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CHAPTER 1

Covering spaces: definitions and basic examples

Our first main topic is the theory of covering spaces. This chapter contains some basic definitions
and a large number of examples. A first-time reader might be tempted to skip the examples and
focus on the theory. This would be a mistake. The richness of the examples is what gives this subject
its flavor, and it is impossible to understand the theoretical aspects of covering spaces without having
absorbed a large store of these examples.

1.1. Definition and examples

Recall that a local homeomorphism is a map p : Z → X such that all z ∈ Z have open neighbor-
hoods V with U = p(V ) open and p|V : V → U a homeomorphism. Roughly speaking, in a covering
space this condition is strengthened by adding a uniformity condition to these V . The definition is
as follows:

Definition 1.1.1. A covering space or simply a cover of a space X is a space X̃ equipped with

a map p : X̃ → X such that for all x ∈ X, there is an open neighborhood U of x satisfying:

• the preimage p−1(U) is the disjoint union of open subsets {Ũi}i∈I of X̃ such that for all

i ∈ I, the restriction p|Ũi
: Ũi → U is a homeomorphism.

p

U1
~

U2
~

U3
~

Ux

We call U a trivialized neighborhood of x (or just a trivialized open set if we do not want to emphasize

x) and each Ũi a sheet of X̃ over U . We will also often call the map p : X̃ → X a covering space, and
refer to X as the base of the cover. □

Remark 1.1.2. We allow p−1(U) = ∅. In particular, for any space X the map p : ∅ → X is a
covering space. This convention is controversial, and some authors require the maps in covering
spaces to be surjective. □

Remark 1.1.3. Covering spaces are local homeomorphisms, but the converse does not hold.

However, if X̃ is compact Hausdorff then all local homeomorphisms p : X̃ → X are covering spaces.
We will say more about this in §1.4. □

Here are two basic examples:

Example 1.1.4 (Trivial cover). For a space X, the identity map 1X : X → X is a covering space.
More generally, for any discrete set I the projection map p : X × I → X is a covering space. We will
call these the trivial covers of X. □
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6 1. COVERING SPACES: DEFINITIONS AND BASIC EXAMPLES

Example 1.1.5 (Universal cover of circle). Regard S1 as the unit circle in the complex plane C.
Let p : R → S1 be the map p(θ) = e2πiθ. This is a covering space. Indeed, consider z ∈ S1. Write
z = e2πiθ0 . Pick ϵ > 0 with ϵ < 1. For n ∈ Z, set

Ũn = (θ0 + n− ϵ, θ0 + n+ ϵ) ⊂ R.

Let U = p(Ũ0). The set U is an open neighborhood of z, and p−1(U) is the disjoint union of the Ũn:

p
U0
~ U1

~U-1
~

z

U

Each Ũn projects homeomorphically to U , so U is a trivialized neighborhood of z and the Ũn are the
sheets over U . The covering space p : R → S1 is called the universal cover of S1. See §1.6 below for
why it has this name. □

1.2. Degree of cover

Let p : X̃ → X be a covering space. The preimages p−1(x) ⊂ X̃ of points x ∈ X are called the

fibers of p : X̃ → X. For x ∈ X, the fiber p−1(x) is called the fiber over x. The first main property
of covering spaces is that if X is connected, then the cardinalities of its fibers are all equal. More
generally:

Lemma 1.2.1. Let p : X̃ → X be a covering space. Let f : X → Z ∪ {∞} be the function

f(x) = |p−1(x)| for x ∈ X.

Then f is locally constant. In particular, if X is connected then f is constant.

Proof. Consider x ∈ X. Let U be a trivialized neighborhood of x and let {Ũi}i∈I be the sheets

of X̃ over U . For y ∈ U , the preimage p−1(y) consists of one point in each Ũi, and thus f(y) = |I|.
The lemma follows. □

This suggests the following definition:

Definition 1.2.2. Let p : X̃ → X be a covering space. We say that p : X̃ → X has degree n if

all of its fibers have cardinality n. This degree might be infinity. We will also say that p : X̃ → X is
an n-sheeted or an n-fold cover. □

Lemma 1.2.1 implies that if X is connected, then every covering space p : X̃ → X has a degree.1

For instance, the degree of the universal cover p : R → S1 is infinity.

1.3. More examples of covering spaces

Here are some more examples of covering spaces:

Example 1.3.1 (Degree n cover of circle). Regard S1 as the unit circle in C. Fix some n ≥ 1,
and define pn : S1 → S1 via the formula pn(z) = zn. This is a degree n covering space. Indeed,
consider z ∈ S1. The preimage p−1

n (z) consists of n distinct points: writing z = e2πiθ0 , we have

p−1
n (z) =

{
e2πi(θ0+m)/n | m is an integer with 0 ≤ m < n

}
.

1This is false for non-connected spaces. See Exercise 1.4.
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Fix some ϵ > 0 with ϵ < 1, and let

U =
{
e2πiθ | θ ∈ (θ0 − ϵ, θ0 + ϵ)

}
.

The set U is an open neighborhood of z, and p−1
n (U) is the disjoint union of n subsets of S1 each of

which projects homeomorphically onto U :

z

p8

Thus U is a trivialized neighborhood of z and the components of p−1
n (U) are the sheets over U . □

Example 1.3.2 (Cosets of discrete subgroups). Let G be a topological group, i.e., a group
that is a topological space such that the product map G×G → G and inversion map G → G are
continuous. Let H be a discrete subgroup of G. Here are two examples to keep in mind:

• G the additive group Rn, and H = Zn; and
• G = SLn(R) and H = SLn(Z).

Endow the set G/H = {gH | g ∈ G} of left cosets with the quotient topology. Then the quotient
map p : G → G/H is a cover of degree |H|. Indeed, consider a point g0H of G/H. Since H is a
discrete subgroup of G, we can find an open neighborhood V of 1 ∈ G whose translates {V h | h ∈ H}
are all disjoint.2 Set U = p(g0V ), so

p−1(U) =
⊔
h∈H

g0V h.

These are all disjoint sets that project homeomorphically to U , so U is a trivialized neighborhood
and the sets g0V h with h ∈ H are the sheets above U . □

Example 1.3.3. Two of our previous examples are special cases of Example 1.3.2:

• The universal cover p : R → S1. Indeed, the additive topological group R contains the discrete
subgroup Z. The satisfies R/Z ∼= S1, and this homeomorphism fits into a commutative
diagram

R

R/Z S1

p

∼=

Using this, we can identify the covers R → R/Z and p : R → S1.
• The covers pn : S1 → S1 defined by pn(z) = zn. Indeed, S1 ⊂ C is a topological group under
multiplication, and it contains the discrete group µn of nth roots of unity. The quotient
S1/µn is homeomorphic to S1, and just like above we can identify the covers S1 → S1/µn

and pn : S1 → S1.
As another example, as we noted in Example 1.3.2 the additive group Rn contains the discrete
subgroup Zn. As the following figure illustrates, the quotient Rn/Zn is homeomorphic to an n-
dimensional torus Tn = (S1)×n:

2Here are some more details. Since H is discrete, we can find an open neighborhood W of 1 ∈ G such that
W ∩ H = {1}. Let f : G × G → G be the map f(xy) = xy−1. Since f is continuous, the set f−1(W ) is an open

neighborhood of (1, 1) and thus we can find open neighborhoods V1 and V2 of 1 such that V1 × V2 ⊂ f−1(W ). Letting

V = V1 ∩ V2, we then have f(V × V ) ⊂ W . We now claim that the sets {V h | h ∈ H} are all disjoint. Indeed, if
h1, h2 ∈ H are such that (V h1) ∩ (V h2) ̸= ∅, then we can find v1, v2 ∈ V with v1h1 = v2h2, and hence

h2h
−1
1 = v1v

−1
2 ∈ f(V × V ) ∩H ⊂W ∩H = {1}.

In other words, h1 = h2.
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ℝ2

=

ℝ2/ℤ2 𝕋2

This figure shows the case n = 2, and in it the indicated region is a fundamental domain which in
the quotient becomes a square with sides identified as indicated. Identifying Rn/Zn with Tn, we get
an infinite-degree cover p : Rn → Tn. □

Example 1.3.4 (Real projective space). Let RPn be n-dimensional real projective space, that is,
the set of lines through the origin in Rn+1. Topologize RPn as follows:

• Let π : Rn+1 \ 0 → RPn be the map taking a nonzero point x ∈ Rn+1 to the line determined
by 0 and x. Give RPn the quotient topology determined by π, so a set U ⊂ RPn is open if
and only if π−1(U) is open.

We have Sn ⊂ Rn+1. Let p : Sn → RPn be the restriction of π to Sn. This is a degree 2 covering
space. Indeed, consider ℓ ∈ RPn. The line ℓ intersects Sn in two antipodal points x,−x ∈ Sn. Let
U ⊂ RPn be the set of lines ℓ′ that are not orthogonal to ℓ. This is an open set, and the preimage

p−1(U) is the disjoint union of two open hemispheres Ũ1 and Ũ2 centered at x and −x, respectively:

U1
~

U2
~

x

-x

ℓ

Each Ũi projects homeomorphically to U , so U is a trivialized neighborhood and the Ũi are the
sheets over U . □

Example 1.3.5. Let Σ2 be a genus 2 surface and let T be a genus 1 surface with two boundary
components. Let f : T → Σ2 be the map that glues the boundary components to form a loop γ:

fglue
together T

γ
Σ2

For 1 ≤ i ≤ 3, let S̃i be a copy of T . As in the following figure, we can glue the S̃i together to form a

genus 4 surface Σ4 and use f to map each S̃i to Σ2, yielding a map p : Σ4 → Σ2:

p

Σ4

Σ2γ

S1
~

S2
~S3

~

Each of the three black loops in Σ4 maps homeomorphically onto the black loop γ in Σ2. The map
p : Σ4 → Σ2 is a degree 3 covering space. Indeed, consider a point x ∈ Σ2. If x /∈ γ, then for our
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trivialized neighborhood we can take U = Σ2 \ γ. The sheets above U are the Int(S̃i). If instead
x /∈ S, then x ∈ γ. In this case, as in the following figure we can take a small open disk U around x:

p

U

The three disks shown in Σ4 are each mapped homeomorphically to U , so U is a trivialized neighbor-
hood. □

1.4. Covers versus local homeomorphisms

We now give a condition that ensures that a local homeomorphism is a covering space. We start
by recalling some definitions from point set topology. See Volume 1 for more details. Let Z be a
space. A compact neighborhood of a point z ∈ Z is a compact set K ⊂ Z such that z ∈ Int(K). The
space Z is locally compact if for all z ∈ Z and all open neighborhoods U of z, there is a compact
neighborhood K of z with K ⊂ U .

Example 1.4.1. All open subsets of Rn and all closed subsets of Rn are locally compact. □

Assume that Y and Z are locally compact Hausdorff spaces. A map f : Y → Z is proper if for
all compact subsets K ⊂ Z, the preimage f−1(K) is compact.3

Example 1.4.2. The Heine–Borel theorem says that a subspace of Eulidean space is compact if
and only if it is closed and bounded. If Y and Z are both closed subspaces of Euclidean spaces, it
follows that a continuous map f : Y → Z is proper if and only if preimages of bounded subspaces are
bounded. Equivalently, if {yk}k≥1 is a sequence of points in Y with limk 7→∞ yk = ∞, then we must
have limk 7→∞ f(yk) = ∞. □

With these definitions, we have:

Lemma 1.4.3. Let p : X̃ → X be a proper local homeomorphism between locally compact Hausdorff

spaces. Then p : X̃ → X is a covering space.

