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Part 1

Basic topics






CHAPTER 1

Covering spaces: definitions and basic examples

Our first main topic is the theory of covering spaces. This chapter contains some basic definitions
and a large number of examples. A first-time reader might be tempted to skip the examples and
focus on the theory. This would be a mistake. The richness of the examples is what gives this subject
its flavor, and it is impossible to understand the theoretical aspects of covering spaces without having
absorbed a large store of these examples.

1.1. Definition and examples

Recall that a local homeomorphism is a map p: Z — X such that all z € Z have open neighbor-
hoods V with U = p(V') open and p|y: V — U a homeomorphism. Roughly speaking, in a covering
space this condition is strengthened by adding a uniformity condition to these V. The definition is
as follows:

DEFINITION 1.1.1. A covering space or simply a cover of a space X is a space X equipped with
a map p: X — X such that for all x € X, there is an open neighborhood U of z satisfying:

e the preimage p~1(U) is the disjoint union of open subsets {ﬁi}ieI of X such that for all
1 € Z, the restriction p|[7i : U; — U is a homeomorphism.

p
- v
We call U a trivialized neighborhood of x (or just a trivialized open set if we do not want to emphasize

x) and each (71 a sheet of X over U. We will also often call the map p: X>Xa covering space, and
refer to X as the base of the cover. O

REMARK 1.1.2. We allow p~1(U) = (). In particular, for any space X the map p: § — X is a
covering space. This convention is controversial, and some authors require the maps in covering
spaces to be surjective. ([l

REMARK 1.1.3. Covering spaces are local homeomorphisms, but the converse does not hold.
However, if X is compact Hausdorff then all local homeomorphisms p: X — X are covering spaces.
We will say more about this in §1.4. |

Here are two basic examples:

EXAMPLE 1.1.4 (Trivial cover). For a space X, the identity map 1x: X — X is a covering space.
More generally, for any discrete set Z the projection map p: X x Z — X is a covering space. We will
call these the trivial covers of X. |
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EXAMPLE 1.1.5 (Universal cover of circle). Regard S! as the unit circle in the complex plane C.
Let p: R — S! be the map p(f) = €2™%. This is a covering space. Indeed, consider z € S!. Write
z = €2 Pick ¢ > 0 with e < 1. For n € Z, set

U, = (Bo+n—e,00+n+e) CR
Let U = p([}o). The set U is an open neighborhood of z, and p~*(U) is the disjoint union of the Up:
|

Y c 1.5 c 1l
1 7 L L
LY-] Uli l/vl

p
Z

Each (~In projects homeomorphically to U, so U is a trivialized neighborhood of z and the ﬁn are the
sheets over U. The covering space p: R — S! is called the universal cover of S*. See §1.6 below for
why it has this name. O

1.2. Degree of cover

Let p: X > X bea covering space. The preimages p~!(x) C X of points x € X are called the

fibers of p: X > X. Forz e X, the fiber p~1(x) is called the fiber over x. The first main property
of covering spaces is that if X is connected, then the cardinalities of its fibers are all equal. More
generally:

LEMMA 1.2.1. Let p: XX bea covering space. Let f: X — Z U {oo} be the function
fl@)=p~' ()| forzeX.
Then f is locally constant. In particular, if X is connected then f is constant.

PRrROOF. Consider x € X. Let U be a trivialized neighborhood of x and let {ﬁi}iel be the sheets
of X over U. For y € U, the preimage p~!(y) consists of one point in each U;, and thus f(y) = |Z|.
The lemma follows. O

This suggests the following definition:

DEFINITION 1.2.2. Let p: X > X bea covering space. We say that p: X — X has degree n if
all of its fibers have cardinality n. This degree might be infinity. We will also say that p: X — X is
an n-sheeted or an n-fold cover. (I

Lemma 1.2.1 implies that if X is connected, then every covering space p: X = X has a degree.
For instance, the degree of the universal cover p: R — S! is infinity.

1.3. More examples of covering spaces
Here are some more examples of covering spaces:

ExXAMPLE 1.3.1 (Degree n cover of circle). Regard S! as the unit circle in C. Fix some n > 1,
and define p,: S' — S! via the formula p,(2) = z". This is a degree n covering space. Indeed,
consider z € S'. The preimage p; !(z) consists of n distinct points: writing z = €27 we have

pl(z) = {eQ”i(9°+m)/” | m is an integer with 0 < m < n} .

IThis is false for non-connected spaces. See Exercise 1.4.
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Fix some € > 0 with € < 1, and let
U={e**|0¢e (0y—ebo+¢)}.

The set U is an open neighborhood of z, and p; }(U) is the disjoint union of n subsets of S each of
which projects homeomorphically onto U:

Ps

Thus U is a trivialized neighborhood of z and the components of p;;}(U) are the sheets over U. [J

ExamPLE 1.3.2 (Cosets of discrete subgroups). Let G be a topological group, i.e., a group
that is a topological space such that the product map G x G — G and inversion map G — G are
continuous. Let H be a discrete subgroup of G. Here are two examples to keep in mind:

e G the additive group R™, and H = Z"; and

¢ G =SL,(R) and H = SL,(Z).
Endow the set G/H = {gH | g € G} of left cosets with the quotient topology. Then the quotient
map p: G — G/H is a cover of degree |H|. Indeed, consider a point goH of G/H. Since H is a
discrete subgroup of G, we can find an open neighborhood V of 1 € G whose translates {Vh | h € H}
are all disjoint.? Set U = p(goV), so

p ' U) = | | gV
heH
These are all disjoint sets that project homeomorphically to U, so U is a trivialized neighborhood
and the sets goV h with h € H are the sheets above U. ]

ExAMPLE 1.3.3. Two of our previous examples are special cases of Example 1.3.2:

e The universal cover p: R — S'. Indeed, the additive topological group R contains the discrete
subgroup Z. The satisfies R/Z = S!, and this homeomorphism fits into a commutative

diagram
R
AN

R/Z —= St

Using this, we can identify the covers R — R/Z and p: R — S!.
e The covers p,,: S! — S! defined by p,,(z) = 2". Indeed, S' C C is a topological group under
multiplication, and it contains the discrete group u, of n'" roots of unity. The quotient
St/ p, is homeomorphic to St, and just like above we can identify the covers S* — S!/pu,,
and p,: St — Sh.
As another example, as we noted in Example 1.3.2 the additive group R™ contains the discrete
subgroup Z". As the following figure illustrates, the quotient R™/Z™ is homeomorphic to an n-
dimensional torus T" = (S!)*™:

2Here are some more details. Since H is discrete, we can find an open neighborhood W of 1 € G such that
WNH = {1}. Let f: G x G — G be the map f(zy) = zy~!. Since f is continuous, the set f~1(W) is an open
neighborhood of (1,1) and thus we can find open neighborhoods V; and Va2 of 1 such that V4 x Vo C f~1(W). Letting
V = V1 N Va, we then have f(V x V) C W. We now claim that the sets {Vh | h € H} are all disjoint. Indeed, if
hi,h2 € H are such that (Vhi) N (Vha) # 0, then we can find vi,v2 € V with v1h; = v2ho, and hence

hohi' =viv;t € f(VXV)NHCWNH= {1}.

In other words, h1 = ha.
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— = >

R2/Z? T

RQ
This figure shows the case n = 2, and in it the indicated region is a fundamental domain which in
the quotient becomes a square with sides identified as indicated. Identifying R™/Z™ with T™, we get
an infinite-degree cover p: R® — T™. ]

ExAMPLE 1.3.4 (Real projective space). Let RP" be n-dimensional real projective space, that is,
the set of lines through the origin in R"*!. Topologize RP" as follows:

e Let m: R\ 0 — RP" be the map taking a nonzero point € R"*! to the line determined
by 0 and z. Give RP" the quotient topology determined by 7, so a set U C RP" is open if
and only if 7=(U) is open.

We have S* € R"*!. Let p: S* — RP" be the restriction of 7 to S®. This is a degree 2 covering
space. Indeed, consider £ € RP". The line ¢ intersects S™ in two antipodal points z,—x € S™. Let
U C RP" be the set of lines ¢’ that are not orthogonal to L. This is an open set, and the preimage
p~1(U) is the disjoint union of two open hemispheres U; and Us centered at x and —x, respectively:

Each (71 projects homeomorphically to U, so U is a trivialized neighborhood and the (71 are the
sheets over U. 0O

EXAMPLE 1.3.5. Let X5 be a genus 2 surface and let T be a genus 1 surface with two boundary
components. Let f: T — Y5 be the map that glues the boundary components to form a loop ~:

glue /

together \

For 1 <i <3, let S; be a copy of T'. As in the following figure, we can glue the S; together to form a
genus 4 surface ¥4 and use f to map each S; to X, yielding a map p: ¥y — Xo:

%

Each of the three black loops in 3; maps homeomorphically onto the black loop « in ¥5. The map
p: X4 — Yo is a degree 3 covering space. Indeed, consider a point x € Xo. If x ¢ ~, then for our
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trivialized neighborhood we can take U = X5 \ 7. The sheets above U are the Int(S;). If instead
x ¢ S, then x € 4. In this case, as in the following figure we can take a small open disk U around z:

The three disks shown in ¥4 are each mapped homeomorphically to U, so U is a trivialized neighbor-
hood. (]

1.4. Covers versus local homeomorphisms

We now give a condition that ensures that a local homeomorphism is a covering space. We start
by recalling some definitions from point set topology. See Volume 1 for more details. Let Z be a
space. A compact neighborhood of a point z € Z is a compact set K C Z such that z € Int(K). The
space Z is locally compact if for all z € Z and all open neighborhoods U of z, there is a compact
neighborhood K of z with K C U.

EXAMPLE 1.4.1. All open subsets of R™ and all closed subsets of R™ are locally compact. [

Assume that Y and Z are locally compact Hausdorff spaces. A map f: Y — Z is proper if for
all compact subsets K C Z, the preimage f~!(K) is compact.?

ExaMPLE 1.4.2. The Heine—Borel theorem says that a subspace of Eulidean space is compact if
and only if it is closed and bounded. If Y and Z are both closed subspaces of Euclidean spaces, it
follows that a continuous map f: Y — Z is proper if and only if preimages of bounded subspaces are
bounded. Equivalently, if {y;}r>1 is a sequence of points in Y with limg, .o y5 = 00, then we must
have limg, o f(yr) = 0. |

With these definitions, we have:

LEMMA 1.4.3. Let p: X > Xbea proper local homeomorphism between locally compact Hausdorff
spaces. Then p: X — X is a covering space.

ProoF. Consider z € X. Since p is proper, the set p~!(x) is compact. Since p is a local
homeomorphism at each point of p~!(z), the set p~*(z) is also discrete. We deduce that p~!(x) is
finite. Enumerate it as p~!(z) = {Z1,...,Z,}. For each 1 < i < n, there exists a neighborhood ‘Z of
T; such that p|‘~/i is a homeomorphism onto its image V; C X. Since X is Hausdorff, we can shrink
the ‘71 and assume they are all disjoint. Set U =V, N--- NV, and (72 = 171 Np~Y(U). The set ﬁl is
an open neighborhood of z;, and p|ﬁi is a homeomorphism onto U.

By construction, p~1(U) contains Uy U - - - L U,. However, we are not done since p~!(U) might
contain points that do not lie in some ﬁi. We want to shrink U to ensure that this does not happen.
Since we need U to be open, we need to delete a closed set C' of “bad points” from U.

The first step is to shrink U to ensure that U is compact. This is possible since X is locally
compact: letting K be a compact neighborhood of x with K C U, we replace U with Int(K). Since
X is Hausdorff the compact set K is closed, so U C K and thus U is compact. Since p is proper
p~1(U) is compact, so since X is Hausdorff p~1(U) is closed. Let

=y N\ U

3This is not quite the right definition if Y and Z are not locally compact Hausdorff spaces. See Chapter 9 of
Volume 1 for more details.
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Since C is a closed subset of the compact set p~1(U), it follows that Cis compact. This 1mphes that
C=p(C) is compact, and hence closed. Replacing U with U \ C' and each U; with U; \ p~1(C), we
now have p~1(U) = Uy U--- LU U,,, as desired. O

Here is an example of how Lemma 1.4.3 can be used.

EXAMPLE 1.4.4 (Roots of square-free polynomials). For some n > 1, let Poly,, be the space of
degree-n monic polynomials over C. Such an f € Poly,, can be written as

f(z)=2"4+a2" ' +axz" ?+---+a, withay,...,a, €C.

The topology comes from the coefficients, so Poly,, = C". By the fundamental theorem of algebra,
such a polynomial has n roots (counted with multiplicity). Define

RPoly,, = {(f,z) € Poly,, xC | f(x) =0}.

In other words, RPoly,, is the space of polynomials equipped with a root. Let p: RPoly, — Poly,,
be the map p(f,x) = f. For n > 2 this is not a covering space since the fibers of p have different
cardinalities. For example,

p~ (") = [{(z",0)}=1 but [p'(z"—1)=[{(z"—1,u) | pan n™ root of unity} | = n.
As suggested by this, the issue arises because of polynomials with repeated roots. Define
Poly®f = {f € Poly,, | f has n distinct roots}

and
RPolyf = {(f,x) € Poly™! xC | f(z) = o}.

The “sf” stands for “square-free”. The spaces Poly®’ and RPoly®! are open subsets of Poly,, and
RPoly,,, respectively.? The projection p: RPolnyf — Polyf’lf is a degree-n covering space. Indeed,
since p is a proper map® whose fibers all have cardinality n, by Lemma 1.4.3 it is enough to prove that
p: RPoly®" — Poly* is a local homeomorphism. But this is easy: for (f,z) € RPoly®, since f(z) has
no repeated roots we have f’(x) # 0, so by the implicit function theorem there is a neighborhood
U C Poly,, of f such that around (f,z) the subspace

RPoly C Poly, xCcCC" xC
is the graph of a function U — C. ]

1.5. Isomorphisms between covering spaces

We would like to classify the covers of a space X. To do this, we must first define what it means
for two covers to be be the same, i.e., we must say what it means to have an isomorphism between
two covers of X. The definition is as follows:

DEFINITION 1.5.1. Let X be a space and let p;: X1 — X and ps: X2 — X be two covers of
X. A covering space isomorphism from X1 to X2 is a homeomorphism f: X1 — X2 such that the
diagram

X1 4f ” X2

N

commutes, i.e., such that ps o f = p;. If a covering space isomorphism from )2'1 to )?2 exists, we say
that X; and X, are isomorphic covers of X. This is clearly an equivalence relation. O

4This is an elementary exercise. A sophisticated way to see it is to use the fact that having a multiple root is
equivalent to the vanishing of the discriminant, which is a polynomial in the coefficients of the polynomial.

5To show that p: RPolyiLf — Polnyf is proper, it is enough to prove that p: RPoly,, — Poly,, is proper. This
is a consequence of the elementary fact that for all C' > 0, there exists some D > 0 such that if x € C is a root of
f(z) =2"4+a12" 1+ +ap and |ag| < C for all 1 < k < n, then |z| < D.
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REMARK 1.5.2. This can be rephrased using categorical language as follows. Recall that Top is
the category of topological spaces and continuous maps. For a space X, let Top /X be the category
whose objects are spaces Y equipped with maps ¢: Y — X and whose morphisms from ¢;: Y; — X
to ¢o: Yo — X are maps f: Y7 — Y5 such that the diagram

commutes. A covering space p: X — X is an object of Top /X0 and a covering space isomorphism is
an isomorphism in Top,x between two covering spaces. |

Here are two basic examples.

EXAMPLE 1.5.3. For A # 0, define p*: R — S! via the formula py(6) = €?™**?. The universal
cover of S! is thus p': R — S'. Each p*: R — S! is also a covering space, but is isomorphic to the
universal cover. Indeed, letting f: R — R be the homeomorphism f(#) = A0, the diagram

R— 7 R

N

commutes, so f is a covering space isomorphism from p*: R — S! to p': R — S*. O

EXAMPLE 1.5.4. For n > 1, let p,,: S' — S! be the covering space defined by the formula
pn(z) = 2™ and let ¢, : St — S! be the covering space defined by the formula g,,(z) = z~™. The covers
pn: St — S and g, : S! — S! are isomorphic. Indeed, letting f: S! — S be the homeomorphism
f(z) = 271, the diagram

commutes, so f is a covering space homomorphlsm from p,,: S' — S! to ¢,: S! — S O

1.6. Goal

Our of our main goals is to classify all the covers of a space up to isomorphism. Remarkably, for
a reasonable space X there is a simple algebraic classification of covers of X. We will describe this
classification later after we define the fundamental group of X (see Chapter 10). It resembles the
classical Galois correspondence.

To a reasonable path connected space X, we will associate a group G called its fundamental
group. Isomorphism classes of covers p: X — X with X path connected will correspond® to subgroups
K < @G. The cover corresponding to the trivial subgroup 1 < G will be called the universal cover,
and it will cover all the other covers. Here is an example:

EXAMPLE 1.6.1. The fundamental group of S! will turn out to be Z. There are two kinds of
subgroups of Z:
e For n > 1, the subgroup nZ. Ths will correspond to the cover p,: S' — S' defined by
pn(z) = 2" for z € SL.
e The trivial subgroup 0 < Z. This will correspond to the universal cover p: R — S! defined
by p(0) = e*™/? for 6 € R.
The universal cover p: R — S' covers the cover p,,: S! — S! in the following sense. Define ¢,,: R — S!
via ¢, (0) = €>™/™ for # € R. This is a covering space, and we have a factorization
R s st 2y st O
P

6There is a small issue with basepoints we are ignoring here to simplify our story.
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1.7. Exercises

EXERCISE 1.1. Carefully prove that the following are covering spaces. Let C* = C \ {0}.
(a) The map p: C — C* defined by p(z) = e*
(b) For n € Z\ {0}, the map p: C* — C* defined by p(z) = 2". O
2
z

EXERCISE 1.2. Prove that the map p: C — C defined by p(z) = 2¢ is not a covering space. [

EXERCISE 1.3. Do the following:

(a) Give an example of a surjective local homeomorphism that is not a covering space.
(b) Give an example of a local homeomorphism f: X — Y and a subset A C X such that
fla: A — f(A) is not a local homeomorphism. O

EXERCISE 1.4. Let p;: )?1 — X1 and ps: )2'2 — X5 be covering spaces. Define ¢: )2'1 L )2'2 —
X7 U X5 via the formula

pi1(z) if z € )~(1,
q(z) = . =
pa(z) if z € X

Prove that g: )?1 U )?2 — X7 U X5 is a covering space. Use this construction to find a covering space
over a non-connected base that does not have a degree. O

EXERCISE 1.5. Let p1: X1 — X1 and ps: X2 — X5 be coverlng spaces. Define ¢: X1 X X2 —
X1 x X5 via the formula g(21, 22) = (p1(21), p2(22)). Prove that ¢: X; X Xo — X1 X X5 is a covering
space. O

EXERCISE 1.6. In this exercise, you will prove that Exercise 1.5 is false for infinite products. For
n>1,let X, =S! and X,, = R! and let p,: X,, — X,, be the universal cover. Give [L>: X, and

[I,,>1 X» the product topologies, and define a map p: Hn>1 X, — Hn>1 X, via the formula

p(z1,22,...) = (p1(21),p2(22),...) forall (21,20,...) € HX
n>1

Prove that p: [],~; Xn — [I,,>, Xn is n0t a covering space. O

EXERCISE 1.7. Prove the following:

(a) Let p: X — X be a cover and let X’ C X be a subspace. Define X’ = f~1(X’) and
p' = pl5,. Prove that p’: X’ — X' is a covering space. We will call this the restriction of p
to X'.

(b) Let X be a locally connected space with connected components {X;};c;. For each j € J,
let g;: Y; — X; be a covering space. Define

Y=Y
jeJ
and let ¢: Y — X be the map that for j € J and y € Y} satisfies ¢(y) = ¢;(y) € Y; C Y.

Prove that ¢: Y — X is a covering space.
(¢) Construct a counterexample to part (b) in the case where X is not locally connected. [

EXERCISE 1.8. Let p: X — X be a cover. Prove the following:
(a) Let f: Y — X be a map. Set

7 = {8 ey xX | fy) =p@},

and let f*(p): f*()?) — Y be the projection onto the first coordinate. Prove that
f*(p): f*()N() — Y is a covering space. We call f*(p): f*()?) — Y the pullbackofp: X — X
along f: Y — X.

(b) Let X’ C X be a subspace and let t: X’ — X be the inclusion. Prove that the covering
space t*(p): v*(X) — X' is isomorphic to the restriction of p: X — X to X’ discussed in
Exercise 1.7. O



1.7. EXERCISES 13

EXERCISE 1.9. Let p: X = X bea covering space such that p~!(z) is finite and nonempty for
all z € X. Prove that X is compact Hausdorff if and only if X is compact Hausdorff. O

EXERCISE 1.10. Let p: X — X be a cover. This exercise shows that many point-set topological
properties of X are reflected in X.

(a) If X is Hausdorff, then prove that X is Hausdorff.

(b) If X is regular, then prove that X is regular.

(¢) If X is paracompact, then prove that X is paracompact. Hint: first prove that there is a
locally finite collection of closed sets {C};}iecr of X such that each C; is paracompact, and
then prove that this implies that X is paracompact.

(d) If X is metrizable, then prove that X is metrizable. Hint: Use the Smirnov metrization
theorem, which says that a space is metrizable if and only if it is paracompact and locally
metrizable. O






CHAPTER 2

Covering spaces: deck transformations and regular covers

We now discuss symmetries of a cover, and single out the covers that have as many symmetries
as possible.

2.1. Deck transformations

We defined isomorphisms of covers in §1.5. The isomorphisms from a cover to itself are called
deck transformations:
DEFINITION 2.1.1. Let p: X > Xbea covering space. A deck transformation of p: X > X. is

a covering space isomorphism f X - X. These form a group under composition called the deck
group of p: X — X, denoted Deck(p: X - X) or simply Deck(X). a

Here is an example:

EXAMPLE 2.1.2. Let p: R — S! be the universal cover, so p(f) = ¢?™ for all §# € R. For each
n € Z, we can define a deck transformation f,: R — R via the formula f,(6) = 6 + n. O

2.2. Determining the deck group

The key to understanding the deck group is the following lemma, which says that in favorable
situations deck transformations are completely determined by what they do to a single point.

LEMMA 2.2.1. Let p: X > X bea covering space with X connected. Let fg: X — X be two
deck transformations such that there exists some zg € X with f(z0) = g(z0). Then f=g.

PrOOF. Let £ = {z eX | f(z)= g(z)}. Our goal is to prove that E = X. By assumption

29 € E, so since X is connected it is enough to prove that E is both open and closed.! Consider
z € X. We must prove that if z € E (resp. z ¢ E) then there is an open neighborhood of z contained
in E (resp. disjoint from E). Let U be a trivialized neighborhood of p(z).

Assume first that z € E. Let U be the sheet above U containing f(z) = g(z). Set V =
f~YU)Ng=*(U), so V is an open neighborhood of z with f(V),g(V) C U. For 2z’ € V, both f(2)
and g(z) are the unique point of U projecting to p(z’) € U, so in particular f(z') = g(z’). This
implies that V' C E, as desired.

Assume now that z ¢ E, so f(z) # g(z). Let U1 and U2 be the sheets above U with f(z) € U,
and g(z) € Uy. Since f(z) # g(z), the sheets U; and U, are distinct and hence disjoint. Set
W = f~Y(U;)Ng~1(Us), so W is an open neighborhood of z with f(W) C Uy and g(W) C Us. Since
Uy, N Uy = 0, this implies that f(2') # g(2') for all 2/ € W, so W is disjoint from E, as desired. [

The following is a typical example of how to use Lemma 2.2.1 to determine the deck group of a
covering space:

EXAMPLE 2.2.2 (Universal cover of circle). Let p: R — S! be the universal cover of S'. For
n € Z, let f,: R — R be the deck transformation defined by the formula f,(6) = 6 + n. We claim
that

Deck(p: R = SY) = {f, | n€ Z} = Z.

To see this, consider an arbitrary deck transformation f: R — R. Since p(f(0)) = p(0), we must
have f(0) =n for some n € Z. Since f(0) = f,(0), Lemma 2.2.1 implies that f = f,. a

INote that if X is Hausdorff (like most spaces in this book) it is automatic that E is closed; indeed, if X is
Hausdorff then for any continuous maps f,g: Y — X the set of y € Y with f(y) = g(y) is closed.

15
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2.3. Regular covers

_Roughly speaking, a regular cover? is a cover with a deck group that is as large as possible. Let

p: X — X be a covering space. The group Deck(X) acts on X. For 2 € X, the action of Deck(X) on
X preserves the fiber f~1(x), so Deck(X) acts on f~1(z). For 21,2 € f~!(z), Lemma 2.2.1 implies
that if X is connected then there exists at most one f € Deck(X) with f(z) = 2. A regular cover
is a cover where such an f always exists:

DEFINITION 2.3.1. A regular cover is a cover p: X — X such that for all z € X, the group

Deck(X) acts transitively on p~t(z), i.e., for all Z1, 72 € p~*(z) there exists some f € Deck(X) with
f(&1) = To. A cover that is not regular is irregular. O

EXAMPLE 2.3.2 (Universal cover of circle). The calculation in Example 2.2.2 shows that the
universal cover p: R — S! is regular. O

EXAMPLE 2.3.3 (Trivial cover). Let X be a space and Z be a discrete set. Consider the trivial
cover p: X xZ — X. Set G = Deck(p: X xZ — X). For each bijection o: Z — Z, we can define an
element f, € G via the formula f,(z,7) = (x,0(7)). These elements act transitively on the fibers, so
p: X X T — X is regular. One can check that all elements of G are of the form f, if X is connected
(see Exercise 2.8). O

REMARK 2.3.4. It is actually harder to show that a cover is irregular. We will give an example
below in Example 2.7.3. |

2.4. More examples of regular covers

Most of the covers we have seen so far are regular:

EXAMPLE 2.4.1 (Degree n cover of circle). Let p,,: S' — S! be the cover defined by the formula
pn(2) = 2. We claim that p,: S' — S! is a regular cover with deck group isomorphic to the cyclic
group C,, of order n. Indeed, let G = Deck(p,,: St — S'). Let f € G be the map f: S' — S! defined
by the formula f(z) = e?™/"z. The element f has order n and its powers act transitively on the
fiber p,,1(1), which equals the n*™ roots of unity. This implies that the cover is regular.

The same argument using Lemma 2.2.1 that we used in Example 2.2.2 shows that G is the cyclic
group of order n generated by f. We repeat that argument one more time: for g € G, we have
g(1) = e*™*i/" for some k € Z (well-defined modulo n). Since g and f* both take 1 to e>™*¥/" it
follows from Lemma 2.2.1 that g = f*. O

ExXAMPLE 2.4.2 (Cosets of discrete subgroups). Let G be a topological group and let H < G be
a discrete subgroup. Then the projection p: G — G/H is a regular cover. Indeed, for h € H define
frn: G — G via the formula f,(g) = gh. Then f;, € Deck(p: G — G/H), and the f} act transitively
on the fibers of p: G — G/H. If G is connected, then by Lemma 2.2.1 this is the entire deck group,
so Deck(p: G — G/H) =@ H. As a special case, the deck group of the cover p: R® — T™ is the group
Z", which acts on R™ by translations. O

ExXAMPLE 2.4.3 (Real projective space). The cover p: S* — RP" is regular. Indeed, the map
f:S™ — S™ defined by f(z) = —z is an element of the deck group that swaps the two elements in
the fiber over any point of RP". By Lemma 2.2.1, the deck group of p: S* — RP" is the cyclic group
Cs of order 2 generated by f. ]

ExAMPLE 2.4.4 (Cover of surface). Consider the covering space p: ¥4 — Xo from Example 1.3.5.
Set G = Deck(p: ¥4 — 33). There is a deck transformation f € G that rotates ¥4 by 27/3 as
follows:

2These are also often called normal covers.
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rotate by 2r/3

2y

The element f has order 3 and its powers act transitively on all the fibers. This implies that the
cover is regular, and also by Lemma 2.2.1 that G is the cyclic group of order 3 generated by f. O

EXAMPLE 2.4.5 (Roots of square-free polynomials). The degree-n covering space p: RPolyflf —
Polnyf discussed in Example 1.4.4 is regular for n = 2 (see Exercise 2.7), but is irregular for n > 3.
We do not have the technology to prove this yet (see Exercise 9.9 of Chapter 9 for the proof), but it
should not be surprising. Indeed, if it was regular then the deck group G would act simply transitively
on the roots of every degree-n polynomial with distinct roots, and if such a canonical group action
existed then we would surely teach about it in elementary abstract algebra classes.? O

We will meet examples of irregular covers whose irregularity is easy to verify below when we
discuss covers of graphs.
2.5. Graphs

Graphs® provide a rich source of examples of covering spaces. Recall that a graph X is a set of
vertices V(X) connected by oriented edges £(X):
u

€

For each vertex v € V(X), the degree of v, denoted deg(v), is the number of edges that start or end
at v. If an edge is a loop based at v, it contributes 2 to deg(v). We call X a finite graph if the
sets V(X) and £(X) are both finite. In this case, it is clear how to regard X as a topological space:
the vertices are a discrete set of points, and the edges are copies of I = [0, 1] that are glued to the
vertices. More generally, we say that X is locally finite if for each v € V(X)) its degree deg(v) is finite.
For locally finite graphs X, it is also clear how to regard X as a topological space.

REMARK 2.5.1. In the general case, we regard X as 1-dimensional CW complex. See Essay K in
Volume 1 for more details. |

2.6. Maps of graphs

Let X and Y be graphs. To define a continuous map ¢: X — Y, we must specify where ¢ sends
each vertex and edge. This is particularly easy to do if we require our map to take vertices to vertices
and oriented edges to oriented edges, which will suffice for the examples in this section. This is best
explained by an example:

EXAMPLE 2.6.1. Let Y be the following graph:

€
u v

Y

3For n = 2, this group action just exchanges the two roots.
40ur conventions about graphs are that unless otherwise specified they are oriented and we allow multiple edges
and loops.
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We specify a graph X and a map ¢: X — Y as follows:

Here we label the vertices and oriented edges of X by the vertices and oriented edges they map to.
What this map does is map each edge of the central square of X to the single non-loop edge of Y
and map each loop in X to the appropriate loop in Y. The interiors of the edges are identified with
copies of the open interval (0,1), and ¢ respects these identifications. |

2.7. Covers of graphs

The above example is not a covering map. The problem is that it is not a local homeomorphism
at the vertices. What is needed for a covering map is informally that for each vertex “the same edges
enter and exist as in the target”. Here is an example of a covering map with the same Y as above
but a different X:

ExaMpPLE 2.7.1. The following describes a covering space map p: X — Y:

u v
€
P €]
€y €y es es >
u v
e Y
u \%
X

This is a covering space map since:
e for both vertices of X mapping to u, one edge exits mapping to e1, one edge exits mapping
to es, and one edge enters mapping to es; and
e for both vertices of X mapping to v, one edge enters mapping to ey, one edge exits mapping
to e3, and one edge enters mapping to es; and
This is a regular cover with deck group isomorphic to Cy. The generator of Cy acts on X by the
involution that swaps the two vertices labeled u, the two vertices labeled v, and for ¢ = 1,2, 3 the
two oriented edges labeled e;. O

We now give several different covers of the following graph Z:

Since Z has only one vertex, there is no need to give it a name since all vertices of a cover map to
that one vertex. We also use colors rather than letters to distinguish the two edges of Z, and label
the edges in the domain of our covering space maps by coloring them with the appropriate colors.

EXAMPLE 2.7.2. Consider the cover

(X J={ >

This is a degree 2 regular cover. The deck group is isomorphic to C5, and acts on VA by the involution
that swaps the two vertices, the two orange loops, and the two blue edges. O

ExAMPLE 2.7.3. Consider the cover

(XL )= >

This is an irregular cover with trivial deck group. To see this, note that a deck transformation of
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Z must take vertices to vertices and oriented edges to oriented edges, and also must preserve the
coloring on the edges. Since there is only one orange loop in Z, any deck transformation must fix
that orange loop and therefore be the identity. |

EXAMPLE 2.7.4. Consider the cover

OO

This ia a degree 3 regular cover. The deck group is Cs, which acts on Z by rotations. (]

ExXAMPLE 2.7.5. Consider the cover

Q. OO

This is an infinite degree regular cover. The deck group is isomorphic to Z, which acts on 7 as
translations. ]

ExAMPLE 2.7.6. Consider the cover

Here Z is the graph embedded in R? whose vertices are at Z? and whose edges are horizontal and
vertical lines. This is an infinite degree regular cover. The deck group is isomorphic to Z?, which
acts on Z C R? via the action of Z? on R? by integer translations. O

ExXAMPLE 2.7.7. Consider the cover

The indicated pattern in the domain repeats infinitely often, making it an infinite degree-4 tree.”
The horizontal edges are oriented going right, and the vertical edges are oriented going up. This is
an infinite degree regular cover (we leave this as Exercise 2.10). O

5A tree is a nonempty graph with no cycles, that is, no embedded circles.
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ExAMPLE 2.7.8. Consider the cover

p%
—
7 4+ Z

This is an infinite degree irregular cover with trivial deck group. To see this, note that just like in
Example 2.7.3 any deck transformation of Z must fix the unique orange loop in Z, and thus must be
the identity. O

2.8. Covering space actions

Let p: X — X be a cover with deck group G. The group G acts on X. If X is connected, then
Lemma 2.2.1 says that action is free, i.e., that for all z € X the stabilizer subgroup G, is trivial. In
fact, even more is true, and this section is devoted to studying this action.

REMARK 2.8.1. In this book, a group action is always assumed to preserve any structure a set
has. In particular, an action of a group G on a topological space Z is assumed to be continuous.
In other words, for all g € G the map Z — Z that multiplies points by g is assumed to be a
homeomorphism. O

The following lemma isolates the key property of the action of the deck group of a connected
cover:

LEMMA 2.8.2. Let p: X > X bea covering space with X connected, let G = Deck(p: X - X),
and let z € X. Then there is an open neighborhood V' of z whose translates {g-V | g € G} are all
disjoint.

PROOF. Let U be a trivialized neighborhood of p(z) and let U be the sheet lying above U
with z € U. We claim that V = U has the indicated property. Indeed, let g1,g92 € G satisfy
(gl'ﬁ) N (gyﬁ) # (. We must prove that g1 = go. Pick 21,20 € U with g1+21 = g2-22. Since the
action of G preserves the fibers of p: X - X, the points 21,25 € U must lie in the same fiber. Since
the restriction of p: X = X toUis injective, this implies that z; = 2. Letting w = 21 = 22 be this
common value, we have g;-w = go-w. Lemma 2.2.1 now implies that g; = go, as desired. O

Actions satisfying the conclusions of this lemma are important, so we give them a special name:

DEFINITION 2.8.3. A covering space action is an action of a group G on a space Z such that for
all z € Z, there exists an open neighborhood V of z such that the translates {g-V | g € G} are all
disjoint. |

REMARK 2.8.4. All covering space actions are free. If G is finite and Z is Hausdorff, then the
converse is true: all free action of G on Z are covering space actions (see Exercise 2.4). O

2.9. Quotients by covering space actions

Let G be a group and let Z be a space equipped with a left action of G. Endow the quotient®
X/G with the quotient topology. In other words, if ¢: Z — Z/G is the projection then a set U C Z/G
is open if and only if ¢~!(U) is open. If the action of G' on Z is a covering space action, then the
quotient map ¢q: Z — Z/G is a regular covering space:

LEMMA 2.9.1. Let G be a group acting a space Z by a covering space action. Then quotient map
q: Z = Z/G is a regular covering space. Moreover, if Z is connected then G = Deck(q: Z — Z/G).

