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Abstract

Mechanisms of exceptional mobility, including both overconstrained mecha-
nisms and robots with self-motion, move with more degrees of freedom than
predicted by the Griibler-Kutzbach formulas. Although a number of such
cases are known, it is difficult to find new examples. This article explains
a geometric formulation, called a fiber product, that facilitates finding ex-
ceptional mechanisms using tools from numerical algebraic geometry. The
purpose of this article is to specialize the mathematical theory developed in
[1] to the realm of kinematics and to present simple planar, spherical, and
spatial examples that illustrate basic concepts. Although the formulation
is general, its application to more complicated mechanisms will require the
development of more refined solution techniques that exploit the symmetry
inherent in fiber products.

Keywords: kinematics, overconstrained mechanism, robot self-motion,
exceptional mobility, polynomial continuation, numerical algebraic
geometry

1. Introduction

Mechanisms of exceptional mobility move with more degrees of freedom
(DOFs) than the more general mechanisms in the same family. This in-
cludes both “overconstrained mechanisms” and cases of robot self-motion.
The concept of an overconstrained mechanism derives from the fact that
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when one writes loop equations in a straightforward manner, there appear
to be at least as many constraint equations as joint variables, so that one
might expect only isolated solutions or none at all. Accordingly, the Griibler-
Kutzbach and related formulas predict a mobility of zero or less, implying
that the mechanism is an immobile structure or that it cannot be assembled.
Yet, exceptional mechanisms do move because their loop equations are not in-
dependent. The more general phenomenon of exceptional mobility includes
mechanisms whose mobility as predicted by Griibler-Kutzbach formulas is
positive—so strictly speaking they are not overconstrained—but they move
with even more degrees of freedom than expected. In any of these cases, to
be exceptional, the geometric parameters of the links of the mechanism—Iink
lengths, link twists, and so on—must satisfy extra conditions. Moreover, an
exceptional family of mechanisms can contain subsets of mechanisms that
move with greater mobility than a general member, that is, there may be
exceptions within exceptions, forming a stratification of the original parent
family into sequentially smaller sets of increasing mobility.

Our treatment of exceptional mobility also applies to problems of robot
self-motion. Sometimes these directly correspond to an equivalent overcon-
strained mechanism. For example, the conditions wherein a 6R serial-link
robot can move its joints while holding its end-effector fixed in space corre-
sponds to a mobile 6R loop. Conversely, under certain conditions, a 6SPU
parallel-link robot (commonly called a Stewart-Gough platform) can move
even though its leg-lengths are held constant, which makes it equivalent to a
mobile 65U platform. More generally, viewing a robot as an n-DOF device
that relates configuration-space coordinates, such as joint angles, to opera-
tional space coordinates, such as end-effector location, an analyst may cast
any problem wherein the robot retains positive mobility while holding n coor-
dinates constant as a case of exceptional mobility. Furthermore, suppose we
designate m < n coordinates as parameters. If we hold those m parameters
constant at general values, the robot will still have n —m degrees of freedom.
However, there may exist settings of the m parameters where the robot has
more than n — m freedoms of motion. In such configurations, the robot can
be said to have exceptional mobility. Cases of this kind of exceptional mo-
bility are similar to cases of mobility for overconstrained mechanisms except
that now the set of parameters is expanded to include both link parameters
and the m specially designated coordinates.

There is a misconception held by some that overconstrained mechanisms
are useless because in practice, due to tolerances in manufacturing tech-



niques, one can never build a mechanism that exactly satisfies the algebraic
conditions for mobility. This is thought to imply that either the mecha-
nism will not move or that moving it will induce high internal forces that
will cause the device to fail. This misconception persists because there is a
nugget of truth behind it: a mechanism built near yet sufficiently far from the
conditions for mobility will be a structure whose closure equations have an
ill-conditioned Jacobian matrix, which implies that there exists a direction
(or directions) of motion that are weakly constrained. All that is necessary
for an overconstrained mechanism to move freely is that it is built accurately
enough that elasticity and joint clearances can absorb small misalignments.
After all, planar four-bars, the most commonly deployed class of mechanism,
are overconstrained 4R spatial mechanisms. If misalignments are greater
than the links and joints allow, then it is possible that applications of force
or torques in certain directions will cause large internal forces to be gener-
ated. Even so, accommodation for relatively large departures from the ideal
conditions can be designed into a mechanism, such as adding an elastic hinge
or replacing an R joint with an S joint having a small range of travel; com-
pliant mechanisms often rely on this phenomenon. Setting certain motion
variables to be fixed, as is done when analyzing robot self-motions, imposes
geometric constraints not enforced by physical links. As such, under non-
ideal conditions, this "fixed” geometry will deviate slightly in a real robot,
but the result is still a self-motion by practical measures.

For conciseness, in this paper, we will refer to mechanisms of exceptional
mobility as simply “exceptional mechanisms,” even though other types of ex-
ceptional behavior could be considered, such as exceptional multiplicity. For
example, a general 6R spatial loop assembles in at most 16 isolated struc-
tures, each one a nonsingular solution of the loop equations. A special 6R
spatial loop that assembles in a singular configuration, that is, in an isolated
solution with multiplicity at least 2, will be “shaky,” tending in practice to
allow small displacements but not a full motion curve. Such a mechanism
has exceptional multiplicity but not exceptional mobility, although one might
say that the mechanism has exceptional infinitesimal mobility. In this paper,
we consider only cases with true exceptional mobility, such as a 6R spatial
loop that has a full motion curve.

Exceptions occur when the parameters of a mechanism, such as its link
lengths, twists, and offsets, obey certain interrelationships. A familiar exam-
ple is that a 4R spatial loop has Griibler-Kutzbach mobility of —2, and yet
there exist three exceptional cases that move with 1-DOF, these being the



planar, spherical, and Bennett four-bars [2]. Griibler-Kutzbach formulas can
easily be corrected for planar and spherical mechanisms by changing the am-
bient displacement space, and by adopting the approach introduced by Hervé
3], one may correctly calculate mobility for mechanisms with sub-chains that
move in different displacement groups. Even so, examples such as the Bennett
four-bars elude the grasp of these formalisms and require more individualized
analyses. Because their existence seems so peculiar, such mechanisms have
sometimes been classified as “paradoxical” [4].

Although a thorough review of the known exceptional mechanisms is be-
yond the scope of this article, a few examples are illustrative. For single-loop
four-bar mechanisms, Bennett found his eponymous linkage in 1903 [2], De-
lassus showed in 1922 that for rotational joints, the only types of moveable
4R loops are planar, spherical, and Bennett [5], and Waldron expanded the
analysis to include the other lower-pair joints [6]. Exceptional five- and six-
bar spatial loops also exist [7, 8, 9, 10, 11], with further analysis in [12] and
a full classification of 5R loops in [13]. Planar cognate linkages, wherein two
different linkages reproduce the same motion, can be used to construct over-
constrained linkages by connecting them. Accordingly, two Roberts four-bar
cognates [14] can be connected to form a moveable seven-bar linkage (see Fig-
ure 1), and eleven-bar overconstrained linkages can be constructed with the
six-bar curve cognates cataloged by Dijksman [15]. In that vein, the general
approach in [16] for constructing planar cognates can generate a multitude
of examples. Another subject of study has been Stewart-Gough platforms
with self-motion [17, 18, 19, 20].