Proof. Consider x ∈ X. Since p is proper, the set p−1(x) is compact. Since p is a local
homeomorphism at each point of p−1(x), the set p−1(x) is also discrete. We deduce that p−1(x) is

finite. Enumerate it as p−1(x) = {x̃1, . . . , x̃n}. For each 1 ≤ i ≤ n, there exists a neighborhood Ṽi of

x̃i such that p|Ṽi
is a homeomorphism onto its image Vi ⊂ X. Since X̃ is Hausdorff, we can shrink

the Ṽi and assume they are all disjoint. Set U = V1 ∩ · · · ∩ Vn and Ũi = Ṽi ∩ p−1(U). The set Ũi is
an open neighborhood of x̃i, and p|Ũi

is a homeomorphism onto U .

By construction, p−1(U) contains Ũ1 ⊔ · · · ⊔ Ũn. However, we are not done since p−1(U) might

contain points that do not lie in some Ũi. We want to shrink U to ensure that this does not happen.
Since we need U to be open, we need to delete a closed set C of “bad points” from U .

The first step is to shrink U to ensure that U is compact. This is possible since X is locally
compact: letting K be a compact neighborhood of x with K ⊂ U , we replace U with Int(K). Since
X is Hausdorff the compact set K is closed, so U ⊂ K and thus U is compact. Since p is proper

p−1(U) is compact, so since X̃ is Hausdorff p−1(U) is closed. Let

C̃ = p−1(U) \
n⋃

i=1

Ũi.

3This is not quite the right definition if Y and Z are not locally compact Hausdorff spaces. See Chapter 9 of

Volume 1 for more details.
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Since C̃ is a closed subset of the compact set p−1(U), it follows that C̃ is compact. This implies that

C = p(C̃) is compact, and hence closed. Replacing U with U \ C and each Ũi with Ũi \ p−1(C), we

now have p−1(U) = Ũ1 ⊔ · · · ⊔ Ũn, as desired. □

Here is an example of how Lemma 1.4.3 can be used.

Example 1.4.4 (Roots of square-free polynomials). For some n ≥ 1, let Polyn be the space of
degree-n monic polynomials over C. Such an f ∈ Polyn can be written as

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an with a1, . . . , an ∈ C.

The topology comes from the coefficients, so Polyn
∼= Cn. By the fundamental theorem of algebra,

such a polynomial has n roots (counted with multiplicity). Define

RPolyn = {(f, x) ∈ Polyn ×C | f(x) = 0} .

In other words, RPolyn is the space of polynomials equipped with a root. Let p : RPolyn → Polyn
be the map p(f, x) = f . For n ≥ 2 this is not a covering space since the fibers of p have different
cardinalities. For example,

|p−1(zn)| = |{(zn, 0)}| = 1 but |p−1(zn − 1)| = |
{
(zn − 1, µ) | µ an nth root of unity

}
| = n.

As suggested by this, the issue arises because of polynomials with repeated roots. Define

Polysfn = {f ∈ Polyn | f has n distinct roots}

and

RPolysfn =
{
(f, x) ∈ Polysfn ×C | f(x) = 0

}
.

The “sf” stands for “square-free”. The spaces Polysfn and RPolysfn are open subsets of Polyn and

RPolyn, respectively.
4 The projection p : RPolysfn → Polysfn is a degree-n covering space. Indeed,

since p is a proper map5 whose fibers all have cardinality n, by Lemma 1.4.3 it is enough to prove that
p : RPolysfn → Polysfn is a local homeomorphism. But this is easy: for (f, x) ∈ RPolysfn , since f(z) has
no repeated roots we have f ′(x) ̸= 0, so by the implicit function theorem there is a neighborhood
U ⊂ Polyn of f such that around (f, x) the subspace

RPolysfn ⊂ Polyn ×C ⊂ Cn × C

is the graph of a function U → C. □

1.5. Isomorphisms between covering spaces

We would like to classify the covers of a space X. To do this, we must first define what it means
for two covers to be be the same, i.e., we must say what it means to have an isomorphism between
two covers of X. The definition is as follows:

Definition 1.5.1. Let X be a space and let p1 : X̃1 → X and p2 : X̃2 → X be two covers of

X. A covering space isomorphism from X̃1 to X̃2 is a homeomorphism f : X̃1 → X̃2 such that the
diagram

X̃1 X̃2

X

f

p1 p2

commutes, i.e., such that p2 ◦ f = p1. If a covering space isomorphism from X̃1 to X̃2 exists, we say

that X̃1 and X̃2 are isomorphic covers of X. This is clearly an equivalence relation. □

4This is an elementary exercise. A sophisticated way to see it is to use the fact that having a multiple root is
equivalent to the vanishing of the discriminant, which is a polynomial in the coefficients of the polynomial.

5To show that p : RPolysfn → Polysfn is proper, it is enough to prove that p : RPolyn → Polyn is proper. This
is a consequence of the elementary fact that for all C > 0, there exists some D > 0 such that if x ∈ C is a root of

f(z) = zn + a1zn−1 + · · ·+ an and |ak| ≤ C for all 1 ≤ k ≤ n, then |x| ≤ D.



1.6. GOAL 11

Remark 1.5.2. This can be rephrased using categorical language as follows. Recall that Top is
the category of topological spaces and continuous maps. For a space X, let Top/X be the category
whose objects are spaces Y equipped with maps ϕ : Y → X and whose morphisms from ϕ1 : Y1 → X
to ϕ2 : Y2 → X are maps f : Y1 → Y2 such that the diagram

Y1 Y2

X

f

ϕ1 ϕ2

commutes. A covering space p : X̃ → X is an object of Top/X , and a covering space isomorphism is
an isomorphism in Top/X between two covering spaces. □

Here are two basic examples.

Example 1.5.3. For λ ̸= 0, define pλ : R → S1 via the formula pλ(θ) = e2πiλθ. The universal
cover of S1 is thus p1 : R → S1. Each pλ : R → S1 is also a covering space, but is isomorphic to the
universal cover. Indeed, letting f : R → R be the homeomorphism f(θ) = λθ, the diagram

R R

S1

f

pλ p1

commutes, so f is a covering space isomorphism from pλ : R → S1 to p1 : R → S1. □

Example 1.5.4. For n ≥ 1, let pn : S1 → S1 be the covering space defined by the formula
pn(z) = zn and let qn : S1 → S1 be the covering space defined by the formula qn(z) = z−n. The covers
pn : S1 → S1 and qn : S1 → S1 are isomorphic. Indeed, letting f : S1 → S1 be the homeomorphism
f(z) = z−1, the diagram

S1 S1

S1

f

pn qn

commutes, so f is a covering space homomorphism from pn : S1 → S1 to qn : S1 → S1. □

1.6. Goal

Our of our main goals is to classify all the covers of a space up to isomorphism. Remarkably, for
a reasonable space X there is a simple algebraic classification of covers of X. We will describe this
classification later after we define the fundamental group of X (see Chapter 10). It resembles the
classical Galois correspondence.

To a reasonable path connected space X, we will associate a group G called its fundamental

group. Isomorphism classes of covers p : X̃ → X with X̃ path connected will correspond6 to subgroups
K < G. The cover corresponding to the trivial subgroup 1 < G will be called the universal cover,
and it will cover all the other covers. Here is an example:

Example 1.6.1. The fundamental group of S1 will turn out to be Z. There are two kinds of
subgroups of Z:

• For n ≥ 1, the subgroup nZ. Ths will correspond to the cover pn : S1 → S1 defined by
pn(z) = zn for z ∈ S1.

• The trivial subgroup 0 < Z. This will correspond to the universal cover p : R → S1 defined
by p(θ) = e2πi/θ for θ ∈ R.

The universal cover p : R → S1 covers the cover pn : S1 → S1 in the following sense. Define qn : R → S1
via qn(θ) = e2πiθ/n for θ ∈ R. This is a covering space, and we have a factorization

R S1 S1.
p

qn pn □

6There is a small issue with basepoints we are ignoring here to simplify our story.
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1.7. Exercises

Exercise 1.1. Carefully prove that the following are covering spaces. Let C× = C \ {0}.
(a) The map p : C → C× defined by p(z) = ez.
(b) For n ∈ Z \ {0}, the map p : C× → C× defined by p(z) = zn. □

Exercise 1.2. Prove that the map p : C → C defined by p(z) = z2 is not a covering space. □

Exercise 1.3. Do the following:

(a) Give an example of a surjective local homeomorphism that is not a covering space.
(b) Give an example of a local homeomorphism f : X → Y and a subset A ⊂ X such that

f |A : A→ f(A) is not a local homeomorphism. □

Exercise 1.4. Let p1 : X̃1 → X1 and p2 : X̃2 → X2 be covering spaces. Define q : X̃1 ⊔ X̃2 →
X1 ⊔X2 via the formula

q(z) =

{
p1(z) if z ∈ X̃1,

p2(z) if z ∈ X̃2.

Prove that q : X̃1 ⊔ X̃2 → X1 ⊔X2 is a covering space. Use this construction to find a covering space
over a non-connected base that does not have a degree. □

Exercise 1.5. Let p1 : X̃1 → X1 and p2 : X̃2 → X2 be covering spaces. Define q : X̃1 × X̃2 →
X1 ×X2 via the formula q(z1, z2) = (p1(z1), p2(z2)). Prove that q : X̃1 × X̃2 → X1 ×X2 is a covering
space. □

Exercise 1.6. In this exercise, you will prove that Exercise 1.5 is false for infinite products. For

n ≥ 1, let Xn = S1 and X̃n = R1 and let pn : X̃n → Xn be the universal cover. Give
∏

n≥1 X̃n and∏
n≥1Xn the product topologies, and define a map p :

∏
n≥1 X̃n →

∏
n≥1Xn via the formula

p(z1, z2, . . .) = (p1(z1), p2(z2), . . .) for all (z1, z2, . . .) ∈
∏
n≥1

X̃n.

Prove that p :
∏

n≥1 X̃n →
∏

n≥1Xn is not a covering space. □

Exercise 1.7. Prove the following:

(a) Let p : X̃ → X be a cover and let X ′ ⊂ X be a subspace. Define X̃ ′ = f−1(X ′) and

p′ = p|X̃′ . Prove that p′ : X̃ ′ → X ′ is a covering space. We will call this the restriction of p
to X ′.

(b) Let X be a locally connected space with connected components {Xj}j∈J . For each j ∈ J ,
let qj : Yj → Xj be a covering space. Define

Y =
⊔
j∈J

Yj ,

and let q : Y → X be the map that for j ∈ J and y ∈ Yj satisfies q(y) = qj(y) ∈ Yj ⊂ Y .
Prove that q : Y → X is a covering space.

(c) Construct a counterexample to part (b) in the case where X is not locally connected. □

Exercise 1.8. Let p : X̃ → X be a cover. Prove the following:

(a) Let f : Y → X be a map. Set

f∗(X̃) =
{
(y, x̃) ∈ Y × X̃ | f(y) = p(x̃)

}
,

and let f∗(p) : f∗(X̃) → Y be the projection onto the first coordinate. Prove that

f∗(p) : f∗(X̃) → Y is a covering space. We call f∗(p) : f∗(X̃) → Y the pullback of p : X̃ → X
along f : Y → X.

(b) Let X ′ ⊂ X be a subspace and let ι : X ′ → X be the inclusion. Prove that the covering

space ι∗(p) : ι∗(X̃) → X ′ is isomorphic to the restriction of p : X̃ → X to X ′ discussed in
Exercise 1.7. □
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Exercise 1.9. Let p : X̃ → X be a covering space such that p−1(x) is finite and nonempty for

all x ∈ X. Prove that X is compact Hausdorff if and only if X̃ is compact Hausdorff. □

Exercise 1.10. Let p : X̃ → X be a cover. This exercise shows that many point-set topological

properties of X are reflected in X̃.

(a) If X is Hausdorff, then prove that X̃ is Hausdorff.