6This is potentially confusing notation since G is acting on the left. A purist would insist that Z/G is the quotient
of Z by an action of G on the right, and denote the quotient of Z by an action of G on the left by G\Z. However, our
notation is common and traditional, and we will follow it. There will be a few situations where we will have both left
and right actions, and we will work hard to be clear about what our notation means in those cases.



2.10. EXERCISES 21

ProOF. Consider z € Z/G. Write x = ¢(z) with z € Z. Let V be an open neighborhood of z
such that the sets in the G-orbit of V' are disjoint. Set U = ¢(V'). We have

0 =] gV

geqG

Since each g-V is open, it follows that ¢=!(U) is open and thus by definition U is open. The g-V
are disjoint open subsets of Z and each projects homeomorphically onto U. We conclude that U
is a trivialized neighborhood of x and the g-V are the sheets lying above U. This implies that
q: Z — Z/G is a covering space. By construction, the action of G on Z is by deck transformations
of ¢: Z — Z/G, so G < Deck(q: Z — Z/G). This action is transitive on fibers, so if Z is connected
then Lemma 2.2.1 implies that G = Deck(q: Z — Z/G). O

All of our examples of regular covering spaces could have been constructed using Lemma 2.8.2.
For instance, C5 acts on S™ via the antipodal map z — —z. This is a free action, so since Cj is finite
it is a covering space action (c.f. Remark 2.8.4). We could have defined RP" = S"/C5 and identified
the covering space p: S™ — RP" with the quotient projection. This would be a little artificial, but
here is an example where this point of view is essential:

ExaMPLE 2.9.2 (Configuration space). Let X be any space. The ordered configuration space of
n points on X is the space’

PConf,(X) = {(z1,...,3,) € X" | z; # x; for all distinct 1 <i,j < n}.

Topologize this as a subspace of X*™. The symmetric group &,, on n letters acts on Conf, (X) via
the formula

0"(331, . ,xn) = (x0—1(1)7. .. ,Z'J—l(n)) for 0 € &,, and (331, . ,Jin) € PCOnfn(X)

The inverses are there to make this a left action.® This is a free action since the z; are all distinct,
and thus since &,, is finite it is a covering space action. The configuration space of n points on
X is the quotient Conf, (X) = PConf,, (X)/&,,. Points of Conf, (X) can be viewed as unordered
sets {z1,...,z,} of n distinct points in X. The projection p: PConf, (X) — Conf,(X) is a regular
covering space. ]

2.10. Exercises

EXERCISE 2.1. Prove the following:

(a) Let G be a group acting on a space X by a covering space action. Let Y be a subspace of
X that is preserved by the action of G, so G acts on Y. Prove that the action of G on Y is
a covering space action.

(b) For i = 1,2, let X; be a space and let G; be a group acting on X; by a covering space
action. Prove that the action of G; X G2 on X; x X5 is a covering space action. O

EXERCISE 2.2. Construct a covering space action of Cy x Cy on a compact oriented surface
3. |

EXERCISE 2.3. Let a € R be an irrational number. Let G = Z be an infinite cyclic group
generated by s € G. Let G act on S' via the formula

tz = e*™; for z € S'.

Let p: St — S'/G be the quotient map.

(a) Prove directly that p is not a covering space.
(b) Prove that S'/G is not Hausdorff. O

"This is sometimes also called the pure configuration space, which is why it is written PConf, (X).
8This is the same reason that inverses appear in the action of GL(V') on the dual of a vector space V.
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EXERCISE 2.4. Let X be a Hausdorff space and let G be a group acting freely on X. For all
x € X, assume that there is an open neighborhood U of x such that the set?

{9€G|gUNU # 0}

is finite. Prove that the action of G on X is a covering space action. The above condition is
automatically satisfied if G is finite, so this shows that a free action of a finite group on a Hausdorff
space is a covering space action. O

EXERCISE 2.5. Let Z be a Hausdorff topological space and let G be a group acting on Z by a
covering space action. Assume that Z/G is Hausdorff (cf. Exercise 2.11), and let x,y € Z be two
points that project to different points of Z/G. Prove that there exist open neighborhoods U of  and
V of y such that the translates {g-U | g € G} and {g-V | g € G} are all disjoint from each other. O

EXERCISE 2.6. Let Z be a first countable topological space. Let G be a group acting on Z by a
covering space action. Assume that Z/G is Hausdorff (cf. Exercise 2.11), and let K C Z be compact.
Prove that the set

{9eGlgKNK#0}
is finite. Hint: the previous exercise will be useful. O
EXERCISE 2.7. Let p: X > X bea degree 2 cover. Prove that Xisa regular cover. O

EXERCISE 2.8. Let X be a space and Z be a discrete set, and let p: X x Z — X be the trivial
cover.

(a) If X is connected, prove that all elements of the deck group of p: X x T — X are of the
form f,(x,i) = (z,0(7)) for some bijection o: Z — Z.
(b) If X is not connected, construct elements of the deck group that are not of this form. O

_EXERCISE 2.9. Let Z be a graph with one vertex and two edges. Construct degree 4 covers
p: 7 — Z and q: 7' — Z with Z and 2’ path connected such that p: 7 — 7 is regular and
q: Z' — 7 is irregular. O

EXERCISE 2.10. Verify that the cover in Example 2.7.7 is regular. |

EXERCISE 2.11. In this exercise you will see that non-Hausdorff spaces can have Hausdorff covers.
Set X =R?\ 0. Let G = Z with generator ¢t = 1. Define an action of G on X by letting

t"(z,y) = (2"2,27"y) for all (z,y) € X and n € Z.

Prove the following:

(a) The action of G on X is a covering space action.
(b) The quotient X/G is not Hausdorff. O

EXERCISE 2.12. In this exercise, you will see that the composition of two covering maps is not
necessarily a covering map (though later we will see that this does hold for reasonable spaces). For
n > 1, let C, C R? be the circle of radius 1/n with center (0,1/n). Let X = U ,C,,, topologized as
a subspace of R2. This is sometimes called the “earring space” or the “shrinking wedge of circles”.
Let p: Y — X be the regular cover of X with deck group Z shown here:

9S0me authors call actions satisfying this property “properly discontinuous”, but the literature contains multiple
non-equivalent definitions of what it means for an action to be properly discontinuous, so we prefer to not use this
term.
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RRREE

Construct a degree 2 cover q: Z — Y such that the composition po ¢: Z — X is not a covering
space. O






CHAPTER 3

Covering spaces: lifting paths and homotopies

This chapter studies lifting problems, which play a key role in both the classification of covering
spaces and their applications. As an application, we develop the theory of winding numbers and
degrees of maps from S! to iteself.

3.1. Lifting problems in general

_ Letp: X = X bea covering space and let f: Y — X be a map. A [ift of f through p is a map
f:Y — X such that the diagram

/l

vy L x
commutes, i.e., such that f =po f

ExamPLE 3.1.1. A deck transformation f: X — X is a lift of the covering space map p: XX
itself:

X
e
X s X
Of course, it is possible that a lift of p: X > Xtoa map f: X — X exists such that fis not a

homeomorphism, so not all such lifts are deck transformations. O

A lift might or might not exist. However, just like a deck transformation if a lift exists then
under favorable hypotheses it is determined by what it does to a single point:

LEMMA 3.1.2. Let p: X > X bea covering space and let f:' Y — X be a map. Assume that
Y is connected. Let fh f2 Y = X be two lifts of f through p such that there is some yg € Y with

Fi(yo) = fa(vo). Then fr = fo.

PROOF. The proof is identical to that of Lemma 2.2.1, which is the analgous result for deck
transformations. 0

3.2. Sections

We now discuss a special kind of lifting problem. Let p: X = X be a covering space. A section
of pisalift o: X — X of the identity map 1x: X — X through p. In other words, o: X — X isa
map such that p(o(x)) =« for all x € X.

ExAMPLE 3.2.1. Let X be a space and Z be a discrete set. Consider the trivial cover p: X xZ — X.
Let ig € Z, and define 0: X — X X Z via the formula o(z) = (x,4p). Then o is a section. O

The above example might be unsatisfying; however, covers typically have no sections:

LEMMA 3.2.2. Let p: X — X be a covering space with X connected. Assume that there exists a
section 0: X — X. Then p: X — X is a homeomorphism, and in particular has degree 1.

25
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PRrOOF. It is enough to prove that p: X — X has degree 1; indeed, this will imply that p is
a bijection, and since covering space maps are open maps we will be able to conclude that p is a
homeomorphism.! To prove that p has degree 1, it is enough to prove that o is surjective. Since X is
connected, this will follow if we prove that the image of ¢ is both open and closed.

Consider € X. It is enough to prove that o(x) lies in the interior of o(X) and that all points
of p~1(z) other than o(x) lie in the interior of X \ o(X). Let U be a trivialized neighborhood of =
and let {ﬁi}iel' be the sheets lying above U. Let ig € Z be such that o(x) € Tj}-o. Naively, one might
expect that o(U) = (NIZ-O; however, without further assumptions (like U being connected, which could
only be ensured if X is locally connected) this need not hold.

However, let V = ¢~ 1(U;,). The set V is also a trivialized neighborhood of z. Let {V;}iez be
the sheets lying above V, enumerated such that V; C U for all i € Z. Then YN/iO = o(V) is an open
neighborhood of ¢(x) lying in o(X). Also, the union of the V; with i # ip is an open neighborhood

of p~X(x) \ o(z) lying in X \ o(X). The lemma follows. O

3.3. Formulas for roots of polynomials

We explain an interesting application of Lemma 3.2.2. As discussed in Example 1.4.4, let Polyif
be the space of monic degree-n polynomials without repeated roots, let RPolnyf be the space of pairs
(f,z) with f € Poly®" and f(z) = 0, and let p: RPoly*’ — Poly*' be the map p(f,z) = f, so p is a
degree n covering space. We start by proving that RPolnyf is path-connected:

LEMMA 3.3.1. Forn > 1, the space RPolyfALf s path-connected.

PROOF. Let (f1,z1) and (f2,22) be two points of RPolyff. We want to find a path from (f1,z1)
to (f2,z2). Since the polynomial f;(z) has no repeated roots, we can factor it as

filz) = (z = 2i)(z = Ain) - (2 = A1)
Here the A; ; are distinct complex numbers that are different from x;. We remark that the ordering

on {A;1,...,Ain—1} is not canonical. We can move (f;,z;) in RPolnyf by moving x; and the A; ;
while keeping them distinct. Moving x1 and the ) ; slightly, we can ensure that the numbers

Z={x1,M1, -, M n—1,%2,A21, ..., A2 1}

are all distinct. We will now move the points 21, A1,1,..., Ai,n—1 t0 Z2,A21,..., A2 ,—1 One at a time,
starting with x;.
Since removing finitely many points from C does not disconnect it, the space (C\ Z) U {z1, 22}
is path-connected. We can therefore find a path in (C\ Z) U {1, z2} from x; to za:
o), o, .>‘1,4

® A

®x ® s

By moving z; along this path, we move (f1,21) and reduce ourselves to the case where x1 = xs.
Next, the space (C\ Z) U{A1,1, A2,1} is path-connected, so we can find a path in it from A1 ;1 to g 1.
By moving A;; along this path, we move (f1,21) and reduce ourselves to the case where z; = o
and A1 1 = Az,1. Repeating this process, we move (f1,21) to (f2,z2). O

Combining this with Lemma 3.2.2, we deduce the following:

COROLLARY 3.3.2. Forn > 2, the covering space p: RPolyflf — Polyif has no section.

We remark that there is a simpler proof that p has degree 1 if X is path connected. Consider x € X. Set
z1 = o(x), so z1 € p~1(z). Consider z2 € p~!(z). We must prove that z; = z2. Let 5: [0,1] — X be a path with
(0) = 21 and J(1) = 2z2. Set v = po~,so~v: [0,1] = X is a path in X from = = p(z1) to z = p(z2). Define 7/ = g o~.
Both 5 and 5 are lifts of v: [0,1] = X to X with ¥(0) =5'(0) = 21, so by Lemma 3.1.2 we have ¥ = 5’. We conclude
that 21 = 5(1) = 7(1) = 22, as desired.
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sf
n

Why is this interesting? Recall that Poly, C C", where

f(2)=2"+a1z"" +a2" 2+ - +a, € Poly

is identified with (aq,...,a,) € C™. A section of p: RPolnyf — Polyflf is thus a function that takes
as input the coefficients of a polynomial f(z) with no repeated roots and returns (f, ), where x € C
is a root of f(z). In other words, it is a continuous “formula” for the roots of a degree-n polynomial.

The fact that these do not exist for n > 2 might seem to contradict that we do in fact have such
formulas in low degrees. For instance, we have the quadratic formula: for a quadratic polynomial

f(z) = 22 + bz! + ¢, its roots are

—b+ Vb2 —4c

5 .

The point here is that this is not really a well-defined function because of the 4, and indeed there is
no way to choose a canonical square root of a complex number in a continuous way. In Essay A, we
will see that this forms the germ of a beautiful proof of Arnold of the classical fact (usually proved
with Galois theory) that there is no elementary formula for the roots of a degree-n polynomial for
n > 5, even if you allow multivalued k" roots like in the quadratic formula.

3.4. Lifting paths

Once the basic theory of the fundamental group is in place, we will be able to give a satisfying
necessary and sufficient condition for a lift to exist, at least for reasonable spaces (see Chapter 9).
Before we can do this, we need to solve some important special cases. As notation, let I =[0,1]. A
path in a space X is a map v: I — X. The initial point of v is v(0) and the terminal point is (1),
and we say that v goes from (0) to v(1). Paths can always be lifted:

LEMMA 3.4.1. Let p: X > X bea covering space and let yv: I — X be a path. For all Tg € X
with p(To) = v(0), there exists a unique lift ¥: I — X of v through p with (0) = .

PRrROOF. Uniqueness follows from Lemma 3.1.2, so we must only prove existence. Using the
Lebesgue number lemma,? we can partition I into subintervals

D= <e < - <e, =1

such that for all 1 < k < n the image y([ex, €x+1]) is contained in a trivialized open set in X. We
construct our lift 7 inductively as follows.

First, define ¥(0) = Zy. Next, assume that for some 1 < k < n we have constructed a lift
3:[0,ex] = X of Yo,en] s [0,€x] = X. We extend ¥ to [0, €x41] as follows. Let U be a trivialized
open set in X such that v([ex, ex+1]) C U. Let U be the sheet lying above U with (e;) € U. The
restriction p|: U—=Uisa homeomorphism, and on the interval [ex, ex+1] we define ¥ to be the
composition

@)™ =~ >

U X.

€k, €xt1] i U
By construction, this agrees with our already-constructed partial lift 7: [0, ;] — X at €k ([l
To help the reader understand the content of this lemma, we give several examples.

EXAMPLE 3.4.2 (Circle). Let p: R — S! be the universal cover of S', so p() = €>™. Let
7v:[0,1] — S! be the path that starts at 1 € S! C C and travels clockwise half-way around the circle:

y(t)=e ™ for0<t<1.

The points of R that project to v(0) = 1 are precisely the integers. For n € Z, the lift 5: [0,1] = R
of v with ¥(0) = n is the map that looks like this:

2Recall that the Lebesgue number lemma says that if Z is a compact metric space and {W}};cs is an open cover
of Z, then we can find some ¢ > 0 such that for all z € Z the e-ball B¢(z) is contained in some W;. To find the
indicated partition of I, apply this to the cover of I by preimages of trivialized open subsets of X and choose the
partition such that each segment [y, €;+1] has diameter at most the € > 0 given by the lemma.
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! —<—¢ i
n-1 ¥ n n+l
[»
In coordinates, ¥(t) =n —t/2 for 0 < ¢ < 1. O

EXAMPLE 3.4.3 (Torus). As in Example 1.3.3, identify R?/Z? with the 2-torus T? and let
p: R? — R?/Z2? = T? be the associated cover. Here is an example of a path ~: [0,1] — T? and one
choice of lift 7: [0,1] — T2:

'I]'Q

RQ
The torus on the right is obtained by gluing the sides of the square together as indicated. Because of
this gluing, a path can e.g. pass through the top edge of the square and come out of the bottom
edge. The other possible lifts are obtained by varying the initial point, which results in translating
the entire lift by some element of Z2. O

EXAMPLE 3.4.4 (Graph). As in §2.5, consider the following cover p: 7 — 7

s

Let 7: [0,1] — Z be the path that starts at the vertex, goes around the orange circle in the positive
direction, then goes around the blue circle in the positive direction, and finally goes around the
orange circle in the negative direction. There are five possible lifts, one starting at each vertex of Z.
Here are pictures of them, with the initial and final vertices in purple:

R AN B AR P

Constructing these illustrates the necessity that each vertex of Z has one incoming edge of each color
and one outgoing edge of each color. |
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EXAMPLE 3.4.5 (Polar coordinates). Points of R? \ 0 can be expressed using polar coordinates
(r,6) with r > 0 and 6 € R:
(z,y) = (rcos(0),rsin(0)).
While r = y/22? 4+ 3?2 is unambiguous, the f-coordinate is ambiguous since (r,0) = (r, 0 + 27n) for all
n € Z. Letting p: R — S! be the universal cover, a choice of polar coordinates for (z,y) € R?\ 0 is
the same as a choice of lift # € R for the point

£ Y 1
Ve Ve o

Lemma 3.4.1 explains why maps f: I — R?\ 0 can always be continuously expressed using polar
coordinates. This is depends on the topology of I, and I cannot be replaced by an arbitrary space.

For instance, the inclusion ¢: St < R?\0 cannot be continuously described using polar coordinates
as v(z) = (r(x),0(x)) for some r: S' — R. and #: S — R. Indeed, in such an expression the
function r would be identically 1, but the function # would be a section of the cover p: R — S!, and
Lemma 3.2.2 implies that such a section does not exist. O

3.5. Homotopies

In algebraic topology, spaces are modeled by algebra. Spaces can vary continuously, while
algebraic objects are typically discrete. In this section, we introduce a formalism called homotopy for
studying deformations of maps. The algebraic invariants we later study will be insensitive to these
deformations.

Consider two maps f,g: X — Y. We say that f and g are homotopic if there exists a continuous
map H: X x I — Y such that f(z) = H(z,0) and g(z) = H(z,1) for all z € X. For t € I, let
hi: X — Y be the map h¢(x) = H(x,t). We thus have f = hg and g = hy, and we view the h; as a
continuous family of maps witnessing f being deformed to g. Typically we will demonstrate that f
and g are homotopic by describing the h; rather than H, and will call h; a homotopy from f to g.
This is an equivalence relations on the set of maps from X to Y (see Exercise 3.3).

ExXAMPLE 3.5.1. Let X be a space. Any two maps f,g: X — R™ are homotopic via the straight-
line homotopy h;: X — R™ defined via the formula hi(z) = (1 — t)f(z) + tg(x) for all x € X and
t € I. In this, we have hg = f and hy; = g. O

We say that a map f: X — Y is null-homotopic if f is homotopic to a constant map. As Example
3.5.1 shows, any map f: X — R"™ is null-homotopic. Here is another example:

EXAMPLE 3.5.2. Let X be a space. Then any map f: R™ — X is null-homotopic via the
homotopy h:: R™ — X defined via the formula h(x) = f((1 —¢)z) for all z € X and ¢ € I. In this,
we have hg = f and h; is the constant map taking all points of R to f(0). |

To show that two maps are homotopic, one typically exhibits an explicit homotopy. It is harder
to show that two maps are not homotopic. This requires invariants of maps. For instance, the
identity map S' — S! is not null-homotopic, but this is not so easy to prove directly. In §3.7 below
we will prove this by developing the theory of degrees and winding numbers. In fact, using this we
will completely describe all homotopy classes of maps S! — S'. Doing this requires studying the
interaction between homotopies and lifting problems.

3.6. Lifting homotopies

Roughly speaking, our goal in this section is to prove that lifting problems are insensitive to
homotopies. To make this precise, consider a covering space p: X — X. Let f,9: Y = X be two
homotopic maps. One thing we would like to prove is that a lift ]? Y — X of f exists if and only if
alift g: Y — X exists. We would also like to prove that if these lifts exist then we can choose lifts
f Y > X and § g Y — X such that f and g are themselves homotopic. The following result implies
both of these claims.

LEMMA 3.6.1. Let p: XX bea covering space. Let f:' Y — X be a map and let f Y 5 X
be a lift of f through p. Let hy: Y — X be a homotopy with ho = f. There is then a unique lift of hy
through p to a homotopy ht Y — X such that ho = f
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PRrOOF. Let H:Y x I — X be the map with H(y,t) = h(y) for all y € Y and t € I. Our goal
is to prove that there is a unique lift H: Y x I — X of H through p such that H(y,0) = f(y) for all
y € Y. Uniqueness follows from Lemma 3.1.2, so we must only prove existence. In fact, even more is
true. For y € Y, let 7, : I — X be the path ’Vy( ) = H(y,t). By path-lifting (Lemma 3.4.1), we can

lift 7, to a path 7, : I — X such that Jy(0) = f( ). Define H:Y x I — X via the formula
H(y,t) = y(t) forallyeY and te I

By construction, H is a lift of H with H(y,0) = f(y) for all y € Y.

There is only one problem: it is not obvious that this H is continuous. To see that it is, fix some
Yo € Y. We will prove that H is continuous at all points of the form (yo,t) by imitating our proof of
the path-lifting lemma (Lemma 3.4.1). Just like in that proof, using the Lebesgue number lemma we
can partition I into subintervals

0= <e<---<e, =1

such that for all 1 <k < n the image H(yo X [e, €x+1]) is contained in a trivialized open set in X.
In fact, we can even find some open neighborhood Vj, of gy such that the image H(Vj X [ex, €xt1]) is
contained in a trivialized open set in X.

Define W7 = ViN---NV,_1, so Wi is an open neighborhood of 3. We will find a nested sequence

Wio>WeD---DW,

of open neighborhoods of yg such that H is continuous on each Wy x [0, ex] by constructing H on
this set in such a way that it is clearly continuous. The picture is:

Yo @ Wy X[eeo] | Wy X[eges] | Wy X[eg,e4]

W, Xg,

The construction will be inductive. First, define H: Wy x 0 — X via the formula H(y,0) = f(y).
Next, assume that for some 1 < k < n we have constructed a continuous lift H: W, x [0, e;] — X of
Hlw, x[0,ex]: Wi % [0, ex] = X. We find an open neighborhood Wy of yo with Wiy C Wy and an

extension of H to Wy41 X [0, €x41] as follows.
Let U be a trivialized open set in X such that H(Wj, X [eg, €x+1]) C U:

Wi X[ 1,84 Yo Wi X [€x,8x41]

U

Let U be the sheet lying above U with H (yo, €x) € U. Let Wi11 be the preimage of U under the

map®

Wk—WkXEkMX

The set Wi41 is an open neighborhood of gy and H takes Wi41 X € to U. The restriction p|[7 U= U
is a homeomorphism, and on Wy41 X [eg, €x+1] we define H to be the composition

«71 —~ o~
Ho g He X.

Wit X [k, €x11]

31f we could ensure that ﬁ(Wk X €g) C U (which would hold, for instance, if W} and U were connected), then
there would be no need to pass to the nested sequence W1 D Wa D ... Since we are not assuming that our spaces are
locally connected, this is unfortunately necessary.
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By construction, this agrees with our already-constructed partial lift H: Wig1 X [0,ex] — X on
ch+1 X €f. O

3.7. Winding numbers

To illustrate the meaning of all this machinery, we study the classical subject of winding numbers.
Fix a point 29 € C. We start with an intuitive discussion. Consider a map f: St — C \ xo. Roughly
speaking, the winding number wind,, (f) of f around zy measures the number of times the vector
f(2) — zo rotates as z moves around S'. The “number” here includes a sign: a counterclockwise
rotation counts as +1, while a clockwise rotation counts as —1. Here are several examples, with the
point zg the black dot:

G T (e

w1ndXO £)=0 w1r1de H=1 WlIldXo f)=-2 w1ndXO f)=-2 WlIldXO £)=0

One feature of the winding number is that it is invariant under homotopies of f through maps that
avoid zg. In fact, it is a complete invariant of such maps (see Exercise 3.1). It is enlightening to
verify that the different f above with the same winding number are homotopic.

We now give a precise definition. Let p: R — S! be the universal cover. Consider some
f: St — C\ xg. Define a map F: I — S* via the formula

f(e27rit) — 20
[1f(e2™) = ol
This definition makes sense since f(z) # o for all z € S'. Pick some 6y € R such that p(6y) = F(0),
and use path lifting (Lemma 3.4.1) to lift F through p to F: I — R with F(0) = . Since
F(0) = F(1), the lifts F(0) = 6y and F(1) differ by an integer. We define

wind,, (f) = F(1) — F(0) € Z.
The only arbitrary choice we made was the lift 8. Any other choice of 8y is of the form 6y + m for
some m € Z, and using 0y + m as our initial lift would change F to F +m. Since

(F(1) +m) = (F(0) + m) = F(1) = F(0),
this would not change wind,, (f). In other words, wind,,(f) € Z is well-defined.

F(t)= fort e I.

EXAMPLE 3.7.1. Fix k € Z, and define f: S' — C\ x¢ via the formula
f(z)=xg+2F forzeS'cC.

In the above recipe, we then have

f(e2™) —xg 2mikt
Flt)= —F—%——F—— =¢"™ forteI.
O = i)
We can take 6y = 0, and then B
F(0)=k0 for 0 cR.

It follows that wind,,(f) = k. We thus see that all integers can be winding numbers. |
One of the main properties of the winding number is that it is unchanged under homotopies:

LEMMA 3.7.2. Let zg € C, and let f,g: S* — C\ x¢ be homotopic maps. Then wind,,(f) =
windg, (g).

PROOF. Let p: R — S! be the universal cover. As in the definition of the winding number,
define F: T — St and G: I — S via the formulas?
f(627ris) — 0
[ f(e27%) — ao|

27ris) _

and G(s) = gle

Fls) = l9(&) o]

for s € I.

4We use s instead of ¢ since we will later use ¢ when we talk about homotopies.
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Pick some 6y € R such that p(6y) = F(0), and use path lifting (Lemma 3.4.1) to lift F' through
p: R —S! to F: I — R with F(0) = . We then have wind,, (f) = F(1) — F(0). We will hold off
on constructing the lift of G that would determine wind,, (g).

Now let hs: St — C \ x¢ be a homotopy from f to g. Define H;: I — S* via the formula

ht<627ris) — 20
H =———+—— fi I
= e a0

so Hy is a homotopy from Hy = F'to H; = G. Use the homotopy lifting lemma (Lemma 3.6.1) to lift H,
to a homotopy Hy: I — R with Ho = F. It follows that H is a lift of G, so wind, (9) = Hi(1)—H1(0).
More generally, we have wind,, (k) = H¢(1) — H¢(0) for all ¢t € I. This implies that the map

t— Hy(1) — H,(0) fortel

is a continuous integer-valued function. It is thus constant, so

wind,, (f) = Ho(1) — Ho(0) = Hy(1) — Hy(0) = wind,, (g). O

3.8. Degree of map of circle

Consider a map f: S! — S. We can regard f as a map to C\ 0, giving an integer windo(f) that
we will call the degree® of f. Denote this by deg(f). Lemma 3.7.2 implies that deg(f) is invariant
under homotopy, and just like in Example 3.7.1 we have deg(z™) = n for all n € Z. In particular, the
degree of the identity is 1 and the degree of a constant map is 0. Since these are different, we deduce
the following, which was promised at the end of §3.5:

LEMMA 3.8.1. The identity map 1: S' — S' is not nullhomotopic.

The following basic result says that the degree is a complete invariant of homotopy classes of
maps from S! to itself:

LEMMA 3.8.2. Let f,g: S' — S be maps with deg(f) = deg(g). Then f is homotopic to g.

PRrROOF. By postcomposing f and g with paths of rotations of S!, we can homotope them to
maps with f(1) = g(1) = 1. Define F: I —+ S and G: I — S! via the formulas

F(s) = f(e*™*) and G(s) = g(e*™) for seI.

We thus have F(0) = G(0) = 1. Letting p: R — S! be the universal cover, by the path lifting lemma
(Lemma 3.4.1) we can lift F' and G through p to maps F,G: I — R with F(0) = G(0) = 0. We
have F(1) = deg(f) and G(1) = deg(g), which are equal by assumption. Define H;: I — S* via the
formula

Hy(s) = p((1 — t)F(s) + tG(s)) forsel.

The maps H; are a homotopy from F to @, and since F(0) = G(0) = 0 and F(1) = G(1) € Z we
have H;(0) =1 and H;(1) = 1 for all ¢ € I. This implies that there exists some h;: S! — S with

Hy(s) = hy(e*™*) for s € 1.

This h; is a homotopy from f to g. ]
REMARK 3.8.3. In later volumes when we develop some basic results about homology, we will
generalize the notion of degree to an integer-valued invariant of maps f: M™ — N™ with M"™ and

N™ compact oriented n-manifolds. Lemma 3.8.2 generalizes to a deep theorem of Hopf saying that
this degree is a complete invariant for maps f: M"™ — S™. O

51f f is a covering space, this is different from the degree of f as a covering space. For instance, it can be negative.
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3.9. Exercises

EXERCISE 3.1. Let 29 € C and let f,g: S! — C\ 2o be maps with wind,, (f) = wind,, (g). Prove
that f is homotopic to g. Hint: first homotope f and g such that their images lie in S', then appeal
to Lemma 3.8.2. ]

EXERCISE 3.2. Let p: X — X be a covering space and let f: D" — X be a map. Set zg = f£(0).

For each %y € p~!(z0), prove that there is a unique lift f: D" — X with £(0) = . O

EXERCISE 3.3. Let X and Y be spaces. Prove that the relation of being homotopic is an
equivalence relation on maps from X to Y. O

EXERCISE 3.4. Let X and Y and Z be spaces. For i = 0,1, let f;: X - Y and g;: Y — Z be
maps. Assume that f; is homotopic to fi; and that gy is homotopic to g;. Prove that ggo fo: X — Z
is homotopic to g1 0 f1: X — Z. ]

EXERCISE 3.5. Let f: X — Y and g: Y — Z be maps. Prove that go f: X — Z is nullhomotopic
if either f or g is nullhomotopic. |

EXERCISE 3.6. Let X be a space and let f: S® — X be a map. Prove that f is null-homotopic
if and only if f extends to a map F: D"+ — X. O

EXERCISE 3.7. A space Y is contractible if the identity map 1y : Y — Y is null-homotopic (we
will say more about this concept in Chapter 6). Let p: X >3 Xbea covering space with X # () and
let f: Y — X be a continuous map with Y contractible. Prove that f can be lifted to ]?: Y - X.
Hint: First prove that f is null-homotopic. (]

EXERCISE 3.8. Let p: R — S! be the universal cover. For a space X, prove that a map f: X — S*
can be lifted to a map f: X — R if and only if f is null-homotopic. O

EXERCISE 3.9. Let X be a topological space and let f: X — C be a continuous function such
that f(z) #0 for all z € X.

(a) Construct a degree 2 cover p: X — X such that fop: X — C has a continuous square root,
i.e., there exists a continuous function g: X — C such that f(x) = g(z)? for all z € X.

(b) Prove that p: X — X is a trivial cover if and only if f: X — C has a continuous square
root. (|

EXERCISE 3.10. Define a map f: S' x I — S x I via the formula
f(z,8) = (e*™2,5) forallz€S'cCandsecl.

Prove the following:
(a) There is a homotopy f;: S x I — S! x I with fy = f and f; = unit such that f;(z,0) = (z,0)
for all z € St and ¢ € I.
(b) There does not exist a homotopy f;: S' x I — S! x I with fo = f and f; = unit such that
fi(2,0) = (2,0) and f(z,1) = (2,1) for all z € S! and ¢ € I. O

EXERCISE 3.11. Let f: S' — C\ {z0} be a smooth map. Prove that you can compute the
winding number of f around xg using the following formula from complex analysis:

wind,, (f) = 1/f ! dz.

211 zZ— T

Here the integral is the usual path integral. |
EXERCISE 3.12. Let f,g: S' — S! be maps. Prove that deg(f o g) = deg(f) deg(g). O

EXERCISE 3.13. Let f: S' — S! be a map with deg(f) # 1. Prove that there exists some x € St
such that f(x) = x. O
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EXERCISE 3.14. Let A € GL2(R). Identify C with R?, so for 2 € C we have Az € C. Define
f: St — C\ 0 via the formula f(z) = Az. Prove that

. 1 if det(A) > 0,
d prg
windg(f) {_1 if det(A4) < 0.

In other words, windg(f) is the sign of det(A). O

EXERCISE 3.15. Let f: S' — C be a smooth map. We say that f is an immersion if for all
x € St the derivative map D, f: T, S! — T(2)C is an injective map from the 1-dimensional tangent
space T,S' to the 2-dimensional tangent space Tf()C = C. A homotopy f: St — C is a regular
homotopy if each f; is an immersion. Define g: S' — C and h: S! — C via the formulas

g(z) =z and h(z)=2z""' forzeSh

Prove that there does not exist a regular homotopy from g to h. Hint: for z € S!, we can
identify T,,S' with a subspace of T,C = C. Using this identification, we have iz € T,S'. For an
immersion f: S! — C, consider the winding number around 0 of the map 7;: S — C\ 0 defined by
7p(z) = (Do f)(i). O

EXERCISE 3.16. For a < b, a map v: [a,b] — R" is linear if for some z,y € R™ it can be written
in the form
v({t) =z +ty fort e a,b].
A map v: I — R" is piecewise linear if there exist
O=€e<e< - <yy=1
such that 7|, c,,] is linear for all 1 <k < n. For an open set U C R™ and a map y: I — U, prove
that there is a homotopy ~,: I — U such that:

e 79 = and ; is piecewise-linear; and
e v:(0) =~(0) and (1) = (1) for all ¢ € I. O



CHAPTER 4

Covering spaces: homotopy classes of paths

Setting the stage for introducing the fundamental group in the next chapter, this chapter discusses
homotopy classes of paths and how they lift to covers. As an application, for a broad class of spaces
X we give a criterion that implies that all covers p: X — X are trivial.