This article concerns going beyond the task of calculating the true mobil-
ity of a given mechanism to the harder task of characterizing what exceptions
exist within a given parameterized family of mechanisms. The predominant
approach in the kinematics community is to reduce the loop-closure con-
ditions for a structure, such as a general 6R spatial loop, to a univariate
polynomial and then study the conditions placed on the linkage parameters
for the coefficients to vanish [12], sometimes simplifying the problem by first
considering only the rotational part, SO(3), of SE(3) = R? x SO(3) [21].
Using computational symbolic algebra, one may reformulate this principle as
the vanishing of the initial forms of a Grobner basis [22, 23, 24] or a Dixon
determinant [25]. In this paper, we explain a more geometric approach,
amenable to the tools of numerical algebraic geometry, drawing heavily on
the developments reported in [1].

Numerical algebraic geometry comprises a family of techniques for solving
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systems of polynomial equations, including systems with positive-dimensional
solution sets and multiple components. To find exceptional mechanisms with
these tools, the key step is to use the loop closure equations of a parent family
to form a new system in which the exceptions, originally hidden inside the
parent family, are promoted to become their own irreducible solution compo-
nents. These then stand out independent of their parents so that numerical
algebraic geometry can find them. In principle, the formulation we present
can be applied iteratively to find exceptions within exceptions forming a tree
where each child moves with more degrees of freedom than its parent.

The purpose of this article is to translate the abstract developments in [1]
to the specific case of kinematics. This begins with more careful definitions
of mobility (Section 3) and exceptional mechanisms (Section 4), where the
definition of exceptionality is not based on noting where mobility formulas
fail but rather is given geometrically. By casting the problem as a geometric
one, we will see how that geometry can be probed by slicing (Section 5)
to find the exceptional sets. A key concept is a mathematical construction
called a fiber product, which we explain geometrically as the intersection
of projections. With this concept clarified, in Section 6, we describe the
tools from numerical algebraic geometry that can find families of exceptional
mechanisms given only the loop closure equations for the parent family. In
Section 7, the approach is illustrated on several simple examples. Section 8
discusses how mobility may differ between real and complex sets. We end
with a discussion (Section 9) of the further developments that will be needed
to bring more significant cases within practical computational limits.

2. Notation

We use the following definitions and notations. The more technical terms
among these are discussed further in subsequent sections.

R™, C" Real and complex n-dimensional Cartesian spaces

e Variables 6 that define configuration space ©, usually associ-
ated with a mechanism’s motion.

peP Parameters p belong to parameter space P, which consists of
the mechanism’s design parameters and possibly also includ-
ing a subset of a robot’s joint variables or operational space
coordinates.



f(0;p)
V(g())

V(f(0;p))

A polynomial system with variables # and parameters p.

The solution set of polynomial system g(z) : X — Y. That
is, V(9) = {z € X | g(x) = 0}. V(g) consists of one or several
irreducible components, i.e. algebraic subsets that cannot be
decomposed into a finite number of proper algebraic subsets.

The algebraic subset of © x P that consists of an entire family
of mechanisms and their motions.

V(f(0;p*)) The motion of a single mechanism p* € P.

A

dim, A

Some algebraic set, for example, an irreducible component
within © x P of V(f(0;p)).

The local dimension of A at point z. If z lies at the intersection
of several components of different dimension, dim, A is the
largest of these.

A projection map 7 : V(f) — P, that strips off the variables:
(0;p) — (p). ™! recovers the motion of the mechanism having
parameters p, hence 7! (p*) = V(f(6;p*)), also called the fiber
of V(f) over p*.

dimgs -y m*(p*) The local dimension of a mechanism with parameters

A

p* for a motion that includes #*. This is the mobility of the
mechanism in that assembly configuration.

When A is a constructible algebraic set (the result of a finite
number of Boolean operations involving algebraic sets), A is
the closure of A in complex space, which makes A an algebraic
set. This fills in “missing” points, for example, the projection
of V(zy — 1) onto z is all of the z-axis except = 0. Clo-
sure fills in this point. Projection followed by closure is the
geometric equivalent of algebraic elimination.

The “m-mobility set”, an algebraic set within © x P comprised
of the closure of the constructible set of all mechanisms and
their motion components that have mobility m. We wish to
study the sets Dy, as m varies.



b For irreducible set A € V(f(0;p)), b = dim(n(A)) is the base
dimension of A. For a general point (6*; p*) € A with mobility

m, m+ b = dim A.

Fi(61,...,0k;p) A polynomial system F, : ©F x P — C*, constructed
from k copies of f(6;p), k copies of the configuration space ©,
and a single copy of parameter space P. Fy(01,...,0kp) =
{f(01;p),..., [(Ox;p)}, is the k-th fiber product system.

Ly () A system of k linearly independent linear polynomials in x,
these being of the form L (z) = Cz+d where coefficient matrix
C and coefficient vector d are populated with random entries.
For shorthand, when more than one such system appears in
the same expression, we mean that each instance has its own
coefficients selected independently of the others.

G,(j”"”(el, .. .,0k;p) A polynomial system G,(j”‘“) . OF x P — CHrtm)+b,
constructed from k copies of f(6;;p), k linear systems Ly (6;),
and a single linear system Ly(p). G,(Cb’m) is called a k-th fiber
product sliced system.

I+ A The k-th fiber product of A with itself. For A € V(f(6;p)),
[1* A is an algebraic subset of V(Fy). Its projection onto pa-
rameter space is m (II*A) C P.

3. Definition of Mechanism Mobility

Before searching for mechanisms of exceptional mobility, we must sharply
define mobility.

Although the basic ideas could be generalized, we confine our discussion
to linkages having algebraic joint types, these being rotational (R), prismatic
(P), planar (E), spherical (S), and cylindrical (C), but excluding helical (H).
Given only a list of links and how they are connected by joints, one may
write loop closure equations in the form f(6;p) = 0, where 6 is an array
of joint variables, p is an array of link parameters, and f is a system of
polynomial equations. For example, one might adopt the Denavit-Hartenberg
(DH) formalism to write equations for the closure of the ¢-th loop involving



n links connected by rotational joints in the form

f((e;p) = Tl(gl;dlyalaal) o 'Tn(en; dnaanaan) —1I= 07
9:(617"‘70n)7 p:(dlaahalu"‘?dnaanaan)?

where 6; is the rotation angle of the i-th joint, and (d;, a;, ;) are the length,
offset, and twist of the i-th link. Then, an m-loop mechanism is modeled as

f0;p) ={f1(0;p), ..., fm(0;p)} =0,

where arrays 6 and p are expanded to include all the links and joints in the
multi-loop mechanism, and where some links and joints typically appear in
several loops. We note that in questions of robot self-motion, the parameters
p may include the operational space coordinates of the robot.

In the standard DH formalism, these equations are trigonometric, not
algebraic, but they can be converted to polynomials by replacing ¢; with the
pair (¢;,s;) = (cosb;,sin6;) and appending the polynomial ¢? 4+ s? — 1 to
the system. (A tangent-half-angle transformation could be used instead.) A
similar transformation applies to the twist angles, «;. For this paper, we
do not care what formalism is used to generate the equations, we only care
that they are algebraic. In fact, the DH formalism is often not the most
advantageous way to present equations for numerical computations.