(b) If X is regular, then prove that X̃ is regular.

(c) If X is paracompact, then prove that X̃ is paracompact. Hint: first prove that there is a

locally finite collection of closed sets {Ci}i∈I of X̃ such that each Ci is paracompact, and

then prove that this implies that X̃ is paracompact.

(d) If X is metrizable, then prove that X̃ is metrizable. Hint: Use the Smirnov metrization
theorem, which says that a space is metrizable if and only if it is paracompact and locally
metrizable. □





CHAPTER 2

Covering spaces: deck transformations and regular covers

We now discuss symmetries of a cover, and single out the covers that have as many symmetries
as possible.

2.1. Deck transformations

We defined isomorphisms of covers in §1.5. The isomorphisms from a cover to itself are called
deck transformations:

Definition 2.1.1. Let p : X̃ → X be a covering space. A deck transformation of p : X̃ → X. is

a covering space isomorphism f : X̃ → X̃. These form a group under composition called the deck

group of p : X̃ → X, denoted Deck(p : X̃ → X) or simply Deck(X̃). □

Here is an example:

Example 2.1.2. Let p : R → S1 be the universal cover, so p(θ) = e2πiθ for all θ ∈ R. For each
n ∈ Z, we can define a deck transformation fn : R → R via the formula fn(θ) = θ + n. □

2.2. Determining the deck group

The key to understanding the deck group is the following lemma, which says that in favorable
situations deck transformations are completely determined by what they do to a single point.

Lemma 2.2.1. Let p : X̃ → X be a covering space with X̃ connected. Let f, g : X̃ → X̃ be two

deck transformations such that there exists some z0 ∈ X̃ with f(z0) = g(z0). Then f = g.

Proof. Let E =
{
z ∈ X̃ | f(z) = g(z)

}
. Our goal is to prove that E = X̃. By assumption

z0 ∈ E, so since X̃ is connected it is enough to prove that E is both open and closed.1 Consider

z ∈ X̃. We must prove that if z ∈ E (resp. z /∈ E) then there is an open neighborhood of z contained
in E (resp. disjoint from E). Let U be a trivialized neighborhood of p(z).

Assume first that z ∈ E. Let Ũ be the sheet above U containing f(z) = g(z). Set V =

f−1(Ũ) ∩ g−1(Ũ), so V is an open neighborhood of z with f(V ), g(V ) ⊂ Ũ . For z′ ∈ V , both f(z′)

and g(z′) are the unique point of Ũ projecting to p(z′) ∈ U , so in particular f(z′) = g(z′). This
implies that V ⊂ E, as desired.

Assume now that z /∈ E, so f(z) ̸= g(z). Let Ũ1 and Ũ2 be the sheets above U with f(z) ∈ Ũ1

and g(z) ∈ Ũ2. Since f(z) ̸= g(z), the sheets Ũ1 and Ũ2 are distinct and hence disjoint. Set

W = f−1(Ũ1)∩ g−1(Ũ2), so W is an open neighborhood of z with f(W ) ⊂ Ũ1 and g(W ) ⊂ Ũ2. Since

Ũ1 ∩ Ũ2 = ∅, this implies that f(z′) ̸= g(z′) for all z′ ∈W , so W is disjoint from E, as desired. □

The following is a typical example of how to use Lemma 2.2.1 to determine the deck group of a
covering space:

Example 2.2.2 (Universal cover of circle). Let p : R → S1 be the universal cover of S1. For
n ∈ Z, let fn : R → R be the deck transformation defined by the formula fn(θ) = θ + n. We claim
that

Deck(p : R → S1) = {fn | n ∈ Z} ∼= Z.
To see this, consider an arbitrary deck transformation f : R → R. Since p(f(0)) = p(0), we must
have f(0) = n for some n ∈ Z. Since f(0) = fn(0), Lemma 2.2.1 implies that f = fn. □

1Note that if X is Hausdorff (like most spaces in this book) it is automatic that E is closed; indeed, if X is

Hausdorff then for any continuous maps f, g : Y → X the set of y ∈ Y with f(y) = g(y) is closed.

15
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2.3. Regular covers

Roughly speaking, a regular cover2 is a cover with a deck group that is as large as possible. Let

p : X̃ → X be a covering space. The group Deck(X̃) acts on X̃. For x ∈ X, the action of Deck(X̃) on

X̃ preserves the fiber f−1(x), so Deck(X̃) acts on f−1(x). For z1, z2 ∈ f−1(x), Lemma 2.2.1 implies

that if X̃ is connected then there exists at most one f ∈ Deck(X̃) with f(z1) = z2. A regular cover
is a cover where such an f always exists:

Definition 2.3.1. A regular cover is a cover p : X̃ → X such that for all x ∈ X, the group

Deck(X̃) acts transitively on p−1(x), i.e., for all x̃1, x̃2 ∈ p−1(x) there exists some f ∈ Deck(X̃) with
f(x̃1) = x̃2. A cover that is not regular is irregular. □

Example 2.3.2 (Universal cover of circle). The calculation in Example 2.2.2 shows that the
universal cover p : R → S1 is regular. □

Example 2.3.3 (Trivial cover). Let X be a space and I be a discrete set. Consider the trivial
cover p : X × I → X. Set G = Deck(p : X × I → X). For each bijection σ : I → I, we can define an
element fσ ∈ G via the formula fσ(x, i) = (x, σ(i)). These elements act transitively on the fibers, so
p : X × I → X is regular. One can check that all elements of G are of the form fσ if X is connected
(see Exercise 2.8). □

Remark 2.3.4. It is actually harder to show that a cover is irregular. We will give an example
below in Example 2.7.3. □

2.4. More examples of regular covers

Most of the covers we have seen so far are regular:

Example 2.4.1 (Degree n cover of circle). Let pn : S1 → S1 be the cover defined by the formula
pn(z) = zn. We claim that pn : S1 → S1 is a regular cover with deck group isomorphic to the cyclic
group Cn of order n. Indeed, let G = Deck(pn : S1 → S1). Let f ∈ G be the map f : S1 → S1 defined
by the formula f(z) = e2πi/nz. The element f has order n and its powers act transitively on the
fiber p−1

n (1), which equals the nth roots of unity. This implies that the cover is regular.
The same argument using Lemma 2.2.1 that we used in Example 2.2.2 shows that G is the cyclic

group of order n generated by f . We repeat that argument one more time: for g ∈ G, we have
g(1) = e2πki/n for some k ∈ Z (well-defined modulo n). Since g and fk both take 1 to e2πki/n, it
follows from Lemma 2.2.1 that g = fk. □

Example 2.4.2 (Cosets of discrete subgroups). Let G be a topological group and let H < G be
a discrete subgroup. Then the projection p : G → G/H is a regular cover. Indeed, for h ∈ H define
fh : G → G via the formula fh(g) = gh. Then fh ∈ Deck(p : G → G/H), and the fh act transitively
on the fibers of p : G → G/H. If G is connected, then by Lemma 2.2.1 this is the entire deck group,
so Deck(p : G → G/H) ∼= H. As a special case, the deck group of the cover p : Rn → Tn is the group
Zn, which acts on Rn by translations. □

Example 2.4.3 (Real projective space). The cover p : Sn → RPn is regular. Indeed, the map
f : Sn → Sn defined by f(z) = −z is an element of the deck group that swaps the two elements in
the fiber over any point of RPn. By Lemma 2.2.1, the deck group of p : Sn → RPn is the cyclic group
C2 of order 2 generated by f . □

Example 2.4.4 (Cover of surface). Consider the covering space p : Σ4 → Σ2 from Example 1.3.5.
Set G = Deck(p : Σ4 → Σ2). There is a deck transformation f ∈ G that rotates Σ4 by 2π/3 as
follows:

2These are also often called normal covers.
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p
S1

S2S3

~

~~

Σ4

Σ2
γ

rotate by 2π/3

The element f has order 3 and its powers act transitively on all the fibers. This implies that the
cover is regular, and also by Lemma 2.2.1 that G is the cyclic group of order 3 generated by f . □

Example 2.4.5 (Roots of square-free polynomials). The degree-n covering space p : RPolysfn →
Polysfn discussed in Example 1.4.4 is regular for n = 2 (see Exercise 2.7), but is irregular for n ≥ 3.
We do not have the technology to prove this yet (see Exercise 9.9 of Chapter 9 for the proof), but it
should not be surprising. Indeed, if it was regular then the deck group G would act simply transitively
on the roots of every degree-n polynomial with distinct roots, and if such a canonical group action
existed then we would surely teach about it in elementary abstract algebra classes.3 □

We will meet examples of irregular covers whose irregularity is easy to verify below when we
discuss covers of graphs.

2.5. Graphs

Graphs4 provide a rich source of examples of covering spaces. Recall that a graph X is a set of
vertices V(X) connected by oriented edges E(X):

u

v

w
e1 e2

e3

e4

e5

For each vertex v ∈ V(X), the degree of v, denoted deg(v), is the number of edges that start or end
at v. If an edge is a loop based at v, it contributes 2 to deg(v). We call X a finite graph if the
sets V(X) and E(X) are both finite. In this case, it is clear how to regard X as a topological space:
the vertices are a discrete set of points, and the edges are copies of I = [0, 1] that are glued to the
vertices. More generally, we say that X is locally finite if for each v ∈ V(X) its degree deg(v) is finite.
For locally finite graphs X, it is also clear how to regard X as a topological space.

Remark 2.5.1. In the general case, we regard X as 1-dimensional CW complex. See Essay K in
Volume 1 for more details. □

2.6. Maps of graphs

Let X and Y be graphs. To define a continuous map ϕ : X → Y , we must specify where ϕ sends
each vertex and edge. This is particularly easy to do if we require our map to take vertices to vertices
and oriented edges to oriented edges, which will suffice for the examples in this section. This is best
explained by an example:

Example 2.6.1. Let Y be the following graph:

u v
e1e2 e3
Y

3For n = 2, this group action just exchanges the two roots.
4Our conventions about graphs are that unless otherwise specified they are oriented and we allow multiple edges

and loops.
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We specify a graph X and a map ϕ : X → Y as follows:

u v

uv

e1

e1
e1e1

e2

e2

e3

e3

X

u v
e1e2 e3
Y

φ

Here we label the vertices and oriented edges of X by the vertices and oriented edges they map to.
What this map does is map each edge of the central square of X to the single non-loop edge of Y
and map each loop in X to the appropriate loop in Y . The interiors of the edges are identified with
copies of the open interval (0, 1), and ϕ respects these identifications. □

2.7. Covers of graphs

The above example is not a covering map. The problem is that it is not a local homeomorphism
at the vertices. What is needed for a covering map is informally that for each vertex “the same edges
enter and exist as in the target”. Here is an example of a covering map with the same Y as above
but a different X:

Example 2.7.1. The following describes a covering space map p : X → Y :

u v
e1e2 e3
Y

u v

vu

e1

e1
e3e2

X

e2 e3
p

This is a covering space map since:

• for both vertices of X mapping to u, one edge exits mapping to e1, one edge exits mapping
to e2, and one edge enters mapping to e2; and

• for both vertices of X mapping to v, one edge enters mapping to e1, one edge exits mapping
to e3, and one edge enters mapping to e3; and

This is a regular cover with deck group isomorphic to C2. The generator of C2 acts on X by the
involution that swaps the two vertices labeled u, the two vertices labeled v, and for i = 1, 2, 3 the
two oriented edges labeled ei. □

We now give several different covers of the following graph Z:

Since Z has only one vertex, there is no need to give it a name since all vertices of a cover map to
that one vertex. We also use colors rather than letters to distinguish the two edges of Z, and label
the edges in the domain of our covering space maps by coloring them with the appropriate colors.