4.1. Homotopies of paths

Let X be a space and let z,y € X. Recall from §3.4 that a path in X from z to y is a map
v: I — X with v(0) = « and (1) = y. We wish to study paths up to homotopy. This would be
uninteresting if we allowed the endpoints of v to move during the homotopy since then all paths
would be homotopic if X is path-connected (see Exercise 4.1). We therefore make the following
definition:

DEFINITION 4.1.1. Let X be a space, let x,y € X, and let y9,v1: I — X be two paths from x to
y. We say that vy and ~; are homotopic paths from x to y if there exists a homotopy v;: I — X
from 7y to y; that fixes the endpoints in the sense that

7%(0) =2z and w(1)=y foralltel.

The relation of being homotopic is an equivalence relation! on paths, and we will call the equivalence
classes of paths under this equivalence relation homotopy classes. For a path v, we will write [] for
its homotopy class. O

Here are two examples:

EXAMPLE 4.1.2. For all z,y € R™, there is a unique homotopy class of path from = to y. Indeed,
let vo: I — R™ be the straight line path

Y(s) =1 —-s)x+sy forsel.

If v: I — R™ is any other path from x to y, then 7y is homotopic to v via the homotopy ~v:: I — R™
defined by ~;(s) = (1 — t)yo(s) + ty(s) forall s€ I and t € I. O

EXAMPLE 4.1.3. View S! as a subspace of C, and let vo: I — S and v;: I — S' be the paths
defined by the formulas

(4.1.1) Y0(s) =™ and 7i(s)=e ™ forsel.

Both vy and v, are paths from 1 to —1:

We claim that vy and ~; are not homotopic. To see this, assume that they are homotopic and that

IThe proof is the same as the one needed for Exercise 3.3.

35
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4¢: I — St is a homotopy. Let p: R — S! be the universal cover, so p(6) = €% for all § € R. The
lift of vo to R starting at 0 is the map 7p: I — R defined by

(4.1.2) Yo(s) =s/2 forsel.

By Lemma 3.6.1, we can lift the homotopy 7; to a homotopy 7:: I — R with 7y the map (4.1.2).
Since 7:(0) = 1 and (1) = —1 for all ¢ € I, we have that
7:(0) ept(1) =27Z and (1) €p ' (-1)=27Z+7 fortel.
Since 277 is discrete, it follows that both 3:(0) and 7;(1) are constant functions of ¢, i.e., that
7:(0) = 0 and 4¢(1) = 1/2 for all ¢ € I. This implies in particular that 7; is the lift of v; to R starting
at 0. From (4.1.1), we see that
F1(s) = —s/2 for sel.
In particular, 41 (1) = —1/2, contradicting the fact that 71 (1) = 1/2. O

4.2. Lifting homotopies of paths

Let p: X — X be a cover and let v: I — X be apathin X fromz € X toy € X. For & €pt(n),
Lemma 3.4.1 implies that there exists a unique lift 7: I — X of v with 5(0) = Z. Generalizing the
reasoning from Example 4.1.3, we prove that this lift only depends on the homotopy class [7]:

LEMMA 4.2.1. Let p: X — X be a cover and let Y0,71: L = X be two homotopic paths in X
fromx € X toy € X. Pickx € p~'(x), and fori = 0,1 let ¥;: I — X be the lift of v; to X with
7i(0) = . Then 7 and 71 are homotopic, i.e., [Yo] = [Y1] In particular, Fo(1) = F1(1).

PROOF. Let «;: I — X be a homotopy of paths from ~y to 1. We thus have
7(0) =2 and y(1)=y foralltel

By Lemma 3.6.1, we can lift the homotopy 7 to a homotopy? 7,: I — X with 7} = 5. We claim
that +; is a homotopy of paths from 7y to 4. Indeed, since 4:(0) = « for all ¢t € I it follows that the
map t — 7;(0) is a path in the discrete space p~*(z). This path must be constant, so

7,(0) =74(0) =7(0) =2 forall t € I.

Similarly, 77(1) = 7 (1) for all ¢ € I, as claimed. It follows that 7, = ¥y is homotopic to 7;. Moreover,
A1 is a lift of v; with 71 (0) = Z, so by the uniqueness of lifts of paths we have 7] =4;. The lemma
follows. O

4.3. Connecting fibers
Let p: X — X be a cover and let v: I — X be a path in X from z € X to y € X. Define a map
i pL(z) = p~i(y) as follows:
e For & € p~1(x), let 7 be the lift of  to X with 5(0) = Z. We then set (%) =7(1) € p~1(y).

If vy is an embedding, then the lifts ¥ used to construct 7., are all disjoint (see Exercise 4.2). The
picture thus looks like the following:

X® - oy
By Lemma 4.2.1, the map 7, only depends on the homotopy class [y] of 7. The following lemma says
that it is a bijection:
LEMMA 4.3.1. Let p: X — X be a cover and let v: I — X be a path in X fromx € X toy € X.
Then the map 7,: p~'(x) — p~*(y) is a bijection.

2We call this J; since it is not obvious that 3] = 71, though we will soon prove this.
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PrOOF. Let 7: I — X be the path obtained by reversing v, i.e.,
F(s)=~v(1—-s) forsel.
The path 7 goes from y to x. To prove the lemma, it is enough to prove that 7=: p~!(y) — p~!(z)

is an inverse to 7. To see this, consider Z € p~*(z). Let ¥ be the lift of v to X with ~¥(0) =z, so
7,(Z) = 7(1). The lift 7 of 7 to X with 7(0) = F(1) is exactly the path obtained by reversing 7, so

m5(75(%)) = 5(7(1)) =7(0) = .
Similarly, 7, (75(y)) = ¢ for all ¥ € p~!(y). The lemma follows. O

REMARK 4.3.2. For a cover p: X — X with X connected, Lemma 1.2.1 implies that the fibers
p~1(z) all have the same cardinality. If X is path connected, then, Lemma 4.3.1 also implies this,
giving an alternate proof in this special case. O

4.4. Regularity from action on single fiber

Let p: X — X be a cover with deck group G. Recall that p: X 5 X is regular if for all g € X
the group G acts transitively on the fiber p~!(zg). One application of Lemma 4.3.1 is that if X is
path connected it is enough to check this on a single fiber:

LEMMA 4.4.1. Let p: X — X be a cover with deck group G. Assume that X is path connected
and that there exists some xo € X such that G acts transitively on p~t(zg). Then p: X — X s
regular.

PRrROOF. Let 1 € X. We must prove that G acts transitively on p~!(z). Let v be a path in X
from zo to z1. Lemma 4.3.1 says that the the map 7,: p~*(z9) — p~!(x1) is a bijection. Since the
action of G takes lifts of v to lifts of «, it commutes with 7., in the sense that

Ty(9Z0) = g74(Zy) for all g € G and Ty € p_l(a:o).

Since 7, is a bijection and G acts transitively on p~!(z¢), it follows that G acts transitively on
p~1(x1), as desired. .

4.5. 1-connectivity, spheres, and general position

We say that a space X is 0-connected if it is nonempty and path connected.® For each x,y € X,
there thus exists a path from = to y. We say that X is 1-connected if X is O-connected and for all
z,y € X there is a unique homotopy class of paths from x to y. It is also common to say that a
1-connected space is simply connected.

ExXAMPLE 4.5.1. We showed in Example 4.1.2 that R™ is 1-connected. We also showed in Example
4.1.3 that S' is not 1-connected. O

Spheres of dimension at least 2 are important examples of 1-connected spaces:
LEMMA 4.5.2. Let n > 2. Then S™ is 1-connected.

PRrROOF. Consider x,y € S™. We must prove that there is a unique homotopy class of paths from
z to y. Let z € S™ be a point with z # x,y. Since S™ \ z 2 R", it follows from Example 4.1.2 that
there exists a unique homotopy class of path from x to y in §™\ r. Letting v be a path from z to y in
S™, to prove the claim it is enough to prove that v can be homotoped into S™ \ z. This is nontrivial
since there do exist space-filling curves in S™.

One way to do this is to use smooth manifold techniques. Indeed, it follows from standard results
that « can be homotoped to a smooth map that is transverse to z. The point z is O-dimensional, and
thus is a codimension n submanifold of S™. It follows that y~*(z) is a codimension n > 2 submanifold
of I, and thus that v~1(2) = 0.

Here is another approach that avoids using any technology. As in the following figure, let V' = R™
be a small open neighborhood of z with z,y ¢ V:

3See Exercise 4.7 for the origin of this terminology.



38 4. COVERING SPACES: HOMOTOPY CLASSES OF PATHS

The subspace V = R" is 1-connected (Example 4.1.2), and V' \ z is path-connected. Intuitively, we
should be able to make a small homotopy to the portions of v that pass through V' to make them
miss z. Indeed, this is what the smooth manifold approach in the previous paragraph did. Lemma
4.5.3 below shows that this is in fact possible even in more general settings where smooth manifold
techniques are unavailable. ([l

The above proof used the following result:

LEMMA 4.5.3 (General position). Let X be a space, let x,y € X, and let y be a path in X from
x to y. For some z € X with z # x,y, assume there is an open neighborhood V' of z such that:

e V is l-connected; and
e V'\ z is path-connected.

Then v can be homotoped such that its image does not contain z.

PROOF. Set U = X \ 2. The set {U,V} is an open cover of X, so by the Lebesgue number
lemma (cf. the proof of Lemma 3.4.1) we can find

O=¢<e1 < <e =1

such that y([e;_1,€;]) is contained in either U or V. After possibly deleting some ¢; whose adjacent
intervals are mapped to the same open set we can also assume that for all 1 < 7 < k —1 we
have v(¢;) € UNV. In particular, y(e;) # z for all 0 < j < k. Consider some jy such that

Y([€jo—1,€50)) C V:

Since V' \ z is path-connected, there is some path ¢ in V' \ z from 7(e¢j,—1) to y(¢j,). Since V
is 1-connected, the path obtained by re-parameterizing 7| ¢;,) to make its domain I = [0, 1]
ejo] tO a suitable re-

€jg—1s
is homotopic to 4. It follows that we can homotope 7 to change 7|
parametrization of J:

€jg—1s

This ensures that the image of leig—1:€10] does not contain z. Doing this repeatedly homotopes v to
a path that avoids z, as desired. O

4.6. 1-connectivity and covers

Recall that a trivial cover of a space X is a cover that is isomorphic to a cover of the form
X X T — X for some discrete set Z. We will prove below that if X is 1-connected and has reasonable
local properties, then all covers of X are trivial. For instance, this is why we have not seen any
nontrivial covers of S™ for n > 2.
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A space X is locally path connected if for all x € X and all open neighborhoods U of x, there is
a path connected open neighborhood V of z with V' C U. Most geometrically natural spaces are
locally path connected; for instance, all manifolds have this property. We have:

THEOREM 4.6.1. Let X be a 1-connected space that is locally path connected and let p: X5 X
be a cover. Then p: X — X 1is trivial.

REMARK 4.6.2. This would be false without the assumption that X is locally path connected.
See Exercise 4.11. |

PRrROOF OF THEOREM 4.6.1. Fix a point zg € X. Consider some = € X. Let v be a path in X

from zg to z and let
Ty pH(wo) — p7 (@)

be the map constructed in §4.3 by lifting v to X starting at different points of p~1(zp). As we
observed in §4.3, the map 7., only depends on the homotopy class of 7. Since X is 1-connected, all
choices of v are homotopic, so 7., only depends on x. We therefore write 7, = 7,,.

We proved in Lemma 4.3.1 that 7, is a bijection from p~!(xg) to p~1(x). Every point of X lies
in p~!(z) for some unique z € X. Letting Z = p~!(z(), we can therefore define a bijective set map
¢: X xZI — X as follows:

(x, %) = 74(Tg) for x € X and Tgp € T = p~*(z0).

Let ¢: X xZ — X be the projection onto the first factor. By construction, ¢ fits into a commutative
diagram

XxT—2" X

NS

To prove that ¢ is an isomorphism from the trivial cover q: X x Z — X to p: X — X, we must
prove that ¢ is a homeomorphism. At this point, we remark that we do not even know that ¢ is
continuous.

Since ¢ is a bijection, to prove that it is continuous and a homeomorphism it is enough to
prove that it is a local homeomorphism. Consider some z € X and g € Z = p !(zg). Set
T = ¢(x,Fo) = 72(To), s0 T € p~*(x). Let U C X be a trivialized neighborhood of z and let U ¢ X
be the sheet lying above U with T € U. Since X is locally path connected, we can shrink U and
assume that it is path connected. We claim that the restriction of ¢ to U X Zg is the composition

Uxxo—>U(&>U

Since this is a homeomorphism between the open sets U x Ty and ('_Nf this will give the theorem.

To see this claim, consider some y € U. Let v be a path in X from z( to y, and let 7 be the lift
of v to X with 7(0) = Zo. Set ¥ = (1), so § € p~(y). What we must prove is that y € U. In fact,
since X is 1-connected any two paths from x( to y are homotopic, so we can choose y to be any such
path we like.

Let 71 be a path in X from z( to x and let 75 be a path in the path-connected subspace U from
x to y. Let v: I — X be the path?

~1(2s) if0<s<1/2,
S) =
7 v2(2s—1) if1/2<s<1.

The path « thus first goes along 7; at 2x speed and then goes along Y2 _at 2z speed. Let 47 be the
lift of 1 to X with 71 (0) = Zp. By assumption, 31(1) = ¢(z,Zp) =7 € U. Let 5 ~2 be the lift of 75 to
X with 5(0 ) =1

41 the next chapter, we will systemize this kind of operation. In the notation of that chapter, we have vy = y;1-va.
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[ ]
[ ]
Y1
Xy
Y1
Xo.

As this figure shows, the lift ¥ of v to X with ¥(0) =z is

5(s) = 71(2s) if0<s<1/2,
M= 50— 1) if1/2<s<1.

Since the image of 75 lies in U and 72(0) € U , it follows that 75 is the composition

va (plg) ™" ~
I — U —— U.

In particular, ¥ =32(1) € U, as desired. O

4.7. Exercises

EXERCISE 4.1. Let X be a path-connected space and let vy, v1: I — X be two paths in X. Prove
that ¢ is homotopic to ~y; if we do not require the homotopy to fix the endpoints of the path. [

EXERCISE 4.2. Let p: X — X be a cover and let v: I — X be a path in X. Assume that ~ is
an embedding. Let 71 and 72 be two lifts of v to X such that 7;(0) # 72(0). Prove that the images
of 41 and 7, are disjoint. O

EXERCISE 4.3. Let ny,...,n, > 2. Fix basepoints z; € S™ for all 1 < ¢ < n,,. Define
S™ v ...V S™ to be the space obtained from the disjoint union S™ LI---US™ by identifying all the
x; to a single point py (this is called the wedge sum of the S™; see §8.6). Prove that S™ v ...V S"m
is 1-connected. O

EXERCISE 4.4. Prove that a nonempty space X is 1-connected if and only if any two maps
f,g: S' = X are homotopic. ]

EXERCISE 4.5. Calculate a complete set of homotopy classes of paths from 1 € S' C C to
—1 € S! € C. Hint: the ideas from Example 4.1.3 will be helpful. ]

EXERCISE 4.6. As discussed in Example 1.4.4, let Polyflf be the space of monic degree-n
polynomials without repeated roots, let RPolyflf be the space of pairs (f,z) with f € Polyflf and
f(z) =0, and let p: RPolnyf — Polyflf be the map p(f,z) = f, so p is a degree n covering space. Fix
points f,g € Polyflf. Letting x1,...,x, € C be the roots of f and y1,...,y, € C be the roots of g,
we have

p_l(f) = {(f7$1)7' “ (f, mn)}v
pil(g) = {(gayl)v T (g7yn)}
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Let &,, be the symmetric group on n elements and let 0 € &,,. Prove that there is a path v in Polyfitf
from f to g such that the map ¢,: p~*(f) — p~*(g) is given by

¢’Y(fa xi) = (97%(1)) forall 1 <i <.
Hint: the ideas from the proof of Lemma 3.3.1 might be helpful. ([

EXERCISE 4.7. This exercise explains why we defined 0- and 1-connectivity the way we did. The
sphere S¢ and the disk D¢ are usually defined for d > 0. As a convention, for any d < 0 define
S = () and D? = (). For all d € Z, the space D4*! contains S? as a subspace. Say that a space X is
n-connected if the following holds for all d < n:

e All continuous maps S* — X extend to continuous maps D! — X
Prove the following using the above definition for 0- and 1-connectivity rather than the one we gave
in the text:
(a) All spaces are n-connected for n < —2.
(b) A space X is —1-connected if and only if it is nonempty.
(¢) A space X is 0-connected if and only if it is nonempty and path-connected.
(d) A space X is 1-connected if and only if it is nonempty, path-connected, for all z,y € X
there is a unique homotopy class of paths from z to y. (Il

EXERCISE 4.8. Let X be a graph and let p: X — X be a cover. Prove that X is a graph. Hint:
Start by adding vertices to the interiors of edges as necessary to ensure that X has no loops (make
sure this does not change the truth of the exercise!). Next, use Theorem 4.6.1 to prove that the
restriction of p: X — X to each edge of X is trivial. (]

EXERCISE 4.9. Let p: X = X be a covering space, let Y be a path component of )N(, and let
q = ply- Assume that X is locally path connected. Prove that q: Y — X is a covering space. O

EXERCISE 4.10. For n > 1, let C,, C R? be the circle of radius 1/n with center (0,1/n). Let
X = U2 ,C,, topologized as a subspace of R2. This is sometimes called the “earring space” or the
“shrinking wedge of circles”:

Construct a collection of covers {p;: X; — X };¢; with the following property. Let X be the disjoint
union of the X; and let p: X — X be the map that is p; on X; for all i € I. Then p: X — X is not
a cover. This shows that the converse to Exercise 4.9 is false. O

EXERCISE 4.11. The quasi-circle is the space Y obtained from the topologist’s sine curve
X ={(z,sin(1/z)) eR* |0 <z <1} U{(0,y) | -1 <y <1}
by connecting (1,sin(1)) to (0,0) by an arc; see here:

Prove the following:
(a) The space Y is 1-connected.
(b) There exists a nontrivial cover p: Y — Y. O
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EXERCISE 4.12. Let p: R — S! be the universal cover. Set Z = p~1(1). For z € S, let ,: I — S!
be the path that goes from 1 to z clockwise at constant speed and let

Tt I=p (1) —p ' (2)
be the map constructed in §4.3 by lifting 7, to R starting at different points of Z. Define ¢: S' xZ — R
as follows:
#(2,20) = 7.(%) for z € S* and Z € 7.

Give an explicit formula for ¢, and use this formula to show that ¢ is a non-continuous bijection of
sets. ]



CHAPTER 5

Fundamental group: definition and basic properties

As the last chapter showed, there is a close connection between covers of a space X and the
collection of homotopy classes of paths in X. In this section, we organize the collection of homotopy
classes of paths in algebraic objects called the fundamental group and groupoid.

5.1. Multiplying homotopy classes of paths

Let X be a space. Our goal is to endow the set of homotopy classes of paths between points of X
with an algebraic structure. In this structure, only some paths can be “multiplied”. The definition is
as follows:

DEFINITION 5.1.1. Let v: I — X and v': I — X be paths between points of X. We say that
~ and +' are composable if the terminal point of v equals the initial point of 7. If v and ~' are
composable, then v-+': I — X is the path defined by the formula

, ~v(2s) if0<s<1/2,
. = f el. |
(r)(s) {7’(23 1) if12<s<1. 7

In other words, -y’ first traverses v at 2x speed and then traverses 7' at 2x speed:

If v goes from z to y and ' goes from y to z, then -y’ goes from x to z. This only makes sense if
and v are composable, and we do not define -y’ if they are not.

REMARK 5.1.2. Being composable is not symmetric: if vy’ is defined, then it need not be the
case that v/-y is defined. O

For a path 7: I — X, recall that [y] denotes its homotopy class. The following lemma says that
our “multiplication” descends to a multiplication on homotopy classes:

LEMMA 5.1.3. Let X be a space. Let vy and ), be composable paths in X. Let 1 be a path that
is homotopic to o and let v; be a path that is homotopic to ), so [yo] = [v1] and [v)] = [v1]. Then
[vo-v0l = [oil-

PROOF. Assume that vy goes from z to y and that  goes from y to z. Let 4; be a homotopy
from 7o to 1 and let y; be a homotopy from - to v{. For each t € I, we have

1(0) =2 and %(1)=7(0)=y and (1) =z,
so ¢ and ~y; are composable and 7;+v; is a well-defined path from « to z. As t varies over I, the
paths ~;+y; form a homotopy from oy to v1-7;. |

5.2. Properties of multiplication

Let X be a space. This section explores properties of our multiplication that resemble the
properties of a group. We start with associativity. Let v and 7/ and v be paths in X such that
and ' are composable and 7' and 7" are composable. It follows that -7’ and 4" are composable,
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and also that v and +'-7" are composable:

Both (y-v)-y" and v-(7'+y") thus make sense; however except in degenerate cases we have (y-y')-y" #
~v-(7'+y""). The following lemma shows that passing to homotopy fixes this:

LEMMA 5.2.1 (Associativity). Let X be a space. Let v and v’ and 4" be paths in X such that
and v’ are composable and v' and v are composable. Then [(v-y')~"] = [v-(v' )]

PRrROOF. The paths f; = (v-9/)-y" and fo = v-(7'+y") are almost the same. They both traverse
~ and then " and then 4”; however, they do this at different speeds. As functions on I = [0, 1], we
have the following:

e The path f; traverses v at 4x speed on the interval [0,1/4], then 7/ at 4x speed on the
interval [1/4,1/2], and then 7" at 2x speed on the interval [1/2,1].

e The path f, traverses v at 2x speed on the interval [0,1/2], then 4/ at 4x speed on the
interval [1/2,3/4], and then 4" at 4x speed on the interval [3/4,1].

Let p: I — I be the piecewise linear function with the graph
le

3/4 ¢
1/2 ¢

174 ¢

174 172 3/4 1
We then have f = f1 o p. The lemma now follows from Lemma 5.2.2 below. O

LEMMA 5.2.2 (Reparameterization lemma). Let X be a space and v: I — X be a path. Let
p: I =1 be a function such that f(0) =0 and f(1) = 1. Then [yo p] = [v].

PROOF. The desired homotopy from o p to -y is given by
ve(s) =~v((1 —t)p(s) +ts) fort,sel.
Here we use the fact that f(0) =0 and f(1) = 1 to ensure that the endpoints of v; do not move:
71(0) = (1 = 1)p(0) +0) =~(0) and  %(1) =~((1 =t)p(1) +) =7(1 -t +) =~(1). O
We now turn to multiplicative identities. For a point z € X, let ¢,,: I — X be the constant path
cz(s)=x forsel.

This serves as an identity for our multiplication. However, since we can only multiply composable
paths an appropriate ¢, must be chosen for the left- and right-identities of any given path:

LeEMMA 5.2.3 (Multiplicative identities). Let X be a space and let v be a path in X from x to y.
Then [y-¢a] = [7] and [c,7] = [7].

ProOOF. The path ~-c, stays at « on the interval [0,1/2] and then traverses v at 2x speed:

K if s €10,1/2],
(rea)le) = {7(23 S0 isepyan. ET
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Letting p: I — I be the map

a(s) = {0 if s €[0,1/2],

] for s € I,
2s—1 ifse[l1/2,1]

we thus have v-c, = v o p. Applying Lemma 5.2.2, we see that [y-c;] = [y 0 p] = [7], as desired. The
proof that [c,-y] = [7] is similar. O

Having found identities, our final goal is to find inverses. Let v be a path in X from z to y.
Define 7: I — X to be the path that traverses = in the reverse order:
F(s)=7v(1—s) forsel.
The path 7 goes from y to z, and serves as a sort of “inverse” to our multiplication:
LEMMA 5.2.4 (Inverses). Let X be a space and let v be a path in X from x toy. Then [y7] = [cz]
and [79] = [¢,].
ProOOF. The path -7 goes from « to z. For t € I, define §;: I — X to be the path
v(2s) if s € [0,t/2],
0u(s) = ¢ y(t) if se[t/2,1—-1t/2], forsel.
v2(1-s)) ifsell—t/2,1].
This makes sense since
Y(2(t/2)) = 7(t) = v(2(1 = (1 - t/2))).

Geometrically, d; travels along v to (), waits for a while, and then goes back along 7:
y(174)

Since d; is a homotopy from ¢, to 77, we deduce that [c,] = [y-7], as desired. The proof that
[7-v] = [¢,] is similar. !

5.3. Categorical language

Let X be a space. In the previous sections, we showed that the set of homotopy classes of paths
between points of X has a partially-defined “multiplication” that is associative, has identities, and
has inverses. What kind of algebraic structure could this be?

To answer this question, we need the language of category theory. Recall that a category C
consists of the following data:

e A collection of objects. We will write A € C to indicate that A is an object of C.
e For all objects A, B € C, a set C(A, B) of morphisms. We will often write f: A — B to
indicate that f is a morphism from A to B.
e For all objects A € C, an identity morphism 14: A — A.
These morphisms can be composed: if f: A — B and g: B — C' are morphisms, then we have a
morphism go f: A — C. This composition should be associative in the sense that if f: A — B and
g: B— C and h: C'— D are morphisms, then

(fog)oh=fo(goh).
Because of this, there is no need to insert parentheses when composing morphisms. Under this
composition, the identity morphisms should be units: if f: A — B is a morphism, then foly = f
and 1gof = f.
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EXAMPLE 5.3.1. The collection of all sets and set maps forms a category Set. O

EXAMPLE 5.3.2. The collection of all topological spaces and continuous maps forms a category
Top. O

EXAMPLE 5.3.3. The collection of all groups and homomorphisms forms a category Group. O

ExAMPLE 5.3.4. For a group G, there is a category (also written G) with one object x and with
G(z,z) =G. O

REMARK 5.3.5. The language of category theorem might seem overly abstract, but it turns out
to be very useful and clarifying. Fundamentally, it is just a way of organizing information. Typically
you cannot prove interesting new theorems by just defining a category, but the language of category
theory often suggests useful constructions. O

5.4. Fundamental groupoid

Our goal now is to encode the homotopy classes of paths in a space X into a category. The
objects of this category will be the points of X. For points z,y € X, the morphisms from z to y will
be the homotopy classes of paths from = to y. There is one annoying technical point: in a category,
composition goes from right to left like functions. However, we multiply paths from left to right: if
is a path from z to y and 7' is a path from y to z, then v+’ is a path from z to z. To fix this, we
introduce the following notation:

NoOTATION 5.4.1. Let X be a space. For points x,y,z € X, let v be a path in X from z to y and
let § be a path in X from y to z. We then define 7’ v = v-v’. This descends to homotopy classes of
paths, and we also write [y'] * [y] = [y *7]. g

We now define the following;:

DEFINITION 5.4.2. Let X be a space. The fundamental groupoid of X, denoted II(X), is the
following category:

e The objects of TI(X) are the points of X.

e For points x and y, the II(X)-morphisms from z to y are the set of all homotopy classes of
paths from z to y. For a path v from z to y, we will write [y]: © — y for the corresponding
morphism from x to y.

e If v is a path from z to y and +' is a path from ¥ to z, then the composition of the morphisms
[v]: © = y and [y]: y — z is the morphism [y] * [7]:  — 2.

e For a point « € X, the identity morphism of x is the constant path [¢,]: x — . O

Lemma 5.2.4 says that all the morphisms in the fundamental groupoid II(X) are invertible. This
is the defining property of a groupoid:

DEFINITION 5.4.3. A groupoid is a category G in which all morphisms are invertible, i.e., such
that for all morphisms ¢: A — B, there is a morphism ¢: B — A with ¢o¢p =14 and ¢pogp =15. O

REMARK 5.4.4. Let G be a groupoid and ¢: A — B be a morphism in G. In Exercise 5.7, you
will prove that the inverse to ¢ is unique in the following sense. Consider ¢, 5/: B — A. Then ¢ = 5/
if any of the following conditions are satisfied:

° $o¢:$lo¢:lA; or
© pop=0od =1lpor
e pop=14and pog =1p.
Because of this, we can safely talk about the inverse to ¢. (]

As we discussed in Example 5.3.4, a group can be viewed as a category with one object. Under
this identification, a group is a groupoid. Conversely, consider a groupoid G. For A € G, write

Autg(A)={f| f: A— Ais a morphism in G}.
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Since all morphisms in G are invertible, this is a group. What is more, for a morphism ¢: A — B in
G there is an isomorphism t,: Autg(A) — Autg(B) defined by

Yu(@) =tpogpop forall p: A — Ain Autg(A).

In this way, a groupoid packages together a collection of groups along with certain isomorphisms
between them.

5.5. Fundamental group
Let X be a space. For 2y € X the fundamental group of X with basepoint x, denoted 71 (X, ),

is
m1 (X, z0) = AutH(X) (.’L‘o)

In other words, m1 (X, z¢) is the group whose objects are homotopy classes of loops based at xg, i.e.,
paths v from x( to itself. In the fundamental group, we will use the concatanation product - rather
than *. This does not change the group (see Exercise 5.8).

If v is a path from zg to z(, then we get an isomorphism

a.: m (X, xp) = (X, z0)
defined by
a.([7) = [aya] for all [p] € mi (X, o).
From these isomorphisms, we see the following:

LEMMA 5.5.1. Let X be a path-connected space. Then for all xo,zy € X we have m1 (X, x0) =
1 (X, .’Eé)

O

PROOF. Just use the above isomorphism associated to a path from zg to xj.

We will give many computations of m (X, z¢) over the next few chapters. For X path-connected,
Lemma 5.5.1 says that the isomorphism type of 71(X,z¢) is independent of the basepoint .
The isomorphism type of 71 (X, z¢) is thus a useful invariant of path-connected spaces, i.e., if two
path-connected spaces have different fundamental groups, then they are not homeomorphic. The
fundamental groupoid is not so useful as an invariant since it knows far too much about the space;
for instance, its objects are literally the points of the space.

You might wonder why we bothered to introduce the fundamental groupoid at all. There are
two reasons:

e While for a path-connected space the isomorphism type of the fundamental group does not
depend on the basepoint, the isomorphisms between the fundamental groups at different
basepoints are not canonical. The fundamental groupoid packages them all together, and
is present at least implictly in all serious treatements of the fundamental group. It seems
perverse to refuse to give a name to a structure you use.

e There are many constructions in topology that are most naturally phrased in terms of the
fundamental groupoid. For instance, the most general form of the classification of covering
spaces uses the fundamental groupoid (see Chapter 11). Later volumes of this book will
contain other examples.

We remark that serious applications of 71 (X, 2) often require a careful treatment of the basepoint xg.
Simply identifying the fundamental group at different basepoints will quickly lead you astray. This is
analogous to the fact that while all finite-dimensional vector spaces over a field k are isomorphic to
k™ for some n > 0, one cannot simply identify vector spaces with k™. Such an identification requires
a choice of basis, and often there is no natural choice. Much of linear algebra focuses on carefully
choosing bases adapted to different situations and studying how all these different bases are related.
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5.6. Functoriality: fundamental group

Before discussing how to calculate the fundamental group, we must study the way in which the
fundamental group and groupoid of X depend on X. We start with the fundamental group. Consider
amap f: X —» Y and zg € X. If vis a loop in X based at xq, then fo~visaloopin Y based at f(zo).
The loop [f o] only depends on the homotopy class of «y, and the map f.: m1 (X, z9) = m1 (Y, f(z0))
defined by

b)) = [f 0n] for all y] € mi(X, o)
is a homomorphism called the homomorphism induced by f.

Since the fundamental group is the group of homotopy classes of loops, one expects the homo-
morphism induced by a map to only depend on the homotopy class of the map. However, this is not
quite right since we have to be careful about the basepoint. To state things properly, we introduce
the following terminology:

DEFINITION 5.6.1. A pointed space is a pair (X, zo) with X a space and z¢p € X. A map between
pointed space (X, z) and (Y,yo) is a map f: X — Y such that f(xg) = yo. We will denote such a
map by f: (X, 20) = (Y,y0). A homotopy of maps from (X, zg) to (Y, yo) is a homotopy f;: X — Y
such that fi(xg) = yo for all t € I. Just like for maps, we will denote this by f;: (X, z¢) — (Y, 90), and
if such an f; exists we will say that fo: (X, 20) — (Y, y0) and f1: (X, 20) — (Y, yo) are homotopic. O

With this setup, a map f: (X, 20) — (Y, yo) between pointed spaces induces a homomorphism
form(X,20) = m (Y, 90), and if f: (X, 20) — (Y, y0) and g: (X, z9) — (Y, Yp) are homotopic maps
between pointed spaces then f, = g.. The homomorphisms induced by maps of pointed spaces have
the following two simple properties:

e for maps of pointed space f: (X,z9) = (Y,v0) and g: (Y, yo) — (Z, 20), we have (go f), =
g« © f«; and
e the identity map 1: (X, zg) — (X, zg) induces the identity homomorphism, i.e., 1, = 1.
All of this can be summarized in categorical language as follows. Recall that if C and D are categories,
then a functor F': C — D consists of the following data:
e For all objects C' € C, an object F'(D) € D.
e For all morphisms f: Cy — Cs between objects of C, a morphism F(f): F'(Cy) — F(Cb).
These are required to satisfy:
e for all morphisms f: C; — Cs and g: Cy — C3 between objects of C, we have F(go f) =
F(g) o F(f); and
e for all identity morphisms 1¢: C' — C in C, we have F(1¢) = 1p ).

To fit the fundamental group into this, let Top, be the category of pointed spaces, so the objects
of Top, are pointed spaces (X, zp) and the morphisms in Top, are the maps f: (X, z0) — (Y, 0)
between pointed spaces. We can then summarize our discussion by:

LEMMA 5.6.2. The fundamental group is a functor m: Top, — Group.

5.7. Homotopies that move the basepoint

Let (X, z0) be a pointed space and let fy, f1: X — Y be two homotopic maps. Set yo = fo(zo)
and y; = fi1(zg). We therefore have maps fo: (X, 20) — (Y,y0) and f1: (X,29) — (Y,y1). Since
their targets are different, it does not make sense to say that the induced maps

(fo)s: m (X, 20) —71(Y,%0),
(f1)s: m(X,20) =m1(Y, 1)

are equal. Instead, they are related as follows:

LEMMA 5.7.1. Let X and Y be spaces and let fi: X — Y be a homotopy of maps from X to Y.
Let xg € X be a basepoint, and set yo = fo(xo) and y1 = fi(xo). Let §: I =Y be the following path
from yo to y1:
0(s) = fs(xg) forsel.

