Worksheet 10

Claudiu Raicu

October 5, 2009

Determine whether the series converges or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^7+n^2}}.$$
 2.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}.$$

$$2. \quad \sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$

$$3. \quad \sum_{n=1}^{\infty} \tan\left(\frac{1}{n^2 + 3n + 4}\right).$$

- 4. Show that if $a_n > 0$ and $\lim_{n \to \infty} na_n \neq 0$, then $\sum a_n$ is divergent.
- Show that if $a_n > 0$ and $\sum a_n$ is convergent, then $\sum \ln(1 + a_n)$ is convergent.
- Show that if $a_n > 0$ and $\sum a_n$ is convergent, then $\sum \sin(a_n)$ is convergent.
- 7. If $\sum a_n$ and $\sum b_n$ are both convergent series with positive terms, is it true that $\sum a_n b_n$ is also convergent?
- 8. (Cauchy condensation test) If $\{a_n\}$ is a monotone decreasing sequence, then $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges.
- 9. Use the Cauchy condensation test to determine the values of p for which

$$\sum_{n=3}^{\infty} \frac{1}{n \ln(n) (\ln(\ln(n)))^p}$$

is convergent.