,  j )  
•s j=l [ #  j=l 

(5) n~ ] + Z a 2  (r + ... 

j=l 

= a o + 0 + 0 +  . . .  . . .  

I ~ j~ l  z(touJ'c), approximates z* = ao up Thus, the average of  the sampled points, --7 
th to the n s term of  the power series defined in Theorem 1. This is the integral formula 

z* 1 [ 2 ~ c  
= z (toe 2~i~ dO 

2rrc ao 
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from Theorem 1 of  l16] when the integral is approximated by the rectangle rule. From 
(5) we can see how this sample (and the related integral formula) can easily yield 
high-accuracy solution estimates. Note also that it will work even if the end game 
operating range is very narrow. However, it is (relatively) expensive to compute, since 
continuing the path around the origin might take as much (or more) computational 
work as tracking the main part of the path. Thus we view the circular sample as a 
last resort when cheaper samples fail to give us the desired accuracy. 

Note that to use the circular sample in a computer code we must enter a maximum 
c test bound, say Cmax. Each time 0 is advanced to an integer value, 5, we test ~ to 
see if it is e (via Eq. (4) above). We test from ~ = l to ~ = Cmax. If emax is set too 
small, then (4) will not be satisfied. 

If to is not in the end game operating range, then (4) might be satisfied for some 
~, but the resulting solution estimate will probably not be a good approximation to 
z* and will fail the evaluation part of the end game (Part D). 

For large e values, we have found nothing better than the circular sample 2. For 
small c values, the method described in the next subsection is generally just as accurate 
and cheaper to compute. 

3.4 The prediction error 

We can use the prediction error to find the end game operating range adaptively and 
to estimate e. The following discussion clarifies what is involved. 

When we enter the end game, we predict by sampling z(t) and fitting these points 
to (1). There will be errors in this process that we summarize as co, the prediction 
error. We recognize two components of er,. First, there is round-offerror, eR. Second, 
to fit (1) we truncate to an order v polynomial,  introducing truncation error, cw. 

After we enter the end game operating range, t will be small enough for Theorem 
1 to hold, and, as t gets smaller, ev is eventually dominated by the first omitted term 
of (1) 3 . Thus 

6~ T ~ CLv+ll~ (v+l) /c  

and taking the logarithm we have 

(6) Log(ev) ~ Log(a~+l) + (v + 1)/c Log(t),  

giving the slope on a log-log plot of  ew versus t as (v + 1)/e. If  eR is still dominated 
by ew, the slope of ep becomes (v + 1)/e as predicted by (6) for ev. Now, ep can be 
estimated numerically, as described below, so one test for the end game operating 
range is that the computed slope look like (v + 1)/c for some r 

Now suppose we try to fit z(t)  to a series of  the form of  (1) but with an incorrect 
choice of c, say & Then the slope of the prediction error will be different, because the 
number of terms in the series with ~ that match terms in (1) will be less than v. If 
is not a multiple of e, then the slope will be 1/c. If  ~ = uc, where u > 1 is an integer, 
then the slope will be ( Int(v/u)+ 1)/c where Int denotes the greatest integer. In either 

2 If the system we are solving is polynomial in addition to being analytic, then the method of [17] can 
work well for large c. 

3 This discussion assumes that all coefficients in (1) are non-zero. For generically constructed homo- 
topics, this is a reasonable hypothesis. For non-genetically constructed homotopies, it may not hold 
and a more detailed analysis of cases may be required. 
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Fig. 2. Determination of cycle number c for Problem I 
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Fig.3. Determination of cycle number c for Problem 2 

case, the correct c will tend to have a markedly smaller associated prediction error. 
Therefore, the magnitude of the prediction error (rather than the slope) can also be a 
test for the correct c. Figures 2 and 3 show the dramatic difference for the correct c 
and several incorrect candidate values. 

Now, in the typical singular case, as t --+ 0, eventually ep will be dominated 
by eR. What we see in numerical tests is that er, levels off and, if the path is not 
terminated, it may even increase. This point of leveling off marks the end of the 
end game operating range. (This is suggested in Fig. 3 where the c=2 curve is just 
beginning to flatten out.) 