Example 2.7.2. Consider the cover

p
Z~

Z
This is a degree 2 regular cover. The deck group is isomorphic to C2, and acts on Z̃ by the involution
that swaps the two vertices, the two orange loops, and the two blue edges. □

Example 2.7.3. Consider the cover

p

ZZ~

This is an irregular cover with trivial deck group. To see this, note that a deck transformation of
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Z̃ must take vertices to vertices and oriented edges to oriented edges, and also must preserve the

coloring on the edges. Since there is only one orange loop in Z̃, any deck transformation must fix
that orange loop and therefore be the identity. □

Example 2.7.4. Consider the cover

p

Z
Z~

This ia a degree 3 regular cover. The deck group is C3, which acts on Z̃ by rotations. □

Example 2.7.5. Consider the cover

p

... ...
Z~

Z

This is an infinite degree regular cover. The deck group is isomorphic to Z, which acts on Z̃ as
translations. □

Example 2.7.6. Consider the cover

p

Z
Z~

Here Z̃ is the graph embedded in R2 whose vertices are at Z2 and whose edges are horizontal and
vertical lines. This is an infinite degree regular cover. The deck group is isomorphic to Z2, which

acts on Z̃ ⊂ R2 via the action of Z2 on R2 by integer translations. □

Example 2.7.7. Consider the cover

p

ZZ~

The indicated pattern in the domain repeats infinitely often, making it an infinite degree-4 tree.5

The horizontal edges are oriented going right, and the vertical edges are oriented going up. This is
an infinite degree regular cover (we leave this as Exercise 2.10). □

5A tree is a nonempty graph with no cycles, that is, no embedded circles.
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Example 2.7.8. Consider the cover

p

ZZ~

This is an infinite degree irregular cover with trivial deck group. To see this, note that just like in

Example 2.7.3 any deck transformation of Z̃ must fix the unique orange loop in Z̃, and thus must be
the identity. □

2.8. Covering space actions

Let p : X̃ → X be a cover with deck group G. The group G acts on X̃. If X̃ is connected, then

Lemma 2.2.1 says that action is free, i.e., that for all z ∈ X̃ the stabilizer subgroup Gz is trivial. In
fact, even more is true, and this section is devoted to studying this action.

Remark 2.8.1. In this book, a group action is always assumed to preserve any structure a set
has. In particular, an action of a group G on a topological space Z is assumed to be continuous.
In other words, for all g ∈ G the map Z → Z that multiplies points by g is assumed to be a
homeomorphism. □

The following lemma isolates the key property of the action of the deck group of a connected
cover:

Lemma 2.8.2. Let p : X̃ → X be a covering space with X̃ connected, let G = Deck(p : X̃ → X),

and let z ∈ X̃. Then there is an open neighborhood V of z whose translates {g·V | g ∈ G} are all
disjoint.

Proof. Let U be a trivialized neighborhood of p(z) and let Ũ be the sheet lying above U

with z ∈ Ũ . We claim that V = Ũ has the indicated property. Indeed, let g1, g2 ∈ G satisfy

(g1·Ũ) ∩ (g2·Ũ) ̸= ∅. We must prove that g1 = g2. Pick z1, z2 ∈ Ũ with g1·z1 = g2·z2. Since the

action of G preserves the fibers of p : X̃ → X, the points z1, z2 ∈ Ũ must lie in the same fiber. Since

the restriction of p : X̃ → X to Ũ is injective, this implies that z1 = z2. Letting w = z1 = z2 be this
common value, we have g1·w = g2·w. Lemma 2.2.1 now implies that g1 = g2, as desired. □

Actions satisfying the conclusions of this lemma are important, so we give them a special name:

Definition 2.8.3. A covering space action is an action of a group G on a space Z such that for
all z ∈ Z, there exists an open neighborhood V of z such that the translates {g·V | g ∈ G} are all
disjoint. □

Remark 2.8.4. All covering space actions are free. If G is finite and Z is Hausdorff, then the
converse is true: all free action of G on Z are covering space actions (see Exercise 2.4). □

2.9. Quotients by covering space actions

Let G be a group and let Z be a space equipped with a left action of G. Endow the quotient6

X/G with the quotient topology. In other words, if q : Z → Z/G is the projection then a set U ⊂ Z/G
is open if and only if q−1(U) is open. If the action of G on Z is a covering space action, then the
quotient map q : Z → Z/G is a regular covering space:

Lemma 2.9.1. Let G be a group acting a space Z by a covering space action. Then quotient map
q : Z → Z/G is a regular covering space. Moreover, if Z is connected then G = Deck(q : Z → Z/G).

6This is potentially confusing notation since G is acting on the left. A purist would insist that Z/G is the quotient

of Z by an action of G on the right, and denote the quotient of Z by an action of G on the left by G\Z. However, our
notation is common and traditional, and we will follow it. There will be a few situations where we will have both left

and right actions, and we will work hard to be clear about what our notation means in those cases.
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Proof. Consider x ∈ Z/G. Write x = q(z) with z ∈ Z. Let V be an open neighborhood of z
such that the sets in the G-orbit of V are disjoint. Set U = q(V ). We have

q−1(U) =
⋃
g∈G

g·V.

Since each g·V is open, it follows that q−1(U) is open and thus by definition U is open. The g·V
are disjoint open subsets of Z and each projects homeomorphically onto U . We conclude that U
is a trivialized neighborhood of x and the g·V are the sheets lying above U . This implies that
q : Z → Z/G is a covering space. By construction, the action of G on Z is by deck transformations
of q : Z → Z/G, so G < Deck(q : Z → Z/G). This action is transitive on fibers, so if Z is connected
then Lemma 2.2.1 implies that G = Deck(q : Z → Z/G). □

All of our examples of regular covering spaces could have been constructed using Lemma 2.8.2.
For instance, C2 acts on Sn via the antipodal map z 7→ −z. This is a free action, so since C2 is finite
it is a covering space action (c.f. Remark 2.8.4). We could have defined RPn = Sn/C2 and identified
the covering space p : Sn → RPn with the quotient projection. This would be a little artificial, but
here is an example where this point of view is essential:

Example 2.9.2 (Configuration space). Let X be any space. The ordered configuration space of
n points on X is the space7

PConfn(X) =
{
(x1, . . . , xn) ∈ X×n | xi ̸= xj for all distinct 1 ≤ i, j ≤ n

}
.

Topologize this as a subspace of X×n. The symmetric group Sn on n letters acts on Confn(X) via
the formula

σ·(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) for σ ∈ Sn and (x1, . . . , xn) ∈ PConfn(X).

The inverses are there to make this a left action.8 This is a free action since the xi are all distinct,
and thus since Sn is finite it is a covering space action. The configuration space of n points on
X is the quotient Confn(X) = PConfn(X)/Sn. Points of Confn(X) can be viewed as unordered
sets {x1, . . . , xn} of n distinct points in X. The projection p : PConfn(X) → Confn(X) is a regular
covering space. □

2.10. Exercises

Exercise 2.1. Prove the following:

(a) Let G be a group acting on a space X by a covering space action. Let Y be a subspace of
X that is preserved by the action of G, so G acts on Y . Prove that the action of G on Y is
a covering space action.

(b) For i = 1, 2, let Xi be a space and let Gi be a group acting on Xi by a covering space
action. Prove that the action of G1 ×G2 on X1 ×X2 is a covering space action. □

Exercise 2.2. Construct a covering space action of C2 × C2 on a compact oriented surface
Σ. □

Exercise 2.3. Let α ∈ R be an irrational number. Let G ∼= Z be an infinite cyclic group
generated by s ∈ G. Let G act on S1 via the formula

t·z = e2πiαz for z ∈ S1.

Let p : S1 → S1/G be the quotient map.

(a) Prove directly that p is not a covering space.
(b) Prove that S1/G is not Hausdorff. □

7This is sometimes also called the pure configuration space, which is why it is written PConfn(X).
8This is the same reason that inverses appear in the action of GL(V ) on the dual of a vector space V .
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Exercise 2.4. Let X be a Hausdorff space and let G be a group acting freely on X. For all
x ∈ X, assume that there is an open neighborhood U of x such that the set9

{g ∈ G | g·U ∩ U ̸= ∅}

is finite. Prove that the action of G on X is a covering space action. The above condition is
automatically satisfied if G is finite, so this shows that a free action of a finite group on a Hausdorff
space is a covering space action. □

Exercise 2.5. Let Z be a Hausdorff topological space and let G be a group acting on Z by a
covering space action. Assume that Z/G is Hausdorff (cf. Exercise 2.11), and let x, y ∈ Z be two
points that project to different points of Z/G. Prove that there exist open neighborhoods U of x and
V of y such that the translates {g·U | g ∈ G} and {g·V | g ∈ G} are all disjoint from each other. □

Exercise 2.6. Let Z be a first countable topological space. Let G be a group acting on Z by a
covering space action. Assume that Z/G is Hausdorff (cf. Exercise 2.11), and let K ⊂ Z be compact.
Prove that the set

{g ∈ G | g·K ∩K ̸= ∅}

is finite. Hint: the previous exercise will be useful. □

Exercise 2.7. Let p : X̃ → X be a degree 2 cover. Prove that X̃ is a regular cover. □

Exercise 2.8. Let X be a space and I be a discrete set, and let p : X × I → X be the trivial
cover.

(a) If X is connected, prove that all elements of the deck group of p : X × I → X are of the
form fσ(x, i) = (x, σ(i)) for some bijection σ : I → I.

(b) If X is not connected, construct elements of the deck group that are not of this form. □

Exercise 2.9. Let Z be a graph with one vertex and two edges. Construct degree 4 covers

p : Z̃ → Z and q : Z̃ ′ → Z with Z̃ and Z̃ ′ path connected such that p : Z̃ → Z is regular and

q : Z̃ ′ → Z is irregular. □

Exercise 2.10. Verify that the cover in Example 2.7.7 is regular. □

Exercise 2.11. In this exercise you will see that non-Hausdorff spaces can have Hausdorff covers.
Set X = R2 \ 0. Let G = Z with generator t = 1. Define an action of G on X by letting

tn·(x, y) = (2nx, 2−ny) for all (x, y) ∈ X and n ∈ Z.

Prove the following:

(a) The action of G on X is a covering space action.
(b) The quotient X/G is not Hausdorff. □

Exercise 2.12. In this exercise, you will see that the composition of two covering maps is not
necessarily a covering map (though later we will see that this does hold for reasonable spaces). For
n ≥ 1, let Cn ⊂ R2 be the circle of radius 1/n with center (0, 1/n). Let X = ∪∞

n=1Cn, topologized as
a subspace of R2. This is sometimes called the “earring space” or the “shrinking wedge of circles”.
Let p : Y → X be the regular cover of X with deck group Z shown here:

9Some authors call actions satisfying this property “properly discontinuous”, but the literature contains multiple
non-equivalent definitions of what it means for an action to be properly discontinuous, so we prefer to not use this

term.
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p

Construct a degree 2 cover q : Z → Y such that the composition p ◦ q : Z → X is not a covering
space. □





CHAPTER 3

Covering spaces: lifting paths and homotopies

This chapter studies lifting problems, which play a key role in both the classification of covering
spaces and their applications. As an application, we develop the theory of winding numbers and
degrees of maps from S1 to iteself.

3.1. Lifting problems in general

Let p : X̃ → X be a covering space and let f : Y → X be a map. A lift of f through p is a map

f̃ : Y → X̃ such that the diagram

X̃

Y X

p

f

f̃

commutes, i.e., such that f = p ◦ f̃ .