Using the notation of Section 2, the algebraic set V(f) C © x P consists of
all members of a mechanism family along with their solution sets. For a given
mechanism, that is, for a point p* € P, the solution set V(f(6; p*) is empty if
the mechanism cannot be assembled; it is zero-dimensional if the mechanism
can be assembled but only as a rigid structure (or it can be assembled in
one of several such structures); it is one-dimensional if the mechanism moves
along a 1DOF motion curve; and so on for higher dimensions. For brevity,
we may refer to V(f(0;p*)) as the “motion” of mechanism p* even when
it assembles in a zero-dimensional rigid structure rather than a positive-
dimensional motion. The motion can always be decomposed into a union of
irreducible algebraic sets, which we will call “irreducible motions.” When
a mechanism has more than one irreducible motion, it is possible for two
of them to meet, at which point the mechanism can transfer from one to
the other, as in the example in [26]. If two irreducible motions of different
dimensions meet, the mechanism can be called a kinematotropic or variable-
DOF linkage [27, 28, 29], also related to metamorphic mechanisms [30].



Figure 1: A seven-bar linkage. In assembly configuration (a), the linkage has mobility 0
(rigid structure), whereas in assembly configuration (b), it moves with mobility 1 along
the dashed coupler curve. Two mobility 0 solutions occur at each of the three nodes of
the coupler curve.

We wish to equate the mobility of a mechanism to the dimension of its
solution set. But since the entire motion can have several irreducible motions
of different dimensions, it is more proper to speak of the mobility of the
individual irreducible motions rather than the mobility of the mechanism.
An example is the mechanism shown in Figure 1 formed by connecting the
coupler points of two four-bars that are Roberts cognates. The resulting
seven-bar linkage has seven irreducible motions. In one, the linkage moves
with 1DOF along the shared coupler curve of the four-bars. But since the
coupler curve has a real self-intersection point, the two four-bars can also be
connected in such a manner that the resulting seven-bar is a rigid structure,
because the component four-bars are positioned on different segments of the
coupler curve. With two such structures occurring at each of three crossing
points of the coupler curve, the seven-bar mechanism can be assembled as
either a mobility 1 linkage or as any one of six different mobility 0 structures.

Because a mechanism can have irreducible motions of different mobil-
ity, it is more proper to equate mobility to the local dimension at a point
(0*;p*), where 0* specifies an assembly configuration and, therefore, gener-
ally identifies a specific irreducible motion. If #* is a point where two or more
irreducible motions intersect, the local dimension, and by our definition the
mobility, is the largest dimension among those irreducibles.

So far we have used the term “dimension” relying on the reader’s familiar-
ity with that concept, but further investigation will be facilitated by defining
it more carefully. We start at dimension zero, where for g : C* — C™,



a solution point x € V(g) is isolated if it is the center of an open ball,
{z € C" |||z —z|| <r},r >0, that contains no other solution. This can be
checked by evaluating ¢ and its partial derivatives at = [31]. If the Jacobian
matrix of first partial derivatives of g evaluated at x has full column rank,
then x is an isolated nonsingular solution, while higher-order derivatives are
needed to confirm that a singular solution is isolated. If x is not isolated,
we can try to make it so by appending linear equations to g(z) of the form
wl(z — x) = 0, where w is a general vector in C". At worst g is the iden-
tically zero polynomial, in which case appending n general linear equations
isolates . This implies that there exists a smallest integer d, 0 < d < n,
such that appending d of these linear equations isolates z. Then, d is the
local dimension of V'(g) at z, written d = dim, V' (g). (If z has multiplicity 1,
then the associated vectors wq,...,wy form a basis for a local coordinate
chart on V' (g) in the neighborhood of x. This comports with the notion that
dimension is the number of coordinates needed to build a local chart at z.)
By this definition, one sees that if x happens to lie at the intersection of
several components, the local dimension at x is the largest dimension among
these components.

Numerical algebraic geometry depends on the foregoing definition of di-
mension. Given that we can build homotopies guaranteed to find all isolated
solutions of any polynomial system, d-dimensional solution components for
d > 0 are witnessed by finding the isolated solutions of system {g(z), L(2)},
where L(z) is a system of d general linear equations. A structure contain-
ing three elements—system g, slicing system L, and the witness point set
V(g, L)—is called a witness set for the d-dimensional component of V(g).
These can be further decomposed into irreducible components. A numerical
wrreducible decomposition algorithm tries all possible dimensions and com-
piles a list of witness sets, one for each irreducible component. A basic text
describing the main algorithms of the field is [32], which also documents
Bertini [33], one of the leading software implementations. Other software
implementations include HomotopyContinuation. j1 [34], NAG4M2 [35], and
PHCpack [36].

An irreducible decomposition of the loop equations f(6#;p*) gives the di-
mension and degree of each irreducible motion of the mechanism with pa-
rameters p*; the mobility of each irreducible motion is its dimension. For
a family of mechanisms, we may find the general behavior by choosing a
random example for p*. Solving over the complex numbers leverages the
algebraic closure of the complex number field to eliminate any concern that
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we will miss seeing an irreducible motion; we can even choose the test point,
p*, to be non-real. The number of irreducible motions and their mobilities in
complex space will be the same for almost all members of the family. How-
ever, we must keep in mind that although a degree n polynomial always has
n roots over the complex number field, the number of real roots varies as the
coefficients vary. In the same way, while irreducible motions always persist in
complex space, their intersection with the reals can disappear and reappear
as parameters are varied. We defer a more detailed consideration of this to
Section 8.

4. Definition of Exceptional Mechanisms

As we look across a whole family of mechanisms, that is, as we let p*
vary across the parameter space P, the decomposition of V(f(6;p*)) into
irreducible motions has the same structure for almost all p* € P, meaning
that there are the same number of irreducible motions of the same dimension
and degree. However, there may exist subsets of P where the decomposition
into irreducible motions has a different structure, and in particular, there
may exist points where there exists an irreducible motion of a dimension
larger than occurs in its general neighborhood. Such subsets are ezceptional
mechanisms.

While irreducible decomposition provides a complete mobility analysis of
a given mechanism, be it general or exceptional, it does not tell us where to
find exceptions. That job requires us to treat the parameters as variables
and build a system of polynomials whose irreducible components identify
with exceptional mechanisms. We will first illustrate basic concepts using
the systems shown in Figure 2. Although these are not mechanisms, they are
of the form f(6;p) and have easily understood solution sets. After discussing
the basic concepts, we will illustrate them again on simple mechanisms.

We begin with a careful definition of exceptionality, which is facilitated by
introducing the concepts of projections and their fibers. Given a mechanism
in an assembly configuration, (6;p) € V(f(0;p)), we define the projection
7w : V(f) = P by the map (0;p) — (p). So 7 just strips away the motion
and gives us the mechanism as described by its parameters. (This may seem
rather trivial, but it gives a precise way of writing basic principles.) The
inverse of 7, i.e., 7! : P — V/(f) reconstitutes the motion, and 7=*(p*) is
called the “fiber over p*.” For point p* € P, the fiber 771(p*) is empty if the
mechanism p* cannot be assembled, while for (6*; p*) € V(f) the mechanism
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f(0;a,b) = {ab, b0} f(6;a,b) =ab +b

5- D,
(X;0,0)

Figure 2: Two examples of a parameterized polynomial system f(0;a,b) which has a
unique point (a*,b*) € C? where V(f(6;a*,b*)) has exceptional dimension. In both cases,
the 1-dimensional exceptional set is the highlighted line D; = {(};0,0), A\ € C}. Dots on
Dy and D; are a mechanism in an assembly configuration, each of which 7 projects to a
corresponding point in the parameter plane below. (a) Exceptional set D; arises as an
irreducible component of V(f). (b) Exceptional set D; is embedded inside Dy.

satisfies the loop equations, so 7~ !(m(6*;p*)) is the entire motion of the
mechanism and dimgs,,«) 7 (7(6*; p*)) is the dimension (and therefore the
mobility) of the motion component of mechanism p* that (6*;p*) belongs to.
We can scan across all mechanisms in the family and, for each of these, pick
out the irreducible motions of a given mobility, m. The union of all these
mechanisms and their mobility m motions form the algebraic set

Dy, = {(97p> € V(f) | dim(@;p) 7T71(7T<0;p)) = m} (1>

The over-bar means closure in complex space, which fills in “missing” points
to make the set complete. Let us call D, the “m-mobility set” of the family
of mechanisms.