One source of error we have not discussed is fitting error, the error introduced in 
the estimated coefficients by the numerical method used to fit the sample. With the 



Method for computing singular solutions to nonlinear analytic systems 399 

simple (linear) fitting methods we use, the fitting error is essentially accounted for 
via ~R. 

Now, ep can be computed numerically by a scheme such as the following. Sample 
v + 2 points, fit using v + 1 of  the points and predict the (v + 2) th point. Let the 
difference between the predicted and actual be the numerical ep. It makes the most 
sense as t ---+ 0 to let the latest sample point be the (v + 2) th. Figures 2 and 3 are plots 
of  such numerical ep values. See the next Section for the exact details. 

3.5 Evaluat ing solution est imates 

Let z + be an estimate of the singular solution z*. Simply looking at tf(z§ to evaluate 
the quality of  the estimate can be misleading, because If(z+)l  is not scale indepen- 
dent. If z* were nonsingular (and well conditioned), we could evaluate the quality of 
the approximation via the Newton 's  method residual. However, this residual is not 
so accurate for approximations of  singular z* and tends to blow up as t --~ 0. Using 
the power series (1) we can develop a much better-behaved error formula which has 
some of the desirable qualities of the Newton's  method residual (e.g., it is scale inde- 
pendent). However, if we are not in the end game operating range, and, in particular, 
if we have already entered the zone of significant round-off, then this formula will be 
degraded. We usually track the error as ,s ~ 0, noting it (typically) decreasing to a 
minimum, then leveling off or increasing. The s value associated with the minimum 
may be taken as indicating the inner border of the end game operating range and the 
associated solution estimate will be (essentially) the best estimate we can obtain. 

We develop this error formula in the context of  tracking the path converging 
to z*, as follows: For a fixed order polynomial,  we fit sample data points from 
the continuation path for smaller and smaller s values. Each fit of the data to the 
polynomial provides an estimate of z* (namely, the constant term). We get a good 
approximation to the error in the estimates by considering differences of successive 
estimates divided by a factor generated from Richardson extrapolation. We illustrate 
by developing the following explicit case, which we use in Sect. 4. 

Let p be a positive number greater than 1. Consider a sample taken at 5; 2 and 
sl = s 2 / p  and a succeeding sample at sl and so = ,s l /p.  We sample both Z(s )  and 
Zt(s) ,  where Z~(s)  represents the derivative of Z ( s )  with respect to s. (It is easy to 
get first derivatives from the continuation process.) Each sample determines a cubic: 

Z ( s )  = bo + b,s  + b2s 2 + b3s 3. 

Let bo,2 denote the constant coefficient developed from the {s2, sl } sample, and bo,I 
the constant coefficient developed from the {sl ,  s0} sample. By examining the fitting 
process, we derive a formula 

2 4 5 
ao - boj  = p aa,sj + 0 (8.7) 

for j = 1,2, where a0 and a4 are terms of (1). Then by Richardson extrapolation we 
get 

(7) Ib0,1 - bo,a[ 
p4 _ 1 - Ib0'l -- z*l + O (85),  

using z* = a0. The left hand side of  (7) is the (computable) error formula that we 
track as s --+ 0. 
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4. An implementation and numerical experiments 

Our main path tracker is from the CONSOL8 code of [10]. Here we give a description 
of the adaptive end game, which is based on the prediction error approach of Sect. 3.4. 
After that, the two numerical experiments are presented. The homotopies are described 
with the experiments. 

The end game proceeds in steps, with t decreasing at each step. For each step, 
we have sample points z(t) for several different values of t. We test values ~ from 
1 , . . .  ,Cmax. For each ~, we convert to sample values ( Z ( s ) , s )  = (z( t ) , t l /~) ,  fit a 
power series to these values, and test the prediction error. The value of  ~ that gives 
the smallest error is taken as our guess of c. 