Example 3.1.1. A deck transformation f̃ : X̃ → X̃ is a lift of the covering space map p : X̃ → X
itself:

X̃

X̃ X

p

p

f̃

Of course, it is possible that a lift of p : X̃ → X to a map f̃ : X̃ → X̃ exists such that f̃ is not a
homeomorphism, so not all such lifts are deck transformations. □

A lift might or might not exist. However, just like a deck transformation if a lift exists then
under favorable hypotheses it is determined by what it does to a single point:

Lemma 3.1.2. Let p : X̃ → X be a covering space and let f : Y → X be a map. Assume that

Y is connected. Let f̃1, f̃2 : Y → X̃ be two lifts of f through p such that there is some y0 ∈ Y with

f̃1(y0) = f̃2(y0). Then f̃1 = f̃2.

Proof. The proof is identical to that of Lemma 2.2.1, which is the analgous result for deck
transformations. □

3.2. Sections

We now discuss a special kind of lifting problem. Let p : X̃ → X be a covering space. A section

of p is a lift σ : X → X̃ of the identity map 1X : X → X through p. In other words, σ : X → X̃ is a
map such that p(σ(x)) = x for all x ∈ X.

Example 3.2.1. LetX be a space and I be a discrete set. Consider the trivial cover p : X×I → X.
Let i0 ∈ I, and define σ : X → X × I via the formula σ(x) = (x, i0). Then σ is a section. □

The above example might be unsatisfying; however, covers typically have no sections:

Lemma 3.2.2. Let p : X̃ → X be a covering space with X̃ connected. Assume that there exists a

section σ : X → X̃. Then p : X̃ → X is a homeomorphism, and in particular has degree 1.

25
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Proof. It is enough to prove that p : X̃ → X has degree 1; indeed, this will imply that p is
a bijection, and since covering space maps are open maps we will be able to conclude that p is a

homeomorphism.1 To prove that p has degree 1, it is enough to prove that σ is surjective. Since X̃ is
connected, this will follow if we prove that the image of σ is both open and closed.

Consider x ∈ X. It is enough to prove that σ(x) lies in the interior of σ(X) and that all points

of p−1(x) other than σ(x) lie in the interior of X̃ \ σ(X). Let U be a trivialized neighborhood of x

and let {Ũi}i∈I be the sheets lying above U . Let i0 ∈ I be such that σ(x) ∈ Ũi0 . Naively, one might

expect that σ(U) = Ũi0 ; however, without further assumptions (like U being connected, which could
only be ensured if X is locally connected) this need not hold.

However, let V = σ−1(Ũi0). The set V is also a trivialized neighborhood of x. Let {Ṽi}i∈I be

the sheets lying above V , enumerated such that Ṽi ⊂ Ũi for all i ∈ I. Then Ṽi0 = σ(V ) is an open

neighborhood of σ(x) lying in σ(X). Also, the union of the Ṽi with i ̸= i0 is an open neighborhood

of p−1(x) \ σ(x) lying in X̃ \ σ(X). The lemma follows. □

3.3. Formulas for roots of polynomials

We explain an interesting application of Lemma 3.2.2. As discussed in Example 1.4.4, let Polysfn
be the space of monic degree-n polynomials without repeated roots, let RPolysfn be the space of pairs

(f, x) with f ∈ Polysfn and f(x) = 0, and let p : RPolysfn → Polysfn be the map p(f, x) = f , so p is a

degree n covering space. We start by proving that RPolysfn is path-connected:

Lemma 3.3.1. For n ≥ 1, the space RPolysfn is path-connected.

Proof. Let (f1, x1) and (f2, x2) be two points of RPolysfn . We want to find a path from (f1, x1)
to (f2, x2). Since the polynomial fi(z) has no repeated roots, we can factor it as

fi(z) = (z − xi)(z − λi,1) · · · (z − λi,n−1).

Here the λi,j are distinct complex numbers that are different from xi. We remark that the ordering

on {λi,1, . . . , λi,n−1} is not canonical. We can move (fi, xi) in RPolysfn by moving xi and the λi,j
while keeping them distinct. Moving x1 and the λ1,j slightly, we can ensure that the numbers

Z = {x1, λ1,1, . . . , λ1,n−1, x2, λ2,1, . . . , λ2,n−1}
are all distinct. We will now move the points x1, λ1,1, . . . , λ1,n−1 to x2, λ2,1, . . . , λ2,n−1 one at a time,
starting with x1.

Since removing finitely many points from C does not disconnect it, the space (C \ Z) ∪ {x1, x2}
is path-connected. We can therefore find a path in (C \ Z) ∪ {x1, x2} from x1 to x2:

x1

λ1,1

λ1,3

λ1,4

λ1,2

λ2,4

λ2,3

λ2,2

x2

λ2,1

By moving x1 along this path, we move (f1, x1) and reduce ourselves to the case where x1 = x2.
Next, the space (C \ Z) ∪ {λ1,1, λ2,1} is path-connected, so we can find a path in it from λ1,1 to λ2,1.
By moving λ1,1 along this path, we move (f1, x1) and reduce ourselves to the case where x1 = x2
and λ1,1 = λ2,1. Repeating this process, we move (f1, x1) to (f2, x2). □

Combining this with Lemma 3.2.2, we deduce the following:

Corollary 3.3.2. For n ≥ 2, the covering space p : RPolysfn → Polysfn has no section.

1We remark that there is a simpler proof that p has degree 1 if X̃ is path connected. Consider x ∈ X. Set

z1 = σ(x), so z1 ∈ p−1(x). Consider z2 ∈ p−1(x). We must prove that z1 = z2. Let γ̃ : [0, 1] → X̃ be a path with

γ̃(0) = z1 and γ̃(1) = z2. Set γ = p ◦ γ, so γ : [0, 1] → X is a path in X from x = p(z1) to x = p(z2). Define γ̃′ = σ ◦ γ.
Both γ̃ and γ̃′ are lifts of γ : [0, 1] → X to X̃ with γ̃(0) = γ̃′(0) = z1, so by Lemma 3.1.2 we have γ̃ = γ̃′. We conclude

that z1 = γ̃(1) = γ̃′(1) = z2, as desired.
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Why is this interesting? Recall that Polysfn ⊂ Cn, where

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an ∈ Polysfn

is identified with (a1, . . . , an) ∈ Cn. A section of p : RPolysfn → Polysfn is thus a function that takes
as input the coefficients of a polynomial f(z) with no repeated roots and returns (f, x), where x ∈ C
is a root of f(z). In other words, it is a continuous “formula” for the roots of a degree-n polynomial.

The fact that these do not exist for n ≥ 2 might seem to contradict that we do in fact have such
formulas in low degrees. For instance, we have the quadratic formula: for a quadratic polynomial
f(z) = z2 + bz1 + c, its roots are

−b±
√
b2 − 4c

2
.

The point here is that this is not really a well-defined function because of the ±, and indeed there is
no way to choose a canonical square root of a complex number in a continuous way. In Essay A, we
will see that this forms the germ of a beautiful proof of Arnold of the classical fact (usually proved
with Galois theory) that there is no elementary formula for the roots of a degree-n polynomial for
n ≥ 5, even if you allow multivalued kth roots like in the quadratic formula.

3.4. Lifting paths

Once the basic theory of the fundamental group is in place, we will be able to give a satisfying
necessary and sufficient condition for a lift to exist, at least for reasonable spaces (see Chapter 9).
Before we can do this, we need to solve some important special cases. As notation, let I = [0, 1]. A
path in a space X is a map γ : I → X. The initial point of γ is γ(0) and the terminal point is γ(1),
and we say that γ goes from γ(0) to γ(1). Paths can always be lifted:

Lemma 3.4.1. Let p : X̃ → X be a covering space and let γ : I → X be a path. For all x̃0 ∈ X̃

with p(x̃0) = γ(0), there exists a unique lift γ̃ : I → X̃ of γ through p with γ̃(0) = x̃0.

Proof. Uniqueness follows from Lemma 3.1.2, so we must only prove existence. Using the
Lebesgue number lemma,2 we can partition I into subintervals

0 = ϵ1 < ϵ2 < · · · < ϵn = 1

such that for all 1 ≤ k < n the image γ([ϵk, ϵk+1]) is contained in a trivialized open set in X. We
construct our lift γ̃ inductively as follows.

First, define γ̃(0) = x̃0. Next, assume that for some 1 ≤ k < n we have constructed a lift

γ̃ : [0, ϵk] → X̃ of γ|[0,ϵk] : [0, ϵk] → X. We extend γ̃ to [0, ϵk+1] as follows. Let U be a trivialized

open set in X such that γ([ϵk, ϵk+1]) ⊂ U . Let Ũ be the sheet lying above U with γ̃(ϵk) ∈ Ũ . The

restriction p|Ũ : Ũ → U is a homeomorphism, and on the interval [ϵk, ϵk+1] we define γ̃ to be the
composition

[ϵk, ϵk+1] U Ũ X̃.
γ (p|Ũ )−1

By construction, this agrees with our already-constructed partial lift γ̃ : [0, ϵk] → X̃ at ϵk. □

To help the reader understand the content of this lemma, we give several examples.

Example 3.4.2 (Circle). Let p : R → S1 be the universal cover of S1, so p(θ) = e2πiθ. Let
γ : [0, 1] → S1 be the path that starts at 1 ∈ S1 ⊂ C and travels clockwise half-way around the circle:

γ(t) = e−πit for 0 ≤ t ≤ 1.

The points of R that project to γ(0) = 1 are precisely the integers. For n ∈ Z, the lift γ̃ : [0, 1] → R
of γ with γ̃(0) = n is the map that looks like this:

2Recall that the Lebesgue number lemma says that if Z is a compact metric space and {Wj}j∈J is an open cover

of Z, then we can find some ϵ > 0 such that for all z ∈ Z the ϵ-ball Bϵ(z) is contained in some Wj . To find the
indicated partition of I, apply this to the cover of I by preimages of trivialized open subsets of X and choose the

partition such that each segment [ϵk, ϵk+1] has diameter at most the ϵ > 0 given by the lemma.
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p

γ

n n+1n-1 γ~

In coordinates, γ̃(t) = n− t/2 for 0 ≤ t ≤ 1. □

Example 3.4.3 (Torus). As in Example 1.3.3, identify R2/Z2 with the 2-torus T2 and let
p : R2 → R2/Z2 = T2 be the associated cover. Here is an example of a path γ : [0, 1] → T2 and one
choice of lift γ̃ : [0, 1] → T2:

ℝ2
𝕋2

The torus on the right is obtained by gluing the sides of the square together as indicated. Because of
this gluing, a path can e.g. pass through the top edge of the square and come out of the bottom
edge. The other possible lifts are obtained by varying the initial point, which results in translating
the entire lift by some element of Z2. □

Example 3.4.4 (Graph). As in §2.5, consider the following cover p : Z̃ → Z:

p

Z~
Z

Let γ : [0, 1] → Z be the path that starts at the vertex, goes around the orange circle in the positive
direction, then goes around the blue circle in the positive direction, and finally goes around the

orange circle in the negative direction. There are five possible lifts, one starting at each vertex of Z̃.
Here are pictures of them, with the initial and final vertices in purple:

Constructing these illustrates the necessity that each vertex of Z̃ has one incoming edge of each color
and one outgoing edge of each color. □
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Example 3.4.5 (Polar coordinates). Points of R2 \ 0 can be expressed using polar coordinates
(r, θ) with r > 0 and θ ∈ R:

(x, y) = (r cos(θ), r sin(θ)).

While r =
√
x2 + y2 is unambiguous, the θ-coordinate is ambiguous since (r, θ) = (r, θ + 2πn) for all

n ∈ Z. Letting p : R → S1 be the universal cover, a choice of polar coordinates for (x, y) ∈ R2 \ 0 is
the same as a choice of lift θ ∈ R for the point

(
x√

x2 + y2
,

y√
x2 + y2

) ∈ S1.

Lemma 3.4.1 explains why maps f : I → R2 \ 0 can always be continuously expressed using polar
coordinates. This is depends on the topology of I, and I cannot be replaced by an arbitrary space.