To clarify, the introduction of the projection and its inverse in defini-
tion (1) is necessary to associate mobility with the dimension of motion.
Mobility is not the local dimension dimg-.,+) V'(f(6;p)), because that dimen-
sion includes the freedom to move p in parameter space. Instead, mobility is
the dimension of an irreducible motion in the fiber over a specific mechanism
p*, and the m-mobility set Dy, is the union of all m-dimensional motions as
p* varies over P.

This concept is illustrated in Figure 2 for two systems: f(6;a,b) =
{ab, b0} and f(0;a,b) = af +b. (For purposes of illustration, we are not
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using actual loop equations here.) Two points in V(f) are marked, one with
general parameters and one with special parameters. For each of the systems,
if (a,b) have general values, then 6 is determined uniquely. One of the two
points marked in each figure is of this type, so it belongs to set Dy. The sec-
ond point in each case has the special parameter values (a, b) = (0,0), which
leaves 6 free to vary along a 1-dimensional motion. We see that in each case,
Dy is a 2-dimensional set that covers all of parameter space, whereas Dy is a
1-dimensional line over (a,b) = (0,0). Set closure just means that both D,
and D; contain the points where they intersect.

For any mechanism family f(6;p), there is a smallest mobility m,,;, such
that Dy, # 0. If there exists Dy # 0 for m > my;,, we may say that
members of Dy, have exceptional mobility. In some cases, like Figure 2(a),
Dy and D, are separate irreducible components, but in other cases, like
Figure 2(b), D; is embedded inside of Dy. For families with more parameters,
there may be more than two levels of exceptions, and so there also may be
exceptions embedded within exceptions, etc.

4.1. Base and Fiber Dimension

To review, point (0*;p*) € V(f) is a mechanism in an assembly con-
figuration. Then, 7(0*;p*) = p* is just the mechanism, and 7 1(p*) =
V(f(@;p),p — p*) is that mechanism’s entire motion, which may consist of
several irreducible motions, at least one of which includes the assembly con-
figuration 6*. Finally, Dy, is the union of all the irreducible motions of mo-
bility m taken across all the mechanisms in the family where those motions
exist.

Each set Dy, is an algebraic set, so it can be decomposed into irreducible
components. Suppose A is one of these irreducible components, and (6*; p*)
is a generic point of A. Then, AN V(p — p*) is the motion of mechanism
p* belonging to A, which by the definition of D, has mobility m. In the
parlance of algebraic geometry, A NV (p — p*) is the fiber over p* passing
through (6*; p*), and m is its fiber dimension. Meanwhile, m(A) is the subset
of mechanisms that all have this same irreducible motion. We may call
dim7(A) = b the base dimension of A. Combining the two measures, we
say that A has bi-dimension (b, m). Since every general point in A has fiber
dimension m, it is clear that these dimensions add, that is,

dimA =b +m. (2)
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In the examples of Figure 2, each Dy has base dimension b = 2 and mobility
m = 0, for a total dimension of 2, while each D; has base dimension b = 0
and mobility mob = 1, for a total dimension of 1. (In [1], the letters (b, h)
are used instead of (b,m). We use m here to emphasize that in the current
context it is equivalent to mobility.)

Suppose that A’ is an irreducible component of Dy, with base dimension
b’. If A" is a proper subset of A, A’ C A, then dim A’ < dim A. Because
mobility is an algebraic property, the principle of upper semicontinuity ap-
plies, and thus m’ > m, and in fact, m’ > m because that is the property that
distinguishes A’ from A. Altogether, using (2), we have that the possible
dimensions for A’ are the integers in the triangle given by the following three
inequalities

b +m' <b+m—-1, >0, m'>m+1. (3)

In particular, in Figure 2(b), we see that since Dy has base dimension b = 2,
the only possible size of an exceptional set contained within it is (b, m’) =
(0, 1), which is the case of Dy as shown. In fact, the above inequalities imply
that for any A" embedded inside A, the base dimensions obey

b <b-—2. (4)

Although it does not happen for the examples in Figure 2, in general it
would be possible for a set with bi-dimension (1,1) to exist, but since its
total dimension of 2 would be the same as the dimension of Dy, it could not
be contained inside Dy. Instead, it would be a separate component of D;.

5. Finding Witness Points by Structured Slicing

If an irreducible component of Dy, is also an irreducible component of
V'(f), then we can find it by performing an irreducible decomposition of V'( f).
Recall from Section 3 that the standard way of doing that is to append d
linear equations to system f and solve that augmented system to find witness
points on d-dimensional components of V(f).

For conciseness, let’s denote by Li(z) a set of k general linear equations
in the variables of x. So if x € C", then Li(z) = Cx + d, where C is a
k x n matrix, d is k x 1, and the entries of C' and d are chosen at random.
Geometrically, since a random matrix has full rank (with probability 1), the
solution set V(L (x)) is an affine linear space of dimension n— k. In practice,
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the entries in C, d will be complex numbers of approximately magnitude 1,
picked using a random number generator with as many digits as the numerical
precision used in computations. For illustration in this article, we use real
numbers with just a few digits.

For an irreducible component, say A, of D, with base dimension b and
mobility m, we know that intersecting A with the solution sets of m linear
equations in just €, say system L,(f) and b linear equations in just p, say
Ly(p), will result in isolated points: dim(A NV (Lw(8)) NV (Ls(p))) = 0. If
A is also an irreducible component of V(f), then these points are also iso-
lated points in V (f(6;p), Lu(6), Lo(p)). Because we target the bi-dimension
(b,m) directly, this is a more focused way of finding A than targeting its
total dimension using V( f(O;p), Lorm(6; p)) Similar to the way a standard
irreducible decomposition algorithm steps through all possible dimensions,
an algorithm can step through all possible combinations of (b, m) to find all
sets Dy, that are irreducible components of V'(f).

As an example, consider again Figure 2(a), where both Dy and D; are
irreducible components of V' (af,b0). We find Dy by solving a system of
the form {a#, b0, Lo(a,b)}. Since Lo(a,b) picks out a generic, and therefore
nonzero, point in parameter space, say (a,b) = (a*,b*), we obtain (0;a,b) =
(0;a*,b*) as a witness point for Dy. We find D; by solving {af,00, £,(0)},
that is, by solving {af,b0,0 — 6*} where 6* is just a generic value nonzero
value. Consequently, we obtain (0*;0,0) as a witness point. Notice that a
search for a set of bi-dimension (b, m) = (1, 1) will come up empty.