Then for all [y] € 71 (X, zo) we have (fo). () = [6](f1) (W3] € m1(Y: 3o).
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PROOF. For t € I, let y; = 6(t) and let 6°: I — Y be the path
§'(s) = fis(wo) = 6(ts) forse I

The path §* thus goes from §(0) = yo to 5(t) = y;:
yi=1i(xo)

y1=fi(x0)
f, oy

Since f; o v is a loop based at fi(xg) = §(t) = y;, it follows that the map ¢t — §-(f; o 7)-3t is a
homotopy of paths. Since §° is the constant path based at 1o, we conclude that

(fo)«(12]) = [fo 03] = [8°-(fo 0)3"] = ["-(f1 7)8 ] = [8)(f1) (WD D)- =
5.8. Functoriality: fundamental groupoid

It will play less of a role in this book, but for completeness we now explain how to think about
the fundamental groupoid as a functor. Recall that a groupoid is a category in which all morphisms
are invertible. For groupoids G; and Gs, a groupoid homomorphism from G; to Gs is a functor
F: G; — Go. Unpacking this, F' consists of the following data:

e For each object x € Gy, an object F(z) € Ga.

e For each morphism ¢:  — y in G, a morphism F(¢): F(z) = F(y) in Ga.
The morphisms F'(¢) must respect composition in the obvious sense. For each z € G, we have the
group Autg, (z), and F': G — Go induces a group homomorphism F,: Autg, (z) — Autg,(f(z)).
If we think of a groupoid as a collection of groups connected by isomorphisms, the homomorphism
F: G; — G; can be regarded as a collection of group homomorphisms that respect the given
isomorphisms.

Let Groupoid be the category whose objects are groupoids and whose objects are groupoid
homomorphisms. The fundamental groupoid can then be regarded as a functor II: Top — Groupoid:

e For a space X, we have the groupoid II(X).
e For a map of space f: X — Y, we have the groupoid homomorphism f,: II(X) — II(Y)
defined as follows:
— An object of II(X) is a point « € X, and f.(x) = f(z) € Y.
— A morphism in II(X) from 2 € X to y € X is the homotopy class of a path v from x
to y, and fi([y]) = [f o].
We remark that unlike for the fundamental group, the groupoid homomorphisms f,: II(X) — II(Y)
are not homotopy invariant, at least not in a naive sense. See Exercise 5.9 for one way to think about
this.

5.9. Exercises

EXERCISE 5.1. Let (X, x9) and (Y, o) be pointed spaces. Prove that
T (X XY, (20,90)) = m1(X,20) X 71 (Y, y0). O
EXERCISE 5.2. Let X be a space and let g, 2, € X. For each path « from zg to z{, we defined
a change of basepoint isomorphism «, : 7 (X, z() — 71 (X, x0) in §5.5:
ax([7]) = [ay-a] for all [7] € m (X, xp).
Prove that . is independent of the path « if and only if 71 (X, z¢) is abelian. This exercise shows that

when the fundamental group is abelian there is a canonical isomorphism between the fundamental
groups at different basepoints. O

EXERCISE 5.3. Prove that 71 (S!, 1) & Z. Hint: though this does not follow directly from the fact
that the degree is a complete invariant of homotopy classes of maps S! — S (Lemma 3.8.2), it can
be proved by carefully examining the construction of the degree and the proof of Lemma 3.8.2. [
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EXERCISE 5.4. Let (X, zo) be a pointed space. Do the following:

(a) Prove that there is a bijection between elements of 71 (X, zg) and homotopy classes of maps
of pointed spaces f: (S, 1) — (X, o).

(b) Let f: (S',1) — (X, x) be a map of pointed spaces. Prove that f represents the trivial
element of 71(X,zo) if and only if f extends to a map F: (D?,1) — (X, z0).

(c) Let Z be a graph with a single vertex * and two loops ¢; and ¢ based at *. Regarding
the ¢; as circles, for maps f1, fo: (St,1) — (X, x0) let f1V fa: (Z,%) — (X, x0) be the map
that equals f; on ¢; and f on f5. Problem: Construct a map m: (S',1) — (Z, *) with
the following property:

e Consider elements [y1], [y2] € 71(X, z0). Represent [v;] by a map fi: (S*,1) — (X, zo).
Then [y1-72] is represented by the map (f1 V f2) om: (S',1) — (X, z0). O

EXERCISE 5.5. Let X be a space and let f;: X — X be a homotopy from fy =1x to fi = 1x.

For a basepoint zg € X, let v: I — X be the path v(s) = fs(z0). Prove that [y] € m1 (X, x0) is a
central element, that is, that [y] commutes with all elements of m (X, zo). O

EXERCISE 5.6. Let G be a topological group, that is, a space G that is also a group such that
the multiplication map G x G — G and the inversion map G — G are continuous. Letting 1 € G
be the identity, prove the following:

(a) Define an alternate multiplication on 71 (G, 1) using the multiplication on G as follows: for
[11], [v2] € m1(G, 1), define [y1] * [y2] = [y3] where v3: I — G is the loop
v3(s) = v1(s)y2(s) for s € I.

Prove that * is the same as the usual multiplication on m (G, 1).
(b) Prove that w1 (G, 1) is abelian. O

EXERCISE 5.7. Let G be a groupoid and ¢: A — B be a morphism in G. Consider ¢, 5/: B — A.
—
Then ¢ = ¢ if any of the following conditions are satisfied:

° 50?:$Iog:lA;or
.« pod=00d =1l o
e pop=14and pod =1p. O

EXERCISE 5.8. Let G be a group with multiplication *. The opposite group, denoted G°P, has
the same elements as G. However, the multiplication - in G°P is the “opposite” multiplication to G:
zy=yx*x forall z,y € GP.
Prove the following:
(a) The opposite group G°P is a group.
(b) The group G°P is isomorphic to G. O
EXERCISE 5.9. Let f;: X — Y be a homotopy of maps between spaces. Prove that f; induces
a natural isomorphism between the functors fo: II; (X) — II1(Y) and f1: II1(X) — II;(Y) giving

the induced maps between fundamental groupoids. Here recall that if F,G: C — D are functors
between categories C and D, then a natural isomorphism V: F — G consists of the following data:

e For all objects A of C, a D-isomorphism U(A): F(A) — G(A).
These must satisfy the following:
e For all morphisms A\: A — B between objects of C, the diagram
F(\)

F(A) 22 pBy
l\I/(A) l\IIB
a4y 2% qB)

must commute. O



CHAPTER 6

Fundamental group: triviality

In this chapter and the next, we calculate the fundamental groups of many spaces. This chapter
focuses on spaces with trivial fundamental groups. The results we prove will be needed in the next
chapter to handle spaces with nontrivial fundamental groups.

6.1. l-connectivity and the fundamental group

Recall that a space X is 1-connected if it is nonempty and for all z,y € X there is a unique
homotopy class of paths from x to y. If X is 1-connected and locally path connected, then Theorem
4.6.1 says that all covers of X are trivial. We can relate this to the fundamental group as follows:

LEMMA 6.1.1. Let (X, x0) be a path-connected pointed space.!

if7T1(X7.T0) =1.

Then X is 1-connected if and only

PROOF. If X is 1-connected, then in particular there is only one homotopy class of paths from
xo to itself, so m (X, xg) = 1. Conversely, assume that 71 (X, z9) = 1. Let p and ¢ be two points of
X, and let v and 4/ be paths from p to ¢:

X0

Since X is path-connected, Lemma 5.5.1 implies that m1(X,p) = 0. The path vy is a path from p
to p, so [y7¥] € m1(X, p) must be trivial. We therefore have

Y1 =1T= 71l = DFINT = 1,
as desired. (]

Lemma 4.5.2 says that S™ is 1-connected for n > 2, so we deduce the following:

LEMMA 6.1.2. For n > 2, we have 7 (S™,x0) = 1 for all xg € S™.

6.2. Retracts and deformation retracts

Let X be a space and let A C X be a subspace. A retract of X to A is a map r: X — A such
that r(a) = a for all @ € A, i.e., such that |4 = 1. A deformation retraction of X to A is a homotopy
i X — X from the identity 1: X — X to a map r1: X — X such that:

e the map r; is a retraction of X to A; and

e for allt € I and a € A, we have r(a) = a.
If there exists a deformation retraction of X to A, then we say that A is a deformation retract of X
and that X deformation retracts to A. Here are several examples:

EXAMPLE 6.2.1. Let U C R™ be a set that is star-shaped, i.e., such that there exists a point
po € U such that for all x € U the line segment from pg to z is contained in U. For instance, U might
be convex. We claim that U deformation retracts to pg. Indeed, the maps r;: U — U defined by

ri(r) =1 —t)x+tpp forxeUandtel

LSince zo € X, the space X is nonempty and thus 0-connected.

51
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form a deformation retraction. O
EXAMPLE 6.2.2. Let f: Z — A be a map between spaces. The mapping cylinder of f, denoted

Cyl(f), is the quotient of the disjont union (Z x I) U A that identifies (z,1) € Z x I with f(z) € A
for all z € Z:

A

For z € Z and s € I, let (z, s) be the image of (z,s) € Z x I in Cyl(f). Both Z and A are subspaces

of Cyl(f): the space Z can be identified with {(Z,O) | z € Z}, and the copy of Ain (Z xI)U A

maps homeomorphically to a copy of A in Cyl(f). The space Cyl(f) deformation retracts to A via
the deformation retract r;: Cyl(f) — A defined by

{rt(z,s =(z,(1—t)s) for (z,8) € Z x[0,1],
ri(a) = a for a € A.

The reader can easily check that this makes sense and is continuous. O

EXAMPLE 6.2.3. As in the following figure, let A be the letter A embedded in the plane and for
some small € > 0 let X be a closed e-neighborhood of A:

Then X deformation retracts to A via a deformation retraction during which points travel along
straight line segments to A. In fact, this is a special case of the previous example: the boundary

of X consists of two circles S' US', and X is homeomorphic to the mapping cylinder of a map
f:Stust — A. O

EXAMPLE 6.2.4. We claim that S"~! is a deformation retract of R™\ 0. Geometrically, the picture
is as follows, where the blue arrows show the paths points of R™ \ 0 travel during the deformation
retraction:
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In formulas, this deformation retraction is given by the maps r;: R™\ 0 — R™ \ 0 defined by

t
rt(x):<(1—t)—|—”x”)x forx e R"\Oand t € I. O
Recall from §5.6 that the fundamental group is functorial under maps of pointed spaces. Using
this, we have:

LEMMA 6.2.5. Let X be a space, let A C X be a subspace, and let ag € A. Letv: (A, ap) — (X, ao)
be the inclusion. Then:
(i) If A is a retract of X, then the map t.: m (4, a9) — m (X, ap) is injective.
(ii) If A is a deformation retraction of X, then the map v.: m(A,a0) — 7 (X, a0) is an
isomorphism.

PrOOF. We start with (i). Let r: X — A be a retraction. Since 7 ot = 14, it follows that
T+ 0 te = 1o (4,a0)s 1-€., that the following composition is the identity:

71'1(A,a0) i> 7r1(X,a0) i) 771(A,a0).

This implies that ker(c,) is trivial, so ¢, is injective.

We now prove (ii). Let r: X — X be a deformation retraction. In light of (i), it is enough to
prove that the map ¢y : m1(A, ap) = 71(X, ap) is surjective. Consider a loop §: I — X based at p.
We must prove that § can be homotoped to a loop lying in A. Since r¢(ag) = ao for all t € I, we
have a homotopy of paths r o §. Since r1(X) C A, the image of the endpoint r; o d of this homotopy
lies in A, as desired. O

Here is one consequence:
LEMMA 6.2.6. Let n > 3. For xg € R™\ 0, we have w1 (R™\ 0,29) = 0.

PROOF. Since R™\ 0 is path-connected, we can change ¢ without changing the fundamental
group. Choose x( such that xo € S*~* C R™\ 0. Since R™ \ 0 deformation retracts to S"~!, Lemma
6.2.5 implies that

m (R™\ 0,20) = m (S"1, o).
Since n > 3, this vanishes by Lemma 4.5.2. O

6.3. Contractibility

A nonempty space X is said to be contractible if the identity map 1: X — X is homotopic to
a constant map. This holds, for instance, if X deformation retracts to any one-point subspace xg.
Star-shaped or convex subspaces of R™ are therefore contractible. However, being contractible is
more general than this since none of the points of X need to be fixed during the contraction. See
Exercise 6.12 for an example where these are genuinely different notions.

If a space X deformation retracts to a point g € X, then it follows from Lemma 6.2.5 that

T (X, zo) = 71 (x0,20) = 1.

The following shows that this vanishing holds more generally if X is merely contractible.
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LEMMA 6.3.1. Let X be a contractible space and let xg € X. Then m (X, zo) = 1.

PrOOF. Let f;: X — X be a homotopy from the identity 1: X — X to a constant map. Since
X is path connected, its fundamental groups at different basepoints are all isomorphic. We can
therefore assume without loss of generality that x( is the constant value of f;. Let §: I — X be the
following path from x( to xg:

5(s) = fs(zo) forsel.

Consider [y] € m1(X, z0). Since fo = 1 we have (fo)«([7]) = [v], and since f1 is the constant map x
we have (f1)«([7]) = 1. By Lemma 5.7.1, we therefore have

7] = (fo)« (7)) = [0](f2)([¥])[0] = [8][8] = 1. 0

6.4. Trees

Here is an important example. Recall that we discussed graphs in §2.5. A tree is a nonempty
connected graph with no cycles. We will prove:

LEMMA 6.4.1. Let T be a tree and let vy be a vertex of T. Then T deformation retracts to vy,
and in particular T is contractible.

ProOOF. We will omit some of the point-set details, and invite the reader in Exercise 6.9 to verify
that all the maps we construct are continuous. Inductively define subtrees

TocTiCcIy C---

of T in the following way. Start by letting Ty = vg. Next, if T,,_1 has been constructed, let T, be
the subtree obtained from T},_; by adding all edges of T" with an endpoint in 7}, _y:

Vo

Since T is a tree, each new edge e added to T;,—; to form T}, has the property that exactly one
endpoint of e lies in T, _1; otherwise, e would form part of a cycle in 7,,. This implies that T,
deformation retracts to 7,,_1 via a deformation retract where the points of these new edges e move
along e to the vertex lying in 7;,_;. Let r}: T,, — T, be this deformation retract. Since T is
connected, we have

o0
T=J 7.
n=0
For each n > 1 and m > 0, consider the retractions
R =rlo-orf™: Thim — Thoy.

For my > mgy > 0, the retractions Ry, and Ry, agree where they both are defined, namely on T, 4y, -

It follows that for a fixed n > 1 the different R}, glue together to give a retraction R™: T — T,_1.

Assume first that T = T),, for some n; > 0 (which holds, for instance, if T is a finite tree). In
this case, we can deformation retract T' = T,,, to Ty = vg by first using ;' to deformation retract
T, to T, _1, then using rfrl to deformation retract 7, 1 to T),, 9, etc. For the general case, we
have to be a bit more careful. Write

I={0}u|J I, withI,=[1/2",1/2"""],
n=1
so I, has length 1/2". Define r,: T — T in the following way:
e Fortel, and z € T, let ri(z) = Tgn(t_1/2n)(R"+l(x)).
e For t =0 and z € T, define ro(z) = =.



6.6. EXERCISES 55

The reader will check in Exercise 6.9 that this definition makes sense and is continuous. By definition
we have ryp = 1, and since 1 € I; we have

ri(z) = ri(R*(z)) =vo forxz €T,

where we recall that T} is the vertex vg. It follows that r; is a deformation retraction of T to vg, as
desired. 0

6.5. Projective spaces

Recall that real projective space RP"™ is the space of lines through the origin in R"*!. This has
the degree 2 cover p: S™ — RP" taking z € S® C R"*! to the line through x. This reflects the fact
that RP" is not 1-connected, as we will see rigorously in Chapter 7.

An important relative of RP™ is complex projective space, that is, the space CP" of lines through
the origin in C**1. This can be topologized just like RP": letting C**1\ 0 — CP" be the map taking
z € C"*! to the line through z, we give CP" the quotient topology:

e A set U C CP” is open if and only if its preimage in C"*!\ 0 is open.
The space CP" will play an important role in subsequent volumes when we discuss homology and

cohomology. However, it is less important in this volume since it turns out to be 1-connected. We
outline a proof of this in Exercise 6.3.

6.6. Exercises

EXERCISE 6.1. Let X be a contractible space and let A C X be a subspace such that there is a
retract r: X — A. Prove that A is contractible. |

EXERCISE 6.2. Let X be a space. Letting p be a one-point space, the cone on X, denoted
Cone(X), is the mapping cylinder of the constant map X — p. The space X is a subspace of
Cone(X). Also, the image of p in Cone(X) is called the cone point. The suspension of X, denoted
¥ X, is the quotient of the disjoint union Cone(X) U Cone(X) that identifies the copies of X in the
two cones. Do the following:

(a) Prove that Cone(X) deformation retracts to the cone point, and in particular is contractible.

(b) Prove that ¥S™ = Sn+1,

(¢) If X is O-connected, then prove that ¥.X is 1-connected. Note that by (b) this generalizes
the fact that S™ is 1-connected for n > 2. Hint: apply Lemma 4.5.3 (general position). O

EXERCISE 6.3. This exercise outlines a proof that CP" is l-connected. As notation, for
(21,--+y2n41) € C*1\ 0 let [21,...,2,41] be the corresponding point in CP", i.e., the line in
C"*! though the origin and (z1,...,2,+1). The proof will be by induction.

(a) For the base case, prove that CP! 2 $2, so CP! is 1-connected.

(b) Now assume that n > 2 and that CP" " is 1-connected. Fix a basepoint zo € CP" '
Embed CP"~! into CP" via the map taking [z1, ..., 2,] € CP" ! to [z1,..., 2n,0] € CP".
Using this, we identify z¢ with a point in CP". Finally, set » = [0,...,0,1] € CP".
Problem: for [y] € m1(CP", xg), prove that v can be homotoped such that its image does
not contain r. Hint: use Lemma 4.5.3 (general position).

(¢) Prove that CP" \r deformation retracts to CP"~*. Since our inductive hypothesis implies
that 7 (CP""*,2z0) = 1, this will imply that 7 (CP"\r,z0) = 0 and thus by (b) that
m1(CP", z9) = 1. We conclude that CP" is 1-connected. O

EXERCISE 6.4. Let X be a space. Prove the following:
(a) The space X is contractible if and only if for all spaces Y, every map f: X — Y is

nullhomotopic.
(b) The space X is contractible if and only if for all spaces Z, every map ¢g: Z — X is
nullhomotopic. O

EXERCISE 6.5. Let X be a space. Let Cone(X) be the cone on X from Exercise 6.2. Prove that
X is contractible if and only if X is a retract of Cone(X). O
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EXERCISE 6.6. Let f: X — Y be a map. Prove that there exists a map ¢g: Y — X such that
go f: X — X is homotopic to the identity if and only if X is a retract of the mapping cylinder

Cyl(f). 0
EXERCISE 6.7. Do the following:

(a) Let X be a space. Assume that X = U UV where U and V are 1-connected open sets such
that U NV is 0-connected. For o € U NV, prove that 71(X,z¢) = 1. Hint: Start with
some [y] € (X, zo) and try to write [y] = [y1] - - - [yn] where each [y;] € 71 (X, zg) is such
that the image of ~; lies in either U or V. The Lebesgue number lemma will be useful.

(b) Use part (a) to give an alternate proof that S™ is 1-connected for n > 2.

(¢) Generalize part (a) as follows. Let X be a space and let X = U;c;U; with each U; open.
Let zg € X be a basepoint such that zq € U; for all 1 € I. Assume the following:

e The open set U; is O-connected for all i € I.

e The open set U; N Uj is 0-connected for all 4,5 € I.

e The map 71 (U;, z9) — 7m1(X, xo) is trivial for all ¢ € I.
Prove that 71 (X, zo) = 1.

EXERCISE 6.8. Let X and Y be spaces. The join of X and Y, denoted X * Y, is
X*xY=XUYUX XY XI)/n~,
where ~ makes the following identifications for all x € X and y € Y:
(2,y,0) ~2 and (z,y,1) ~y.

Identify X and Y with their images in X %Y. The space X %Y can be viewed as the space of all

lines connecting points of X to points of Y. In analogy with the usual way of writing a line segment

between points of R™ using barycentric coordinates, it is useful to denote the image in X * Y of

(z,y,t) € X xY x I by the formal sum (1 — ¢)z + ty. Do the following;:

(a) For n,m > 0, we have S x S™m = §ntm+1,

) For n,m > 0, we have D" » D™ = pntm+l,

(¢) Prove that (X #Y)\ X deformation retracts to Y.

) Assume that Y is nonempty. For zg € X, prove that the map m1 (X, z¢) — 71 (X * Y, z¢) is
trivial.

(e) Assume that Y is O-connected and that Y is nonempty and locally path connected. Prove
that X Y is 1-connected. Hint: Part (¢) of Exercise 6.7 might be useful. It also might
be easier to first prove this when Y is 0-connected. For the general case, since Y is locally
path connected, we can decompose it into clopen path components Y = Ll;c;Y;. O

EXERCISE 6.9. Verify that the maps constructed in the proof of Lemma 6.4.1 are well-defined
and continuous. ]

EXERCISE 6.10. Let O(n) be the n-dimensional orthogonal group. Prove that GL,, (R) deformation
retracts to O(n). Hint: analyze the Gram—Schmidt orthogonalization process. ]

EXERCISE 6.11. Let X C R? be the union of the following subspaces:

e the horizontal segment [0, 1] x 0; and
e for each r € Q, the vertical segment r x [0,1 — 7].

See here:

Prove the following:
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(a) The space X deformation retracts to any point on the horizontal segment [0,1] x 0.
(b) The space X does not deformation retract to any point that does not lie on [0,1] x 0. O

EXERCISE 6.12. Let X C R? be the subspace from Exercise 6.11. Let Y C R? be the space
obtained by identifying countably many copies of X in the following pattern:

Prove the following;:

(a) The space Y is contractible.
(b) The space Y does not deformation retract to any point. O






CHAPTER 7

Fundamental group: basic calculations

We now calculate a number of nontrivial fundamental groups. One of the main places areas to
which the fundamental group can be applied is group theory, where it allows geometric arguments
that would be difficult to express purely algebraically. We give a first example of this at the end of
this chapter, where we use the fundamental group to construct free groups.

7.1. Calculating the fundamental group using covering spaces

The following is our main tool for calculating fundamental groups:

THEOREM 7.1.1. Let p: X=X bea regular cover such that X is 1-connected. Set G = Deck()?).
Then for o € X we have m (X, zo) = G.

PROOF. Pick 7y € X with p(To) = zp. Define a set map f: w1 (X, 29) — G as follows. Consider
[v] € m(X,20). By path lifting (Lemma 3.4.1), we can lift v to a path 5 in X starting at .
Lemma 4.2.1 implies that the homotopy class of 4 only depends on the homotopy class of v. In
particular, 7(1) € X only depends on [y] € m (X, x9). The point 5(1) projects to v(1) = xo:

Y()=g%

X0

Y
I»

Since X is a path-connected regular cover of X, there exists a unique g € G with gz = 7(1); see
Lemma 2.2.1. Define f([y]) = g. To prove the theorem, it is enough to prove that f is a group
homomorphism that is injective and surjective. We do this in the following three claims:

CramM 1. The set map f is a group homomorphism.

Consider [y1], [y2] € m1 (X, xg). For i = 1,2, let ; be the lift of 7; to X with 7:(0) = Zg. Letting
gi = f([7]), the path 7; thus goes from g to ¢;Zo. The deck group G acts not only on X, but also
on paths in X. Under this group action, the path g;7s goes from g1Zy to g1g2Zg. It follows that 7;
and g17, are composable paths, and 7;-(g172) goes from T to g192To:

The path 71-(g172) is the lift of v;-y2, so by definition this implies that f([y1-72]) = g192, as desired.

59



60 7. FUNDAMENTAL GROUP: BASIC CALCULATIONS

CLAIM 2. The homomorphism f is surjective.

Consider g € G. Since X is path-connected, we can find a path 7 in X from Zo to gZo. The path
7 projects to a path 7 in X from zg to xg, so [y] € m1(X,x0). By definition, f([y]) = g.

CraM 3. The homomorphism f is injective.

Consider [y] € (X, zo) such that f([y]) = 1. Let 5 be the lift of v to X with 5(0) = Zo. Since
F([y]) = 1, we must have 5(1) = Zo, so 7 is a loop based at Zo. Since X is 1-connected, the loop 5
is homotopic to a constant loop. Composing this homotopy with the map p: XX , we obtain a
homotopy from + to a constant loop, so [y] = 1, as desired. O

7.2. The lifting map

Before giving examples of Theorem 7.1.1, we give a name to the isomorphism underlying its
conclusion. Let p: X = X be a regular cover such that X is 1-connected. Let Ty € X , and set
20 = p(Fo) and G = Deck(X). Theorem 7.1.1 says that m; (X, o) = G. In the proof of that theorem,
this isomorphism is given by the following set map f: 71 (X, z9) — G-

e Consider [y] € m1 (X, o). Let 7 be the lift of v to X with 5(0) = Zo. There exists a unique
g € G with ¥(1) = gZo. We then have f([y]) = g.
We will call this isomorphism f: 7 (X, x0) — G the lifting map. The proof that it is a well-defined
homomorphism does not use the fact that X is 1-connected. Moreover, the proof that it is surjective
only uses the fact that X is path connected. The 1-connectedness of X is only used in the proof that
f is injective. We record these observations in the following lemma:

LEMMA 7.2.1. Let p: X = X bea reqular cover. Let Ty € X, and set zy = p(To) and

G = Deck(X). The following hold:
(i) The lifting map f: m1(X,x0) = G is a homomorphism.
(i) If X is path connected, then the lifting map f: m (X, x0) = G is surjective.

7.3. Circle and torus

We now give some calculations using Theorem 7.1.1. Our first is important enough that we single
it out as a lemma. Recall that we identify S! with a subset of C, so 1 € S!.

LEMMA 7.3.1 (Circle). We have 71 (S, 1) & Z, where n € Z corresponds to the loop vy,: I — St
defined by vy, (s) = 2™ for s € I.

ProOF. Consider the universal cover p: R — S of S!, so p(§) = €. As we observed in
Example 2.2.2, this is a regular cover with deck group Z, which acts on R by integer translations.
Since R is contractible, it is 1-connected. We can therefore apply Theorem 7.1.1 to see that
71(St,1) = Z. This isomorphism is given by the lifting map, and under the lifting map n € Z
corresponds to the loop 7. O

Our next example generalizes this:

ExAMPLE 7.3.2 (Torus). As in Example 1.3.3 let Z™ act on R™ by integer translations and
identify the quotient R™/Z" with the n-dimensional torus T = (S!)*":

l
I
0

R*/7? T’

RQ
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This figure shows the case n = 2. The projection p: R™ — Z™ is a regular cover with deck group Z".
Set z¢g = p(0). Since R™ is contractible, it is 1-connected. We can thus apply Theorem 7.1.1 to see
that 7T1(Tn,.130) Zﬂl((Sl)Xn,xo) = 7", U

REMARK 7.3.3. More generally, by Exercise 5.1 if X and Y are spaces with basepoints xg € X
and yo € Y, then m (X X Y, (20,90)) = m1(X, 20) X m1 (Y, y0)- O

7.4. Brouwer fixed point theorem

Since 7 (S*, 1) 22 Z but S™ is 1-connected for all n > 2, it follows that S! is not homeomorphic
to S™ for any n > 2. This is not a particularly profound result, and can be proved in many other
ways.! In the next chapter we will talk about homotopy equivalences, and we will be able to deduce
the more interesting result that S' and S™ are not homotopy equivalent for any n > 2.

Here, however, we give an interesting application of a different flavor that also illustrates how
the functorality of the fundamental group can be used to obstruct the existence of maps. Regard S*
as the boundary of D2.

LEMMA 7.4.1. There does not exist a retraction r: D? — S'.

PROOF. Assume for the sake of contradiction that a retraction r: D? — S! exists. Let ¢: St — D?
be the inclusion, and fix some xg € S'. Since r o v = 1g1, the following composition is the identity:

Tl'l(Sl,Io) i) 7T1(D27l‘0) i> 71'1(81,130).

I | I
Z 0 Z

However, since the middle group is 0 this composition is also the 0 map, a contradiction. O

This has the following consequence:

THEOREM 7.4.2 (Brouwer fixed point theorem). Let f: D? — D? be a continuous map. Then f
has a fived point, i.e., there exists some x € D? with f(x) = z.

PROOF. Assume for the sake of contradiction that f(z) # x for all z € D?. Define r: D? — S!
to be following map:

e For x € D?, let r(z) be the point where the ray from f(x) to  intersects S':

r(x)

By construction, f is a continuous retraction, contradicting Lemma 7.4.1. (|

REMARK 7.4.3. The Brouwer fixed point theorem (Theorem 7.4.2) actually holds for maps
f: D™ — D™ with n > 1 arbitrary. See Exercise 7.5 for the (easy) proof when n = 1. Similarly,
Lemma 7.4.1 holds in all dimension. For general n > 1, we gave an elementary proof of both of
these results in Volume 1 using a combinatorial result called Sperner’s Lemma. Once we develop the
theory of homology, we will be able to give a proof of the general case that is very similar to the
proof we gave above for n = 2. O

7.5. Real projective space

We now turn to real projective space:

IFor instance, by observing that S \ {p, ¢} has two path components for any distinct p,q € S, while removing
two points from S™ cannot disconnect S™ for any n > 2.
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EXAMPLE 7.5.1 (Real projective space). Let n > 2. Recall that RP" is the space of lines through
the origin in R"™!. As we described in Example 1.3.4, there is a 2-fold cover p: S* — RP" taking
x € S™ to the line through z. This is a regular cover with deck group the cyclic group Cs of order 2,
which acts on S by the antipodal map x — —z. Fix some z¢ € S™, and let £y = p(x¢) € RP". Since
n > 2, we have m1(S", z9) = 1 (Lemma 4.5.2). We can therefore apply Theorem 7.1.1 and see that

7T1(RP”7£0) = 02.

This isomorphism is given by the lifting map, and under the lifting map the generator of Cy
corresponds to the loop in 71 (RP", {;) that rotates the line ¢, around an axis by an angle of m,
coming back to itself but with the reversed orientation. O

REMARK 7.5.2. We have RP' 2 S (see Exercise 7.7), so m (RP', ) = Z. O

7.6. Free groups: definition

Before we can give our next example, we need some background about free groups. Let S be a
set. Roughly speaking, a free group on S is a group that is easy to map out of. One need only say
where the elements of S must go. Here is the formal definition:

DEFINITION 7.6.1. Let S be a set. A free group on S is a group F'(S) equipped with a map of
sets ¢: S — F(S) such that the following holds:

(f) Let G be a group and h: S — G be a map of sets. Then there is a unique homomorphism
H: F(S) — G such that h = H o«.

The set S is called a free basis for F'(S). O
REMARK 7.6.2. The condition (1) is an example of a universal mapping property. O
The map ¢ in the definition of a free group is necessarily injective:

LEMMA 7.6.3. Let S be a set and let F(S) be a free group on S. Then the associated map
t: S — F(S) is injective.

PROOF. Let G be a group of cardinality at least |S| and let h: S — G be an injection. By the
universal property (f), there is a homomorphism H: F(S) — G such that h = H o . Since h is
injective, it follows that ¢ is injective. ([l

Let F'(S) be a free group on a set S. By Lemma 7.6.3, we can identify S with a subset of F(.S)
via the corresponding map ¢. Having done this, we can now rephrase () as follows:

(t') Let G be a group and h: S — G be a map of sets. Then h extends uniquely to a
homomorphism H: F(S) — G.

Whenever we work with free groups in this book, we will identify S with a subset of F'(S) and use
(1) as the defining property of F(S). The subset S generates F(S):

LEMMA 7.6.4. Let S be a set and let F(S) be a free group on S. Then S generates F(S).

PROOF. Let G < F(S) be the subgroup generated by S. By ({’), the inclusion h: S — G
extends uniquely to a homomorphism H: F(S) — G. The composition

F(S) —25 G —— F(S)

and the identity map 1pgy: F(S) — F(S) both extend 15: S — S, and thus must be equal. We
conclude that G = F(S), as desired. O

It is not obvious that a free group on a set S exists. We will soon construct one, but first we
prove that they are unique in the following sense:

LEMMA 7.6.5. Let S be a set and let F(S) and F'(S) be free groups on S. There is then a unique
isomorphism ¢: F(S) — F'(S) with ¢|s = 1s.

PROOF. Applying (') to the identity maps between S C F(S) and S C F'(S), we get:
e a homomorphism ¢: F(S) — F'(S) such that ¢|s = 1g; and
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e a homomorphism ¢’: F'(S) — F(S) such that ¢ = 1s.
The composition ¢’ o ¢: F/(S) — F(S) fixes each element of the generating set S, so ¢’ 0 ¢ = 1p(g).
Similarly, ¢ o ¢’ = 1p(s). We conclude that ¢ and ¢ are inverse isomorphisms. O

REMARK 7.6.6. A similar argument shows uniqueness for other mathematical objects defined by
universal mapping properties. O

7.7. Free groups: reduced words

Let S be a set. A word in S is a formal expression w = s{* --- s with s; € S and ¢; € {£1} for
all 1 <4 <n. This word is reduced if for all 1 < i < n we do not have
ssisiiy € {ss, sTls | s€ S}

By cancelling terms of the form ss~! and s~!s with s € S we can reduce any word to a reduced
word. If S is a subset of a group I', then we can regard words in S as elements of I". Cancelling
terms of the form ss~! and ss~! does not change the associated element of T, so every element of T’
that can be written as a word in S can be written as a reduced word in S.

The main existence theorem for free groups is:

THEOREM 7.7.1. Let S be a set. There then ezists a group F(S) with S C F(S) such that:
(i) the group F(S) is a free group on S; and
(ii) every element of F'(S) can be represented by a unique reduced word in S.

The standard proof of this is algebraic, and proves the two parts separately:

e First, free groups are proved to exist, establishing (i).
e Next, (ii) is proved using the universal property of the free group.

See Exercises 7.13 and 7.14 for an outline of this proof. We will prove Theorem 7.7.1 geometrically
in the next section. Our argument will reverse the logic of the algebraic proof:

e First, we will use geometry to construct a group F(S) containing a set .S such that every
element of F'(S) can be represented by a unique reduced word in S. This establishes part
(ii) of Theorem 7.7.1.

e Next, we will prove that F'(S) has the desired universal property, establishing part (i).

In fact, the second step is quite formal:

LEMMA 7.7.2. Let S be a set and let T be a group containing S such that every element of T' can
be represented by a unique reduced word in S. Then I is a free group on S.

PROOF. Let G be a group and let h: S — G be a set map. We extend h to H: I' — G as follows.
Consider g € I'. We can uniquely write g as a reduced word in S

€n
n

g=s]""s with s1,...,8, € S and €y,...,€, € {£1}.

We then define
H(g) = h(s1)"" - h(sn)™.

This is a homomorphism. Indeed, consider g,¢’ € I'. Write them as reduced words in S:
g=s7"---syv with s1,...,s, € S and €y,...,¢e, € {£1},
g =ty -5 with tq,...,t, € S and eq,..., e, € {£1}.
Then the reduced word representing gg’ is obtained from
Sil .. -Si”t? .. tf,;"
by cancelling terms. The images of those terms under H also cancel, so
H(gg') = h(s1) -+ h(sn) " h{t2)" - h{tm)*" = H(g)H(g').