While we could sample at both real and complex values of  t, for simplicity, we 
have chosen real values only. This is particularly convenient, of course, when the 
homotopy has been programmed in real arithmetic. In the first step, we take samples 
at t2 = ~-, tj = •-/r, to = T / r  2, where we take r = 2, Cmax = 4, and v = 3, where 
v is the order of truncation that defines the prediction error. The points z(t i )  are 
found using the main path tracker, and the derivatives d z / d t  are also saved for each 
sample point. (On subsequent steps, we use the best power series fit so far to predict 
the next point. This is more efficient than the standard predictor of  the path tracker, 
which assumes c = 1.) For each trial value ~, we convert the sample points to s- 

space as (Z(sO,  si) = (z(tO, t l /%,  d Z / d s  = ~ s ~ - l d z / d t ,  fit a cubic in s to the values 
and derivatives at t2, t l ,  evaluate the cubic at so to predict Z(so) ,  and compute the 
difference Z(so)  - z(to). The norm of this difference is the prediction error. If  none 
of the fits are accurate, skip to the next step by advancing to to to / r  and updating 
(t~, t i ,  to) to (t~, to, to~r). 

If we have not skipped to the next step, then we have determined that we are in 
the end game operating range with an acceptable estimate of c. Now we must obtain 
a sufficiently accurate estimate of  z*. 

The sample values Z(s i ) ,  i = 0, 1,2 and their derivatives are already available. 
We could choose to use only these values or to collect a larger sample. The larger 
sample can be taken at real or complex values of  s. In the numerical examples below, 
we show the results of  two strategies: using the original samples alone and doubling 
the number of  sample points to include Z ( s )  at s = - s i ,  i = 0, 1,2. Note that even 
though we cannot sample Z(O) directly, because the Newton corrector is unreliable at 
the singularity, we can jump across the origin to negative values of  s. We use a cubic 
prediction from s~, so to s = - s o ,  and correct with Newton 's  method, and proceed 
similarly out to - S l , - s 2 .  Note that a real path for s > 0 always continues to a real 
path for s < O, which is convenient when working only in real arithmetic. For the 
prediction across the origin to be successful, it is critical to have the correct value of  
C. 

To estimate z* = Z(O) and its error, we compute an estimate z~ from the values at 
zEsl, + sz  and an estimate z~- from -t-s0, •  In the case where we use only positive 
s values, Z(0)  is obtained from a cubic fit to the points and their derivatives. Since 
sl = rJ/Cso, the error in z~ is approximately IzT - z~ l / ( r  4/c - 1) from (7). In the 
case where we include the negative s values, we can increase the order of  the fit to 
7. Then the error in z~ is Iz~( - z ~ l / ( r  8/~ - 1) by reasoning similar to that used to 
develop (7). 

Two details of  the numerical fit are worth mentioning. First, to maintain stability 
of the fit as so --+ O, it is helpful to rescale s. We rescale by the larger si value, so 
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that the largest scaled coordinate is 1. Second, in the higher order fit, we use the fact 
that we have sampled symmetrically about s = O. Considering the power series (1), 
we find that 

(Z(8) + Z ( - 8 ) ) / 2  = Z a2ks2k' 
k=0 

that is, the odd terms drop out. Therefore, since we only want to compute Z(0)  = 
a0, we may compute the order 7 result by averaging the symmetrical data points, 
converting the abscissa to w = s 2, and fitting a cubic in w. 

If the error estimate for z* is larger than the desired accuracy, we take another step 
by advancing to to to/r and proceed as above to estimate z* with the new sample. 
We continue until the error estimate meets the specified accuracy or the prediction 
error test indicates that we have exited the end game operating range. 

If the specified accuracy is never met, we then report the estimated end point with 
the smallest error, and flag the lack of full convergence. It may be that either the path 
became ill-conditioned before an accurate estimate could be computed or simply that 
the correct cycle number is larger than Cmax. 

We report now on the results of solving two test problems: one polynomial  and 
one non-polynomial.  

Problem 1. Griewank and Osborne's problem 

The system 

f t  = (29/16)z~ - 2ZlZ2 

f2 = z2 - d 

is taken from [8], p. 749. It is notable in that Newton 's  method diverges for start 
points near the solution (x, y) = (0, 0). We used the homotopy 

h(z, t) = (1 - Of(z) + t'yg(z), 

where the start system g(z) is 

91 = z~ - 23 

92 = z2 - 22 

and 3' = 0.123247542 + i0.76253746298. By matching the degrees of  f and 9 and 
picking "7 as a "random" complex number, we are assured that the homotopy obeys the 
required conditions [12]. By construction, the start point z = (2, 2) satisfies h(z, 1) = 0. 
As t ---, 0, the path z(t) approaches the singular solution at z = (0, 0). 