The system f = af + b illustrated in Figure 2(b) presents a different
situation, because D; is embedded inside Dy. Searching for a set of bi-
dimension (b, m) = (2,0) works as before to give a witness point of the form
(—=b*/a*;a*,b*), where (a*,b*) is a generic point in parameter space. But a
slice searching for solutions of bi-dimension (b, m) = (0,1) would solve the
system {af + b, L1(6)}, whose solution is just the line {§ = 6*,a6* + b = 0}
for a generic value of #*. That line intersects D; in a single point, but the
system {af + b, L1(0)} does not single it out. In that sense, D; is “hidden”
inside Dy. We need to impose more conditions to distinguish D; from Dy,
and this will always be the case for embedded exceptional sets.

6. Finding Embedded Exceptional Sets

When an exceptional set, say A’, is embedded inside another irreducible
component, say A, of V(f), a single slice of V(f) doesn’t isolate A’. We need
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to form a new system that promotes A’ to irreducibility so that slicing will
isolate points on it. Fortunately, the theory in [1] tells us a way to do so: use
a so-called fiber product formulation. In place of f(0;p) : © x P — C", we
form the “doubled-up” system

F,:Ox0 x P —C™, Fy(01,00;p) = {f(01;p), f(O2;p)}. (5)

In fact, in some cases, we will need to go further to use a k-th fiber product
system:

F,: ©F x P — C*, Fp(01, ..., 0k;0) = {f(01;p), ..., f(Or;p)}.  (6)

[In this notation, Fi(61;p) = f(0;p).]

On the face of it, (5) doesn’t seem like it accomplishes much, but consider
what happens in the case of Figure 2(b) when we slice V' (F3) to find sets of
bi-dimension (b, m). We now have two copies of configuration space, and so
we need to slice both of these with m general linear equations. Consequently,
to find Dy, which has (b,m) = (0,1), we will solve the system

{afy +b, 6, — a, aby +b, 0, — B}

where a and [ are generic values. The result is shown in Figure 3 for a =
3,8 = —2.5, which has the solution (6,62;a,b) = (3,—2.5;0,0). As the
figure indicates, we may think of the fiber product as intersecting projections
onto parameter space of slices of the surface, that is, computing W(V(a91 +
b, 0, — 3)) N W(V(aﬁg + 0,05 + 2.5)), to get the exceptional parameter point
(a,b) = (0,0). It is a bit more than this though, because we also get two
witness points on Dy, the points (3;0,0) and (—2.5;0,0).

The general idea, then, is to search for a set of bi-dimension (b, m) by
slicing the fiber product system Fy, from (6), using a system Ly(p) to slice the
base and an independent system Ly (6;), ¢ = 1,...,k in each fiber direction:

Gl(cb’m) Ok x P (Ck(n—&-m)—i-b’
G’(:'vm)(eb s 70/€7p) - {[(f(gzap)7 Lm(81>)7z = 17 R k} ) Eb(p>}

It is to be understood that each appearance of a linear system £,;(z) = Cz+d
is composed using a different choice of general C',d. The case illustrated in
Figure 3 corresponds to solving Ggo’l).

The fiber product is not just a trick that happens to work on the example
f = af +b; it works in general. This can be seen using the growth-rate argu-
ment from [1]. A bit of notation helps explain it. Note that the existence of

(7)
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Figure 3: Surface V(a6 + b) sliced twice in a fiber product that reveals D;.

aset A C (V(f)) of bi-dimension (b, m) implies that there is a corresponding
set of multi-dimension

k times

in V(F},). Following [1], this descendant of A is denoted II*A C ©% x P, and
its projection onto parameter space is g (HkA) C P.

The growth-rate argument notes that under the k-th fiber-product con-
struction, set A C V(F) with bi-dimension (b, m) and hence total dimension
b + m, engenders a set [I*A C V(F},)) with total dimension b + km. This
means that if A’ has bi-dimension (b’,m’) and A has bi-dimension (b, m),
with m’ > m, then as k increases, A’ gives birth to a set II¥A’ whose total
dimension grows faster than that of IT*A. If A’ is embedded in A as a solu-
tion of V(f), at some point the total dimension of IT* A’ will equal or exceed
that of II*A | so it can no longer be wholly contained therein. The value of
k where ITF A’ becomes too big for IT* A to contain it occurs when

' +km'>b+km, ie, k> (b—1b)/(m—m). (8)

The worst case occurs when b’ = 0 and m’ = m + 1, so that we may need
to deal with V(F}y). This is the case for Dy C Dy in Figure 3, where b’ = 0,
b =2, and k = 2 suffices to find D;.

One can think of this another way, using Figure 3 for inspiration. Each
subsystem (f(6;;p), Ln(6;)) constrains p to a subset of P, and if a set of
mobility m exists, its projection on P will be in that set. Intersecting enough
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of these projections will eventually cut out a set of dimension b corresponding
to a b-dimensional subfamily of mechanisms that all have at least one motion
of mobility m. The linear system Ly(p) cuts out witness points on this set.
While this can be a useful image for intuitive understanding, it is the growth
argument that proves the procedure works and gives us a bound on the order,
k, where irreducibility is achieved.

Although the growth argument gives a bound on k, this is just an upper
bound; the first value of k that causes II* A’ to break free from IT* A may be
less than the & given in (8). Another consideration is that it is possible that
A’ is embedded inside more than one set. Even so, there is still a smallest &
where ITF A’ is no longer contained in any set with lower mobility, at which
point we may say that A’ has been promoted to irreducibility.

7. Application to Exceptional Mechanisms

The systems in Figure 2 are not loop equations for a mechanism—they
were chosen for easy visualization. In this section, we present several illus-
trative examples from kinematics.

7.1. 2R Robot Self-motion

Consider the 2R planar robot of Figure 4(a). As is well known, for general
(x,y), this robot has two inverse kinematics solutions, but for the special case
ly = Uy with (z,y) = (0,0), it has a self-motion. These cases are illustrated
in Figure 4(b,c), where angle 6, is plotted versus (z,y).

Let’s consider two versions of the RR self-motion problem: (a) case ¢; =
(5, and (b) case f1,0; general. In case (a), we know a self-motion exists,
and we want to illustrate how the method finds it. In case (b), there is no
self-motion in general, so we wish to discover the condition for one to exist.
Case (a) is easy to illustrate graphically, while case (b) represents the kind
of search one would undertake when trying to find a new kind of exceptional
mechanism or self-motion.

Using a complex-plane formulation of planar kinematics, the loop equa-
tion for the RR robot is

f(01,09; 01, by, 2, y) = 016" + £5e"92 — (v +iy) = 0. (9)

We note that here, as in any study of self-motion, the operational space
coordinates, (z,y), of the robot are considered parameters. We intend to
search for cases where the robot moves while holding its endpoint in place.
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(b) (£1,¢2) = (1,0.8) (c) (f1,42) = (1,1),

Figure 4: RR planar robot (a) and motion surfaces (b,c).
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It is clear that the scale of the mechanism doesn’t matter, so we may
arbitrarily set ¢; = 1, taking note that this eliminates the degenerate case
of /1 = 0. To convert f into a polynomial system, we switch to an isotropic
formulation [37] in which for j = 1,2, §; = ¢’ and §; = ¢~ and consider
f and its complex conjugate to form the system

Ql + 52@2 — (v +iy)

o 01 + EQ@Q - (I — Zy)
f= 0.0, — 1
020, — 1

(10)