For instance, the inclusion ι : S1 ↪→ R2\0 cannot be continuously described using polar coordinates
as ι(x) = (r(x), θ(x)) for some r : S1 → R>0 and θ : S1 → R. Indeed, in such an expression the
function r would be identically 1, but the function θ would be a section of the cover p : R → S1, and
Lemma 3.2.2 implies that such a section does not exist. □

3.5. Homotopies

In algebraic topology, spaces are modeled by algebra. Spaces can vary continuously, while
algebraic objects are typically discrete. In this section, we introduce a formalism called homotopy for
studying deformations of maps. The algebraic invariants we later study will be insensitive to these
deformations.

Consider two maps f, g : X → Y . We say that f and g are homotopic if there exists a continuous
map H : X × I → Y such that f(x) = H(x, 0) and g(x) = H(x, 1) for all x ∈ X. For t ∈ I, let
ht : X → Y be the map ht(x) = H(x, t). We thus have f = h0 and g = h1, and we view the ht as a
continuous family of maps witnessing f being deformed to g. Typically we will demonstrate that f
and g are homotopic by describing the ht rather than H, and will call ht a homotopy from f to g.
This is an equivalence relations on the set of maps from X to Y (see Exercise 3.3).

Example 3.5.1. Let X be a space. Any two maps f, g : X → Rn are homotopic via the straight-
line homotopy ht : X → Rn defined via the formula ht(x) = (1− t)f(x) + tg(x) for all x ∈ X and
t ∈ I. In this, we have h0 = f and h1 = g. □

We say that a map f : X → Y is null-homotopic if f is homotopic to a constant map. As Example
3.5.1 shows, any map f : X → Rn is null-homotopic. Here is another example:

Example 3.5.2. Let X be a space. Then any map f : Rn → X is null-homotopic via the
homotopy ht : Rn → X defined via the formula ht(x) = f((1− t)x) for all x ∈ X and t ∈ I. In this,
we have h0 = f and h1 is the constant map taking all points of Rn to f(0). □

To show that two maps are homotopic, one typically exhibits an explicit homotopy. It is harder
to show that two maps are not homotopic. This requires invariants of maps. For instance, the
identity map S1 → S1 is not null-homotopic, but this is not so easy to prove directly. In §3.7 below
we will prove this by developing the theory of degrees and winding numbers. In fact, using this we
will completely describe all homotopy classes of maps S1 → S1. Doing this requires studying the
interaction between homotopies and lifting problems.

3.6. Lifting homotopies

Roughly speaking, our goal in this section is to prove that lifting problems are insensitive to

homotopies. To make this precise, consider a covering space p : X̃ → X. Let f, g : Y → X be two

homotopic maps. One thing we would like to prove is that a lift f̃ : Y → X̃ of f exists if and only if

a lift g̃ : Y → X̃ exists. We would also like to prove that if these lifts exist then we can choose lifts

f̃ : Y → X̃ and g̃ : Y → X̃ such that f̃ and g̃ are themselves homotopic. The following result implies
both of these claims.

Lemma 3.6.1. Let p : X̃ → X be a covering space. Let f : Y → X be a map and let f̃ : Y → X̃
be a lift of f through p. Let ht : Y → X be a homotopy with h0 = f . There is then a unique lift of ht
through p to a homotopy h̃t : Y → X̃ such that h̃0 = f̃ .
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Proof. Let H : Y × I → X be the map with H(y, t) = ht(y) for all y ∈ Y and t ∈ I. Our goal

is to prove that there is a unique lift H̃ : Y × I → X̃ of H through p such that H̃(y, 0) = f̃(y) for all
y ∈ Y . Uniqueness follows from Lemma 3.1.2, so we must only prove existence. In fact, even more is
true. For y ∈ Y , let γy : I → X be the path γy(t) = H(y, t). By path-lifting (Lemma 3.4.1), we can

lift γy to a path γ̃y : I → X̃ such that γ̃y(0) = f̃(0). Define H̃ : Y × I → X̃ via the formula

H̃(y, t) = γ̃y(t) for all y ∈ Y and t ∈ I.

By construction, H̃ is a lift of H with H̃(y, 0) = f̃(y) for all y ∈ Y .
There is only one problem: it is not obvious that this H is continuous. To see that it is, fix some

y0 ∈ Y . We will prove that H̃ is continuous at all points of the form (y0, t) by imitating our proof of
the path-lifting lemma (Lemma 3.4.1). Just like in that proof, using the Lebesgue number lemma we
can partition I into subintervals

0 = ϵ1 < ϵ2 < · · · < ϵn = 1

such that for all 1 ≤ k < n the image H(y0 × [ϵk, ϵk+1]) is contained in a trivialized open set in X.
In fact, we can even find some open neighborhood Vk of y0 such that the image H(Vk × [ϵk, ϵk+1]) is
contained in a trivialized open set in X.

DefineW1 = V1∩· · ·∩Vn−1, soW1 is an open neighborhood of y0. We will find a nested sequence

W1 ⊃W2 ⊃ · · · ⊃Wn

of open neighborhoods of y0 such that H̃ is continuous on each Wk × [0, ϵk] by constructing H̃ on
this set in such a way that it is clearly continuous. The picture is:

W2 ×[ε1,ε2] W3 ×[ε2,ε3] W4 ×[ε3,ε4]y0

W1 ×ε1

The construction will be inductive. First, define H̃ : W1 × 0 → X̃ via the formula H̃(y, 0) = f̃(y).

Next, assume that for some 1 ≤ k < n we have constructed a continuous lift H̃ : Wk × [0, ϵk] → X̃ of
H|Wk×[0,ϵk] : Wk × [0, ϵk] → X. We find an open neighborhood Wk+1 of y0 with Wk+1 ⊂Wk and an

extension of H̃ to Wk+1 × [0, ϵk+1] as follows.
Let U be a trivialized open set in X such that H(Wk × [ϵk, ϵk+1]) ⊂ U :

Wk ×[εk-1,εk] Wk+1 ×[εk,εk+1]y0

U

Let Ũ be the sheet lying above U with H(y0, ϵk) ∈ Ũ . Let Wk+1 be the preimage of Ũ under the
map3

Wk =Wk × ϵk X̃.
H̃(−,ϵk)

The setWk+1 is an open neighborhood of y0 and H̃ takesWk+1×ϵk to Ũ . The restriction p|Ũ : Ũ → U

is a homeomorphism, and on Wk+1 × [ϵk, ϵk+1] we define H̃ to be the composition

Wk+1 × [ϵk, ϵk+1] U Ũ X̃.H (p|Ũ )−1

3If we could ensure that H̃(Wk × ϵk) ⊂ Ũ (which would hold, for instance, if Wk and Ũ were connected), then
there would be no need to pass to the nested sequence W1 ⊃W2 ⊃ · · · . Since we are not assuming that our spaces are

locally connected, this is unfortunately necessary.
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By construction, this agrees with our already-constructed partial lift H̃ : Wk+1 × [0, ϵk] → X̃ on
Wk+1 × ϵk. □

3.7. Winding numbers

To illustrate the meaning of all this machinery, we study the classical subject of winding numbers.
Fix a point x0 ∈ C. We start with an intuitive discussion. Consider a map f : S1 → C \ x0. Roughly
speaking, the winding number windx0

(f) of f around x0 measures the number of times the vector
f(z) − x0 rotates as z moves around S1. The “number” here includes a sign: a counterclockwise
rotation counts as +1, while a clockwise rotation counts as −1. Here are several examples, with the
point x0 the black dot:

windx0(f)=0 windx0(f)=1 windx0(f)=-2 windx0(f)=-2 windx0(f)=0

One feature of the winding number is that it is invariant under homotopies of f through maps that
avoid x0. In fact, it is a complete invariant of such maps (see Exercise 3.1). It is enlightening to
verify that the different f above with the same winding number are homotopic.

We now give a precise definition. Let p : R → S1 be the universal cover. Consider some
f : S1 → C \ x0. Define a map F : I → S1 via the formula

F (t) =
f(e2πit)− x0
∥f(e2πit)− x0∥

for t ∈ I.

This definition makes sense since f(z) ̸= x0 for all z ∈ S1. Pick some θ0 ∈ R such that p(θ0) = F (0),

and use path lifting (Lemma 3.4.1) to lift F through p to F̃ : I → R with F̃ (0) = θ0. Since

F (0) = F (1), the lifts F̃ (0) = θ0 and F̃ (1) differ by an integer. We define

windx0(f) = F̃ (1)− F̃ (0) ∈ Z.
The only arbitrary choice we made was the lift θ0. Any other choice of θ0 is of the form θ0 +m for

some m ∈ Z, and using θ0 +m as our initial lift would change F̃ to F̃ +m. Since

(F̃ (1) +m)− (F̃ (0) +m) = F̃ (1)− F̃ (0),

this would not change windx0(f). In other words, windx0(f) ∈ Z is well-defined.

Example 3.7.1. Fix k ∈ Z, and define f : S1 → C \ x0 via the formula

f(z) = x0 + zk for z ∈ S1 ⊂ C.
In the above recipe, we then have

F (t) =
f(e2πit)− x0

∥f(e2πit)− x0∥
= e2πikt for t ∈ I.

We can take θ0 = 0, and then

F̃ (θ) = kθ for θ ∈ R.
It follows that windx0

(f) = k. We thus see that all integers can be winding numbers. □

One of the main properties of the winding number is that it is unchanged under homotopies:

Lemma 3.7.2. Let x0 ∈ C, and let f, g : S1 → C \ x0 be homotopic maps. Then windx0(f) =
windx0

(g).

Proof. Let p : R → S1 be the universal cover. As in the definition of the winding number,
define F : I → S1 and G : I → S1 via the formulas4

F (s) =
f(e2πis)− x0
∥f(e2πis)− x0∥

and G(s) =
g(e2πis)− x0
∥g(e2πis)− x0∥

for s ∈ I.

4We use s instead of t since we will later use t when we talk about homotopies.
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Pick some θ0 ∈ R such that p(θ0) = F (0), and use path lifting (Lemma 3.4.1) to lift F through

p : R → S1 to F̃ : I → R with F̃ (0) = θ0. We then have windx0
(f) = F̃ (1)− F̃ (0). We will hold off

on constructing the lift of G that would determine windx0
(g).

Now let ht : S1 → C \ x0 be a homotopy from f to g. Define Ht : I → S1 via the formula

Ht(s) =
ht(e

2πis)− x0
∥ht(e2πis)− x0∥

for s ∈ I,

soHt is a homotopy fromH0 = F toH1 = G. Use the homotopy lifting lemma (Lemma 3.6.1) to liftHt

to a homotopy H̃t : I → R with H̃0 = F̃ . It follows that H̃1 is a lift of G, so windx0
(g) = H̃1(1)−H̃1(0).

More generally, we have windx0
(ht) = H̃t(1)− H̃t(0) for all t ∈ I. This implies that the map

t 7→ H̃t(1)− H̃t(0) for t ∈ I

is a continuous integer-valued function. It is thus constant, so

windx0
(f) = H̃0(1)− H̃0(0) = H̃1(1)− H̃1(0) = windx0

(g). □

3.8. Degree of map of circle

Consider a map f : S1 → S1. We can regard f as a map to C \ 0, giving an integer wind0(f) that
we will call the degree5 of f . Denote this by deg(f). Lemma 3.7.2 implies that deg(f) is invariant
under homotopy, and just like in Example 3.7.1 we have deg(zn) = n for all n ∈ Z. In particular, the
degree of the identity is 1 and the degree of a constant map is 0. Since these are different, we deduce
the following, which was promised at the end of §3.5:

Lemma 3.8.1. The identity map 1 : S1 → S1 is not nullhomotopic.