Figure 2 shows the log-log plots of prediction error versus to for different candidate 
cycle numbers. The correct cycle number c = 3 quickly emerges, decreasing at a much 
faster rate than the other trial values. In fact, the slope is 4/3 for ~ = 3 and 1/3 for 

= 1,2, 4. (A slope of  exactly 4/3 is indicated by the dotted line.) This is the expected 
result for a cubic predictor and c = 3 (see Sect. 3.4 above). 

Table 1 shows a corresponding table of  end point error versus to. The first column 
of error data shows the result of a simple cubic extrapolation in t, which is equivalent 
to fixing ~ = 1. The last two columns use the (correct) cycle number c = 3, with 
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Table 1. Error in endpoint estimates for Problem 1 

~ = 1  ~ = 3  

t o  O r d e r  = 3 O r d e r  = 3 O r d e r  = 7 

0 . 7 8 1 3 e  - 0 4  

0 . 3 9 0 6 e  - 0 4  

0 . t 9 5 3 e  - 0 4  

0 . 9 7 6 6 e  - 0 5  

0 . 4 8 8 3 e  - 0 5  

0 . 2 4 4 1 e  - 0 5  

0 . 1 2 2 1 e  - 0 5  

0 . 6 1 0 4 e  - -  0 6  

0 . 3 0 5 2 e  - 0 6  

0 . 1 5 2 6 e  - 0 6  

0 . 7 6 2 9 e  - 0 7  

0 . 2 2 3 %  + 0 0  

0 . 1 7 1 9 e  + 0 0  

0 , 1 3 2 9 e  + 0 0  

0 . 1 0 3 2 e  + 0 0  

0 . 8 0 5 4 e  - -  01 
0 . 6 3 0 5 e  - -  01 
0 . 4 9 4 9 e  - -  0 1  

0 . 3 8 9 4 e  - -  0 1  

0 . 3 0 6 9 e  0 1  

0 . 2 4 2 2 e  - -  0 1  

0 . 1 9 1 4 e  - -  0 1  

0 . 1 2 8 3 e  - -  0 3  0 . 8 6 2 2 e  - -  0 7  

0 . 4 3 1 8 e  - 0 4  0 . 1 3 4 6 e  - -  0 7  

0 . 1 7 7 8 e  - 0 4  0 . 2 t 0 9 e  - 0 8  

0 . 7 2 8 4 e  - 0 5  0 . 3 3 1 2 e  0 9  

0 . 2 9 6 7 e  - 0 5  0 . 5 2 0 7 e  - -  10  

0 . 1 2 0 2 e - - 0 5  0 . 8 1 9 2 e - -  11 

0 , 4 8 5 0 e - 0 6  0 . 1 2 8 9 e - - 1 1  

0 . 1 9 5 0 e - 0 6  0 . 2 0 3 1 e -  12 

0 . 7 8 2 2 e -  0 7  0 . 3 1 9 9 e - -  13 

0 . 3 1 3 0 e - - 0 7  0 . 5 1 1 3 e - -  14  

0 . 1 2 5 0 e - - 0 7  0 . 8 3 1 6 e - -  15 

. I / 3  ,4/3 §  
cubic and seventh-order fits, respectively. The errors decrease as t~ 0 , ~0 , and 'J0 , 
respectively, in accordance with the expected result. 

Table 1 lists the actual error, since in this test example we  know the solution. 
In the general case, we would not know the actual error and would have to depend 
upon the error estimate to judge when to stop the iterations. In light of this, it is 
useful to note that the error estimate based on Richardson extrapolation is accurate to 
within 10% until round-off error begins to dominate near t = 0 (i.e., when the error 
approaches the precision limit, about 10 -13 in double precision). At that point, the 
raw difference [z T - z~[ is a better indicator. 