When we slice V(f) to find a self-motion with mobility m = 1, we assert
that a self-motion where ©; is stationary while ©; moves is uninteresting,
so a slice of the self-motion is equivalent to setting ©; equal to a general
value, say ©1; in the j-th slice. (This move is not necessary for the method
to succeed, as we could solve the problem using a general slice of the form
L1(01,01,0,,0,). We use the special slice ©; = ©1,; to simplify our graphical
illustration.) The result is that for the j-th fiber product, we consider systems

of the form .
011 + Uy j — (x + 1y)

gi(dj;p) = €01 + lobaj — (x —iy) o, (11)
QQJHQJ' -1
where O ; is set equal to a random constant, and ¢; = (6a;,62;), p =

(b9, z,y). [We drop the polynomial §;6; — 1 present in (10), because it is
always satisfied when we specify angle ©; to form (11).] Then, to search for
a self-motion with bi-dimension (b, 1), we consider systems of the form

GV = {g1(é1:p), - -, 9(01:p), Lo(p)}- (12)

7.1.1. Case t; = ¥

In this case, we set fo = 1, and parameter space is (z,y) € C?. For
general (z,y), V(f) is two isolated points, that is, a vertical line through a
general point (z,y) pierces the surface in two isolated points, as shown in
Figure 5(a). As (z,y) vary, this sweeps out the 2-dimensional surface D
whose general points have mobility m = 0.

To search for self-motions of mobility m = 1, we consider V(g;). This
is the slice of a horizontal plane through the surface of Figure 4(c), which
gives a circle in (z,y) as O, turns, as illustrated in Figure 5(b). The case
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Figure 5: Slices of the 2R robot’s solution manifold, case 5 = 1.
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(b,m) = (1,1) solves V(Ggl’l)), which slices this circle with a vertical plane
general in (z,y)-coordinates to get two points. When considered as solutions
to V(f) with ({3, x,y) held constant, one finds that these points are isolated
in (01,0,), that is, they do not have self-motion. Thus, we find that there
is no self-motion of bi-dimension (b, m) = (1,1).

Proceeding to search for self-motions of bi-dimension (b, m) = (0, 1), we

solve V(Ggo’l)). This has no slices in parameter space; instead, it intersects
the projections of two circles in the base coordinates to get two isolated
points, as shown in Figure 5(c). One of these has mobility 0, while the one
with (z,y) = (0,0) has mobility 1. This is the self-motion, set D; with
bi-dimension (b, m) = (0, 1) embedded inside Dj.
Notice that Ggo’l) = (0 is a necessary condition for isolating witness points
on a self-motion of bi-dimension (b, m) = (0, 1), but it is not sufficient; we
have to test the mobility of the sample points we obtain. Doing so, one
of the sample points turns out to be a false solution point, meaning it has
mobility 0, while the second point turns out to be a true self-motion.

7.1.2. Case general {

In the previous case, we set ¢, = 1, knowing that this would give a self-
motion. Now we consider letting /5 be general, and show that we can find the
exceptional case where self-motion occurs. With a 3-dimensional parameter
space, (3, x,y), we cannot easily plot results, but we can report the outcome
of computations.

Since system G,(f’l) has 3k 4+ b equations in 2k + 3 unknowns,

(¢17 .. 7¢k>p) = ((92,j7é2,j>7j = 17 . '7k;€27$7y)7

we need to consider £k > 3 — b to slice out isolated points on a set of bi-
dimension (b, m) = (b, 1). When solving system G,(:’l) using Bertini [33], we
put each of 05 ; and 0y ;, j = 1,..., k, in its own variable group and {f, z,y}}
in another variable group. The resulting (2k + 1)-homogeneous homotopies
solve the k-order fiber product with the fewest number of homotopy paths.
For b = 2, Bertini tracks 2 homotopy paths to find that V(Gf’l)) has 2
isolated points. Both have mobility 0, showing that there is no mobility 1 set
with base dimension 2. For b = 1, system Gél’l) is solved by tracking 4 paths,
again finding 2 isolated points with mobility 0. Finally, for b = 0, we solve
Ggl’l) by tracking 8 paths and obtain 2 isolated points. The projection of
these points onto parameter space gives (¢o, x,y) = (£1,0,0), both of which
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are mobility 1. We have found the self-motion condition: ¢, = £¢;. Of
course, if we restrict length to be positive, only one of these counts, but our
polynomial formulation of the problem could not account for an inequality,
£2 >0.

7.2. A Seven-Link Mechanism

Figures 6(a,c) show a seven-link planar mechanism and a variable com-
pliance device derived from it. The linkage has five passive R joints and two
active slider inputs, ¢ and s. For general (g, s), the linkage has only isolated
roots, meaning that it assembles as a rigid structure. But as we know from
the 2R robot analysis above, we expect that if links 1 and 4 have equal length,
say {1 = ¢4 = 1, then for some settings of (g, s), the device will become one
that has a self-motion. By adding the spring shown in Figure 6(c), the device
becomes one that progressively transforms from very stiff to very soft as the
linkage structure approaches a self-motion configuration. For this exercise,
we will assume that links 2 and 3 have equal length ¢ and the sliders are
located distance h above and below the ground pivot of link 1.

Although the device was designed knowing the self-motion characteristic
of a 2R robot, it is illustrative to see how the fiber product reveals this. The
two loop equations of the device can be written as

f— {€i®1 + (ei®2 4 101 _ (q+ zh)}

€1 4 (e®3 4 101 — (5 —ih) (13)

These equations can be converted to a polynomial system in a similar manner
as we used to convert the 2R robot loop equation in (9), from exponential
form to polynomial form in (10). For brevity, we do not write out the details.
With ¢ and h given and ©; set to a constant slicing value, the resulting
system has 7 equations in 8 unknowns, (¢;p) = (02, 0,03, 05, 04,04; ¢, 5). The
7 equations come from f and its conjugate plus 3 unit length conditions
0,0, —1,j=2,3,4.

Figure 6(b) shows the four assembly configurations of the device for gen-
eral (¢,s). As (q,s) vary over R?, these four solutions sweep out a 4-sheeted
surface of (01, 04, O3, 0,) versus (g, s). Figure 7(a) shows this surface in 3D
by projecting it to cos ©; versus (gq,s). This is the mobility 0 surface Dy.
Embedded inside Dy is Dy, consisting of four self-motions, which appear as
red vertical lines in Figure 7(a).

We can find the mobility 1 self-motions by slicing Dy at two general values
of ©1, and intersecting the projections of these two curves in the (z, y)-plane.
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Figure 6: A seven-link mechanism: (a) kinematic sketch with two slider inputs, (b) four
assembly configurations for general (g, s), (¢) a derivative device with variable compliance.
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Figure 7: (a) Seven-link surface, Dy, with embedded curves, D;, and (b) revealing self-
motions Dy by intersecting projections of slices of Dy.

Figure 7(b) shows this projection by itself, with the four self-motion points
highlighted. One may notice that there are additional intersections of the
two curves that are points having mobility 0 instead of 1.

7.8. Gimbal Lock

Consider the serial spherical 3R gimbal, often used as the 3R wrist of
a serial-link robot. For most orientations of the third link, there are two
isolated solutions of the inverse kinematics problem. This means that D,
is a set of bi-dimension (3,0). Gimbal lock occurs when the wrist has a
self-motion while the orientation of the third link remains stationary.