The following basic result says that the degree is a complete invariant of homotopy classes of
maps from S1 to itself:

Lemma 3.8.2. Let f, g : S1 → S1 be maps with deg(f) = deg(g). Then f is homotopic to g.

Proof. By postcomposing f and g with paths of rotations of S1, we can homotope them to
maps with f(1) = g(1) = 1. Define F : I → S1 and G : I → S1 via the formulas

F (s) = f(e2πis) and G(s) = g(e2πis) for s ∈ I.

We thus have F (0) = G(0) = 1. Letting p : R → S1 be the universal cover, by the path lifting lemma

(Lemma 3.4.1) we can lift F and G through p to maps F̃ , G̃ : I → R with F̃ (0) = G̃(0) = 0. We

have F̃ (1) = deg(f) and G̃(1) = deg(g), which are equal by assumption. Define Ht : I → S1 via the
formula

Ht(s) = p((1− t)F̃ (s) + tG̃(s)) for s ∈ I.

The maps Ht are a homotopy from F to G, and since F̃ (0) = G̃(0) = 0 and F̃ (1) = G̃(1) ∈ Z we
have Ht(0) = 1 and Ht(1) = 1 for all t ∈ I. This implies that there exists some ht : S1 → S1 with

Ht(s) = ht(e
2πis) for s ∈ I.

This ht is a homotopy from f to g. □

Remark 3.8.3. In later volumes when we develop some basic results about homology, we will
generalize the notion of degree to an integer-valued invariant of maps f : Mn → Nn with Mn and
Nn compact oriented n-manifolds. Lemma 3.8.2 generalizes to a deep theorem of Hopf saying that
this degree is a complete invariant for maps f : Mn → Sn. □

5If f is a covering space, this is different from the degree of f as a covering space. For instance, it can be negative.
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3.9. Exercises

Exercise 3.1. Let x0 ∈ C and let f, g : S1 → C\x0 be maps with windx0
(f) = windx0

(g). Prove
that f is homotopic to g. Hint: first homotope f and g such that their images lie in S1, then appeal
to Lemma 3.8.2. □

Exercise 3.2. Let p : X̃ → X be a covering space and let f : Dn → X be a map. Set x0 = f(0).

For each x̃0 ∈ p−1(x0), prove that there is a unique lift f̃ : Dn → X̃ with f̃(0) = x̃0. □

Exercise 3.3. Let X and Y be spaces. Prove that the relation of being homotopic is an
equivalence relation on maps from X to Y . □

Exercise 3.4. Let X and Y and Z be spaces. For i = 0, 1, let fi : X → Y and gi : Y → Z be
maps. Assume that f0 is homotopic to f1 and that g0 is homotopic to g1. Prove that g0 ◦ f0 : X → Z
is homotopic to g1 ◦ f1 : X → Z. □

Exercise 3.5. Let f : X → Y and g : Y → Z be maps. Prove that g◦f : X → Z is nullhomotopic
if either f or g is nullhomotopic. □

Exercise 3.6. Let X be a space and let f : Sn → X be a map. Prove that f is null-homotopic
if and only if f extends to a map F : Dn+1 → X. □

Exercise 3.7. A space Y is contractible if the identity map 1Y : Y → Y is null-homotopic (we

will say more about this concept in Chapter 6). Let p : X̃ → X be a covering space with X̃ ≠ ∅ and

let f : Y → X be a continuous map with Y contractible. Prove that f can be lifted to f̃ : Y → X̃.
Hint: First prove that f is null-homotopic. □

Exercise 3.8. Let p : R → S1 be the universal cover. For a space X, prove that a map f : X → S1
can be lifted to a map f̃ : X → R if and only if f is null-homotopic. □

Exercise 3.9. Let X be a topological space and let f : X → C be a continuous function such
that f(x) ̸= 0 for all x ∈ X.

(a) Construct a degree 2 cover p : X̃ → X such that f ◦ p : X̃ → C has a continuous square root,

i.e., there exists a continuous function g : X̃ → C such that f(x) = g(x)2 for all x ∈ X.

(b) Prove that p : X̃ → X is a trivial cover if and only if f : X → C has a continuous square
root. □

Exercise 3.10. Define a map f : S1 × I → S1 × I via the formula

f(z, s) = (e2πisz, s) for all z ∈ S1 ⊂ C and s ∈ I.

Prove the following:

(a) There is a homotopy ft : S1×I → S1×I with f0 = f and f1 = unit such that ft(z, 0) = (z, 0)
for all z ∈ S1 and t ∈ I.

(b) There does not exist a homotopy ft : S1 × I → S1 × I with f0 = f and f1 = unit such that
ft(z, 0) = (z, 0) and ft(z, 1) = (z, 1) for all z ∈ S1 and t ∈ I. □

Exercise 3.11. Let f : S1 → C \ {x0} be a smooth map. Prove that you can compute the
winding number of f around x0 using the following formula from complex analysis:

windx0(f) =
1

2πi

∫
f

1

z − x0
dz .

Here the integral is the usual path integral. □

Exercise 3.12. Let f, g : S1 → S1 be maps. Prove that deg(f ◦ g) = deg(f) deg(g). □

Exercise 3.13. Let f : S1 → S1 be a map with deg(f) ̸= 1. Prove that there exists some x ∈ S1
such that f(x) = x. □
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Exercise 3.14. Let A ∈ GL2(R). Identify C with R2, so for z ∈ C we have Az ∈ C. Define
f : S1 → C \ 0 via the formula f(z) = Az. Prove that

wind0(f) =

{
1 if det(A) > 0,

−1 if det(A) < 0.

In other words, wind0(f) is the sign of det(A). □

Exercise 3.15. Let f : S1 → C be a smooth map. We say that f is an immersion if for all
x ∈ S1 the derivative map Dxf : TxS1 → Tf(x)C is an injective map from the 1-dimensional tangent

space TxS1 to the 2-dimensional tangent space Tf(x)C = C. A homotopy ft : S1 → C is a regular

homotopy if each ft is an immersion. Define g : S1 → C and h : S1 → C via the formulas

g(z) = z and h(z) = z−1 for z ∈ S1.
Prove that there does not exist a regular homotopy from g to h. Hint: for x ∈ S1, we can
identify TxS1 with a subspace of TxC = C. Using this identification, we have ix ∈ TxS1. For an
immersion f : S1 → C, consider the winding number around 0 of the map τf : S1 → C \ 0 defined by
τf (x) = (Dxf)(ix). □

Exercise 3.16. For a < b, a map γ : [a, b] → Rn is linear if for some x, y ∈ Rn it can be written
in the form

γ(t) = x+ ty for t ∈ [a, b].

A map γ : I → Rn is piecewise linear if there exist

0 = ϵ1 < ϵ2 < · · · < γn = 1

such that γ|[ϵk,ϵk+1] is linear for all 1 ≤ k < n. For an open set U ⊂ Rn and a map γ : I → U , prove
that there is a homotopy γt : I → U such that:

• γ0 = γ and γ1 is piecewise-linear; and
• γt(0) = γ(0) and γt(1) = γ(1) for all t ∈ I. □



CHAPTER 4

Covering spaces: homotopy classes of paths

Setting the stage for introducing the fundamental group in the next chapter, this chapter discusses
homotopy classes of paths and how they lift to covers. As an application, for a broad class of spaces

X we give a criterion that implies that all covers p : X̃ → X are trivial.

4.1. Homotopies of paths

Let X be a space and let x, y ∈ X. Recall from §3.4 that a path in X from x to y is a map
γ : I → X with γ(0) = x and γ(1) = y. We wish to study paths up to homotopy. This would be
uninteresting if we allowed the endpoints of γ to move during the homotopy since then all paths
would be homotopic if X is path-connected (see Exercise 4.1). We therefore make the following
definition:

Definition 4.1.1. Let X be a space, let x, y ∈ X, and let γ0, γ1 : I → X be two paths from x to
y. We say that γ0 and γ1 are homotopic paths from x to y if there exists a homotopy γt : I → X
from γ0 to γ1 that fixes the endpoints in the sense that

γt(0) = x and γt(1) = y for all t ∈ I.

The relation of being homotopic is an equivalence relation1 on paths, and we will call the equivalence
classes of paths under this equivalence relation homotopy classes. For a path γ, we will write [γ] for
its homotopy class. □

Here are two examples:

Example 4.1.2. For all x, y ∈ Rn, there is a unique homotopy class of path from x to y. Indeed,
let γ0 : I → Rn be the straight line path

γ0(s) = (1− s)x+ sy for s ∈ I.

If γ : I → Rn is any other path from x to y, then γ0 is homotopic to γ via the homotopy γt : I → Rn

defined by γt(s) = (1− t)γ0(s) + tγ(s) for all s ∈ I and t ∈ I. □

Example 4.1.3. View S1 as a subspace of C, and let γ0 : I → S1 and γ1 : I → S1 be the paths
defined by the formulas

(4.1.1) γ0(s) = eπis and γ1(s) = e−πis for s ∈ I.

Both γ0 and γ1 are paths from 1 to −1:

γ1

γ0

We claim that γ0 and γ1 are not homotopic. To see this, assume that they are homotopic and that

1The proof is the same as the one needed for Exercise 3.3.

35



36 4. COVERING SPACES: HOMOTOPY CLASSES OF PATHS

γt : I → S1 is a homotopy. Let p : R → S1 be the universal cover, so p(θ) = e2πiθ for all θ ∈ R. The
lift of γ0 to R starting at 0 is the map γ̃0 : I → R defined by

(4.1.2) γ̃0(s) = s/2 for s ∈ I.

By Lemma 3.6.1, we can lift the homotopy γt to a homotopy γ̃t : I → R with γ̃0 the map (4.1.2).
Since γt(0) = 1 and γt(1) = −1 for all t ∈ I, we have that

γ̃t(0) ∈ p−1(1) = 2πZ and γ̃t(1) ∈ p−1(−1) = 2πZ+ π for t ∈ I.

Since 2πZ is discrete, it follows that both γ̃t(0) and γ̃t(1) are constant functions of t, i.e., that
γ̃t(0) = 0 and γ̃t(1) = 1/2 for all t ∈ I. This implies in particular that γ̃1 is the lift of γ1 to R starting
at 0. From (4.1.1), we see that

γ̃1(s) = −s/2 for s ∈ I.

In particular, γ̃1(1) = −1/2, contradicting the fact that γ̃1(1) = 1/2. □

4.2. Lifting homotopies of paths

Let p : X̃ → X be a cover and let γ : I → X be a path in X from x ∈ X to y ∈ X. For x̃ ∈ p−1(x),

Lemma 3.4.1 implies that there exists a unique lift γ̃ : I → X̃ of γ with γ̃(0) = x̃. Generalizing the
reasoning from Example 4.1.3, we prove that this lift only depends on the homotopy class [γ]:

Lemma 4.2.1. Let p : X̃ → X be a cover and let γ0, γ1 : I → X be two homotopic paths in X

from x ∈ X to y ∈ X. Pick x̃ ∈ p−1(x), and for i = 0, 1 let γ̃i : I → X̃ be the lift of γi to X̃ with
γ̃i(0) = x̃. Then γ̃0 and γ̃1 are homotopic, i.e., [γ̃0] = [γ̃1] In particular, γ̃0(1) = γ̃1(1).

Proof. Let γt : I → X be a homotopy of paths from γ0 to γ1. We thus have

γt(0) = x and γt(1) = y for all t ∈ I.

By Lemma 3.6.1, we can lift the homotopy γt to a homotopy2 γ̃′t : I → X with γ̃′0 = γ̃0. We claim
that γ′t is a homotopy of paths from γ̃0 to γ̃1. Indeed, since γt(0) = x for all t ∈ I it follows that the
map t 7→ γ̃′t(0) is a path in the discrete space p−1(x). This path must be constant, so

γ̃′t(0) = γ̃′0(0) = γ̃0(0) = x̃ for all t ∈ I.