Problem 2. A transcendental  problem 

The system 

fj = e - ~ + e  - ~ 2 - 2  

fz  = sin(z1) + sin(z2) 

has a singular solution at z = (0, 0). We chose the homotopy 

h ( z ,  t )  = f ( z )  - t f ( z ~ ) ,  

where z ~ is the start point for t = 1. We used z ~ = (1,0.5) .  Note that this problem is 
not polynomial. Moreover, the homotopy path is real. We did not know a priori that 
the homotopy would satisfy condition 3 of Sect. 2; that is, there is nothing inherent in 
the construction to guarantee that the homotopy path would not be singular somewhere 
for t E (0, 1]. However,  the success of  the method shows that this did not happen. 

Figure 3, similar to Fig. 2, shows the prediction error versus to. Again, the correct 
cycle number c = 2 is clear. The slopes on the log-log plot are 1/2 for 0 = 1,3, 
whereas for ~ = 2 it was 4 / 2  = 2 and for ~ = 4 it was (Int(3/2) + 1) /2  = 1. Of course, 
we prefer to use the ~ = 2 prediction, because it converges much more rapidly. The 
leveling off of  the ~ = 2 line around to = 10  - 6  is due to the onset of round-off error 
as the prediction approaches full double-precision accuracy. 

Table 2 reports the error in the end point estimates. The rates of  decrease are 

in close agreement with the expected results of O(t~/2), O(t40/2), and 0(t8o/2), until 
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Table 2. Error in endpoint estimates for Problem 2 

~ = 1  ( 2 = 2  

to O r d e r  = 3 O r d e r  = 3 Order = 7 

0 , 1 5 6 3 e  - 0 t  

0 , 7 8 1 3 e  0 2  

0 , 3 9 0 6 e  - 0 2  

0 , 1 9 5 3 e  - 0 2  

0 . 9 7 6 6 e  - 0 3  

0 . 4 8 8 3 e  - 0 3  

0 . 2 4 4 1 e  - 0 3  

1 ) . 1 2 2 1 e  - 0 3  

0 . 6 1 0 4 e  - 0 4  

0 . 3 0 5 2 e  - 0 4  

0 . 1 5 2 6 e  - 0 4  

0 . 7 6 2 %  - 0 5  

0 . 3 8 1 5 e  - 0 5  

0 . 1 9 0 7 e  - 0 5  

0 . 1 6 3 5 e  + O0 
0 . 1 1 5 5 e  + O0 
0 . 8 1 6 7 e  - O1 
0 . 5 7 7 4 e  - Ol 
0 . 4 0 8 3 e  - Ol 

0 . 2 8 8 7 e  - O1 

0 . 2 0 4 1 e  - O1 

0 . 1 4 4 3 e  - O1 

O . 1 0 2 1 e  - Ol  

0 . 7 2 1 7 e  - 0 2  

0 . 5 1 0 3 e  - 0 2  

0 . 3 6 0 8 e  - 0 2  

0 . 2 5 5 2 e  - 0 2  

0 . 1 8 0 4 e  - 0 2  

0 . 4 0 7 9 e  - 0 4  0 . 3 6 7 2 e  - 0 8  

0 , 9 8 0 4 e  - 0 5  0 . 2 2 3 5 e  - 0 9  

0 . 2 4 0 3 e  - 0 5  0 , 1 3 7 9 e  - lO 

0 . 5 9 5 0 e  - 0 6  0 , 8 5 6 2 e  - 12 

0 . 1 4 8 0 e  - 0 6  0 . 5 3 3 4 e  - 13 

0 . 3 6 9 2 e -  0 7  0 . 3 3 2 3 e  - 14 

0 . 9 2 1 8 e - 0 8  0 . 1 1 6 7 e - -  13 

0 . 2 3 0 3 e - 0 8  0 , 2 8 3 1 e -  13 

0 . 5 7 5 6 e  - 0 9  0 , 2 3 4 0 e  - 14 

0 . 1 4 3 9 e  - 0 9  0 . 4 6 4 3 e  - 13 

0 . 3 5 9 7 e -  l 0  0 . 1 4 1 0 e -  13 

0 . 8 9 9 2 e -  11 0 . 7 8 1 8 e - 1 3  

0 . 2 2 4 8 e -  I I  0 . 8 4 1 1 e -  13 

0 . 1 2 3 4 e -  11 0 . 1 6 4 0 e -  13 

round-off error stalls the cubic at error ~ 0.2 x l0 -j~ and stops the seventh order fit 
at error ~ 0.3 x 10 -14. Doggedly pushing G beyond such a point is not only useless, 
but may actually increase the error in the end point. Again, the table lists the actual 
error and the estimated error was very close. When the estimated error levels off, the 
iterative process should be stopped. For comparison, we note that Newton's method 
initiated from the same start point (1,0.5)  converges to accuracy ~ 0.4 x 10 -~. Such 
degraded accuracy is common for Newton's method near a singularity. 