We may formulate kinematic equations starting from a reference config-
uration with axis 1 aligned with & = [1,0, 0], axis 2 aligned with y = [0, 1, 0],
and axis 3 aligned with 2 = [0,0, 1]. Defining [R(s, ¢)] as a rotation matrix
about axis s and by angle ¢, the orientation of the last link is

[R(z,9)][R(y,¥)|[R(2,0)] = [Q], (14)
q% +q — ¢ — q% 2(¢142 — 90453) 2(q1q3 + 9092)
[Q] = 2(611612 + 610613) qg - Q% + q% - Q§ 2(Q2Q3 - QOQ1) ) (15)
2(¢193 — 9092) 2(qs +9001) @ -G -G+ a4
9= +a+a+¢G—1=0, (16)

where (¢,1,60) are X-Y-Z Euler angles, and ¢ = (qo, q1,¢2,q3) is a unit
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Figure 8: A spherical gimbal

quaternion representation of orientation. We wish to find the exceptional set
where the Euler angles move while the quaternion is held constant.
As a first step, we eliminate 6 from (14) by multiplying both sides by Z:

[R(z, @)I[R(9, )12 = [QlZ,

which with (15) and the substitutions ¢, = cos¢, sy = sin¢, ¢, = cos,
sy = sin 1) expands to the system

Sy 2(q193 + 9092)
—S¢Cy | — 2(Q2CI3 - QOQ1)
fx9) =9 Leocw %—a—6+a] =0, (17)
C¢2 + S¢2 -1
C¢2 —+ Sqf —1

where z = (cy, S¢, Cp, Sy). We require the quaternion ¢ to be unit length, so
the system of interest is { f(z;q), 9(q)}.

For a general unit quaternion ¢* € V' (g), V(f(¢,;q*)) is a pair of non-
singular points, so Dg is bi-dimension (3,0). An irreducible decomposition
shows that there are no other 3-dimensional components in V(f,g). This
implies that any exceptional sets must be embedded inside Dy and can be
no more than 2-dimensional. To search for gimbal lock configurations, where
mobility is 1, we start by checking for sets of bi-dimension (1, 1). Accordingly,
the system to solve is

GV f (), La(@), f(@039), La(22), 9(q), L1(q)}- (18)

26



This is a system of 14 polynomials in 12 variables, nevertheless it is self-
consistent and has 32 isolated solutions, all nonsingular. Checking the rank
of the Jacobian matrix at each of these shows that 16 have zero-dimensional
fibers, meaning that they are not samples on self-motion curves. The re-
maining 16 split into two groups of 8 solutions, as follows:

Typel: ¢y =cypy =0, spy=5p,=1, Q=0  «a=g.
Type 2: ¢y =cyy =0, Sy, =Sy, =—1, @=—-¢, ¢@=—g.

These correspond to the known gimbal lock configurations where ¢ = +90°.
The 8 solutions in each type are distinct, as they have different values for
¢ and the quaternion g. The values obtained are determined by the slicing
linears, so these will change if one chooses different coefficients in £(z1),
Li(xq), or L1(q), but the conditions defining the two types of solutions will
persist.

The interpretation of the two types of solutions is clear. Each places
two conditions on ¢, resulting in a 1-dimensional set of orientations in the
base. These are the orientations where the third joint axis of the gimbal is
either parallel or antiparallel to the first. For each such orientation, there is
a solution set of mobility 1 for (¢, ), 0) wherein 1) stays fixed at £90° while
¢ and @ rotate in opposite directions to keep the final orientation constant.
Accordingly, these two sets each have bi-dimension (b, m) = (1, 1).

Note that in this example, we sliced configuration space using general lin-
ears instead of setting an angle to a general value, as we did in the previous
examples. If we had chosen to slice configuration space by picking general
values of ¢, we would find the same results using fewer solution paths. How-
ever, note that if we had tried to look for exceptions by choosing general
values of 1) instead, we would miss the exceptions, which only happen at
1 = £90°. This demonstrates that if one chooses to simplify by slicing in
a subset of the joint variables instead of using general slices, then one must
take care to make sure that all the cases of interest move with the targeted
mobility in that subspace.

7.4. A Subfamily of 6R Loops

Finally, we consider a spatial example. Consider the subfamily of spatial
6R loops wherein all link offsets are zero and the links alternate between
two geometries. That is, the odd links have length L, and twist angle oy,
while the even links have length L, and twist angle ay. For treatments of
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mobility for general 6R loops, see [12, 38] and their references. We present
our treatment of this more limited subfamily as an illustration of how more
advanced techniques from numerical algebraic geometry, in this case, the
diagonal intersection algorithm, can help address harder problems than we
have presented so far.

Excluding cases where successive joint axes are parallel, so that sina; # 0
and sinas # 0, we can model the mechanism using as variables the unit
vectors along the joint axes [39]:

z; =[0,0,1], 2z =[0,— sinas, cosas), (19)
Z;7Z; = ]., 1= 2, 3,4, 5, (20)
Zi Z;j1 =cosay, 1=1,3,5, (21)
Zi - Zit1 = COSQn, 1=24 (22)
Ll L2
Z (Sin al) Z; X Zij11 + Z (Sin 012) Z; X Zjy1 = 0. (23)

i=1,35 i=2,4,6

The last of these is a sum of position vectors around the loop, so it corre-
sponds to 3 scalar equations. When the link parameters are given, z; and
zg are determined by (19), and the remaining equations are a system of 12
equations in 12 variables, these being the 3 entries in each of the joint vec-
tors zs, 23, Z4, Z5. One may confirm that for general parameters Ly, oy, Lo, o,
there are 16 nonsingular solutions, the same as for a completely general 6R
loop. We aim to find exceptional members of this subfamily having mobil-
ity 1.

Suppose that there exists a mobility 1 exceptional set for general values
of ap. Then, picking a random value of ay, z; and zg are determined by (19),
and we study the solution set of (20-23). To proceed, it helps to rewrite (23)
as

. L1 sin Q9

Z TZi X Ziy1 + Z sin a1 z; X Zit1 = O’ e — (24)

. . L,
i=1,3,5 i=2,4,6

Finally, to make the system polynomial, we may make the substitutions
Cay = cosay and S,, = sinay and append the trigonometric identity

9(Cays Say) = cil + sil —1=0. (25)

For brevity, we do not rewrite the system.
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The motion variables are x = (zy,23,24,25) € C'? and the parameters
are p = (T, Cays Say ). The system f(z;p) consists of 12 equations (20-22,24),
and p is restricted to the unit circle condition (25), i.e., p € V(g) C C3. The
set of immobile loops, Dy, has bi-dimension (2,0), and we wish to search for
loops with mobility 1, i.e., D;.