It follows that H is a well-defined homomorphism. Since S generates I', it is the only possible
homomorphism extending h. |
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7.8. Constructing free groups using graphs

We now prove Theorem 7.7.1. In fact, we prove something better. Recall our convention from
§2.5 that all graphs are oriented. Let S be a set. Denote by Xg the graph with one vertex xy and
with |S| oriented edges, each labeled with an element of S. For instance, if S = {a,b, ¢} then Xg is

Each s € S corresponds to a loop in Xg based at xg, and we will identify s with the corresponding
element of 71 (Xg,x0). The elements of S correspond to distinct elements of m1(Xg, zg). Indeed, for
s€ S letry: (Xg,20) — (St 1) be the retraction onto the loop labeled s. The induced map

(re)e: m(Xg,20) = m (S, 1) = 7Z
takes s to 1 € Z and each s’ € S\ {s} to 0 € Z,s0 s # &' for all s € S\ {s}. We can therefore
identify S with a subset of 7m1(Xg,zo). We then have:
THEOREM 7.8.1. Let S be a set. The following hold:
(i) the group m (Xs,xq) is a free group on S; and

(ii) every element of m(Xg, o) can be represented by a unique reduced word in S.

PROOF. By Lemma 7.7.2, it is enough to prove (ii). Define Ts to be an infinite tree each of
whose vertices has valence 2|S|. Label the oriented edges of Tis by elements of S such that for each
vertex v of Tg there are:

e |S| edges coming out of v labeled by elements of S; and
e |S| edges going into v labeled by elements of S.

For instance, if S = {a,b, ¢} then the local picture of Ts around v looks like
b

Fix a vertex xg of Tg.

There is a covering space p: Ts — Xg taking each vertex of Ts to xg and each oriented edge of
Ts labeled by s € S to the corresponding loop in Xg labeled by s. For instance, if S = {a, b} this is
the cover

Just like in the S = {a, b} case, the cover p: Ts — Xg is regular.? Since T is a tree, it is contractible
and hence 1-connected (see Lemma 6.4.1).
Letting G be the deck group of p: Ts — X, we can apply Theorem 7.1.1 to see that

(7.8.1) ™ (Xs,0) = G.

2The point here is that T is a tree each of whose vertices has the same local picture, so there are edge-label
preserving graph automorphisms of T" taking any vertex to any other vertex. These are deck transformations.
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The group G acts simply transitively on the vertices of T, so each vertex is of the form gx( for some
unique g € G. The isomorphism (7.8.1) is given by the lifting map, so the element of m (X, xg)
corresponding to g € G is the homotopy class of the loop in X based at xy obtained by taking a
path in T from zy to gy and projecting it to X.

For each vertex z1 of T, there is a unique sequence of edges connecting x to £ that does not
backtrack, that is, traverse an edge in one direction and then go backwards along the same edge.
This non-backtracking condition is exactly what is needed to ensure that this edge-path corresponds
to an element of 7 (Xg,x0) represented by a reduced word in S. In this way, we see that every
element of m (Xg, o) is represented by a unique reduced word in S, as desired. O

7.9. Exercises

EXERCISE 7.1. For d > 2, construct a pointed space (X,xo) with m (X, z9) = C4. Hint:
generalize the construction of RP" as S"/Cs. It might be helpful to view S?"~! as a subspace of
Cr 2 R, O

EXERCISE 7.2. Let A be a finitely generated abelian group. Construct a pointed space (X, x¢)
with 71 (X, z9) = A. Hint: the previous exercise might be helpful here. O

EXERCISE 7.3. Let M be the Mobius band:

M

Fixing a basepoint xg € M, prove that m (M, zo) = Z in two ways:
(a) By identifying M as Z/Z for an explicit 1-connected space Z equipped with a covering

space action of Z.
(b) By showing that M deformation retracts to a subspace A C M with A = S O

EXERCISE 7.4. Let X be the “line with two origins”, i.e., the quotient of R LIR that for x € R
nonzero identifies the points z in the two copies of R to a single point. This is a non-Hausdorff space
composed of an open set R\ 0 along with two “origins”:

0,

0,
Letting z¢ € X, prove that 7 (X, z9) = Z. Hint: Exercise 6.7 might be useful for proving that the
cover you produce is 1-connected. ([l

EXERCISE 7.5. Prove the 1-dimensional Brouwer fixed point theorem: every continuous map
f: D' — D! has a fixed point. O

EXERCISE 7.6. Say that a space X has the fized point property if every continuous map f: X — X
has a fixed point.

(a) Prove that if X has the fixed point property and Y C X is a retract of X, then Y has the
fixed point property.

(b) Prove that every finite tree T' has the fixed point property. Hint: embed T into D? such
that D? retracts to T, and apply the Brouwer fixed point theorem.

(c) A challenging problem: give a direct proof of part (b) that does not use the Brouwer fixed
point theorem. O

EXERCISE 7.7. Prove that RP* 2 S!, and thus that for all 2o € RP! we have m; (RIP’l, x0)=27Z. O

EXERCISE 7.8. Let X be a graph with one vertex xy and two oriented edges labeled a and b, so
m1(X, zg) is the free group F(a,b) on a and b. Define a map f: (X, xq) — (X, x0) as in the following
figure:
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Lo ) S )

Here the three vertices on the left hand side all map to the single vertex xy on the right hand side,
and the edges connecting those three vertices map to the edges on the right hand side as indicated.
Do the following:

(a) Calculate the induced map f.: m1 (X, z9) = m1 (X, 20) by determining the images of the
two generators a,b € F(a,b) = m1(X,x0) in (X, 20) = F(a,b).

(b) Prove that the map fi. you computed in the previous part is not the identity, and conclude
that f: (X,z0) — (X, x0) is not homotopic to the identity as a map of pointed spaces.

(¢) Prove f: X — X is homotopic to the identity as a map of unpointed spaces. O

EXERCISE 7.9. Let X5 be a closed oriented genus 2 surface and let X be a graph with one vertex
xo and two oriented edges labeled a and b. Fix a basepoint yy € 3o:

L B

We do not yet know how to calculate 71 (22, o), but in this exercise and the next we will prove some
things about it. Your goal in this exercise is to construct a map f: (Xa,y0) — (X, xo) such that the
induced map fi: m (X2, y0) — m (X, z0) is surjective. Hint: To prove it is surjective, draw explicit
elements of (X2, yo) mapping to a and to b. O

EXERCISE 7.10. Just like in the previous exercise, let 5 be a closed oriented genus 2 surface
with a basepoint yo. Let [y1],...,[v4] € m1 (22, yo) be the following curves:

Let T* = (S!)** be the 4-dimensional torus. Construct a map f: ¥y — T* such that the map
for (B, yO) — m1(T4, f(yo)) = Z* takes [y;] to the i*" basis vector of Z*. Hint: It might be easier
to construct maps f1, fo: 3o — T2 such that:

o (f1)« takes [y1] and [y2] to the basis elements of 71 (T2, f1(yo)) = Z? and has [v3], [y4] €
ker((f1)«); and
o (f2). takes [y3] and [y4] to the basis elements of 71(T?, f1(yo)) = Z? and has [y1], [12] €
ker((f2).).
You can then take f = f; X fo. To construct the f;, think about collapsing subsurfaces of 5 to
points. O

EXERCISE 7.11. Let G be a group. The goal of this exercise is to construct a pointed space
(X, x0) with m (X, z9) = G. This exercise uses the notion of the join of spaces from Exercise 6.8. Do
the following:
(a) Let A and B be spaces equipped with left G-actions. Prove that there is an induced action
of G on the join A x B.
(b) Let X = G and Y = G, both viewed as discrete spaces. Let J be the join J = X *Y. Prove
that J is 0-connnected.
(¢) Let Z = G, again viewed as a discrete space. Prove that K = Z x J is 1-connected. Hint:
Exercise 6.8 will be useful.
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(d) The group G acts on itself on the left. By part (a), we get induced actions of G on J and
K. Prove that the action of G on K is a covering space action. Letting X = G/K and
fixing a basepoint 2y € X, deduce that m (X, zq) = G. O

EXERCISE 7.12. Let F(ay,...,a,) be the free group on elements aq,...,a,. Recall that the
abelianization of a group G is the abelian group G/[G, G|, where [G,G] is the normal subgroup
generated by elements of the form [g, h] = ghg='h~! with g, h € G. Prove that the abelianization of
F(ai,...,ay,) is isomorphic to Z™. Hint: start by constructing a map F(aq,...,a,) — Z" using the
universal property of the free group. O

EXERCISE 7.13. In this exercise, we outline one of the classical constructions of a free group on
aset S.

(a) Let M be the set of all words w = s{' - - - s&», including the empty word. Prove that M is
an associative monoid under concatanation. Here an associative monoid is a set equipped
with an associative multiplication with an identity, but unlike in a group there need not be
inverses.

(b) Let ~ be the equivalence relation on M where w ~ w’ if w’ can be obtained from w by a
sequence of the following two moves:

e For some s € S, insert either ss~! or s~'s somewhere in w.

e For some s € 9, delete a subword of the form ss~! or s~'s from w.
Set F' = M/ ~. Prove that the multiplication on M descends to an associative multiplication
on M, and that F' is a group.

(c) Prove that F' along with the evident map ¢: S — F satisfies the universal property of a free
group. Hint: first prove that M satisfies an appropriate universal property to be a “free
associative monoid” on S. ]

EXERCISE 7.14. Let S be a set and let F'(S) be a free group on S. This exercise outlines the
classical algebraic proof that every element of F(S) is represented by a unique reduced word in S.

(a) Let W be the set of reduced words in S. Use the universal property of the free group to
construct a left action of F(S) on W that for s € S multiplies a word w € W by s to get
sw and then reduces appropriately to get a reduced word. Hint: an action is the same as a
homomorphism F(S) — Sym(WW) where Sym(W) is the symmetric group consisting of all
bijections of W. You can construct such homomorphisms using the universal property of

F(S).
(b) Prove that every element of F'(S) is represented by a unique reduced word. Hint: consider
w € F(S), and think about where w takes the trivial word 1 € W. O

EXERCISE 7.15. For a group G generated by a set S, we have the following two classic decision
problems:

e The word problem: decide if two words in S represent the same element of G.
e The conjugacy problem: decide if two words in S represent conjugate elements of G, that is,
elements g1, g» € G such that there is some h € G with go = hgih ™.

For a free group F'(S) on a set S, the word problem is easy since two words in S represent the same
element of G if and only if they become the same reduced word after repeatedly cancelling terms of
the form ss~! and s~'s with s € S. In this exercise, you will solve the conjugacy problem in F(S).

(a) Consider a word w = s7* - -+ s5 in S. For some k > 1, let

Wl = s s
where the subscripts are interpreted modulo n. Prove that w and w’ are conjugate elements
of F(S). We say that they are cyclically conjugate.

(b) Say that a word w = s7* - -~ s& is cyclically reduced if w is reduced and sj* # s;,“». Prove
that every element of F'(S) is conjugate to a cyclically reduced word.

(¢) Prove that if w and w’ are cyclically reduced words, then w and w are conjugate elements of
F(S) if and only if they are cyclically conjugate. Since we can check this by just enumerating

all the cyclic conjugates of w, this gives an algorithm for solving the conjugacy problem. [






CHAPTER 8

Fundamental group: homotopy equivalences

In this chapter, we discuss a weakening of a homeomorphism called a homotopy equivalences
that plays an important role in algebraic topology.

8.1. Pointed homotopy equivalences

A map f: (X,z9) = (Y,y0) between pointed spaces is a homotopy equivalence if there exists a
map g: (Y,yo) = (X, o) such that go f: (X,z9) = (X,20) and fog: (Y,y0) — (Y,y0) are both
homotopic to the identity. We call g a homotopy inverse to f, and if there is a homotopy equivalence
between (X, z¢) and (Y, yo) then we will say that (X, zq) is homotopy equivalent to (Y, yo) and write
(X, 20) ~ (Y, yo). Here is an example:

ExamPLE 8.1.1. Let X be a space, let A C X be a subspace, and let r,: X — X be a deformation
retract to A. We can therefore regard ry as a retraction r1: X — A. Pick a basepoint ag € A, and
let ¢: (A, a9) = (X, ap) be the inclusion. Then ¢ is a homotopy equivalence with homotopy inverse
ri: (X,a0) = (A, a0). Indeed, r1 ot: (A,a0) — (A, ap) is literally the identity, and r; is a homotopy
from the identity 7o = 1x: (X, 20) — (X,20) to 71 =t 077. O

It will become more and more clear as we delve deeper into algebraic topology that homotopy
equivalent pointed spaces are in many ways the “same” from the perspective of the tools of the
subject. Here is one easy way in which this is true, which generalizes the corresponding fact for
deformation retracts (Lemma 6.2.5):

LEMMA 8.1.2. Let f: (X,z9) = (Y,y0) be a homotopy equivalence between pointed spaces. Then
fur m (X, 20) = m1(Y,90) is an isomorphism.

ProOF. Let g: (Y,y0) = (X, x0) be a homotopy inverse to f. Since go f: (X, x0) = (X, z0) and
fog: (Y,yo) — (Y, yo) are homotopic to the identity, the induced maps (go f).: 71 (X, z9) — m1 (X, zo)
and (fog).: m(Y,yo) = m1(Y,y0) are the identity. Functorality implies that

1ri(xm0) =(9 0 f)sx =gxo fi and
171'1(Y,y0) :(f © g)* :f* O Gx,
so f. and g, are inverses to each other. This implies that that f, and g, are isomorphisms. O

8.2. Composing deformation retractions

As we already noted, if X deformation retracts to a subspace Y and yg € Y, then (Y, yo) ~ (X, yo)-
Being homotopy equivalent is an equivalence relation (see Exercise 8.1), so by applying this multiple
times we can get interesting homotopy equivalences. For instance, if Y is a subspace of both X and
Z and both X and Z deformation retract to Y, then (X, y0) ~ (Z,yo) even though neither X or Z
is contained in the other. Here is an example:

EXAMPLE 8.2.1. Let (X, x0) and (Y, o) be the following surfaces with boundary:

69
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Both X and Y deformation retract to the same space Z, with xy and yg corresponding to the same

point of Z:
Q def
—
retract

—
Yo retract

‘O

It follows that (X, zq) ~ (Y,y0). Moreover, since the fundamental group of Z is a free group on
two generators (Theorem 7.8.1), it follows that 71 (X, z¢) and m(Y,yo) are free groups on two
generators. O

3. Unpointed homotopy equivalences

We now explain how this works without basepoints. A map f: X — Y between spaces is a
homotopy equivalence if there exists a map ¢g: Y — X such that go f: X — X and fog: Y — Y are
homotopic to the identity. The difference between this and the pointed case is that these homotopies
need not fix a basepoint. We call g a homotopy inverse to f, and if a homotopy equivalence from X
to Y exists we say that X and Y are homotopy equivalent and write X ~ Y.

In Lemma 6.3.1, we proved that even though contractions need not fix a basepoint, it is still
true that contractible spaces have trivial fundamental groups. By being similarly careful with the
basepoint, we prove the following:

LEMMA 8.3.1. Let f: X =Y be a homotopy equivalence and let xog € X. Set yo = f(xo). Then
fo:m(X,20) — (Y, y0) s an isomorphism.

REMARK 8.3.2. Since 71(S*,1) & Z but S" is 1-connected for n > 2, it follows from this lemma
that S! and S™ are not homotopy equivalent for n > 2. Similarly, since 71 (RP"™,1) = C; for n > 2 it
follows that RP™ and S are not homotopy equivalent for n > 2. We remark that RP' and S' are
homeomorphic (see Exercise 7.7). O

PrOOF OF LEMMA 8.3.1. Let g: Y — X be a homotopy inverse to f. Set 1 = g(yo) and
y1 = f(x1). The naive thing to do would be to prove that the maps f.: 71 (X, z¢) — m1 (Y, yo) and
g« m(Y,y0) = m1(X, x1) were inverses to each other. However, this does not make sense since the
domain 7 (X, zo) of f, is not the same as the codomain 1 (X, x1) of g..

Instead, what we will prove is that

(8.3.1) (go fle: m(X,m0) = m(X,21) and (fog)e: mi(Y,y0) = m(Y,y1)

are both isomorphisms. This will imply that f.: 71 (X, z¢) = m1(Y,y0) and g.: 71 (Y, y0) = m1 (X, x1)
are both injections. We claim that this implies that f, is a surjection and hence an isomorphism.
Indeed, consider ¢ € m1 (Y, y0). We want to find some 1 € 71 (X, z) with f.(n) = . Since g. o f, is
an isomorphism by (8.3.1), there exists some n € 71 (X, z¢) such that ¢.(f«(n)) = ¢.({). Since g, is
an injection, we must have f.(n) = ¢, as desired.

It remains to prove that the two maps in (8.3.1) are isomorphisms. The proofs are the same, so
we will give the details for (go f).: m (X, z¢) — 71 (X, 21). Since g is a homotopy inverse to f, the
map go f: X — X is homotopic to the identity. Let h;: X — X be a homotopy from go f to 1x.
Let 6: I — X be the following path from z1 = (g o f)(xg) = ho(zo) to z¢g = h1(zo):

0(s) = hs(xg) forsel.
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For [y] € m (X, zp), Lemma 5.7.1 implies that

(g0 £)« () = (ho)«([¥]) = [0](h1)«([¥D[0] = [8][¥][3]-

In other words, (g o f)« equals the change of basepoint isomorphism from m (X, z¢) to m1 (X, z1)
given by the path §. In particular, (g o f). is an isomorphism. (Il

8.4. Mapping cylinder neighborhoods

Let X be a space and Y be a contractible subspace of X. Consider the quotient map ¢: X — X/Y.
It turns out that in many cases ¢ is a homotopy equivalence. Roughly speaking, this holds as long
as Y is embedded into X with reasonable local properties. There are a number of conditions that
ensure this. Our next goal is to give one that is fairly easy to state and prove. This requires some
preliminary definitions.

Recall from Example 6.2.2 that for a map f: Z — Y between spaces, the mapping cylinder of f
is the space Cyl(f) obtained by quotienting the disjoint union (Z x I) UY to identify (z,1) € Z x I
with f(z) € Y forall z € Z. For z € Z and s € I, let (z, s) be the image of (z,s) € Z x I in Cyl(f).
We now define:

DEFINITION 8.4.1. Let X be a space and let Y C X be a subspace. A mapping cylinder
neighborhood of Y is a closed subset N of X containing Y along with a closed subset Z C N such
that:

e N\ Z is an open neighborhood of Y in X; and
e there exists amap f: Z — Y and a homeomorphism ¢: Cyl(f) — N such that f((z,0)) = z
and f(y)=yforallze Zandy €Y. O

EXAMPLE 8.4.2. Let Y be the sidewise-Y shaped subspace of R? shown here:

i

v/

The subspace Y of R? has a mapping cylinder neighborhood N indicated in blue. This blue subspace
is the mapping cylinder of a map f: Z — Y with Z = S! the indicated subspace. The lines connect
points z € Z with their images f(z) € Y. Since Y is contractible and has a mapping cylinder
neighborhood, it will follow from Theorem 8.5.1 below that the quotient map R? — R2?/Y is a
homotopy equivalence. In fact, R?/Y = R? (see Exercise 8.4). O

EXAMPLE 8.4.3. Let X be the following surface with boundary and let Y = I be the indicated
arc in X:

.m—

A mapping cylinder neighborhood N of Y is drawn in blue. Here N 2 Y x I, and N is homeomorphic
to the mapping cylinder of the projection f: YUY — Y. Since Y is contractible and has a mapping
cylinder neighborhood, it will follow from Theorem 8.5.1 below that the quotient map ¢: X — X/Y
is a homotopy equivalence:
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N /Y

In this case, X and X/Y are not homeomorphic; indeed, X/Y is not a manifold around the point
that is the image of Y. We showed in Example 8.2.1 that the fundamental group of X is the free
group on two generators, so the same is true for X/Y. O

EXAMPLE 8.4.4. For readers who are familiar with smooth manifolds, here is an important
example. Let M™ be a smooth manifold with boundary and let N¢ be a properly embedded
submanifold of M™. A closed tubular neighborhood of N¢ is then a mapping cylinder neighborhood
of N¢. Example 8.4.3 is a special case of this. O

Our final example will be important later, so we separate it out as a lemma:

LEMMA 8.4.5. Let X be a graph and let Y C X be a subgraph. ThenY has a mapping cylinder
neighborhood.

PROOF. Once an example is understood this lemma will be clear, so we give one in lieu of a
formal proof. Let X and Y be as follows, with Y in orange:

<

The mapping cylinder neighborhood N is then the union of Y with the yellow region here:

/.\

~—

Here Z consists of eight points, and N is the mapping cylinder of a map f: Z — Y taking each of
those eight points to a vertex of Y. O

8.5. Collapsing subspaces with mapping cylinder neighborhoods

We now prove:

THEOREM 8.5.1. Let X be a space and let Y C X be a contractible subspace with a mapping
cylinder neighborhood. Then the quotient map q: X — X/Y is a homotopy equivalence.

ProOF. We must use the hypotheses to construct a homotopy inverse g: X/Y — X to ¢. Let
N be a mapping cylinder neighborhood of Y. Identify N with Cyl(f) for some Z C N and some
map f: Z — Y. Let yo be the point of X/Y corresponding to Y, let f': Z — yo be the projection,
and let N’ = Cyl(f’). We can identify N’ with N/Y, and after making this identification N’ is a
mapping cylinder neighborhood of yg in X/Y with X \ N = (X/Y) \ N’. See here:
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To construct a continuous map X/Y — X, it is enough to construct a continuous map N’ — N that
is the identity on Z and then extend N’ — N to X/Y by the identity.! In a similar way, we can
construct continuous maps X — X (resp. X/Y — X/Y) by constructing continuous maps N — N
(resp. N’ — N) and extending by the identity.

For z € Z and s € I, let (2,5) € N and (z,s) s) € N’ be the corresponding points. We now divide
the proof into three steps:

STEP 1. We construct the purported homotopy inverse g: X/Y — X.

Since Y is contractible, there is a homotopy h;: Y — Y from 1y to a constant map. Let y; € Y
be the constant value of hy. Define g: X/Y — X via the formulas

g((z,s),) = (2,2s) for z € Z and s € [0,1/2],
9((2,9)) = has 1(f(2)) for z € Z and s € [1/2, 1],
9(yo) =
g(z) ==z forz e (X/Y)\N' =X\ N.
See here, Where the indicated map takes each line segment from z € Z to yo to the path that first
goes to f(z) (in black) and then in Y to y; (in orange):
\v / ‘

Y1
By what we said above, this map ¢g: X/Y — X is continuous.

STEP 2. We prove that the composition go q: X — X is homotopic to the identity.

The map go q: X — X is given by the formulas

goq((z,8)) = (z,2s) for z € Z and s € [0,1/2],
goq((z,8)) = has—1(f(2)) for z € Z and s € [1/2,1],
9°4(y) = fory ey,

goq(z)==x for z € X \ N.

1T see that this is continuous, note that the map X/Y — X is continuous on the closed sets N’ and (X/Y)\(N’\Z);
indeed, on the latter set it is the identity. These cover X/Y. Now apply the fact that if ¢p: A — B is a map of sets
between spaces and {C1,...,Cn} is a cover of A by closed sets such that each v¥|¢, is continuous, then 1 is continuous.
Note that this would be false if our cover had infinitely many closed sets in it.
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This is homotopic to the identity via the homotopy ¢;: X — X given by the formulas
oi((2,8)) = (2,(2 —1)s) for z € Z and s € [0,1/(2 — 1)),
¢:((2,8)) = ha—t)s—1(f(2)) for z€ Z and s € [1/(2 —1t),1],
be(y) = hi—+(y) fory eV,

Gi(z) =2 forz € X\ N.

By the discussion at the beginning of the proof this is continuous.

STEP 3. We prove that the composition go g: X/Y — X/Y is homotopic to the identity.
The map qog: X/Y — X/Y is given by the formulas

qog((z, s)/) = (2725)/ for z € Z and s € 0,1/2],

gog((z, )/)Zyo for z € Z and s € [1/2,1],
q°9(yo) = Yo
goq(z)==x forz e (X/Y)\ N'.

This is homotopic to the identity via the homotopy ¢;: X/Y — X/Y given by the formulas

Uz 5) V=12 (2—1t)s) forzeZandsel0,1/(2—1),
1/}t((2’,8))—y0 for z € Z and s € [1/(2 — t), 1],
Yi(yo) =
’L/}t()— forz € X \ N.
By the discussion at the beginning of the proof this is continuous. O

8.6. Example of collapsing
We now give an example of how to this to analyze an interesting example.

ExXAMPLE 8.6.1. Let (X, z0) and (Y, yo) be the following spaces:

The space X is obtained by quotienting S? to identify two points together,? and the space Y is
obtained by gluing S? and S' together at a single point. We will prove that X ~ Y and that
m1 (X, 20) = m (Y, y0) = Z.

Let Z be the following space and let I and D = D? be the indicated subspaces of Z:

§

We have Z/I = X and Z/D =Y. Since [ is contractible and has a mapping cylinder neighborhood in

2Tt does not matter which two points are identified. Indeed, any two points “look the same” in the sense that
they differ by a homeomorphism of S2. More generally, if M™ is a connected n-manifold with n > 2 and {p1,...,px}
and {q1,...,qr} are two sets of k distinct points on M™, then there exists a homeomorphism f: M™ — M™ with
f(pi) =q; forall 1 <i<k.
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Z, it follows that Z ~ X. Similarly, since D is contractible and has a mapping cylinder neighborhood
in Z, it follows that Z ~ Y. We conclude that X ~ Y.

In particular, 71 (X, 29) = m1 (Y, y0). It remains to prove that 71 (Y, yo) = Z. The space Y is the
union of S? and S'. Identifying S? and S' with their images in Y, we have S?2 N'S! = yy. There is a
retraction Y — S! that collapses S? to yo. It follows that the inclusion (S', o) — (Y, o) induces an
injection from 71 (S, y0) = Z to 71 (Y, vo).

We must prove that this injection is surjective. Consider some [y] € 71 (Y, o). Let r € S? be a
point other than yo. Just like in our proof that S™ has a trivial fundamental group (Lemma 4.5.2),
we can use Lemma 4.5.3 (general position) to homotope « such that its image does not contain 7.
Since S? \ r = R? deformation retracts to g, it follows that « can be homotoped to a loop in S', as
desired. ]

We close this section by introducing some terminology. For pointed spaces {(Z;, z;) }ier, the
wedge product of the Z; is the space W = V,¢;(Z;, z;) obtained from the disjoint union of the Z; by
identifying all the basepoints z; together to a single point wy. The point wq serves as a basepoint, so
(W, wp) is a pointed space. We will often omit explicit mention of the basepoints z; and just write
W = V,erZ;, and if I is finite we will use the V like a sum and e.g. write Z; V Z5. For instance, the
pointed space (Y,yo) in Example 8.6.1 is S? VV S!.

8.7. Maximal trees

Our final goal in this chapter is to use these tools to calculate the fundamental group of an
arbitrary connected graph. This requires some preliminaries. Recall that a tree is a nonempty
connected graph with no cycles. Each tree is contractible (Lemma 6.4.1). For a graph X, a maximal
tree in X is a subtree T of X that contains every vertex of X. For instance:

T

These always exist:
LEMMA 8.7.1. Let X be a nonempty connected graph. Then X contains a maximal tree.
PROOF. Inductively define subtrees
TocTyCcTy C---

of X in the following way. Start by choosing a vertex vy of X and letting Ty = vg. Next, if T;,_1 has
been constructed, let T;, be the subtree obtained from T,,_; as follows:

e For each vertex v of X that does not lie in T,,_; but is connected by an edge to T,,_1,
choose an edge connecting 7T,,_1 to v and add it to T5,.

Now define
T=JT.
n=0

This is a subgraph of G. Since a cycle in T only involves finitely many edges, a cycle of T' must be

contained in some T},. Since each T, is a tree, it follows that T has no cycles, so T is a tree. Since X

is connected, each vertex of X must lie in 7', so T" is a maximal tree. (Il
8.8. Fundamental groups of graphs

Using maximal trees, we will prove:

THEOREM 8.8.1. Let X be a connected graph and let vy be a vertex of X. Then m (X, v0) is a
free group.
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PROOF. Let T be a maximal tree in X. The quotient graph X/T contains a single vertex wy
and a loop for each edge of X that does not lie in T

Wo
X X/T

Note that though our graphs are always oriented, this picture does not indicate the orientations
of the edges. We saw in the proof of Theorem 7.7.1 that m;(X,wp) is a free group. Since T is a
contractible subspace of X with a mapping cylinder neighborhood (Lemma 8.4.5), the quotient map
q: X = X/T is a homotopy equivalence. The induced map ¢, : 71 (X, v9) = 71 (W, wy) is therefore
an isomorphism, so 71 (X, vg) is also a free group. O

If X is a finite connected graph with vertices V(X) and edges £(X), then we can give a formula
for the rank of the free group 71 (X, vg) as follows. The Euler characteristic of X is

X(X) = V(X)| - [€(X)| € Z.
We then have:

THEOREM 8.8.2. Let X be a finite connected graph and let vy be a vertex of X. Then 71 (X, vo)
is a free group of rank n, where x(X) =1—n.

PRrROOF. Let T be a maximal tree of X. The proof of Theorem 8.8.1 shows that m1 (X, vg) is a
free group of rank n where n is the number of edges of X/T. Collapsing a single non-loop edge to a
point does not change x(X) since it causes the number of vertices and edges to both go down by 1.
Iterating this, we see that x(X) = x(X/T) =1 — n, as desired. O

8.9. Free bases for fundamental groups of graphs

Let X be a connected graph and let vy be a vertex of X. By analyzing the proof of Theorem
8.8.1, we can construct a free basis for the free group 71(X,vg). Begin by choosing a maximal tree
T of X. Let wg be the single vertex of X/T. As in the proof of Theorem 8.8.1, the quotient map
g: X — X/T induces an isomorphism g, : 71 (X, vg) — m (X/T, wo).

Let {e; | i € I} be the edges of X that do not lie in T. The map ¢ maps each e; to a loop €; in
X/T that is based at wg. Recall our convention that each edge of a graph is oriented (cf. §2.5). Using
the orientation on €;, we get an element [€;] € w1 (X /T, wp). By Theorem 7.8.1, the set {[e;] | i € I}
is a basis for the free group m (X/T, wp).

For each i € I, we must lift €; to a loop in X that is based at vg. To do this, let ¢; be a path in
T from vg to the initial vertex of the edge e; and let t; be a path in T from the terminal vertex of e;
back to vg. We then have a loop t;-e;-t; in X based at vg, and g, ([t;-e;-t}]) = [€;]. We deduce that
{[ti-e;-t}] | @ € I} is a basis for the free group m1 (X, vp).

ExaMPLE 8.9.1. Consider the following graph X with maximal tree T

We have labeled and shown the orientation on each edge of X. Following the above algorithm, we
obtain a free basis for m1 (X, vg). There is one element of this basis for each edge {a,b, ¢,d}. For the
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edge a, the corresponding element of m1 (X, vg) is [t1-a-ts-t4-Ta):

We similarly get basis elements corresponding to b and ¢ and d. In summary, the following is a free
basis for 71 (Xg,v):

{[tl-a-t5-t4-f2], [tyb-ig-ig], [tQ't3'C-Z4-%2], [d't5-t4-%2]}. O

8.10. Exercises

EXERCISE 8.1. Prove that being homotopy equivalent is an equivalence relation on pointed
spaces and on spaces. O

EXERCISE 8.2. Prove that a space X is contractible if and only if it is homotopy equivalent to a
one-point space pg. ([l

EXERCISE 8.3. Let (X, z0) and (Y, yo) be pointed spaces. Let [(X,x0), (Y, y0)]« be the set of
homotopy classes of maps f: (X,z0) — (Y,y0). We will often omit the basepoints and just write
[X,Y].. We remark that set of homotopy classes of maps f: X — Y that do not necessarily preserve
the basepoints is written [X,Y]. Prove the following:

(a) Precomposition with a pointed homotopy equivalence h: (Z,z9) — (X, ) induces a
bijection h.: [X,Y], — [Z,Y]..

(b) Postcomposition with a pointed homotopy equivalence h: (Y,yo) — (Z,20) induces a
bijection hy: [X, Y], = [X, Z].. O

EXERCISE 8.4. Let Y be the following subset of R?:

Y
Prove that R?/Y = R2. O
EXERCISE 8.5. For some n > 1, let X = {(z,y) € S® x S" | z # —y}. Define a map f: S" - X
via the formula f(z) = (z,z). Prove that f is a homotopy equivalence. a
EXERCISE 8.6. Let A = S x ] be an annulus and let M be a closed Mobius band:
Prove that A and M are homotopy equivalent. O

EXERCISE 8.7. Let A = S! x [0, 1] be an annulus and let Int(A) = S x (0,1) be an open annulus.
Prove that A and Int(A) are homotopy equivalent. O
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EXERCISE 8.8. Let (X, x0) and (Y, yo) be the following spaces:

=

Prove that X ~ Y, and calculate m1 (X, zo) = 71 (Y, yo)- O
EXERCISE 8.9. Let X be six 2-spheres intersecting in 9 points, arranged as follows:
Do the following:
(a) Prove that X is homotopy equivalent to (V§_;S*) Vv (Vj_,S").
(b) Letting z¢p € X be a basepoint, calculate 71 (X, zg). The result will be a free group, and
you should also draw loops on X corresponding to generators of this free group. O

EXERCISE 8.10. As in Exercise 7.4, let X be the “line with two origins”, i.e., the quotient of
R UR that for € R nonzero identifies the points = in the two copies of R to a single point. This is
a non-Hausdorff space composed of an open set R \ 0 along with two “origins”:
0,

0,
Prove that X is not homotopy equivalent to any Hausdorff space. Hint: you proved in Exercise 7.4
that the fundamental group of X is Z. Prove that any map from X to a Hausdorff space induces the
trivial map on the fundamental group. |

EXERCISE 8.11. Calculate free generating sets for 71 (X, 29) where X is one of the following
three graphs with the indicated base vertex zg:
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0 e XX
X0

The edges are labeled to make it easy to describe loops based at xy. Hint: first find a maximal
tree. 0

EXERCISE 8.12. As a silly exercise in pure point-set topology, prove that for all n > 1 there exist
topological spaces X with exactly n points that are contractible. O






CHAPTER 9
Classifying covers: lifting criterion

In this chapter, we use the fundamental group to characterize when a map can be lifted to a
cover. Using this, we will prove that in favorable situations covering spaces can be understood using
fundamental group information. We will elaborate on this more in the next chapter when we describe
the classification of covering spaces.

9.1. Fundamental group of cover

Before giving the lifting criterion, we introduce some terminology and prove a preliminary result.
Let p: X — X be a cover and let v: I — X be a path. For # € X such that p(Z) = v(0), Lemma
3.4.1 (path lifting) says that there is a unique lift 7: I — X of ~y such that 3(0) = Z. We will simply
call this the lift of v to X with ~(0) = 2.