5. Application to engineering problems via polynomial  continuation 

The new ideas for computing singular solutions to analytic systems presented in this 
paper and in [16, 17] were originally developed to deal with the large number of 
singular endpoints encountered when polynomial continuation [10, 12-15] is used 
to solve certain kinds of  polynomial systems that arise in several engineering areas 
[9,11,21, 23, 24]. In this section, we describe briefly the context of polynomial con- 
tinuation and then report on the solution of two problems of significant difficulty from 
the area of  the kinematics of  mechanisms. 

Sometimes in applications one wishes to compute the full set of solutions to a 
polynomial system. Usually, there will be a subset of physical significance which 
can be gleaned from this full solution set (the real solutions, the real solutions with 
non-negative components, the finite solutions, etc.). The method of polynomial contin- 
uation can be used to compute the geometrically isolated solutions in the full solution 
set. To obtain a start system one constructs a system which is easily solvable and 
which captures the generic structure of the target system. Then, each solution of the 
start system is taken to be the start point for a continuation path whose end point will 
be a solution to the target system. This set of  endpoints contains the set of  geometri- 
cally isolated solutions to the target system. Even though one would often be content 
to have only the nonsingular solutions, when using polynomial continuation there is 
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no way to track just the paths with nonsingular endpoints. Dispensing with the singu- 
lar endpoints quickly and efficiently becomes the major expense of the computation. 
One must compute the singular endpoints accurately enough to know that it is safe 
to discard them. For a general description of polynomial continuation, see the above 
cited references. 

In evoking polynomial continuation for the following problems, we used the same 
path tracker and adaptive end game described in the previous section, with the multi- 
homogeneous start system from [22]. In polynomial continuation, the number of paths 
that is tracked is equal to the generic number of solutions associated with the structure 
of the target system. However, this generic number is different depending on the space 
in which the solutions are envisioned as belonging to. In complex projective space, the 
number of paths is simply the total degree of the system (the product of the degrees 
of the equations). However, it can be advantageous to view the solutions as belonging 
to other spaces. If the system is naturally multi-homogeneous, then the appropriate 
space is a product of projective spaces, and the number of paths will be the Bezout 
number. These ideas were first used in the context of polynomial continuation in [12], 
and further developed in [13-15]. The tutorial [24] gives an overview of the multi- 
homogeneous approach to polynomial continuation. For the following two problems, 
a 2-homogeneous structure is used. 

Problem 3. Inverse kinematics, model 1 

We choose as our first application the second test problem from [21]. It 's significance 
to mechanical engineering is described there, and the physical solutions are given. 
This is a system of eight second-degree equations in eight unknowns. The problem 
was analyzed as a 2-homogeneous system in [12] and [13], where it was shown that 
the Bezout number is 96. Further, the 2-homogeneous generic solution structure of this 
system was proven (in Theorem 4 of [13]) to consist of 64 nonsingular solutions and 
8 multiplicity-four (geometrically isolated) singular solutions. See [13] for a complete 
mathematical description of the system. 

Interestingly, even though the singular solutions have multiplicity 4, the associated 
path end points all have cycle numbers of 2. 

We ran three parallel runs, to get some comparisons for the success and the cost 
of the power series end game. Each path was tracked from t = 1 to ~ = 10 -3. This was 
designated the "main part of the path." Then each of three end games was evoked. 
First, we ran the power series end game. Second, we substituted a Newton's method 
end game, whereby at the designated point where the end game was begun, we evoked 
a Newton's method. Third, we ran the code "without end game," that is, each path 
was tracked until it converged with t = 0 or ill conditioning caused the path tracking 
to be terminated before t = 0. (For the nonsingular end points, convergence to t = 0 
was always achieved.) 