Let us begin by checking whether D; has any components with bi-dimension
(1,1). Such a set cannot be embedded inside Dy, because the total dimen-
sions are the same, but it might exist as a separate component. To check,
we could solve

GV = {f(ap), L1(2), 9(p), L1(p)} (26)

which is a system of 15 polynomials in 15 unknowns. However, we may
simplify by using the observation that we are only interested in motions
where all joints must move, because if any one of them is constant, the result
is essentially a 5R mechanism. Accordingly, rather than taking a general
linear slice, £1(x), we slice in the motion variables by specifying a random
value for the first joint angle, #,, and evaluate z, using the equation

Zy = [sin 6184, — €08(61)Say, Cas |- (27)

This automatically satisfies one equation in each of (20) and (21). Accord-
ingly, we may drop those two equations from f, to get a new system that we
still call G{"Y with variables re-cast as x = (61, z3, 24, 25) € C10:

GV (@) = {F(@:p), 9(p), 61 — 51, L1(p)}, (28)

where s; is a random value. This system of 12 polynomials in 12 variables
has total degree 2733 = 3456, but a 3-homogenous formulation reduces the
number of paths to track to 992. Solving this system gives 56 nonsingular
solutions, and 4 singular ones. The singular ones have s,, = 0; these extra-
neous roots are the result of clearing s,, from the denominator in going from
(23) to (24). For the nonsingular roots, a check of the rank of the Jacobian
matrix shows that they all have zero mobility. Thus, there are no solution
sets of bi-dimension (1,1).
To find exceptional sets of bi-dimension (0, 1), one solves

Gg)’l) = {f(z1;p), 011 — s1, f(22;p), 012 — 52, (D)}, (29)

where both s; and sy are random values, and 6, 1,0, 2 are the instances of
0, in the two copies of f, respectively. Stacking up two copies of f to form
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this fiber product significantly increases the number of paths to track. The
total degree of this system is 2(2°3%)% = 5,971,968. As this is rather large,
rather than solving it all at once, we can use a more advanced method, called

diagonal homotopy [40]. The solutions V/ (G§1’1)> are a pseudo-witness set for

the projection onto P of V. ({f(x,01;p), 01 —s1,9(p)}) [41], so the intersection
of two such projections can be computed by moving their slicing linears
appropriately, as follows.

1. Let S; be the 56 nonsingular solutions of V(Ggl’l) ), previously com-
puted.
2. Track the paths starting at (z;p) € S in the homotopy

G sp) =0, 0=t + (11

as t goes from 1 to 0. This produces S5, a set of 56 nonsingular solutions
with 0; = ss.
3. Let Siy» be the set S; x Sy consisting of the 562 points

Sixz = {(x1,p1,22,p2) | (x1,01) € S1, (22, p2) € Sa}.

4. Track the paths starting at S« for the homotopy

f(ﬂfl;pl), 91,1 - 81,9(191)
I 1) = f(x2;p2), 012 — 52, 9(p2)
Z1,P1, T2, P2, - tﬁgl)(pl) + (1 _ t)(?”l _ TQ) ’

tLY (p2) + (1 = ) (Cary — Caya)

as ¢ goes from 1 to 0. Here, £ (p) and £{?(p) are the slicing linears
that were used in solving the two instances of Ggl’l .

At the completion of Step 4, we have forced ry = 73 and c,, , = ¢4, ,. Due to
the presence of g(p;) and g(p) in the homotopy, this also forces so, , = %54, ,-
The ones with s,,, = S4,, are valid, and the others are discarded. This
leaves 663 points in the intersection. A test of the rank of the Jacobian
matrix reduces these to 184 that have mobility 1. These are witness points
for the components of D;.

A full analysis of the 184 points is out of scope for this article. Suffice it
to say that they appear in several symmetry groups. All the points in one of
these groups has parameters that obey the relations r = —s,,, s4, = —sin as,
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Figure 9: A spatial 6R closed-loop mechanism with mobility 1. Traveling clockwise around
the loop, red links have positive twist s and blue links have negative twist a; = —awo.

which implies that L; = L,. Hence, we have 6R linkages with mobility 1
in which all the link lengths are equal, all the joint offsets are zero, and
the twist angles of the odd links are the negatives of the twist angles of
the even links. In the terminology of [42], this is a “Bennett-based” 6R
overconstrained mechanism. Figure 9 shows one such linkage in one of its
assembly configurations.

8. Complex vs. Real

Although in applications only real joint angles and link parameters are
meaningful, when solving polynomial systems, it is convenient to allow the
variables to take complex number values. Since C is algebraically closed, this
allows us to bring the full power of algebraic geometry to bear. However, this
move comes with a caveat concerning the dimension of the sets we compute.

In all the examples presented in this paper, the dimensions of an algebraic
set in complex space and its dimension as a set in real space are the same.
This is because in algebraic geometry, we define dimension in both cases by
the number of independent coordinates required to specify a local patch of
the set. Since each complex coordinate has a real and an imaginary part,
an n-dimensional algebraic set in complex space, say A C C™, m > n, is
2n-real-dimensional. Ordinarily, if its subset of real points, A N R™, is not
empty, that subset forms an n-real-dimensional set. The caveat is that the
dimension of the set of real points could be smaller than n if their multiplicity
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is higher. This is the borderline case where A touches R™ tangentially.

An illustrative example is V(22 + 3? — a) C C2. In complex space, this
is always a one-dimensional curve. For a > 0, its real part is also one-
dimensional, a circle. For a < 0, the real part is empty. For the borderline
case of a = 0, the complex curve factors into two lines, V' (z+iy) and V (z—iy).
These touch the reals at just the point (z,y) = (0,0), so the real part is zero-
dimensional. But while general points of V(z? 4+ y?) C C? are nonsingular,
the real point (0,0) lies at the intersection of the two lines and is singular
with multiplicity 2.

This phenomenon has two implications for our method of searching for
sets of exceptional mobility. First, after finding a mobility m > 1 set in
complex space, one should check whether it contains real points or if instead
the real subset is empty. Second, to find all sets with real mobility, say
mgyk, it may be necessary to consider complex sets with mobility m > mg.
When real mobility is lower than complex mobility, the real set is singular.
The difference in mobility consists of extra infinitesimal “shaky” degrees of
freedom. If such shakiness is not of interest, one can dispense with the extra
work of searching for complex sets of mobility m > mg.

9. Discussion and Future Work

We have discussed how mechanisms of exceptional mobility can be found
by solving fiber product systems using numerical algebraic geometry, and
shown this in action on planar, spherical and spatial cases. Geometrically,
to hunt for mechanisms of mobility m, we slice the motion variables with m
independent linear equations and project that slice onto the parameter space.
If a subfamily of mobility m exists, it will lie somewhere in the projection.
Repeating this gives multiple projections that all contain the sought-after
subfamily, which is then revealed by intersecting the projections.

It is simple to formulate the fiber product systems as multiple copies of
the loop equations along with extra linear equations that perform the slicing.
After forming such a system, one may apply a program like Bertini to solve
the resulting polynomial system using numerical homotopy methods.

The naive approach of stacking up multiple copies of a polynomial system
gives a fiber product system with a total degree that grows exponentially.
Without further innovations, this rapid growth is a barrier to computing
exceptional sets for complex mechanisms. However, as our treatment of a
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subfamily of 6R spatial loops illustrates, the naive approach can be improved
upon by using the diagonal homotopy technique.

In the examples presented herein, we did not consider any cases where a
fiber product beyond order 2 was required. Deeper exploration into larger
parameter spaces will require the development of algorithms customized
specifically for solving higher-order fiber products. The key to progress will
likely hinge on taking advantage of symmetries, noting, for example, that if
(21, z2;p) is a point in the solution set of a second fiber product system, then
0 is (z2,x1;p). In higher-order fiber products, the full symmetry group of
all permutations holds. The exploitation of symmetry is planned for future
work. Meanwhile, the technique already has promise for finding mechanisms
of exceptional mobility that are not embedded too deeply in their parameter
spaces.

The purpose of this article has been to lay the groundwork for future
endeavors by showing how mechanisms of exceptional mobility can be for-
mulated using concepts from algebraic geometry, and in particular, how a
fiber product formulation can help expose sets of exceptional mobility that
are embedded inside sets of lower mobility.
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