We will also need to be careful with basepoints. A pointed cover is a pointed map p: ()} , o) —
(X, x0) such that the map p: X — X is a cover. A pointed cover p: ()?,50) — (X, z9) induces a
map py: T ()?, Zo) — (X, z0). This map is injective; in fact, the following holds:

THEOREM 9.1.1. Let p: (X, o) — (X,20) be a pointed cover. Then the following hold:
(i) The map py: m1 (X, %) — m (X, 20) is injective.
(ii) The image of p. consists of all [y] € m1(X,x0) such that the following holds:
() Let 7 be the lift of v to X with ¥(0) = Zo. Then 7 is a loop, i.e., ¥(1) = Zy.
) If X is path connected, then the index of Im(py) in m (X, 20) equals the degree of the cover.

PROOF. We prove each part separately:
STEP 1. The map p.: m(X, %) — m1 (X, o) is injective.

Consider [7] € 7r1()~(, Zo) in the kernel of p,. Our goal is to prove that [7] = 1. Letting v = po~,
the element [v] € 7 (X, ) is trivial. Lemma 4.2.1 says that the homotopy class of the lift 5 of v to
X only depends on the homotopy class of . Since [y] = 1, it follows that [¥] = 1.

STEP 2. The image of p. consists of all [y] € m1 (X, xo) such that the following holds:
(1) Let 5 be the lift of v to X with 5(0) = Zo. Then 7 is a loop, i.e., (1) = Fo.

It is immediate from the definitions that the image of p, consists of all [y] € m1 (X, z¢) such that
~ is homotopic as a path to a loop 7' based at xy such that ' satisfies (). Just like in Step 1, we
can lift a homotopy of paths from « to 7 to a homotopy of paths in the cover. It follows that ~ also
satisfies (). The step follows.

STEP 3. If)? is path connected, then the index of Im(p.) in m1 (X, zo) equals the degree of the
cover.

We have Ty € p~1(z9). Enumerate the entire fiber p~!(x¢) as {Z; | i € I} for some indexing set
I with 0 € I. The cardinality |I| is thus the degree of the cover. For each i € I, pick a path 5 in X
from Zo to Z;. Let &; be the image of &; in X, so [§;] € m (X, z0). We claim that {[6;] | i € [} is a
set of left coset representatives for Im(p.).

To see this, consider [vy] € 71 (X, zg). Lift v to a path ¥ in X starting at Zo. Let Z;, be the
endpoint of 5. As in the previous steps, Z;, only depends on [y]. We have

81
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Since v-6;, lifts to the loop ﬁzo based at ¥, Step 2 implies that [y-6;,] € Im(p.). The equation
(9.1.1) exhibits [y] as an element of the left [4;,]-coset of Im(p.). Since this expression is clearly
unique, this proves the claim. O

9.2. Lifting criterion

Let p: ()? Zo) — (X, x0) be a pointed cover. Consider a pointed map f: (Y,y0) — (X, z0).
Our goal is to understand when f can be lifted to X i.e., when there exists a pointed map
f: (Y, y0) — (X Zo) such that f =po . In other words, we Want the following diagram to commute:

X 170)

a

(Y,y0) —— (X, o).

There is one obvious necessary condition. Assume that fexists, and pass to the fundamental group.
We get a commutative diagram

1 (X, To)

/l*

T (Y, yo) SELEN 71 (X, o).

Since p, o ﬁ = f,, it follows immediately that the image of f, is contained in the image of the
injective map p,. It turns out that for reasonable spaces Y, this necessary condition is sufficient.
Since the fundamental group only depends on the path component containing the basepoint, we
clearly need to assume that Y is path connected.

To avoid pathological local behavior, we also need to assume that Y is locally path connected, i.e.,
that for all y € Y and all open neighborhoods U of y there exists a path connected open neighborhood
V ot y with V' C U. This property passes to covers in the sense that if Y is locally path connected
and ¢: Y — Y is a cover, then Y is locally path connected (see Exercise 9.1). Our lifting criterion is
as follows:

THEOREM 9.2.1 (Lifting criterion). Let p: (X, o) — (X, x0) be a pointed cover. Let f: (Y,yo) —
(X, z0) be a pointed map such that the image of fi.: w1 (Y, yo) — w1 (X, x0) is contained in the image
of P« ﬂl()z,%o) — (X, xz9). Assume that'Y is path connected and locally path connected. Then f
can be uniquely lifted to a map f: (Y,y0) — (X, Fo).

REMARK 9.2.2. See Exercise 9.12 for an example showing that it is necessary to assume that Y
is locally path connected. O

PrOOF OF THEOREM 9.2.1. We proved in Lemma 3.1.2 that for connected spaces lifts are
determined by what they do to a single point. Since we are assuming that our lift ftakes Yo to T,
this implies that the lift is unique if it exists. We must prove existence.

Consider y € Y. We define f(y) as follows. Since Y is path connected, we can find a path v from
Yo to y. Its image 6 = f o~y is a path from f(yg) = z¢ to f(y). Let 5: 1 — X be the lift of § to X
with 6(0) = Zo. We would like to define f(y) = 6(1). To do this, we must prove that this does not
depend on the choice of ~:

CrAaM. The above definition of f~( )€ X does not depend on the choice of ~y.

PROOF OF CLAIM. Let 7' be another path from yo to y. Letting 6’ = f o+’ be its image in X
and 8': I — X be the lift of § with &'(0) = %o, our goal is to prove that 6(1) = &’(1). Observe that
~-¥' is a loop in Y based at yo:

Y o
Yo y —> X0 fly)
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As is shown here, the image of [y-y'] € m1(Y, yo) under f, is the loop [4- 3/] € m (X, zg). By assumption,

this lies in the image of p,. Theorem 9.1.1 therefore implies that §- 5T — X lifts to a loop in X
starting at Tg:

As is shown here, this lifted loop equals 54], where:

e as introduced above, the path ¢ is the lift of § with 5(0) = Tp; and

o the path 7 is the lift of & with 7(0) = 3(1) = f(y).
Since 7(1) = To, it follows that 7 is the path 5 introduced above that we obtained by lifting 0" to a
path with ¢’(0) = Zy. We conclude that 6(1) = n(0) = ¢’'(1), as desired. O

We have now defined f: Y — X. This map satisfies f(yg) = Iy since in its definition when
calculating f(yo) we can take 7 to be the constant path at yo. All that remains to prove is that fis
continuous. Consider some y; € Y. Let U C X be a trivialized open neighborhood of f(y;) € X and
let U C X be the sheet above U containing f(yl) Since Y is locally path connected, we can find a
path connected open neighborhood V' of y; such that V' C f=*(U). To prove that f is continuous at
Y1, it is enough to prove that on V' the map ]?is the composition

(pla)”!

V*>U U.

To see this, consider some y € V. The image f(y) € X lies in the fiber p~1(f(y)), and we must prove
that it is the point of this fiber lying in U. In other words, we must prove that f(y) € U.
Let v; be a path in Y from yo to y; and let v, be a path in V' from y; to y. The path -y,

in Y goes from gy to y, and thus can be used to compute f(y) Set 1 = fovy and §y = f oy

Y1 O,

Yo Xp

By definition, f(y) is the endpoint of the lift of 6;-, to X starting at xo. We construct this lift in
two steps:

o Let 6~1 be the lift of §; to X with 51( 0) = xo By definition, f(yl) = 5~1(1) eU.

e Let &, be the lift of 6, to X with §,(0) = 61(1) € U. By definition, f(y) = 5y (1).

Since v, is a path in V and f(V ) C U, it follows that 4, is a path in U. Since 5, ( ) € U, we have
that (5 is a path in U; in fact, 8, = (plz) "' o dy. We conclude that fly) = 0y(1) € U, as desired. O

9.3. Pointed isomorphisms of covers

Our next goal is to apply Theorem 9.2.1 (lifting criterion) to help us classify pointed covers and
construct deck transformations using fundamental group information. We defined what it means for
two covers to be isomorphic in §1.5. Adding basepoints, we make the following definition:
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DEFINITION 9.3.1. Let (X, o) be a pointed space and py : (X1,%1) — (X, xo) and pa: (X, 72) —
(X,20) be two pointed covers of (X,z¢). A pointed covering space isomorphism from (X1,Z1) to
(X2, %,) is a homeomorphism f: (X1,%;) — (X2, %) such that the diagram

(X1, 71) ! (X2, %)

(X, l‘o)

commutes, i.e., such that p2© f = p;. If a pointed covering space isomorphism from ()?1,51) to

(X, T2) exists, we say that (X1, %) and (Xa, %) are isomorphic pointed covers of X. This is clearly
an equivalence relation. (Il

Using Theorem 9.2.1 (lifting criterion), we will prove that in favorable situations pointed covers
are determined up to isomorphism by the images of their fundamental groups:

THEOREM 9.3.2. Let p1: (X1,%1) — (X, 20) and py: (X2, 72) — (X, 30) be two pointed covers
such that:
o the images of (p1)s: T1(X1,71) — m(X,20) and (p2)s: m1 (X2, T2) — m1(X,z0) are the
same; and
e both X1 and Xo are path connected.

Assume that X is path connected and locally path connected. Then (Xl,fl) and ()?2,52) are
isomorphic pointed covers of (X, ).

PrOOF. Since X is locally path connected, so are X; and Xo. Applying Theorem 9.2.1 twice,
we get pointed maps f: (X1,%1) — (X2,72) and §: (Xa,%2) — (X1,%1) such that the following
diagrams commute:

B (;(27%2) X17I1)
% J{m and / J,pl
(X1,%1) —2 (X, z0) (X2, T2) —2 (X, 20)

commute. To prove that f is the desired isomorphism of pointed covers, it is enough to prove
that it is a homeomorphism. In fact, we will prove that f and g are inverse homeomorphisms, i.e.,

of: (X1,71) — (X1,71) and fo§: (Xa,@2) — (X2, 72) are both the identity. The two proofs are
similar, so we will prove the first. By construction, the diagrams

o (X1,71) (X1,71)
gof lpl and / lpl
(X1,71) 2 (X, 20) (X1,31) 2 (X, 20)

both commute. Since X; is path connected and g o ]?and 1 are both lifts of p;: ()~(1, Z1) = (X, o)
that are equal at the point zy, it follows from Lemma 3.1.2 that they are equal, as desired. O

9.4. Deck transformations

Let p: X — X be a cover with deck group G. For ¢ € X, the group G acts on the fiber p~!(z).
If X is connected, then Lemma 2.2.1 says that if g,¢’ € G are elements such that there is some
Zo € p~(zo) with gZo = ¢’Fo, then g = ¢’. In other words, the group G is not only determined by
its action on p~1(xg), but even by its action on any single point of p~!(z). In favorable situations,
the following theorem therefore completely describes G:
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THEOREM 9.4.1. Let p: X — X be a cover with deck group G. Let xg € X and let Zo, T} €
pH(X). Set T =7 (X, x0), and let K and K' be the following subgroups of T':

K =Tm(p.: 7'('1()?,50) — m (X, o)),
K' =Im(p,: m (X, %) = 7 (X, 20)).

Assume that X is path connected and that X is locally path connected. Then there exists g € G with
9% = Ty if and only if K = K'.

PROOF. If such a g exists, then the corresponding deck transformation ]?g and its inverse ]?g_1
fit into commutative diagrams

; (X, ) ) (X, %)
/ lp and / i
(X, %) —— (X, z0) (X, 7)) —2— (X, z0).

Applying the fundamental group, we get commutative diagrams

(X, 7)) ) ™1 (X, %)
fs fo—1
y lp and / ip
771()?7%0) L 7T1(X,.T0) Wl()},fé) L) Wl(X,l‘o).

From this, we see that K = K’. Conversely, if K = K’ then Theorem 9.2.1 (lifting criterion) says
that there exists fg and fg—1 makmg the above diagrams commute. Just like in the proof of Theorem

9.3.2, the compositions fg fg 1 and fg 10 fg are both the identity, so they are homeomorphisms
and thus the desired deck transformations. O

5. Regular covers

Let p: (X,Z0) — (X, x0) be a pointed cover with deck group G. Recall that the cover is reqular
if for all z € X the group G acts transitively on the fiber p~!(z). In fact, if X is path connected then
Lemma 4.4.1 says that it is enough to check this transitivity on a single fiber, for instance p~! ().
Also, recall from §7.2 that the lifting map is the set map f: m (X, z9) — G defined as follows:

e Consider [y] € . Let 7 be the lift of v to X with 5(0) = Zo. Letting f([y]) = g, we then
have ¥(1) = gZo.
The lifting map is a well-defined group homomorphism, and is surjective if X is path connected
(see Lemma 7.2.1). Moreover, when we proved Theorem 7.1.1 we showed that the lifting map is an
isomorphism if X is 1-connected. Our final result in this chapter generalizes this as follows. See the
next section for some examples of it.

THEOREM 9.5.1. Let p: ()?,50) — (X, z0) be a pointed cover. Let T' = m (X, x¢), and let K be
the following subgroup of I':

K =TIm(p.: ﬂl()z,fo) — m (X, m0) =T).

Assume that X is path connected and that X is locally path connected. The following hold:

(i) The cover p: X3 Xisa reqular cover if and only if K is a normal subgroup of T'.
(i) Assume that p: X — X is a regular cover, and let G be its deck group. Then the lifting
map f: T — G is a surjective homomorphism with kernel K.

PRrOOF. We prove (i) and (ii) separately:

STEP 1. The cover p: X Xisa reqular cover if and only if K is a normal subgroup of I.



86 9. CLASSIFYING COVERS: LIFTING CRITERION

By Lemma 4.4.1, the cover is regular if and only if the deck group G acts transitively on p~*(zg).

For 77 € p~ (o), set

Kz, =Im(p.: m(X,71) = m(X, z0)).
By Theorem 9.4.1, there exists some g € G with gZ9 = z; if and only if Kz, = K. We deduce that
p: X = X is regular if and only if Kz = K for all #; € p~!(z0).

For 71 € p~Y(z0), let 4z, be a path in X from Zo to 1. The change of basepoint isomorphism
from 71 (X, 71) to m1 (X, %) takes [n] € 71 (X,%1) to [Fz,-n-7z,] € m (X, To). Let vz, be the image
of ¥z, in X, so vz, is a path from zg to xg. We thus have [¥z,] € m(X,20) =T. It follows that

[’yil]K[’yil]_l = Kz,.
Moreover, every g € I' = w1 (X, z) can be lifted to a path connecting Ty to Z; for some choice of
71 € p~Y(zo). We conclude that our cover is regular if and only if gKg=! = K for all g € T, i.e., if
and only if K is a normal subgroup.

STEP 2. Assume that p: X Xisa reqular cover, and let G be its deck group. Then the lifting
map [: T — G is a surjective homomorphism with kernel K.

Lemma 7.2.1 gives all of this except for the fact that the kernel of the lifting map is K, so this
is what we must prove. Consider [y] € 71 (X, zo) such that f([vy]) = 1. Let ¥ be the lift of v to X
with 7(0) = Zo. Since f([7]) = 1, we must have (1) = Zo, so 7 is a loop based at Zo. It follows that
[v] = p«([7]) € K. Conversely, reversing the above logic we see that elements of K lie in the kernel of
f, as desired. O

9.6. Examples of regular and irregular covers
We now give two examples of Theorem 9.5.1.

EXAMPLE 9.6.1. Consider the following pointed cover p: (X, 7o) — (X, z0):

X

@ - 0
—

X X

This is a regular cover with deck group Cs. Letting ¢ be the generator of Cs, the generator t acts on
X by flipping the two vertices, the two oriented edges labeled a, and the two oriented edges labeled
b. We explain how we could see this using Theorem 9.5.1. To do this, we must prove:

e The image of p,: m; ()N(, Zo) — m (X, o) is a normal subgroup of m (X, zg).

e The quotient of (X, zg) by the image of p, is Co.
The group 7 (X Zo) is isomorphic to the free group F'(a,b) on generators a and b. We have labeled
the edges of X with the loops in X they map to. We calculate the image of p, : m; (X Zo) = m (X, z0)
as follows. Let T be the following maximal tree in X:

Using the algorithm described in §8.9, we can use T to calculate a free basis S for m; ()? ,Zo). Since
P« is injective, we might as well describe the elements of this free basis by giving their images in
7T1(X,.’E0) = F(a,b):

S = {b,a? aba™"'}.
The subgroup of F'(a,b) generated by S is normal; indeed, it is the kernel of the map f: F'(a,b) — Cs
taking a to t and b to 1. (I

ExXAMPLE 9.6.2. Consider the following pointed cover p: ()~(, To) = (X, x0):

o 0 ‘ p X :
—
X X X

As we noted in §2.5, this is an irregular cover. We explain how we could see this using Theorem
9.5.1. To do this, we must prove:
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e The image of p, : m (X, %) — 71 (X, 20) is a non-normal subgroup of w1 (X, z¢).
The group m1 (X, o) is isomorphic to the free group F(a,b) on generators a and b. We have labeled
the edges of X with the loops in X they map to. We calculate the image of p, : 71 (X, %) — 71 (X, zo)
as follows. Let T be the following maximal tree in X:

T

X o

Using the algorithm described in §8.9, we can use T to calculate a free basis S for m; (X' ,Zo). Since
P+ is injective, we might as well describe the elements of this free basis by giving their images in
m (X, x0) = F(a,b):

S = {b,a? ab’a™!, abab 'a"'}.
The subgroup of F(a,b) generated by S is not normal. Indeed, it contains b, but we claim it does
not contain aba~!. To see this, let S’ = S U {aba='}. Since

abab~'a™ = (aba")(a?)(b")a !,

the subgroup generated by S’ contains a~! and hence a. But this implies that this subgroup contains
both a and b, and hence S’ generates all of F(a,b). Since S generates a proper subgroup® of F(a,b),
this implies that aba~! is not in the subgroup generated by S. ]

9.7. Exercises

EXERCISE 9.1. Let X be a locally path connected space and let p: X — X be a cover. Prove
that X is locally path connected. |

EXERCISE 9.2. Let (X, ) be a pointed space that is path connected and locally path connected.
Assume that 71 (X, zg) is a finite group. Let f: (X,z9) — (S*,1) be a map. Prove that f can be
lifted to the universal cover p: (R,0) — (S, 1). O

EXERCISE 9.3. Let n > 2 and m > 1. Let T™ = (S})*™ be the m-torus. Prove that every
continuous map f: S™ — T™ is null homotopic. O

EXERCISE 9.4. Let f: X — Y be a continuous map with X and Y both path connected and
locally path connected. Let p: X — X and ¢: Y — Y be covers such that X and Y are both
1-connected (we will prove in the next couple of chapters that such covers exist if X and YV are

reasonable; they are called universal covers). Prove that there exists a map f: X — Y such that the
diagram

N

NTNZ
><<T"<?

I
commutes. O

EXERCISE 9.5. Let X and Y be path connected and locally path connected space. As in the
previous exercise, let p: X — X and q: Y — Y be covers such that X and Y are both 1-connected.
Assume that X and Y are homotopy equivalent. Prove that X and Y are homotopy equivalent. [

EXERCISE 9.6. Let p: (X, %) — (X,20) be a pointed cover. Let T' = m1 (X, z¢), and let K be
the following subgroup of I':

K =Im(p.: m (X, %) = m(X, 20)).
Assume that X is path connected and that X is locally path connected. Let N(K') be the normalizer

of K in I, i.e., the subgroup of I' consisting of g € I with gKg~! = K. Prove that the deck group of
p: X — X is isomorphic to N(K)/K. O

IFor instance, we know that it generates a rank-4 free group, which has abelianization Z* (see Exercise 7.12). On
the other hand, F(a,b) has abelianization Z2.
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EXERCISE 9.7. Let G be a topological group, i.e., a space that is also a group such that the
multiplication map m: G Xx G — G and the inversion map i: G — G are continuous. Assume that
G is path connected and locally path connected. Prove the following:

(a) Let p: G — G be a cover. Prove that G can be given the structure of a topological group
such that p is a group homomorphism.

(b) If G is abelian, then prove that G is abelian.

(¢c) Prove that ker(p) is a central subgroup of G, i.e., that each g € ker(p) commutes with all
elements of G. ]

EXERCISE 9.8. Consider the following pointed covers p: (X, %) — (X, zo):

l l p X
(b) a a —>
X

Xy
For both, give a free basis for image of p,: m (X, To) — (X, z0). Also, determine if these images are
normal. If they are, describe them as the kernels of maps to the deck group of the cover. If they are
not, prove it. O

EXERCISE 9.9. As in Example 1.4.4, let Poly,, be the space of degree-n monic polynomials over
C. Such an f € Poly,, can be written as
flz)=2"+ a1z" V4 axz" 2+ 4a, withay,...,a, €C,
so Poly, = C". Let
Poly*f = {f € Poly,, | f has n distinct roots},

RPoly®f = {(f,a:) € Poly*! xC | f(z) = o}.

We showed in Example 1.4.4 that the projection p: RPolyflf — Polyif is a degree n cover. In this
exercise, you will show that it is an irregular cover for n > 3. Do the following:
(a) Let
Cn:{(/\h,)\n) eC” ‘ )\i#)\j for all 1§z<]§n}
Let m: C,, — Polnyf be the map
mAL, .., An) = (@ — A1) - (x—Ayp) forall (A,...,A,) € Cp.

Prove that m: C,, — Polyzf is a regular cover with deck group the symmetric group &,, on
n generators.
(b) Let ¢: C,, — RPoly® be the map

qA 1, ) = (Mg, ), An) forall (Aq,...,\,) € Ch.

Prove that ¢: C), — RPolyiLf is a regular cover with deck group the symmetric group &,,_1
on (n — 1) generators.

(c) Use the previous two parts to prove that p: RPolyflf — Polyflf is an irregular cover for n > 3.
Hint: Fix a basepoint fy € Polyff. Let x1,...,2, € C be the roots of fy. We will then use
ro = (1, ...,xy) for our basepoint of C,, and ( fo, z,,) as our basepoint for RPolyff. Applying
Theorem 9.5.1 to the cover from (a), we get a homomorphism ¢: 7 (Poly®, fo) — &,
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whose kernel is the image of m,: m1(Cy,70) — m (Poly®l, f3). Argue using (b) that the
homomorphism ¢ takes the image of p,: m (RPoly™’, (fo,2,)) — m1(Poly™, fo) to the
subgroup &,,_1 of G,,. Conclude by using the fact that &,,_; is a non-normal subgroup of
S, for n > 3. O

EXERCISE 9.10. Let T" = (S')*™ be the n-torus. Using the group structure on S* C C coming
from the multiplication on C, endow T" with the structure of a topological group. Let Aut(T™) be the
group of continuous group homomorphisms. Prove that Aut(T") = GL,,(Z). Hint: Let 0 € T™ be the
identity, and let f: (T™,0) — (T™,0) be a continuous group homomorphism. Let p: (R",0) — (T™,0)
be the pointed covering space obtained by taking the product of the universal cover R — S'. The
space R™ is a topological group under addition, and p is a group homomorphism. Prove that you can
lift f to a map f: (R™,0) — (R™,0), then prove that f is a linear map, and then finally prove that
fE GL,,(Z). The uniqueness of lifts will be important here! a

EXERCISE 9.11. Let K be the Klein bottle:

In this figure, the green loop on the left corresponds to the two green lines on the right, whose ends
match up to form a circle. Prove that the fundamental group of K is the following group I':

e Let Z act on Z via the homomorphism ¢: Z — Aut(Z) defined by
¢(n)(m) = (=1)"m for alln € Z and m € Z.
Then I' = Z x4 Z, i.e., the semidirect product of Z and Z given by the action ¢.
Hint: Construct a regular degree 2 cover p: T? — K with deck group Cy and use Theorem 9.5.1 to

analyze the fundamental group of K using this cover. ]

EXERCISE 9.12. The quasi-circle is the space Y obtained from the topologist’s sine curve
X ={(z,sin(l/z)) eR* |0 <z <1} U{(0,y) | -1 <y <1}
by connecting (1,sin(1)) to (0,0) by an arc; see here:

We saw in Exercise 4.11 that X is 1-connected but has nontrivial covers. Note that this would be
impossible if Y were locally path connected (cf. Theorem 4.6.1). Prove the following:

e Let f: Y — S! be the map that collapses {(0,y) | =1 <y < 1} to a point and identifies

the resulting space with S'. Prove that f cannot be lifted to the universal cover p: R — S'.

Note that f could be lifted if Y were locally path connected (cf. Theorem 9.2.1). O






CHAPTER 10

Classifying covers: Galois correspondence

We now describe one version of the classification of covering spaces. The proof of the main
technical result used in its proof is postponed until later.

10.1. Rough statement of first version of classification

Let (X, ) be a pointed space. Assume that X is path connected and locally path connected.
Let p: (X, %) — (X, x0) be a pointed cover. We proved in Theorem 9.1.1 that the induced map

pet (X, F) — m1 (X, 7o)

is injective. We call its image the subgroup of 71 (X, z¢) corresponding to the cover. Call p: ()~(, Zo) —
(X, zp) a connected pointed cover if X is path connected. We proved in Theorem 9.3.2 that a connected
pointed cover of (X, x¢) is determined up to isomorphism by its corresponding subgroup of 71 (X, xo).
Ignoring some technical issues, the first version of the classification of covers says that every

subgroup of 71 (X, ) is the subgroup corresponding to a connected pointed cover. By what we
said above this connected pointed cover is unique up to isomorphism, so this establishes a bijection
between:

e isomorphism classes of connected pointed covers of (X, z); and

e subgroups of m (X, xg).
If p,: ()}u, Zy) — (X, x0) is the connected pointed cover corresponding to the trivial subgroup, then
since p, is injective it follows that )~(u is 1-connected. For reasons we will describe later in this
chapter, this is called the universal cover of (X, zg). We will also talk about the unpointed version
of this: if p: X, — X is a cover with X, a 1-connected space, then X, will be called the universal
cover of X.

ExAMPLE 10.1.1. If X is already 1-connected, then X is its own universal cover with covering
space map the identity map 1: X — X. O

EXAMPLE 10.1.2. Since R is 1-connected, the universal cover p: R — S! we have discussed since
the beginning of this book exhibits R as the universal cover of S*. |

ExaMPLE 10.1.3. For n > 2, the degree 2 cover p: S — RP™ taking x € S™ to the line through
z exhibits S™ as the universal cover of RP". O

ExampLE 10.1.4. Let X be a graph with one vertex and two edges. Let X be a regular 4-valent
tree. As we have already seen several times, there is a covering space p: X — X; see here:

=00

Since X is a tree, it is contractible and hence 1-connected (see Lemma 6.4.1). It follows that X is
the universal cover of X. ]

91
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Unfortunately, there are technical issues with the theorem described above, and it does not
hold for all (X, x¢) such that X is path connected and locally path connected. In particular, these
conditions are not strong enough to ensure that a universal cover exists (see Exercises 10.13-10.14).
In the next section, we describe the needed extra hypotheses.

REMARK 10.1.5. We emphasize that in the above we only defined a universal cover of a pointed
space (X, xg) that is path connected and locally path connected. If X is not locally path connected,
then a pointed cover p: (X, Zo) — (X, x) such that X is 1-connected can have pathological properties.
For instance:

e The pointed space ()Z' ,Zo) might have nontrivial covers, which is impossible if X is locally
path connected by Theorem 4.6.1. See Exercise 4.11.

e The pointed cover p: (X, %) — (X, zo) might not be regular, though Theorem 9.5.1 says
that if X is locally path connected this cover is regular with deck group m (X, zo). See
Exercise 10.15. (]

10.2. Semilocal 1-connectedness

Let X be a space that is path connected and locally path connected. As we said in §10.1, there
might not exist a universal cover of X. One condition that would suffice for this is the following:

DEFINITION 10.2.1. A space X is locally 1-connected if for all x € X and all open neighborhoods
U of z, there is a 1-connected open neighborhood V of z with V- C U. ]

Most spaces of geometric interest are locally 1-connected; indeed, most of them are not just
locally 1-connected, but even locally contractible. For instance, all manifolds are locally contractible.
However, we can get away with less. One local property that spaces with universal covers have is as
follows:

LEMMA 10.2.2. Let X be a space. Assume there exists a cover p: X — X such that X is
1-connected. Then for all x € X, there exists an open neighborhood U of x such that the map
m (U, z) = m (X, ) is the trivial map.

PrOOF. Let z € X, let U C X be a trivialized open neighborhood of X for p: X - X, and let
Uc X be any sheet lying above U. Let x € U be the point lying in the fiber over x. We can factor

the inclusion (U, z) — (X, z) as

(I)1

(U, z) =2 (U,7) — (X,2) —— (X,2),

where (17, z) — ()N(, x) is the inclusion. Passing to fundamental groups, the map m (U, z) — m1 (X, z)
factors as

~ -1 ~ ~
(U, 2) Y2 1 (T,7) — (X, 2) 2 (X, 2).
|
1
It follows that the map 71 (U, z) — 71 (X, ) is the trivial map, as desired. |

We call spaces X satisfying the conclusion of Lemma 10.2.2 semilocally 1-connected. This is an
awkward condition, but it holds for instance if X is locally 1-connected. It also passes to covers in
the sense that if p: X — X is a cover and X is semilocally 1-connected, then so is X (see Exercise
10.1). Most importantly, we have the following converse to Lemma 10.2.2:

THEOREM 10.2.3 (Existence of universal covers). Let (X, zg) be a pointed space. Assume that X
is path connected, locally path connected, and semilocally 1-connected. Then it has a universal cover
Pu: (Xua-%u) - (Xa '7;0)'

We will prove Theorem 10.2.3 in Chapter 11. The details of the proof are beautiful, but not
important for applying it in concrete situations. The rest of this chapter and the next will explore
the consequences of Theorem 10.2.3.
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REMARK 10.2.4. One nice feature of semilocal 1-connectedness is that unlike purely local
conditions like being locally 1-connected, it is preserved by homotopy equivalences. See Exercise
10.2. |

10.3. Galois correspondence

The first version of the classification of covering spaces is as follows. For reasons we will describe
soon, it should be thought of as analogous to the classical Galois correspondence.

THEOREM 10.3.1 (Galois correspondence). Let (X, xg) be a pointed space that is path connected,
locally path connected, and semilocally 1-connected. There is then a bijection between the following
two sets:

e The set of isomorphism classes of connected pointed covers p: ()N(,io) — (X, x0)-

e The set of subgroups of 71(X, xo).
This bijection takes a connected pointed cover p: ()~(, Zo) = (X, xg) to its corresponding subgroup, i.e.,
to the image K of the map ps: 71 (X, %o) = m1(X, z0). The degree of the cover p: (X,To) — (X, xo)
is the index of K in m1(X, xo).

REMARK 10.3.2. Let (X, zg) be as in Theorem 10.3.1. That theorem classifies connected pointed
covers of (X, x). Connected covers of X without distinguished basepoints are classified by conjugacy
classes of subgroups K < m1(X, zg). See Exercise 10.3. O

PROOF OF THEOREM 10.3.1. Let T' = m1 (X, z) and let K < T be a subgroup. Theorem 9.3.2
says that there is at most one isomorphism class of connected pointed covers corresponding to K,
and Theorem 9.1.1 says that its degree is the index of K in I'. What we must prove is that there
exists a connected pointed cover whose corresponding subgroup is K.

Let py: (Xu,Ty) — (X, x0) be the universal cover provided by Theorem 10.2.3. Since the trivial
subgroup 1 < T' = 71 (X, o) is normal, Theorem 9.5.1 implies that the universal cover is a regular
cover with deck group I". We can therefore identify X with )?u/I‘ Set X = )N(U/K, and let Ty be the
image of T, under the projection ¢: X, — )~(u/K = X. Let p: ()?,Eo) — (X, x9) be the projection

X=X,/K — X,/)T =X.

We claim that p: ()?,5[;’0) — (X, o) is a covering space and that the image of p.: m ()?,féo) —
m1 (X, x0) is K.

To see that p: (X, 7o) — (X, o) is a covering space, consider z € X. Let U C X be a trivialized
neighborhood for p,, : ()Z'u, Zu) = (X, 20) and let ﬁu C )N(u be the sheet lying above U with z,, € ﬁu
The deck group I' acts simply transitively on the sheets of the universal cover lying above U, so

p'(U) = | | gU-
ger
Let {g. | ¢ € T/K} be a set of left coset representatives for K in T'. Recalling that q: X, — X, /K =
X is the projection, it follows that

P (U) = || algl)
cel'/K

and that that the restriction of p to each ¢(g.U) is a homeomorphism. We conclude that U is a
trivialized neighborhood for p: (X,Zy) — (X, x0) and that the ¢(g.U) are the sheets lying above U.
In particular, p: (X,Zo) — (X, x0) is a covering space.
It remains to prove that the image of p.: m (X, Zo) — m (X, x0) is K. For this, recall that
Theorem 9.1.1 says that the image of p, consists of all [y] € w1 (X, zo) such that the following holds:
(1) Let 7 be the lift of v to X with 5(0) = Zo. Then 7 is a loop, i.e., 3(1) = Zo.
Consider some g = [y] € m1 (X, x). Let ¥ be the lift of v to X with 5(0) = o and let 7, be the lift

of v to the universal cover X, with 7,(0) = Z,. The path 7, projects to 7. By Theorem 9.5.1, we
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have 7, (1) = gz,. It follows that 7 is a loop if and only if gz, maps to Ty € X’, i.e., if and only if
g € K, as desired. O

Before giving some examples of Theorem 10.3.1, we extract two things from its proof:

COROLLARY 10.3.3. Let (X, x0) be a pointed space that is path connected, locally path connected,
and semilocally 1-connected. SetT = (X, z0), and let K < T be a subgroup. Let p: (X, %) — (X, x0)
be the connected pointed cover whose corresponding subgroup is K and let p,,: ()Z'U,Eu) — (X, x0) be
the universal cover. The following then hold:

(i) We have X = X,,/K.
(i) There is a cover q: (Xu,ZTy) — (X, Zo). In particular, X, is the universal cover of X.

PrOOF. Immediate from the proof of Theorem 10.3.1. (]

REMARK 10.3.4. Conclusion (ii) of Corollary 10.3.3 explains why it is called the universal cover:
it covers all connected covers of the space. O

We now give some examples of Theorem 10.3.1:
EXAMPLE 10.3.5 (Circle). We have 71(S*, 1) = Z. The subgroups of Z are all of the form nZ for

some n > 0. These correspond to the following covers:
e For n > 1, the index n subgroup nZ < Z corresponds to the degree n cover p,,: (S',1) —
(S, 1) defined by
pu(z) = 2" for z € St C C.
In particular, the whole group 1Z = Z corresponds to the trivial cover 1g:: (S*,1) — (St 1).
o The infinite index trivial subgroup 0 < Z corresponds to the universal cover p: R — S*. O
ExAMPLE 10.3.6 (Real projective space). Let n > 2 and let g € RP™ be a basepoint. We have
m1(RP", 29) = C. There are two subgroups of Cs:

e The whole group C5 has index 1 and corresponds to the trivial cover lgp»: (RP", xq) —

(Ran 330) :
e The index 2 trivial group 0 < Cy corresponds to the degree 2 cover p: (S™,Zg) — (RP", z¢),
where Ty € S™ is a point projecting to xg. This is the universal cover of RP". O

10.4. Comparison with classical Galois correspondence

Theorem 9.3.2 should be viewed as an analogue for spaces of the classical Galois correspondence.!