The Newton's method end game is not too unreasonable for paths converging to 
geometrically isolated solutions, but it is risky, since the Newton's method (essen- 
tially) abandons the path and need not converge to the path end point or converge at 
all. Naturally, many methods for computing singular solutions to polynomial systems 
could be substituted for the Newton's method, to produce new end games. 

The "end game" consisting of tracking the path until it either converges or fails 
due to ill conditioning is more conservative than the Newton's method end game, 
particularly with the path tracker we are using (from CONSOL8 [10]). It respects 
the basic geometry of the path and often computes the end point to several digits 
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Fig.4. Comparing the success of three end games on Problem 3. The abscissas give the exponents of the 
errors of path end points. The ordinates count the number of end points with the designated errors 

of accuracy even when the path is converging to a positive-dimensional solution set. 
However, it tends to use a large number of  steps when the end point is singular. 

The s u c c e s s  of the various end games is summarized in Fig. 4, which gives the 
errors of the 96 computed endpoints. (These are actual relative errors, generated with 
reference to a solution set computed in extended precision. The abscissa values are 
the exponents of the error; thus, - 1 4  denotes an error of 10-14. The ordinates gives 
the number of endpoints with the designated error.) Observe that the power series end 
game was very successful on this problem, in that all the endpoints were computed 
to good double precision accuracy, while the other two methods produced single 
precision accuracy on the singular solutions. 

The c o s t s  of the end games are given in Table 3 in terms of  NFE and CPU. (NFE 
stands for "number of function evaluations." It is approximately equal to the number 
of 8 • 8 linear systems solved and is a good relative measure of computational work. 
CPU stands for the cpu time in minutes on an IBM 360-3090.) The cost of the main 
part of  the path tracking is included for comparison. The power series method was 
the most expensive, but it was the only one to work really well. It cost about a third 
of  the cost of  the main part of  the path tracking. 

Table3. Work Statistics for Problem 3. 
NFE denotes the number of function 
evaluations. CPU denotes the cpu time 
in minutes on an IBM 360-3090 

NFE CPU 

Main Path Tracking 32 621 2.6 
Power End Game 9 735 0.8 
Newton End Game 1 214 0.1 
Tracked to End 5 051 0.4 
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Problem 4. Inverse kinematics, model 2 

Our second application is the system defined in [23] by Eqs. (14)-(16) with coeffi- 
cients given in Table 1 of that reference. It's significance to mechanical engineering 
is described there. This is a system of ten second-degree equations and two linear 
equations in twelve unknowns. In [23] the problem is analyzed as a 2-homogeneous 
system, and it was shown to have a Bezout number of  320. It has 16 nonsingular 
solutions. By computation, it was determined that the rest of the solutions are singular 
(not necessarily geometrically isolated). In solving this system using a 2-homogeneous 
polynomial continuation, 16 of the paths will converge to the sixteen nonsingular so- 
lutions, and the rest of  the paths will converge to nonsingular endpoints. 

The same test arrangement with three end games was used on this problem as 
for Problem 3. The results are summarized in Table 4 and Fig. 5. Each solution has 
either cycle number 1 or 2. (There are exactly 16 nonsingular solutions and 16 cycle- 
number-one singular solutions.) Again, the power series method worked by far better 
than the others, for a cost of about a third of the cost of  the main path tracking. Most 
endpoints were obtained to at least 10 digits of  accuracy, although 27 out of 320 were 
not. 

Table4.  Work Statistics for Problem 4. NFE 
denotes the number of function evaluations. 
CPU denotes the cpu time in minutes on an 
IBM 360-3090 

NFE CPU 

Main Path Tracking 145 884 16.0 
Power End Game 42 061 4.9 
Newton End Game 5 206 0.3 
Tracked to End 61 670 7.0 
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Fig.5. Comparing the success of three end games on Problem 4. The abscissas give the exponents of the 
errors of path end points. The ordinates count the number of end points with the designated errors 