Letting L/K be a finite Galois extension of fields, the classical Galois correspondence is a bijection
between:

e fields F with K C F C L; and
e subgroups of the Galois group Gal(L/K), which we recall is the set of automorphisms of L
that fix the subfield K.

This bijection tales a subgroup G of Gal(L/K) to the subfield L = {¢ € L | g¢ =/ for all g € G}.
The degree of the field extension LY /K is the index of the subgroup G of Gal(L/K).

We hope the analogy is clear: the field K corresponds to the base of the cover, the Galois group
Gal(L/K) corresponds to the fundamental group, and the field L = L' corresponds to the universal
cover. Another feature of the classical Galois correspondence is that it is order-reversing:

e If G1,G5 < Gal(L/K) are subgroups with G; < G3, then the corresponding fields satisfy
LGz < LG,
Something similar holds for covers, where the relation “is contained in” is replaced with the relation
“covers”:

1Understanding this analogy is not essential for understanding covering spaces, so a reader should not worry if
they are unfamiliar with the classical Galois correspondence.
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THEOREM 10.4.1. Let (X, zq) be a pointed space that is path connected, locally path connected,
and semilocally 1-connected. Let p1: (X1,%1) — (X, 20) and py: (Xa,%2) — (X, z0) be connected
pointed covers corresponding to subgroups Ky, Ko < m1(X, o) satisfying K1 < Ko. Then there is a
pointed covering map q: ()}1,551) — ()?2,52) such that the following diagram commutes:

(X1,71) —1 (X2, 72) 2 (X, 0).
\p_l/

PROOF. The proof is very similar to that of Theorem 10.3.1, so we leave it as Exercise 10.5. [
Here is an example:

ExXAMPLE 10.4.2 (Circle). For n > 1, the cover of (S!,1) corresponding to the subgroup
nZ < 7 = m (S, 1) is the cover p,: (S',1) — (S, 1) defined by p,(2) = z". For n,m > 1, we have
nZ < m# if and only if m divides n. In this case, we have the covers

(S, 1) 227 (st 1) 22y (S, 1)
S~

as in Theorem 10.4.1. O

10.5. Subgroups of free groups are free

We now explain an application of Theorem 10.3.1 to group theory. The following theorem
was originally proved algebraically by Nielsen (who proved it for finitely generated subgroups) and
Schreier (who proved it in general).

THEOREM 10.5.1. Let F(S) be the free group on a set S and let G be a subgroup of F(S). Then
G is a free group.

PROOF. Let Xg be the graph with one vertex xg and with |S| oriented edges, each labeled with
an element of S. Identify each s € S with the corresponding loop in Xg based at xy. Theorem 7.8.1
says that m1(Xg, o) is a free group on {[s] | s € S}. By Theorem 10.3.1, there is a pointed cover
¢: (X(G),7¢) — (Xg,x0) whose corresponding subgroup is G. Since Xg is a graph, one way to
proceed would be to appeal to Exercise 4.8, which says that all covers of Xg are also graphs. This
would imply that X(G) is a graph, and thus that G = 7 (X(G), Z¢) is a free group (Theorem 8.8.1).
Instead of doing this, we give a more explicit approach that will later allow us to compute free
generators for G. In the proof of Theorem 7.8.1, we identified the universal cover of (Xg, o), though
of course that term had not yet been defined. Namely, let Ts to be an infinite tree each of whose
vertices has valence 2|S|. Label the oriented edges of Ts by elements of S such that for each vertex v
of T there are:
e |S| edges coming out of v labeled by elements of S; and
e |S| edges going into v labeled by elements of S.
Fix a vertex Ty of Ts. There is a pointed covering space p: (Ts,Zog) — (Xg,xo) taking each vertex
of Ts to xp and each oriented edge of Ts labeled by s € S to the corresponding loop in Xg labeled
by s. For instance, if S = {a,b} this is the cover

Ty

The tree Ts is contractible (Lemma 6.4.1), so Tg is the universal cover of Xg. In particular, it is
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a regular cover with deck group F(S) (Theorem 9.5.1). Let X(G) = Ts/G and let ¢ € X(G) be

the image of of Zy € Ts. The map p factors through a map pg: (X(G),Zg) — (Xs,x0). Corollary
10.3.3 says that pg: (X(G),%¢) — (Xg,x0) is the pointed connected cover corresponding to G. In
particular, B

m(X(G),Zg) 2 G.

Since X (G) is a graph, Theorem 8.8.1 says that 71 (X (G), Z¢) is a free group. The theorem follows. [

10.6. Computing free generators for subgroups of free groups

As in Theorem 10.5.1, let F(S) be a free group on a set S and let G be a subgroup of F(S). The
proof of Theorem 10.5.1 actually gives an algorithm to compute free generators for G. We start with
the following definition:

DEFINITION 10.6.1. Let H be a group with generating set 7. The Cayley graph of H with respect
to T, denoted Cay(H,T), is the following graph:
o The vertices of Cay(H,T') are the elements of H.
e For each h € H and t € T, there is an oriented edge of Cay(H,T) connecting the vertices h
and ht. |

For a group H with a generating set T, the graph Cay(H,T') is connected. Indeed, for h € H we
can write h = t§* -+ -t with ¢1,...,¢, € T and e3,...,e, € {£1}. The following is then an edge
path from the vertex 1 € H to the vertex h € H:

L5 4552 2L Lt e = .
Here we are using the fact that for i’ € H and t € T there is an oriented edge from h't~! to h’. The

group H acts on Cay(H,T) on the left. This action is transitive on the vertices, and the orbits of
the edges are in bijection with T

REMARK 10.6.2. In the above, we allow the generating set T to have repeated elements. It is
also allowed to contain the identity element 1 € H. The same is true in what we do below. O

We now return to the setting of free groups. The tree Ts constructed in the proof of Theorem
10.5.1 is exactly Cay(F(S), S). It follows that the graph X (G) from that proof with fundamental
group G < F(S) is Cay(F(S),S)/G. If G is a normal subgroup, then letting S be the image of
S in F(S)/G we have Cay(F(S),S)/G = Cay(F(S)/G,S). More generally, Cay(F(S),S)/G is the
Schreier graph of F(S)/G with respect to S, whose definition is as follows:

DErINITION 10.6.3. Let H be a group with generating set T and let K < H be a subgroup. The
Schreier graph of H/K with respect to T', denoted Sch(H, K, T, is the following graph:
e The vertices of Sch(H, K, T') are the right cosets Kh with h € H.
e For each right coset Kh and generator t € T, there is an oriented edge of Sch(H, K,T)
connecting the vertices Kh and Kht. O

Here are three examples of how to use all this to compute free generators for subgroup G of free
group F(S):

ExAMPLE 10.6.4. Consider the free group F'(a,b) on a and b. Let C5 be the cyclic group of
order 3 generated by t. Let G be the kernel of the homomorphism F'(a,b) — C3 taking a and b
to t. Following the above recipe, the group G is the fundamental group of the Cayley graph of
F(a,b)/G = C3 with respect to the generating set {a,b}. These map to the same element of C3, so
this generating set has a repeated element in it:

{2
a
a
—
X0
6T e
a
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The basepoint is the vertex labeled 1. Let T be the following maximal tree in this Cayley graph:
2

IL t
a
Using the recipe for computing fundamental groups of graphs from §8.9, we see that G < F'(a,b) is a
free group on the following four generators: {ba~',aba=2,a?, a’b}. |

ExaMPLE 10.6.5. Counsider the free group F(a,b) on a and b. Let G be the normal subgroup of
F(a,b) generated by a. We thus have F'(a,b)/G = Z. Under this isomorphism, ¢ maps to 0 € Z and
b maps to 1 € Z. Following the above recipe, the group G is the fundamental group of the Cayley
graph of Z with respect to the generating set {a, b}:

—
b b Xo
AT 0o 1

The basepoint is the vertex labeled 0. Let T be the following maximal tree in this Cayley graph:

Using the recipe for computing fundamental groups of graphs from §8.9, we see that G < F'(a,b) is
the free group on the following set of generators: {b"ab~™ | n € Z}. O

ExAMPLE 10.6.6. To illustrate this construction for a non-normal subgroup, let F'(a,b) be the
free group on a and b and let G be the cyclic subgroup generated by b. We already know that G is
free on the single generator b. The cosets of G in F(a,b) are of the form Gw where w € F(a,b) is a
reduced word that does not start with b or b6=1. The Schreier graph of G in F(a,b) with respect to S
is thus of the following form:

—
)
e e

G

For reasons of space, we only label the vertex corresponding to the trivial coset GG, which is the
basepoint. Note that this Schreier graph deformation retracts to the single loop labeled by b, so G is
indeed the free group on the single generator b. O

REMARK 10.6.7. It is enlightening to re-interpret the examples in §9.6 from this point of view. [

10.7. Exercises

EXERCISE 10.1. Let X be a space that is semilocally 1-connected and let p: X — X be a cover.
Then X is semilocally 1-connected. O

EXERCISE 10.2. Let X be a semilocally 1-connected space and let Y be a space that is homotopy
equivalent to X. Prove that Y is semilocally 1-connected. O

EXERCISE 10.3. Let X be a space that is path connected, locally path connected, and semilocally
1-connected. Fix a basepoint zy € X. Construct a bijection between the following two sets:

e The set of isomorphism classes of connected covers p: X = X.
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e The set of conjugacy classes of subgroups of 7 (X, z). O

EXERCISE 10.4. Let p: (X,%) — (X, ) be a connected pointed cover and let f: (Y, o) —
(X,x0) be a map. Assume that X and Y are path connected and locally path connected. Define

V={a ey =X |y =p@},
o = (40, %) € Y,

and let ¢: (37, Yo) — (y,yo) be the projection onto the first factor. You proved in Exercise 1.8 that

q: (Y,90) = (Y, yo) is a covering space. Let Y’ be the path component of Y containing g and let
q = q|)~,,. Prove the following:

(a) The map ¢': (}7’,370) — (Y, yo) is a cover.
(b) Let

K =TIm(p,: m (X, %) — m (X, 20))
be the subgroup corresponding to p: (X, Zo) = (X, z0) and let
K = f*_l(K) C m1(Y, o).
Prove that K’ is the subgroup corresponding to ¢ : (57’, ¥o) — (Y, 0)- O

EXERCISE 10.5. Let (X, z) be a pomted space that is path connected, locally path connected,
and semilocally 1-connected. Let p1: (X1,71) — (X, 20) and pa: (Xa,%2) — (X, 20) be connected
pointed covers corresponding to subgroups K1, Ko < 71 (X, z¢) satisfying K7 < K». Prove that there
is a pointed covering map ¢: ()~( 1,T1) = (X'g, Zo) such that the following diagram commutes:

(X1,71) —2= (X2,72) —2 (X, 20). U
\p_l/v

EXERCISE 10.6. Let (X, z0) and (Y, yo) be the following spaces:

=0

We proved in Example 8.6.1 that these spaces are homotopy equivalent, and also that 71 (X, zo) and
m1(Y, yo) are isomorphic to Z. Explictly construct the universal covers of X and Y. O

EXERCISE 10.7. Let (X, z0) and (Y, yo) be the following surfaces with boundary:

=) &

We proved in Example 8.2.1 that these spaces are homotopy equivalent, and also that 71 (X, z¢) and
m1(Y, yo) are free groups on two generators. Explictly construct the universal covers of X and Y. O
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EXERCISE 10.8. Let K be the Klein bottle:

In Exercise 9.11, you proved that the fundamental group of K is the following group I':
e Let Z act on Z via the homomorphism ¢: Z — Aut(Z) defined by

o(n)(m) =(=1)"m for alln € Z and m € Z.
Then I' =Z x4 Z, i.e., the semidirect product of Z and Z given by the action ¢.

Construct a covering space action of I' on R? such that R?/T" = K. This shows that the universal
cover of K is R2, and also gives a new proof that the fundamental group of K is I'. O

EXERCISE 10.9. Let X5 be a closed oriented genus 2 surface, which can be identified with an
octagon with sides identified in pairs as follows:

by
- &
‘\ 21\_)

Prove that the universal cover of ¥y is homeomorphic to R2. Hint: Let P =2 D? be an octagon, so
the above picture shows a surjection f: P — X5. The map f is an open embedding on the interior of

P, but is not injective on the boundary. Construct a space S = R? and a covering map p: S — 3
by carefully gluing together infinitely many copies of P and letting p equal f on each copy of P. We
remark that this same argument will show that for all g > 1 the universal cover of a closed genus g
surface is homeomorphic to R2. O

EXERCISE 10.10. Let T? = (S!)*2 be the 2-torus. Fix a basepoint x¢ € T?, so 71 (T?, zg) = Z2.

(a) Construct the universal cover of T2.

(b) Let K < Z2 be a finite-index subgroup and let p: (X, %) — (T2,z0) be the cover whose
corresponding subgroup is K. Prove that X >~ T2

(¢c) Let K < Z?2 be a nontrivial subgroup of infinite index and let p: (X, Zo) — (T2,20) be the
cover whose corresponding subgroup is K. Prove that X S xR. (]

EXERCISE 10.11. Let X be a graph with one vertex xy and two edges labeled a and b. We
can therefore identify (X, zg) with the free group F(a,b). Classify all the connected degree 2
and degree 3 covers of X, and for each cover determine if it is regular and give generators for its
corresponding subgroup of m1 (X, z¢) = F(a,b). O

EXERCISE 10.12. Let F' = F(a,b) be the free group on a and b. Recall from Exercise 7.12 that
the abelianization of F is Z2. The kernel of the abelianization map F — Z? is the commutator
subgroup [F, F]. Compute a free basis for the free group [F, F. a

EXERCISE 10.13. For n > 1, let C,, C R? be the circle of radius 1/n with center (0,1/n). Let
X = U2 ,C,, topologized as a subspace of R2. This is sometimes called the “earring space” or the
“shrinking wedge of circles”:
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Prove the following:

(a) The space X is path connected.
(b) The space X is locally path connected.
(¢) The space X has no universal cover. O

EXERCISE 10.14. Let X =[]~ S!, endowed with the product topology. Prove the following:

(a) The space X is path connected.
(b) The space X is locally path connected.
(c) The space X has no universal cover. O

EXERCISE 10.15. The quasi-circle is the space Y obtained from the topologist’s sine curve
X ={(z,sin(l/z)) eR* |0 <z <1} U{(0,y) | -1 <y <1}
by connecting (1,sin(1)) to (0,0) by an arc; see here:

Let Z be the following space obtained from two quasi-circles by identifying basepoints on their arcs
together:

Prove the following:
(a) The space Z is 1-connected (recall that Exercise 4.11 says that the quasi-circle itself is
1-connected).
(b) There exists a finite irregular cover p: Z — Z such that Z is 1-connected. Hint: start with
a finite irregular cover of a graph with one vertex and two edges. O



CHAPTER 11

Classifying covers: monodromy and the universal cover

Our main goal in this chapter is to construct universal covers. We do this by proving a much
more general version of the classification of covering spaces.

REMARK 11.0.1. The arguments in this chapter are more abstract and categorical than those
in the other chapters of this book. For a reader who just wants to get to the construction of the
universal cover as fast as possible, the traditional proof is in Essay C. In fact, the proof of our very
general classification theorem is essentially the same as the traditional construction of universal
covers. One of the reasons we wrote this chapter was to put that somewhat mysterious proof in its
natural context. ]

11.1. Monodromy action of the fundamental group

Let p: X — X be a cover. For z € X, let F(z) = p~*(x) be the fiber over z. If v is a path in X
from z € X to y € X, then in §4.3 we defined a map 7,: F(x) — F(y) as follows:

e For 7 € F(z), let 7 be the lift of v to X with 7(0) = Z. We then set (Z) =7(1) € F(y).

The picture is as follows:

X - )
° Y °
° 7,(X)
lp
Yy
X @ s Y L ]

Lemma 4.2.1 says that 7., only depends on the homotopy class of v, and Lemma 4.3.1 says that 7, is
a bijection. These compose as follows:

LEMMA 11.1.1. Let p: X — X be a cover. For x € X, let F(z) = p~'(z). Let v be a path in X
fromx € X toy € X and let § be a path in X fromy € X toz € X. Then 7y.5 = T5 0 7.

Proor. Consider some = € F(z). Let 7 be the lift of v to X with 5(0) = Z. We thus have
(1) = 7y(z). Let 0 be the lift of 6 to X with §(0) =7(1). As the following figure shows, the path
7+ is the lift of -0 to X starting at Z:

X

- . N °
o i o 5 (1K)
° — °
5,&)
lp
y S
_Xe —> Y ® > 0 @ Z
It follows that 7.5 = (1) = 75(8(0)) = 75(7 (7)), as desired. O

Fix a basepoint xy € X. Define a right action of 71 (X, x¢) on F(xo) as follows:

Z[y| =7y(z) for all T € F(xo) and [v] € m1 (X, zo).

101
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The fact that this is an action uses Lemma 11.1.1: for € F (o) and [v], [§] € m1(X, z0), we have

2[y0] = 7y.5(%) = 75(75/()) = 7(2)[8] = Z[][d].
This is called the monodromy action of 71 (X, zg) on F(xg).

REMARK 11.1.2. In Lemma 11.1.1, the order of v and ¢ are reversed in 7,.s = 75 o 7. This order
reversal is why we get a right action rather than a left action. It happens because we compose paths
from left to right, but functions from right to left. O

REMARK 11.1.3. If p: ()?7 Zo) — (X, z0) is a pointed regular cover with deck group G, then G
acts on F(zg) on the left. Composing this action with the homomorphism 71 (X, 20) — G given
by Lemma 7.2.1, we get a left action of m (X, o) on F(zp). This is different from the monodromy
action, which is a right action and exists for all covers, not just regular ones. This left action also
depends on a choice of basepoint Zy in the cover, while the monodromy action does not. See Exercise
11.1 for how the two actions are related. (]

11.2. All monodromy actions come from covers

Let G be a group. A right G-set is a set S equipped with a right G-action. Two right G-sets S
and T are isomorphic if there exists a bijection f: S — T such that

f(sg) = f(s)g forallse S andgeQG.

Ifp: X — X is a cover and g € X, then the fiber p~!(z¢) is a right 71 (X, z0)-set via the monodromy
action. The following theorem says that for reasonable pointed spaces (X, xg), covers of X can be
identified with right m (X, zo)-sets:

THEOREM 11.2.1. Let (X, xg) be a pointed space. Assume that X is path connected, locally path
connected, and semilocally 1-connected. The following then hold:

(i) Let S be a right m (X, xq)-set. There then exists a cover p: X — X such that the fiber
p~Y(z0) over zqg is isomorphic to S as a right G-set.

(i) Let p1: X1 — X and pa: Xo — X be covers. Assume that the fibers p7 (o) and p3 *(x0)
are isomorphic as right 71 (X, xg)-sets. Then p;: )?1 — X and ps: )22 — X are isomorphic
covers.

Just like Theorem 10.3.1 (Galois correspondence), Theorem 11.2.1 is a classification of covers of
X. It differs from Theorem 10.3.1 in two ways:

e Theorem 10.3.1 classifies covers with X path connected, while Theorem 11.2.1 allows X to
not be path connected.

e Theorem 10.3.1 is about pointed covers p: ()N(, Zo) — (X, o), while Theorem 11.2.1 does
not specify a basepoint in X. The notion of isomorphism of covers in the two theorems is
thus slightly different (pointed vs unpointed isomorphisms of covers).

We will prove Theorem 11.2.1 later in this chapter; see §11.6 below. First, we will explain how to use
it to construct the covers given by Theorem 10.3.1 (Galois correspondence), including the universal
cover.

We start with the following. If G is a group, a right G-set S is transitive if for all s, s’ € S there
exists some g € G with sg = 5.

LEMMA 11.2.2. Let p: X — X be a cover with X path connected and let o € X. The path
components of X are in bijection with the (X, zo)-orbits of the right 71 (X, x¢)-set p~*(zo). In
particular, X is path connected if and only if the right 71 (X, xq)-set p~1(xg) is transitive.

PROOF. For 7 € X, a path § in X from p(¥) to xq lifts to a path from  to a point of p~!(zp).
It follows that each path component of X contains at least one point of p~!(zg). To prove the lemma,
it is therefore enough to prove that two points of p~!(x¢) can be connected by a path if and only if
they are in the same 7 (X, zg)-orbit.

Consider 7,7’ € p~1(xg). A path ¥ from Z to 2’ projects to a loop 7 with [y] € m1(X, zo) such
that Z[7] = @’. Conversely, if [y] € 7 (X, z¢) satisfies Z[7] = 7 then the lift of v to X starting at @
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is a path from T to Z’. It follows that Z and Z’ can be connected by a path if and only if they are in
the same 1 (X, z¢)-orbit, as desired. ]

Next, if G is a group and S is a right G-set, for s € S we will write G for the stabilizer subgroup
of s, i.e., Gs ={g € G| sg = s}. We then have:

LEMMA 11.2.3. Let p: (X, %) — (X, x0) be a pointed cover and let G = 7,(X,x0). Then the
subgroup of G corresponding to p: (X,Zo) — (X, x0) is Gz, .

PROOF. Recall that the subgroup of G = m1(X,zg) corresponding to the cover is the image
of the induced map p,: m1(X,Zy) — 71(X,x0). By Theorem 9.1.1, this subgroup consists of all
[v] € m1(X, zo) such that the following holds:

() Let ¥ be the lift of v to X with ¥(0) = Zo. Then 7 is a loop, i.e., ¥(1) = Zp.
By definition, these are exactly the [v] such that Zo[y] = Zo. O

For a pointed space (X, z¢) satisfying appropriate hypotheses and a subgroup H < m (X, zo),
Theorem 10.3.1 gives a connected pointed cover p: ()Z' , o) — (X, x0) whose corresponding subgroup
is H. The following theorem shows how to produce this cover with Theorem 11.2.1. For the statement
of the theorem, note that if G is a group and H < G is a subgroup, then the set H\G of right
H-cosets is a transitive right G-set. Moreover, if S is a transitive right G-set and s € S, then we have
an isomorphism G4\G = S of transitive right G-sets. This isomorphism takes a coset Gsg to sg.

THEOREM 11.2.4. Let (X, xo) be a pointed space. Assume that X is path connected, locally
path connected, and semilocally 1-connected. Let G = w1 (X, z¢) and let H < G be a subgroup. Let
p: X — X be the cover obtained by applying Theorem 11.2.1 to the right G-set H\G. Let Ty € X be
the point in the fiber p~'(z¢) corresponding to the trivial coset H € H\G. Then p: (X, To) — (X, z0)
s a connected pointed cover whose corresponding subgroup is H.

PrOOF. Immediate from Lemmas 11.2.2 and 11.2.3. g
From this, we will deduce the following theorem from Chapter 10 whose proof was postponed:

THEOREM 10.2.3 (Existence of universal covers). Let (X, xg) be a pointed space. Assume that
X 1s path connected, locally path connected, and semilocally 1-connected. Then it has a universal
cover py: (Xu, Ty) — (X, x0).-

PROOF. Let p,: X, — X be the cover obtained by applying Theorem 11.2.1 to the right
71 (X, z0)-set 1\m1(X,x0) and let Z,, € X, be the point in the fiber p~1(x¢) corresponding to the
trivial coset 1. It follows from Theorem 11.2.4 that p,: (X, %) — (X, x0) is a universal cover. O

11.3. Reminder about fundamental groupoid and functors

To prove Theorem 11.2.1, we will actually prove an even more general result. This more general
result is most naturally stated in terms of the fundamental groupoid. Since we have not discussed
the fundamental groupoid since introducing it in Chapter 5, we recall some basic facts about it.

Let X be a space. The fundamental groupoid of X is a category that endodes the collection of
homotopy classes of paths between poitns of X. As we discussed in §5.4, in a category morphisms
are composed right-to-left like functions. However, our conventions for composing paths goes from
left to right: if ~y is a path from z to y and + is a path from y to z, then -+’ is the path from z to z
that first traverses v and then traverses 7. To fix this mismatch of conventions, we introduced the
following notation:

NoTATION 11.3.1. Let X be a space. For points z,y,z € X, let v be a path in X from x to y
and let § be a path in X from y to z. We then define 7’ * v = v-+'. This descends to homotopy
classes of paths, and we also write [y] x [y] = [’ 7] O

With this notation, the fundamental groupoid of X, denoted II(X), is the following category:
e The objects of II(X) are the points of X.
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e For points z and y, the II(X)-morphisms from z to y are the set of all homotopy classes of
paths from z to y. For a path + from x to y, we will write [y]:  — y for the corresponding
morphism from z to y.

e If v is a path from z to y and +' is a path from y to z, then the composition of the morphisms
[v]: * = y and [y]: y — 2 is the morphism [y'] * []: z — 2.

e For a point « € X, the identity morphism of x is the constant path [¢,]: x — .

We will encode covers of spaces as functors on the fundamental groupoid. We recall that a
functor is defined as follows:

DEFINITION 11.3.2. Let C and D be categories. A functor F from C to D consists of the
following data:
e For each object ¢ € C, an object F(c) € D.
e For each morphism f: ¢ — ¢ in C, a morphism F(f): F(c) — F(c) in D.
This data should respect composition in the sense that if f: ¢ — ¢ and g: ¢/ — ¢’ are morphisms in
C, then F(go f) = F(g) o F(f). o

ExAMPLE 11.3.3. If Top, is the category whose objects are pointed spaces (X, zg) and whose
morphisms are pointed maps f: (X, 20) — (Y, yo), then the fundamental group ; is a functor from
Top, to the category Group of groups. (]

11.4. Fiber functors

Let X be a space and let p: X > X bea covering space. The fiber functor of p: X — X is the
following functor F from II(X) to the category Set of sets. For an object x € X, we define F(z) to
be the set of points in the fiber of z, i.e.,

F(z) = p~\(a).

For a morphism [7]:  — y in II(X), we define F([7]): F'(z) = F(y) to be the map 7, we discussed
in §11.1 above. To see that this is a functor, consider morphisms [y]: X — y and [d]: y — z in II(X).
We must prove that F([§] x [y]) = F([d]) o F([7]), i-e., that

Ty.s = T§ o Ty
This is exactly Lemma 11.1.1.
REMARK 11.4.1. Using * instead of the concatanation product - in the fundamental groupoid

accomplised the same thing for the fiber functor that using right actions did for the monodromy
action of the fundamental group. |

11.5. Realizing fiber functors

Our main theorem says that every functor from the fundamental groupoid to Set is the fiber
functor of a cover. This result will also have a uniqueness statement. For this, we make the following
categorical definition:

DEFINITION 11.5.1. Let F and G be two functors from a category C to a category D. A natural
isomorphism ® from F to G consists of the following data:
e For each object ¢ € C, an isomorphism ®(¢): F(¢) — G(c) in D.
These isomorphisms should satisfy the follow consistency condition. Let f: ¢ — ¢’ be a morphism in
C. We then require that the diagram

F(e) 29 p(e)

‘P(C)J l‘i’(c/)
Gle) 22 a(e)

commutes, i.e., that ®(c’) o F(f) = G(f) o ®(c). If a natural isomorphism from F to G exists, we say

that F' and G are naturally isomorphic. |
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Our theorem is as follows. Note that unlike in Theorem 11.2.1, the space X below is not assumed
to be path connected.

THEOREM 11.5.2. Let X be a space that is locally path connected and semilocally 1-connected.
The following then hold:
(i) For all functors F: II(X) — Set, there exists a cover p: X — X whose fiber functor is
naturally isomorphic to F'.
(i) If p: X > X and p' X' = X are covers whose fiber functors are naturally isomorphic,
thenp: X — X and p': X' — X are isomorphic.

PRrROOF. We prove (i), and then deduce (ii) by meditating on our proof of (i).

STEP 1. Let F: II(X) — Set be a functor. There then exists a cover p: X — X whose fiber
functor is F.

Roughly speaking, we start by defining X to be the disjoint union of all points in all the purported
fibers given by F'. To ensure that this really is a disjoint union, we actually define this as follows:

X={(z,7) |r€ X and T € F(x)}.

Let p: XX be the projection onto the first factor. Our main goal is to construct a topology on
X such that p: X — X is a covering map.

Say that a set U C X is an sllc-set if U is open and path connected, and for all z € U the map
m (U, z) — m (X, x) is the trivial map. These satisfy the following property:

e If U is an sllc-set and V C U is open and path connected, then V' is an sllc-set.

Since X is locally path connected and semilocally 1-connected, every point has a open neighborhood
that is an sllc-set. Combined with the above bullet point, we deduce that the sllc-sets form a basis
for the topology of X.

Let U C X be an sllc-set. For some x € U, let © € F(x). Since U is an sllc-set, for each
y € U there exists a path 7, in U from x to y. Moreover, any two such paths are homotopic in

X. The morphism [y,]: # — y thus only depends on y. Applying the functor F', we get a bijection
F([vy)): F(z) — F(y). Define

U@ ={(.9) € X |yeUand j= F(R)@)].

The projection p: X — X takes U(Z) bijectively to U. By the functorality of F, these sets U (%)
satisfy the following key properties:
(a) Let U C X be an sllc-set, let € U, and let T € F(x). For all (y,y) € U(T), we have
U(z) =U(y).
(b) Let U C X be an sllc-set, let © € U, and let & € F(z). Let V C U be an open path
connected subset of U, so V is also an sllc-set. Assume that € V. Then V(Z) = U(%).
We claim that the collection of all sets of the form (7(9?) forms the basis for a topology on X. This
requires checking the following:
e Let U,V C X be sllc-sets, let x € U and y € V, and let Z € F(z) and §y € F(y). We
must prove that U(Z) NV (y) is the union of sets of this form. To see this, consider some

(2,2) eU(x)NV(y). Let W C UNV be a path connected open neighbrohood of z. Using
(a) and (b), we have

W(Z) cUE)NV(E) = U@ NV().
The claim follows.

We can therefore endow X with the topology generated by the U (@).
By construction, this topology makes the projection p: X — X continuous. In fact, even more
is true: if U C X is an slle-set and € U and T € F(x), then the restriction of p to U(Z) is a
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homeomorphism (7(3?) — U. This implies that p: X5 Xisa covering map. Indeed, for x € X
letting U C X be an sllc-set containing z we have
L] 0@

TEF(z)
These are the sheets lying above U. B
It remains to check that the fiber functor of p: X — X is naturally isomorphic to F'. For z € X,

we have
pH(z) = {(2,7) | T € F(x)}.
Our natural isomorphism takes this to F(z) via the map (x,Z) — Z. We must check that this
purported natural isomorphism respects the morphisms in the fundamental groupoid. Let [¢]: z — y
be a morphism in II(X) and let & € F(z). Unwinding the definitions, what we must check is the
following:
(1) Let 7 be the lift of v to X with 5(0) = (z,Z). Then 3(1) = (y,7).
Using the Lebesgue number lemma just like in our proof of path lifting for covers (cf. Lemma 3.4.1),
we can divide the domain I of v: I — X into subintervals
D= <e< - <e, =1

such that for all 1 < k < n the image ~([ex, €x+1]) is contained in an sllc-set Uy C X. After
re-parameterizing v (which changes it by a homotopy), we can therefore write v =3+ -+ -- ~n, such
that each ~y; is contained in the sllc-set Up. We can lift v by lifting 1, then 5, etc. This reduces us
to checking (}) for a -y that is contained in an sllc-set U, and for these paths (1) is immediate from
our construction.

STEP 2. Let p: X = X and p' X' = X be covers whose fiber functors are naturally isomorphic.
Thenp: X — X and p’: X' — X are isomorphic.

Let F' be the fiber functor of p: )?~—> X and F' be the fiber functor of p’: X’ — X. Examining
our proof in Step 1, it is clear that p: X — X and p’: X’ — X are isomorphic to the covering spaces
obtained by applying the construction in Step 1 to F' and F’, respectively. We can therefore assume
without loss of generality that

X={(z,%) |z X and 7 € F(a)},
X' ={(2,%) |z € X and ¥ € F'(z)}
with the topologies from Step 1. Let ® be a natural isomorphism from~F to~F’, so for x € X we
have bijections ®(z): F(x) — F’(x). We can therefore define a map ¢: X — X’ via the formula
¢(z,z) = (z,2(z)(x)) forallz € X and T € F(x).

It is clear that ¢ is a homeomorphism commuting with the projections p and p’, i.e., an isomorphism
from p: X — X to p': X — X. O

11.6. Realizing monodromy representations using fiber functors
In this section, we use Theorem 11.5.2 to prove Theorem 11.2.1, whose statement we recall:
THEOREM 11.2.1. Let (X, x0) be a pointed space. Assume that X is path connected, locally path
connected, and semilocally 1-connected. The following then hold:

(i) Let S be a right 7 (X, xo)-set. There then exists a cover p: X — X such that the fiber
pil(mo) over Ty 1S zsomorphzc to S as a right G-set.
(i) Let p1: X1 — X and pa: Xo — X be covers. Assume that the fibers py Yxo) and py*(xo)

are isomorphic as right m (X, zo)-sets. Then p; : X1 — X and py: Xg — X are isomorphic
covers.

ProOF. We divide the proof into two steps:

STEP 1. Let S be a right m (X, xq)-set. There then exists a cover p: X — X such that the fiber
p~1(xg) over zq is isomorphic to S as a right G-set.
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We construct a functor F': II(X) — Set as follows. For z € X, define F'(z) = S. To define F on
morphisms of II(X), for each z € X fix some arbitrary path d, from zy to 2. The only thing we will
assume is that d,, is the constant path. We are going to define F' such that for all z € X the map

F([6z]): F(zo) = F(x)

is the identity map S — S. Of course, we do not want F'([y]) to be the identity map for all paths ~
since then we would just get the fiber functor of the trivial cover X x S — X. We must incorporate
the right action of m1 (X, z¢) on S. B

Consider a path v in X from z € X to y € X. We therefore have a loop d,-v-d, based at xg.
We define

F([v])(s) = s[0gy-0,] forall s € F(z)=S5.

We must check that this is a functor. Let v be a path from z € X to y € X and let v’ be a path
from y € X to z € Z. We must prove that

F(+]) = F(y)
equals F'([y']) o F([y]). To see this, note that for s € F(z) = S we have

F(yr) = s[0ay7"+02] = 8[027-0,][6,7"-0.] = F([7])(5)[6y7"0=] = F([y']) o F([7])(s),

as desired. B

We can therefore apply Theorem 11.5.2 to construct a cover p: X — X with fiber functor
naturally isomorphic to F. We must check that p~!(x¢) is isomorphic to S as a right (X, zg)-set.
Since F' is naturally isomorphic to the fiber functor of p: X — X, we can identify p~!(zo) with
F(zo) = S. To check that it has the right m (X, 2¢)-action, consider some [y] € 71 (X, z0) and s € S.
By our construction, under the monodromy action the image of s under [v] is

F([9])(8) = 8[0wo"7-0s0] = s,

as desired. Here we are using the fact that d,, is the constant path.