Method for computing singular solutions to nonlinear analytic systems 407 

While we considered this a very satisfactory result for such a challenging problem, 
we did investigate computing the 27 "bad" paths to better accuracy, via the integral 
method of  [16]. In our implementation, this is exactly the same as using the circular 
sample and averaging, as described in Sect. 3.3. This improved the accuracy of the 
"bad" solution set considerably: 17 had an error of -12, 6 of -1 l, 3 of -10, and 1 of -9. 
This required about 38,000 function evaluations. Thus, the work required to improve 
these 27 end points using the circular sample was almost equal to the work required 
by the power series method to generate estimates for all 320 end points. Part of the 
reason for this is that our implementation of the circular sample adaptively seeks to 
find a ~0 value where the best residual is produced. In some cases, this requires that 
a number of  circular samples be taken for a variety of t0 values. We conclude there 
is a very narrow end game operating range for these paths, but wide enough for the 
circular sample, if a suitable to value is discovered. 

6. Summary and conclusions 

In this paper we have presented a power series method for computing accurate ap- 
proximations to singular solutions of  analytic systems. The method works in either 
real or complex arithmetic. A homotopy must be constructed with a path converging 
to the solution, and a numerical method for tracking the path must be available. A 
theorem is proven which shows that a power series exists for the path in a neighbor- 
hood of the solution. (The power series is expressed in terms of  the cycle-number root 
of the given path parameter.) The numerical method approximates this power series 
and then takes the constant term as an estimate of the solution. The performance of 
the method on two simple test examples is discussed in detail. The results of solving 
two challenging polynomial problems from the kinematics of  mechanisms are given. 

Disadvantages of the method include the need to set up the homotopy and path 
tracking machinery. Although this machinery is well developed, it may seem awkward 
to those who are new to it. The method works best when c is small. For larger c, 
implementations relying on polynomial  fitting tend to need extended precision. While 
the circular sample approach doesn ' t  require fitting and works well for larger c, it is 
relatively expensive. 

Advantages of the method are that it is easy to program in a path tracking context, 
and if that context is real rather than complex, no conversion to complex arithmetic is 
needed. Also, the method requires no conditions on the system, save that it be analytic, 
nor conditions on the rank of  the Jacobian matrix at the solution. The numerical 
experiments show that the estimates of the solution can be dramatically better than 
that obtained by standard path tracking or Newton 's  method. 

Although the theoretical basis of the method is well established by Theorem 1, 
further numerical studies, especially on problems generating larger c values, would 
be helpful to clarify the practical limits of the method and to suggest improvements 
in implementation. 
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Appendix 

Proof of Theorem 1. We recall some results from section A-2 of [16]. (The variable 
"t" here is equal  to "1 - t" there.) There is a neighborhood D t of  z* and an e > 0 
such that 
a) the restriction, PK ' ,  of  the projection D t x A ,  --~ A ,  to K t = K A (D t x A , )  is 

proper and c is the local degree of  the proper map, PK', at z*; 
b) lett ing (5 = e l/c and De ----- {s E C l [ Is I < (5}, there is a one to one holomorphic  

map u : D~ --~ K ~ with u(0) = z*, such that a ~- pov is given by t = sO; 
c) for t E [0, e], z(t) E v(D~). 

Define the vector funct ion Z(s)  -- zov. It follows that that 

z(s% = Z(s)  

for s E [0, (5]. Since Z(s)  is holomorphic  on Ds ,  there is a convergent  power series 
expansion,  

O<3 

Z(s)  = ~ aks k on D~. 

k--O 

It remains  to prove the min imal i ty  property of  c. Assume that there exists a positive 
integer c t, a (st > 0, and a holomorphic  vector funct ion Z' (s  t) defined on D~,, and 
with 

z(s '~') = Zt(s  t) for s t E [0, (st]. 

We must  show that c t ~ c. 
To see this note that 

h =h  z ( J  r  t~ = 0 f o r s  tE[0,(5~].  

Thus h(Z~(s~), s t~') is identical ly 0 since it is holomorphic.  This shows that by making  

6 t smaller  we have that the image of  Dr ,  under  ~,t _ (Z~(st), s~C') lies on K t with 
L,'(0) = z*. The degree of  the composi t ion pK, oL, t at 0 is at least the degree of  the 

map PK' at z* = L't(0). Since the degree o f p K ,  o~ ,~ = s re' is c t, and the degree o f p K ,  
at z* is c, we have that c ~ >_ c. 

This  completes  the proof  of Theorem 1. 
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