STEP 2. Let p;: X, — X and D2 X, — X be covers. Assume that the fibers pfl(rﬂo) and
pgl(aﬁo) are isomorphic as right 7 (X, xg)-sets. Then p1: X1 — X and pa: Xo — X are isomorphic
covers.

Let S; = p; *(20) and So = py ' (x0). Let ¢: S — Sy be an isomorphism of right m; (X, x0)-sets.
Let F be the fiber functor of p; and F5 be the fiber functor of ps. By the uniqueness part of Theorem
11.5.2, it is enough to prove that Fj is naturally isomorphic to Fb.

As in Step 1, for each x € X let §, be a path in X from x( to x. Choose these paths such that d,,
is the constant path. We therefore have bijections Fi([d;]): S1 — Fi(z) and F5([05]): Se — Fa(x) for
all z € X. To simplify our notation,! we will rename the points in our sets so that in fact Fy(z) = S;
and Fy(z) = Sy for all x € X, with the bijections Fy([0,]): S1 — Fi(x) and F2([05]): S2 — Fa(x)
the identity maps.

We then define a natural isomorphism ® from F; to Fy as follows:

e Counsider z € X, so Fi(z) = 51 and Fy(x) = So. Let ®(x): S1 — S2 equal ¢: S1 — Ss.
We must check that this is compatible with morphisms. Let v be a path in X from x to y. We must

prove that the diagram
F
Fi(x) 2% Fyy)
@ () 2(y)

Fo(z) 20 py(y)

commutes. Consider s; € Fy(x) = S;. We must prove that the two ways of applying the maps in
this diagram take s; to the same element of F5(y). We trace these through as follows:

IThis might seem a confusing thing to do, but it makes our notation line up as much as possible with Step 1.
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e Recall that we identify s; with an element of Fy(x¢) = S via the identity map Fy([6,]): S1 —
Fi(z). Similarly, we identify Fy([y])(s1) € Fi(y) = S1 with an element of Fy(xg) = S; via
the identity map Fi([0,]): S1 — Fi(y). By naturality, under these identifications we have
Fi([7])(s1) = s1[0z+7-0)-
Applying ®(y) = ¢ to this, we get
(11.6.1) o(s115:73,).

e First apply ®(x) = ¢ to s; € Fi(z) = 51 to get ¢(s1) € So = Fo(y). Just like in the
previous bullet point F5([7]) takes this to

(11.6.2) P(51) [0,
The commutativity of our diagram is equivalent to the equality of (11.6.1) and (11.6.2), which follows
from the fact that ¢ is a map of right 1 (X, x¢)-sets. O

11.7. Exercises

ExErcise 11.1. WRITE IT!!! O
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Classifying covers: regular G-covers
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CHAPTER 13

Calculating fundamental groups: preliminaries on group
presentations

Our final topic is the Seifert—van Kampen theorem, which describes how the fundamental group
of a space is built out of the fundamental groups of subspaces. Before we can describe this theorem,
we need some preliminary results about group presentations.

13.1. Some basic groups

There are a vast range of groups that arise throughout mathematics. For instance:

ExamPLE 13.1.1 (Cyclic groups). The cyclic groups include the infinite cyclic group Cy, = Z
and the finite cyclic group C,, = Z/n of order n. We will typically write the generator of these cyclic
group by t, s0 Coo = {t" | n € Z} and C,, = {1,¢,...,t" 1}, O

EXAMPLE 13.1.2 (Abelian groups). Let A be an abelian group. One possibility is that A might
be cyclic. When we are thinking of the cyclic groups as abelian groups we will often write them as Z
and Z/n. If A is a finitely generated abelian group, then we can write

k
A=z o DL
i=1
with n > 0 and py,...,p, prime and dy, ...,d; > 1. However, if A abelian but not finitely generated
then is no hope for any kind of simple classification. O

ExAMPLE 13.1.3 (Finite dihedral groups). For n > 3, the dihedral group D, of order 2n
is the isometry group of a regular nm-gon P,. Enumerate the vertices of P, counterclockwise

as [n] = {1,...,n}. The group D, acts on [n], and an element o € Da, is determined by
o(1) € [n] and whether or not o preserves the orientation of P,. From this, we see that Da, =
{1,r,...,7" L s rs,...,7""1s} where r and s are as follows:

e The element r is the counterclockwise rotation by 27 /n:

-0

e The element s is the reflection in the vertex 1 € [n]:

S
S
1 1
1

11
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These elements satisfy the relations r» = 1 and s> = 1 and srs~! = r~!. There is a homomorphism
o: Da, — Cy that records whether or not an element preserves orientation, so o(r) =t* =1 € Cy
and o(s) =t € Cy. We have ker(o) = {1,r,...,r""1} 22 C,, and o splits via the map Cy — Da,
taking ¢t € C5 to s. We therefore have a semidirect product decomposition! Ds,, 22 C,, x Cy where
the generator of Cy acts on C,, by the automorphism taking t* € C, to t*. ]

ExAMPLE 13.1.4 (Infinite dihedral group). The infinite dihedral group D is the group of
isometries of R that preserve the subspace Z. We have D, = {rk7 srh | ke Z}7 where:

e The element r: R — R is the translation map r(z) =z + 1.
e The element s: R — R is the reflection map s(z) = —z.

These elements satisfy the relations s> = 1 and srs~! = r~!. Just like for the finite dihedral groups,

we have Do, 22 Cy x Cy where Cy acts on Oy, by the automorphism taking t* to t=*. There are
also surjections f,,: Do — Day, taking r € Do, to r € Do, and s € Do, to s € Do, O

ExaMPLE 13.1.5 (Symmetric groups). Fix n > 2. Let [n] = {1,...,n} and let &,, be the
symmetric group on [n], i.e., the group of bijections o: [n] — [n]. The group &,, contains every finite
group G of order n as a subgroup. Indeed, enumerate G as

G:{gla"'agn}~

For g € G, let 04 € &,, be the permutation such that gg; = g, ;) for 1 <i <n. Themap f: G = &,
defined by f(g) = o4 for g € G is then an injective homomorphism whose image is isomorphic to
G. More generally, if G is an arbitrary group then an action of G on the set [n] is the same as a
homomorphism G — &,,. For instance, there is an injective homomorphism Ds,, — &,, arising from
the action of Ds,, on the n vertices of the regular n-gon P,. O

ExAMPLE 13.1.6 (Linear groups). For a field k, the group GL, (k) = Aut(k™) plays a basic role
in linear algebra. It contains many interesting subgroups; for instance, the orthogonal groups of
quadratic forms on k™. It also contains a copy of &,, consisting of the permutation matrices. A
subgroup of GL,, (k) for some n and k is called a linear group. For instance, since &,, can be realized
as a linear group and all finite groups are subgroups of &,, for some n, it follows that all finite groups
can be realized as linear groups. O

EXAMPLE 13.1.7 (Free groups). Let S be a set and let F'(S) be the free group on S (see §7.6).
The group F(S) is generated by S, and each element w € F(S) can be uniquely expressed as a

reduced word w = s7' ---s&* in S. Recall that this means that:

e s, € Sande € {£l} forall 1 <i<n;and
e for all 1 <i < n we do not have s;'s;;' € {ss™!, s71s | se S} O

13.2. Presentations for groups

The examples in the previous section barely scratch the surface of the world of groups. To write
down an arbitrary group, we introduce the notation of a presentation. We start with some notation:

NOTATION 13.2.1. Let G be a group. For g,h € G, write g" = h™!gh for the conjugate of G by
h. If C C G is a subset, then (C) denotes the subgroup generated by C' and {C')) denotes the normal
subgroup generated by C. We therefore have {(C) = (¢9 | ¢ € C and g € G). O

et G and H be groups such that G acts on H on the left. For g € G and h € H, we will write 9h for the image
of h under the action of g. The corresponding semidirect product H x G is the following group:
e The elements of H x G are pairs (h,g) with h € H and g € G.
e For (hi,91), (h2,g2) € H x G, their product is (h1,g1)(h2,g92) = (h1 91 h2, g192).
It is enlightening to prove that this is a group. If the G-action on H is trivial, this is just the usual direct product
H x G. Identify H and G with the subgroups of H x G consisting of elements of the form (h,1) and (1, g), respectively.
The subgroup H is normal, and every x € H x G can be uniquely written as x = hg with h € H and g € G.
Conversely, let I be a group and H, G < I' be subgroups such that H is normal and every € I' can be uniquely
written as x = hg with h € H and g € G. Since H is a normal subgroup of I', the group I'" acts on H by conjugation.
This restricts to an action of G on H, and I' & H x G. This isomorphism takes (h,g) € H x G to hg € I'. One way
this can arise is if I' is a group and p: I' — G is a surjection that splits via a map o: G — I'. Identify G with its image
in " under the injective map o, and set H = ker(p). We are then in the above situation, so I' & H x G.
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This allows us to make the following key definition:

DEFINITION 13.2.2. Let S be a set and let R be a subset of the free group F'(S) on S. Define
G = (S | R) to be the quotient F(S)/{R). We call S the generators and R the relations for the
presentation, and (S | R) is called a group presentation for G. If both S and R are finite, then (S | R)
is a finite presentation for G. A finitely presented group is a group with a finite presentation. O

EXAMPLE 13.2.3. For a set S, we have F'(S) = (S | 0). This is often written (S | ). If S is finite,
then this is a finite presentation and F'(S) is a finitely presented group. (]

EXAMPLE 13.2.4. As a special case of the previous example, C, = (¢ | ). Similarly, for n > 2 we
have C,, = (¢ | t"). Both Cs and C,, are therefore finitely presented. O

REMARK 13.2.5. Not all presentations of finitely presented groups are finite. For instance,
Coo = (t | ) can also be written Coo = (¢, 21,22, ... | 1,22,...). O

Every group has some presentation:
LEMMA 13.2.6. Every group G can be written as G = (S | R).

PRrROOF. Let S be a generating set for G; e.g., S = G. The map S — G extends to a surjection
¢: F(S) = G. Set R =Xker(¢), so ¢ induces an isomorphism from F(S)/R = (S | R) to G. O

Before we give more examples, we introduce some notation. Let G = (S | R) be a group equipped
with a presentation. For w € F(S), we write w for its image in G. A relation in G is an element
r € (R) C F(S). The relations of the presentation are thus relations in G, but except in degenerate
cases there are many other relations in G. For instance, here are some relations in G = <a, b| a2, b3>:

a2,a'% a’b*a?, ab®a"1a® = abia.
If w,v € F(S) are such that w = v, then wv~! is a relation. We will sometimes write this relation as
w = v. This convention will also be used when giving presentations. For instance,

<a,b,c | ab=c,b* =1, cab = a> = <a, b,c | abc_l,bQ,caba_1>.

For w,v € F(S5), we will also write w = v to mean that w = 7, i.e., that w = v is a relation.

13.3. Mapping from groups with presentations

Let G = (S | R) be a group given by a presentation. For any group H that is well-understood,
it is easy to construct homomorphisms ®: G — H. Indeed, choose a set map ¢: S — H. The
map ¢ extends to a homomorphism ¢: F(S) — H. To check if ¢ descends to a homomorphism
on G = F(S)/{R), we must only verify that ¢(r) = 1 for all » € R. In summary, to construct a
homomorphism ®: G — H we must choose where the generators go and then verify that relations go
to relations. Here is an example of this:

EXAMPLE 13.3.1. Let G be a group. Let S be the set of formal symbols {s, | g € G} and let
R ={sqsn =5gn | g,h € G}. Set I' = (S | R). We claim that I' = (S | R). Indeed, the map s, — ¢
gives a map S — G taking each relation sgs5, = 54 to a relation in G. We thus get a surjective map
o:T'— G

To see that ® is injective, consider w € F(S). For g € G the relation sg_l = s4-1 holds in I';
indeed, s; = 1 since 5151 = 51, 50 545,-1 =51 = 1 = sgsg_l. It follows that w is equivalent to a
word in S in which only positive powers of generators appear. Using the relations in I', we then see
that w is equivalent to a single generator s,. We conclude that I' = {35, | g € G}. Since ® takes
{54 | g € G} bijectively to G, we conclude that ® is injective. a

REMARK 13.3.2. If GG is a finite group, then the presentation from Example 13.3.1 is finite and
thus G is finitely presented. |
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13.4. Normal forms

We abstract the argument from Example 13.3.1. Let G be a group with a generating set S. For
each g € G, pick wy € F(S) such that w, maps to g under the natural map F(S) — G. The collection
of elements {w, € F(S5) | g € G} is called a normal form for G. Assume now that R C F'(S) is a
collection of relations that hold in G. Letting I = (S | R), we want to prove that I' = G.

Since S generates GG and each relation in R holds in G, we get a surjective homomorphism
®: " - G. We want to prove that ® is an isomorphism. Observe that ® restricts to a bijection from
{w, € F(S) | g € G} to G. It is therefore enough to prove that {w, € F(S) | g € G} =T. In other
words, we must prove that every w € F(S) can be reduced to some w, using the relations in R. Here
are some examples:

ExAMPLE 13.4.1 (Free abelian group). Fix n > 1. For 1 < i < n, let x; € Z™ be the element
with a 1 in position ¢ and zeros elsewhere. The elements S = {z1,...,z,} generate Z". They satisfy
the relations

R={z;z; =z;x; | 1 <i,j <n}.
We claim that Z™ = (S | R). Indeed, Z™ has the normal form {x‘fl szl dy, . d, € Z}. We

must prove that an arbitrary w € F(S) can be reduced to an element in this normal form. For this,
use the relations in R to move the z; terms to the left, then the x5 terms to the left, etc. Here is an

example:?

2

—1 —
T3y T1ToTq 3

3 2

— - -1 -3, —1 — =2
=10 "T3TH TZ; = X1y 3x2 r3xs = x] *T0m3. |

EXAMPLE 13.4.2 (Finite dihedral group). Fix n > 3. As in Example 13.1.3, let Dy, be the
dihedral group of order 2n. This group is generated by the rotation r € Dy, and the reflection
s € Dyy,. Set S = {r,s}. The elements r and s satisfy the relations

R={r"=1,s>=1,srs ' =r"'}L

We claim that Ds, = (S | R). Indeed, as we observed in Example 13.1.3 the group Ds, has the
normal form {r%,sr? | 0 < d < n—1}. We must prove that an arbitrary w € F(S) can be reduced
to an element in this normal form. Using the relation s? = 1, we can replace all s~! terms in w with
5. Also using s = 1, the relation srs~! = 7~! can be rearranged to rs = sr~'. This implies that we
also have r~1s = sr. Applying all of these, we can pull all the s-terms in w to the left and reduce w
to s°r¢ as in the following example:

—1..3..2 —

st tsrdsr? = ssr!

risr? = sssr1r3r? = 3t

Using the fact that s> = 1 and r® = 1, we see that s°r? is equivalent to either r¢ or sr? with
0 <d<mn-—1, as desired. O

ExAMPLE 13.4.3 (Infinite dihedral group). An argument identical to the one in the previous
example shows that D, = <r,s | s2=1,srs71 = r*1>. O

REMARK 13.4.4. See Exercise 13.2 for a presentation of the symmetric group S,,. |

13.5. Free products and direct products
Let G1 = (S1 | R1) and G2 = (S | Ra). Recall that the free product I' of G; and G» is a group
with subgroups G1, Gy < I satisfying the following universal property:

e Let H be a group and let f1: G; — H and fy: Go — H be homomorphisms. Then there
is a unique homomorphism F': ' — H whose restrictions to G; and G5 are f; and fs,
respectively.

LEMMA 13.5.1. Let G1 = <Sl ‘ R1> and Go = <SQ | R2> Set ' = <Sl LISy | Ry U R2> Then T’
1s a free product of G1 and Gs.

2Here we are also using relations like x;lxj = xjxfl, which can be obtained from x;2; = x;x; by multiplying

both sides on the left by xi_l and on the right by mi_l.
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ProoF. The set map
S1—= S1USy — <Sl|_|52 | R1UR2>=F

induces a homomorphism G; — I'. This splits via the map I' — G; taking S; identically to S; and
taking S5 to 1. This makes G; a subgroup of I'. Similarly, G5 is a subgroup of I'. We will verify that
I" satisfies the universal property of a free product.

Let H be a group and f;: Gy — H and fy: Go — H be homomorphisms. For i = 1,2, since
G; = (S; | R;) the map f;: G; — H is induced by a homomorphism g;: F(S;) — H. By restricting
g; to S;, we get a set map ¢g;: S; — H. Combining these, we get a set map g: S; LU.So — H and thus
a homomorphism g: F(S; U S3) — H. Since g; takes each element of R; to a relation in H, this
descends to a homomorphism F': I' — H, as desired. ([

REMARK 13.5.2. Since all groups have presentations, this proves in particular that free products
of groups always exist. O

As far as the direct product goes, we have:

LEMMA 13.5.3. Let G1 = (S1 | R1) and Go = (S2 | Ra). Let Rc be the following set of relations
m F(Sl L SQ)
Rec = {8182 = S981 | s1 € 51 and so € SQ}
SetT' = <Sl|_|SQ | R1 URQHRC>. ThenF%’Gl X GQ.

PRrOOF. This can be proved using normal forms; see Exercise 13.5.3. g

13.6. Abelianization

As we will elaborate on below, it is hard to determine much about a group G from a presentation.
The only easy thing to calculate is its abelianization G®, which we recall is the largest abelian group
on which G surjects. Letting [G,G] be the commutator subgroup® of G, we have G** = G/[G, G].
For instance, if S is an n-element set, then F'(S)*> = Z" (see Exercise 7.12).

Assume that G has a finite presentation G = (21, ..., 2 | 71,...,7m). Let V 2 Z™ be the free
abelian group with basis {X3,...,X,}. For 1 <i <m, let R; € V be the following element:

o Write r; = xjell a:jl’: with 1 <ji,...,5s <nandei,...,e; € {£1}. Then R; = e1 X, +
ot e X, € V.
It is immediate from the definitions that G2 is the quotient of V by (Ry,..., R,,). As is discussed
in most treatements of the classification of finitely generated abelian groups, this quotient can be
calculated using tools like Smith normal form. However, it is often easier to work with it directly.
Here are some examples.

ExXAMPLE 13.6.1 (Infinite dihedral group). As we saw in Example 13.4.3, we have
Do, = <r,s | 2 =1,srs" ! = 7“_1>.
Following the above recipe, the abelianization of D, is the quotient of the free abelian group with
basis R and S by the following two relations:*
e 25 =0and S+ R— S = —R. This second relation can be rewritten 2R = 0.
We thus see that the abelianization of Dy is (Z/2) ® (Z/2). O

EXAMPLE 13.6.2 (Finite dihedral group). Fix n > 3. As we saw in Example 13.4.2, we have
Dy, = <r,s | =1, =1,srs ' = 7’*1>.

Following the above recipe, the abelianization of Ds,, is the quotient of the free abelian group with
basis R and S by the relations nR =0 and 25 =0 and S + R — S = —R. This last relation can be
rearranged to 2R = 0. From this, we see that there are two cases:

(a) If n is even, then the relations reduce to 25 = 0 and 2R = 0, so the abelianization is
(Z/2) ® (Z/2).

3The commutator subgroup [G, @] is the subgroup generated by commutators [g, h] = ghg= h~1.
4Here quotienting an abelian group by a relation A = B should be interpreted as quotienting by A — B.
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(b) If n is odd, then nR = 0 and 2R = 0 combine to give that R = 0, so the abelianization is
7)2. O

13.7. Some cautionary examples

As we said in the last section, it is not easy to extract information from a group presentation.
This section contains a number of cautionary examples. The first is as follows:

EXAMPLE 13.7.1. Consider the group G = (a,b | babab = 1). What kind of group is this? We
first determine its abelianization. Following the recipe in the previous section, G?" is the quotient
of the free abelian group with basis {A, B} subject to the relation B+ A+ B+ A+ B = 0, or
2A 4+ 3B = 0. After making the change of basis A = X —Y and B =Y, this relation becomes
2(X —Y)+3Y =0, or —2X =Y. Eliminating the variable Y, we conclude that G*" = Z.

In fact, it turns out that G is an abelian group, so G = Z. To see this, note that we can conjugate
babab = 1 by (bab)~! and get

1 = (bab) ! (babab) (bab) = abbab.
It follows that
1 = (abbab)(babab) ™' = (abbab)(b"ra b~ ta"'07) = aba= b1,
so a and b commute and G is indeed abelian. (Il

REMARK 13.7.2. Another way to see that G = (a,b | babab = 1) is isomorphic to Z is as follows.
Let H = <x, y | 2%y = 1>. It is clear that H = Z since y = 2. Define f: H — G via the formulas

f(@)=0ba and f(y)=0.

This works since f takes the relation 2%y = 1 to (ba)?b = 1, which is the relation in G. The map f is
an isomorphism with inverse the map g: G — H defined by

gla)=y 'z and g(b) =y.
Again, this works since g takes the relation babab = 1 to y(y~'x)y(y~'z)y = 1, which reduces to the
relation 2%y = 1 in H. O
For our next examples, for n > 1 define
G, = <x1,...,xn | xi+1xixi_+11 :xf for1<i< n>

Here the subscripts should be taken modulo n. These are called the Higman groups. All of these
groups have trivial abelianizations:

LEMMA 13.7.3. For alln > 1, we have G%b =0.

PROOF. The abelianization G2 is the free abelian group with basis X1,..., X,, modulo the
following relations:

e For 1 <¢ <mn, we have X, 11 + X; — X;11 = 2X;. This reduces to X; = 0.
The lemma follows. ]
The first three G,, are trivial:
LEMMA 13.7.4. We have G; = 1.
PrRoOOF. We have G = <9:1 | zlxlxl_l = l’%> =(x |z =1)=1. O
LEMMA 13.7.5. We have G5 = 1.
PROOF. Rewrite the relations in Ga as 271 = 22w and 2179 = x371. These imply that
2222 = xoxi o = 252y = 282,
SO Xy = xl_ﬁ. We conclude that x; and zo commute, so G5 is abelian and Gy = G;b =1. O
LEMMA 13.7.6. We have G3 = 1.

PROOF. The proof is a more elaborate version of the calculation we used to prove Lemma 13.7.6,
so we leave it as Exercise 13.5. O
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However, it turns out that G, is infinite for n > 4. We will discuss the proof in Essay B.
The reason this proof is difficult is that it is hard to map G,, to other well-understood groups. In
particular, we have the following theorem of Higman:

THEOREM 13.7.7. For n > 4, any homomorphism from G, to a finite group is trivial.

PRrROOF. Let H,, be the image of G, in some finite group. Each element of H, has finite order.
We can therefore write H,, = (y1,...,yn | R) where R contains the following relations:

e For 1 < i < n, the relation yiﬂyiy;&l = y2. Here the subscripts should be interpreted
modulo n.
e For 1 <1i < n, a relation of the form yZd =1 for some d; > 1. Choose the d; to be as small
as possible, so d; is the order of y;.
There might also be some other relations. We will prove that these relations force H,, to be trivial.
Assume that H,, is nontrivial. We must have d; > 2 for all 7. Indeed, if d;, = 1 for some iy, then

Yio—1 = YioVio—1Yse = Yoy 1,
SO ¥i,—1 = 1 and thus d;,—1 = 1. Iterating this, we deduce that d; = 1 for all ¢ and hence that
H, =1, contrary to our assumptions.
Let p > 2 be the smallest prime dividing some d;. Since everything is invariant under cyclic
permutations of the generators, we can assume without loss of generality that p divides d;. Since ds
is the order of ys, we have

_ d
=Yty P =yt

and thus yfdz’l = 1. Since d; is the order of yi, it follows that d; and hence p divides 292 — 1. This

implies that p is odd. Since 2?2 = 1 (mod p), we see that do is a multiple of the order p — 1 of 2

in (Z/p)*. This implies that a prime smaller than p divides da, contradicting the fact that p is the
smallest prime dividing some d;. O

REMARK 13.7.8. Malcev proved that if k is a field and H is a nontrivial finitely generated
subgroup of GL,,(k), then H has many nontrivial finite quotients. In fact, H is residually finite: for
any h € H with h # 1, there exists a finite group F and a homomorphism f: H — F with f(h) # 1.
It therefore follows from Theorem 13.7.7 that all homomorphisms f: G,, — GL,,(k) are trivial for
n > 4. We outline a simple proof of this for k = C in Exercise 13.6. |

13.8. Decision problems for groups
In 1911, Dehn posed the following three problems about group presentations.

PROBLEM 13.8.1 (Word problem). Let G = (S | R) be a finitely presented group. Give an
algorithm that for w,v € F(S) determines whether or not w =7 in G.

PROBLEM 13.8.2 (Conjugacy problem). Let G = (S | R) be a finitely presented group. Give an
algorithm that for w,v € F(S) determines whether or not w € G and v € G are conjugate.’

PrROBLEM 13.8.3 (Isomorphism problem). Give an algorithm that for finitely presented group
G = (S| R) and G' =(S" | R') determines whether or not G and G' are isomorphic.

Here are some simple observations about the relationship between these problems.

(a) Let G = (S| R) be a finitely presented group. To solve the word problem for G, it is
enough to give an algorithm that for w € F'(S) determines whether or not w = 1. Indeed,
for w,v € F(S) such an algorithm allows us to determine whether or not wv=1 = 1, and
thus whether or not w = 7.

(b) Let G = (S | R) be a finitely presented group. If we can solve the conjugacy problem for
G, then we can also solve the word problem for G. Indeed, an element w € F(S) satisfies
w = 1 if and only if w is conjugate to 1.

5Recall that g, h € G are conjugate if there exists some k € G such that g = khk™1.
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(c) A special case of the isomorphism problem is the triviality problem: give an algorithm that
for a finitely presented group G = (S | R) determines whether or not G = 1. The group
satisfies G = 1 if and only if for all s € .S we have 5 =1, so a solution to the word problem
gives a solution to the triviality problem.

While these problems can be solved in many special cases, they are quite difficult and our knowledge
about them is limited. For instance, consider a one-relator group G, that is, a group of the form
G = (S | r) where S is finite and r € F(S). In 1932, Magnus showed how to solve the word problem
for one-relator groups. However, we still do not know how to solve the conjugacy problem for
one-relator groups. We also do not know an algorithm to determine if two one-relator groups are
isomorphic. For groups with two relations, even the word problem is open.

One reason that these problems are difficult is that they are unsolvable in general. Indeed, in
the 1950’s Novikov and Boone independently proved the following theorem:

THEOREM 13.8.4 (Novikov—Boone). There exists a finitely presented group G = (S | R) for
which there does not exist an algorithm solving the word problem.

REMARK 13.8.5. To make sense of Theorem 13.8.4, the notion of an “algorithm” must be formally
defined. Roughly speaking, an “algorithm” here means a program in any standard computer language
(C, Python, LISP, etc.) run on a computer with unlimited memory. This algorithm must terminate
in finite time for any input. The formal definition involves the notion of a Turing machine, and is
discussed in any book on computability theory. O

One observation about Theorem 13.8.4 is that the hard part in it is checking that some w € F(.5)
does not represent the identity. More precisely, we have the following:

LEMMA 13.8.6. Let G = (S | R) be a finitely presentable group. There exists an algorithm that
takes as input w € F(S) and does the following:

e [fw =1, then the algorithm terminates and certifies that w = 1.
o Ifw # 1, then the algorithm does not terminate.

PrOOF. Each w € F(S) can be uniquely be written as a reduced word w = sj* --- s& with

s; € S and ¢; € {£1} for all 1 < i < n, and we define the length of w to be ¢(w) = n. Set
B, (S) ={w € F(9) | {(w) < n}. Define B, (R) to be the set of all elements of F(S) that for some
m < n can be expressed as

(wlrlwfl)61 (WP )
with r; € R and w; € B, (S) and ¢; € {1} for 1 < i < m. Note that the above is not necessarily a
reduced word. The set B, (R) is a finite set, and can be effectively enumerated on a computer. We
have

Bl(R) C BQ(R) C Bg(R) c---
and the normal closure (R} is U2, B, (R). Our algorithm is as follows:

e Start at Step n = 1.
e At Step n, enumerate B, (R) and check whether or not w € B, (R). If it does, terminate.
Otherwise, go on to Step n + 1.

This terminates if and only if w € (R}, i.e., if and only if w = 1. O

We close with the following observation whose proof illustrates the fact that Theorem 13.8.4
touches on deep logical issues that seemingly have nothing to do with computers:

THEOREM 13.8.7. Let G = (S | R) be the group with an unsolvable word problem from Theorem
13.8.4. There exists some w € F(S) with the following two properties:

o We have w # 1 in G.
o There is no proof in ZFCS that W # 1 in G.

6There is nothing special about ZFC, and the same argument works in other foundational systems that are rich
enough to express facts about group theory and unsolvability. We focus on ZFC since that is the set of foundations we
are assuming in this book.
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PrOOF. Consider w € F(S). Using two computers (or two threads on one computer), run the
following two algorithms on w at the same time, terminating if either of the two terminate:

e Computer one runs the algorithm from Lemma 13.8.6, and thus terminates if and only if
w=1inG.

e Computer two systematically enumerates all possible proofs in ZFC. For each proof, it first
determines whether or not it is a valid proof. If it is, it checks whether it proves that w # 1
in G. If it does, then this algorithm terminates. Otherwise, it keeps going.

This algorithm will terminate if w = 1 in G or if there is a proof in ZFC that w # 1 in G. Since
there is no algorithm to solve the word problem in G, there must be some w € F(S) for which this
algorithm does not terminate. The theorem follows. O

REMARK 13.8.8. Theorem 13.8.7 is not effective, and there is no way to determine which w € F(.S)
satisfies its conclusions since doing so would in particular provide a proof that w # 1. O

13.9. Exercises

EXERCISE 13.1. Let

1 a c
H = 0 1 b]|abceZ
0 0 1
The group H is often called the integer Heisenberg group.

(a) Set
110 1 00
=10 1 0 and y=(0 1 1
0 0 1 0 0 1

As notation, set [g1, g2] = glgggl_lggl. Prove that H = (z,y | [[z,y],2] = 1, [[=,y],y] = 1).
Hint: work out a normal form.
(b) Calculate the abelianization of H. O

EXERCISE 13.2. Fixn > 2. Let &,, be the symmetric group on [n] = {1,...,n}. For 1 <i<n-—1,
let 7; € &, be the transposition (7,4 + 1). Let
S={r|1<i<n-—1},
R={r?=1|1<i<n—-1}u{nr=mn|1<ij<n,|i—j >2}
U{niTip17i = TivaTiTig1 | 1 < i <n—2}.
Prove the following:

(a) The group &,, is generated by S.

(b) Each element of R is a relation in &,

(c) We have &,, = (S | R). Hint: For 1 <i < j <mn,let o;,; =7j_17j_1---7. For i = j, our
convention is that o; ; = 1. The key feature of o; ; is that as an element of &,,, it takes
i € [n] to j € [n]. Prove that &,, has the normal form

{0n—1,in 1 On—2ip o 014 |35 >jfor 1 <j<n-—1}.
Use this normal form to prove the result.

(d) Calculate the abelianization of &,,. O
EXERCISE 13.3. Let G1 = (S1 | R1) and G = (S2 | R2). Let R¢ be the following set of relations

in F(Sl (] Sg)l

Ro = {8182 = 8251 | 81 € 51 and s3 € S} .

Set I' = (S; U Sy | Ry U R U Re). Prove that T' 2 G x G3. Hint: use normal forms. a
EXERCISE 13.4. Let Gy = (S1 | R1) and G3 = (S | R2). Assume that Gy acts on G on the

left. Determine a presentation for the resulting semidirect product G; x Go. Hint: For each s € Sy
and t € Sy, start by writing ‘s as a word ws; in 5. O
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EXERCISE 13.5. Recall that the third Higman group is
Gs = <x17x2,x3 \ xgxlxgl = x%,xgnggl = m%,xlxgxfl = x§>

Prove that G3 = 1. Hint: Start by applying the relations to 2?2323 to find an identity that lets you
write x3 in terms of z1 and x5. Plug this into m3x2x§1 = x% and manipulate the result to show that
o equals a power of x1, and hence that x2 and z; commute. O

EXERCISE 13.6. Recall from Remark 13.7.8 that if k is a field and G, is the Higman group, then
all homomorphisms f: G,, — GL,, (k) are trivial. This exercise explains how to prove this for k = C.
Let H < GL,,(C) be the image of such a homomorphism. Let y1,...,y, € H be the images of the
generators x1, ..., %, of G,. By Theorem 13.7.7, it is enough to prove that y; has finite order for all
1 < i < n. Do the following;:
(a) Prove that all the eigenvalues of each y; are roots of unity. Hint: use the relation y;+1y;yi+1 =
yi-
(b) Prove that there is some polynomial p € C[z] such that for all 1 <i <n and all k > 1, if
c € C is one of the entries of the matrix y¥ then |c| < p(k). Hint: use Jordan normal form
along with (a).
(c¢) Prove that the matrix y; is diagonalizable for 1 < ¢ < n. Hint: think about the Jordan
normal form of y;, and consider the identity pf " 1PiD; fl = pfk. You will use part (b).
(d) Prove that the matrix y; has finite order for 1 < i < n. O

EXERCISE 13.7. Recall that a group G is residually finite if for all g € G with g # 1, there exists
a finite group F' and a homomorphism f: G — F with f(g) # 1. Prove the following:

(a) The group G = GL,,(Z) is residually finite. Hint: think about reducing matrices modulo p
for various primes p.

(b) Let G be a residually finite group and let G’ < G be a subgroup. Prove that G’ is residually
finite.

(¢) Let G be a finitely generated group. For all ¢ € G with g # 1, assume that there exists
a finite-index subgroup H < G with g ¢ H. Prove that G is residually finite. Hint: the
problem is that H might not be normal, so G/H might not be a group. Try to intersect
conjugates of H to get a smaller finite-index normal subgroup.

(d) Let F(S) be a free group on a finite set S. Prove that F(S) is residually finite. Hint: it
might be easier to first use part (b) to reduce to the case of the free group F(a,b) on a
and b. For w € F(a,b) with w # 1, try to use covering spaces to produce a finite-index
subgroup H of F(a,b) as in part (c).

(e) Let G = (S| R) be a finitely generated residually finite group. Prove that there is an
algorithm to solve the word problem in GG. Hint: just like in the proof of Theorem 13.8.7,
it is enough to produce an algorithm that terminates for w € F(S) with w # 1. Try
to systematically list all finite groups F and all homomorphisms f: G — F. One key
observation is that a group structure on a finite set X is determined by its multiplication
table. ]
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ESSAY B

Topological methods in combinatorial group theory (to be
written)

This essay will give a number of applications of topological reasoning in low-dimensional topology,
including;:
e HNN extensions and amalgamated free products, including Britton’s lemma and the fact
that the factors of these groups embed as subgroups. As an interesting example of these, I
will talk about the Baumslag—Solitar groups and the Higman groups.
e A bunch of applications of the previous section to embedding problems.
e Stallings’s proofs of the Kurosh subgroup theorem and Grushko’s theorem.
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