Similarly, γ̃′t(1) = γ̃0(1) for all t ∈ I, as claimed. It follows that γ̃′0 = γ̃0 is homotopic to γ̃′1. Moreover,
γ̃′1 is a lift of γ1 with γ̃′1(0) = x̃, so by the uniqueness of lifts of paths we have γ̃′1 = γ̃1. The lemma
follows. □

4.3. Connecting fibers

Let p : X̃ → X be a cover and let γ : I → X be a path in X from x ∈ X to y ∈ X. Define a map
τγ : p

−1(x) → p−1(y) as follows:

• For x̃ ∈ p−1(x), let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃. We then set τγ(x̃) = γ̃(1) ∈ p−1(y).

If γ is an embedding, then the lifts γ̃ used to construct τγ are all disjoint (see Exercise 4.2). The
picture thus looks like the following:

p

γ
x y

By Lemma 4.2.1, the map τγ only depends on the homotopy class [γ] of γ. The following lemma says
that it is a bijection:

Lemma 4.3.1. Let p : X̃ → X be a cover and let γ : I → X be a path in X from x ∈ X to y ∈ X.
Then the map τγ : p

−1(x) → p−1(y) is a bijection.

2We call this γ̃′t since it is not obvious that γ̃′1 = γ̃1, though we will soon prove this.
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Proof. Let γ : I → X be the path obtained by reversing γ, i.e.,

γ(s) = γ(1− s) for s ∈ I.

The path γ goes from y to x. To prove the lemma, it is enough to prove that τγ : p
−1(y) → p−1(x)

is an inverse to τγ . To see this, consider x̃ ∈ p−1(x). Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃, so

τγ(x̃) = γ̃(1). The lift γ̃ of γ to X̃ with γ̃(0) = γ̃(1) is exactly the path obtained by reversing γ̃, so

τγ(τγ(x̃)) = τγ(γ̃(1)) = γ̃(0) = x̃.

Similarly, τγ(τγ(ỹ)) = ỹ for all ỹ ∈ p−1(y). The lemma follows. □

Remark 4.3.2. For a cover p : X̃ → X with X connected, Lemma 1.2.1 implies that the fibers
p−1(x) all have the same cardinality. If X is path connected, then, Lemma 4.3.1 also implies this,
giving an alternate proof in this special case. □

4.4. Regularity from action on single fiber

Let p : X̃ → X be a cover with deck group G. Recall that p : X̃ → X is regular if for all x0 ∈ X
the group G acts transitively on the fiber p−1(x0). One application of Lemma 4.3.1 is that if X is
path connected it is enough to check this on a single fiber:

Lemma 4.4.1. Let p : X̃ → X be a cover with deck group G. Assume that X is path connected

and that there exists some x0 ∈ X such that G acts transitively on p−1(x0). Then p : X̃ → X is
regular.

Proof. Let x1 ∈ X. We must prove that G acts transitively on p−1(x1). Let γ be a path in X
from x0 to x1. Lemma 4.3.1 says that the the map τγ : p

−1(x0) → p−1(x1) is a bijection. Since the
action of G takes lifts of γ to lifts of γ, it commutes with τγ in the sense that

τγ(gx̃0) = gτγ(x̃0) for all g ∈ G and x̃0 ∈ p−1(x0).

Since τγ is a bijection and G acts transitively on p−1(x0), it follows that G acts transitively on
p−1(x1), as desired. □

4.5. 1-connectivity, spheres, and general position

We say that a space X is 0-connected if it is nonempty and path connected.3 For each x, y ∈ X,
there thus exists a path from x to y. We say that X is 1-connected if X is 0-connected and for all
x, y ∈ X there is a unique homotopy class of paths from x to y. It is also common to say that a
1-connected space is simply connected.

Example 4.5.1. We showed in Example 4.1.2 that Rn is 1-connected. We also showed in Example
4.1.3 that S1 is not 1-connected. □

Spheres of dimension at least 2 are important examples of 1-connected spaces:

Lemma 4.5.2. Let n ≥ 2. Then Sn is 1-connected.

Proof. Consider x, y ∈ Sn. We must prove that there is a unique homotopy class of paths from
x to y. Let z ∈ Sn be a point with z ≠ x, y. Since Sn \ z ∼= Rn, it follows from Example 4.1.2 that
there exists a unique homotopy class of path from x to y in Sn \ r. Letting γ be a path from x to y in
Sn, to prove the claim it is enough to prove that γ can be homotoped into Sn \ z. This is nontrivial
since there do exist space-filling curves in Sn.

One way to do this is to use smooth manifold techniques. Indeed, it follows from standard results
that γ can be homotoped to a smooth map that is transverse to z. The point z is 0-dimensional, and
thus is a codimension n submanifold of Sn. It follows that γ−1(z) is a codimension n ≥ 2 submanifold
of I, and thus that γ−1(z) = ∅.

Here is another approach that avoids using any technology. As in the following figure, let V ∼= Rn

be a small open neighborhood of z with x, y /∈ V :

3See Exercise 4.7 for the origin of this terminology.
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V
z

x y

The subspace V ∼= Rn is 1-connected (Example 4.1.2), and V \ z is path-connected. Intuitively, we
should be able to make a small homotopy to the portions of γ that pass through V to make them
miss z. Indeed, this is what the smooth manifold approach in the previous paragraph did. Lemma
4.5.3 below shows that this is in fact possible even in more general settings where smooth manifold
techniques are unavailable. □

The above proof used the following result:

Lemma 4.5.3 (General position). Let X be a space, let x, y ∈ X, and let γ be a path in X from
x to y. For some z ∈ X with z ̸= x, y, assume there is an open neighborhood V of z such that:

• V is 1-connected; and
• V \ z is path-connected.

Then γ can be homotoped such that its image does not contain z.

Proof. Set U = X \ z. The set {U, V } is an open cover of X, so by the Lebesgue number
lemma (cf. the proof of Lemma 3.4.1) we can find

0 = ϵ0 < ϵ1 < · · · < ϵk = 1

such that γ([ϵj−1, ϵj ]) is contained in either U or V . After possibly deleting some ϵj whose adjacent
intervals are mapped to the same open set we can also assume that for all 1 ≤ j ≤ k − 1 we
have γ(ϵj) ∈ U ∩ V . In particular, γ(ϵj) ̸= z for all 0 ≤ j ≤ k. Consider some j0 such that
γ([ϵj0−1, ϵj0 ]) ⊂ V :

γ(εj0-1)

γ(εj0)

z

V

Since V \ z is path-connected, there is some path δ in V \ z from γ(ϵj0−1) to γ(ϵj0). Since V
is 1-connected, the path obtained by re-parameterizing γ|[ϵj0−1,ϵj0 ]

to make its domain I = [0, 1]

is homotopic to δ. It follows that we can homotope γ to change γ|[ϵj0−1,ϵj0 ]
to a suitable re-

parametrization of δ:

δ

This ensures that the image of γ|[ϵi0−1,ϵi0 ]
does not contain z. Doing this repeatedly homotopes γ to

a path that avoids z, as desired. □

4.6. 1-connectivity and covers

Recall that a trivial cover of a space X is a cover that is isomorphic to a cover of the form
X ×I → X for some discrete set I. We will prove below that if X is 1-connected and has reasonable
local properties, then all covers of X are trivial. For instance, this is why we have not seen any
nontrivial covers of Sn for n ≥ 2.
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A space X is locally path connected if for all x ∈ X and all open neighborhoods U of x, there is
a path connected open neighborhood V of x with V ⊂ U . Most geometrically natural spaces are
locally path connected; for instance, all manifolds have this property. We have:

Theorem 4.6.1. Let X be a 1-connected space that is locally path connected and let p : X̃ → X

be a cover. Then p : X̃ → X is trivial.

Remark 4.6.2. This would be false without the assumption that X is locally path connected.
See Exercise 4.11. □

Proof of Theorem 4.6.1. Fix a point x0 ∈ X. Consider some x ∈ X. Let γ be a path in X
from x0 to x and let

τγ : p
−1(x0) −→ p−1(x)

be the map constructed in §4.3 by lifting γ to X̃ starting at different points of p−1(x0). As we
observed in §4.3, the map τγ only depends on the homotopy class of γ. Since X is 1-connected, all
choices of γ are homotopic, so τγ only depends on x. We therefore write τx = τγ .

We proved in Lemma 4.3.1 that τx is a bijection from p−1(x0) to p
−1(x). Every point of X̃ lies

in p−1(x) for some unique x ∈ X. Letting I = p−1(x0), we can therefore define a bijective set map

ϕ : X × I → X̃ as follows:

ϕ(x, x̃0) = τx(x̃0) for x ∈ X and x̃0 ∈ I = p−1(x0).

Let q : X ×I → X be the projection onto the first factor. By construction, ϕ fits into a commutative
diagram

X × I X̃

X

ϕ

q p

To prove that ϕ is an isomorphism from the trivial cover q : X × I → X to p : X̃ → X, we must
prove that ϕ is a homeomorphism. At this point, we remark that we do not even know that ϕ is
continuous.

Since ϕ is a bijection, to prove that it is continuous and a homeomorphism it is enough to
prove that it is a local homeomorphism. Consider some x ∈ X and x̃0 ∈ I = p−1(x0). Set

x̃ = ϕ(x, x̃0) = τx(x̃0), so x̃ ∈ p−1(x). Let U ⊂ X be a trivialized neighborhood of x and let Ũ ⊂ X̃

be the sheet lying above U with x̃ ∈ Ũ . Since X is locally path connected, we can shrink U and
assume that it is path connected. We claim that the restriction of ϕ to U × x̃0 is the composition

U × x̃0 U Ũ.
q (p|Ũ )−1

Since this is a homeomorphism between the open sets U × x̃0 and Ũ , this will give the theorem.
To see this claim, consider some y ∈ U . Let γ be a path in X from x0 to y, and let γ̃ be the lift

of γ to X̃ with γ̃(0) = x̃0. Set ỹ = γ̃(1), so ỹ ∈ p−1(y). What we must prove is that ỹ ∈ Ũ . In fact,
since X is 1-connected any two paths from x0 to y are homotopic, so we can choose γ to be any such
path we like.

Let γ1 be a path in X from x0 to x and let γ2 be a path in the path-connected subspace U from
x to y. Let γ : I → X be the path4

γ(s) =

{
γ1(2s) if 0 ≤ s ≤ 1/2,

γ2(2s− 1) if 1/2 ≤ s ≤ 1.

The path γ thus first goes along γ1 at 2× speed and then goes along γ2 at 2x speed. Let γ̃1 be the

lift of γ1 to X̃ with γ̃1(0) = x̃0. By assumption, γ̃1(1) = ϕ(x, x̃0) = x̃ ∈ Ũ . Let γ̃2 be the lift of γ2 to

X̃ with γ̃(0) = x̃:

4In the next chapter, we will systemize this kind of operation. In the notation of that chapter, we have γ = γ1·γ2.
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p

γ1x0 yx γ2
U

x0~

x~ y~γ1~

γ2~ U
~

As this figure shows, the lift γ̃ of γ to X̃ with γ̃(0) = x̃0 is

γ̃(s) =

{
γ̃1(2s) if 0 ≤ s ≤ 1/2,

γ̃2(2s− 1) if 1/2 ≤ s ≤ 1.

Since the image of γ2 lies in U and γ̃2(0) ∈ Ũ , it follows that γ̃2 is the composition

I U Ũ.
γ2 (p|Ũ )−1

In particular, ỹ = γ̃2(1) ∈ Ũ , as desired. □

4.7. Exercises

Exercise 4.1. Let X be a path-connected space and let γ0, γ1 : I → X be two paths in X. Prove
that γ0 is homotopic to γ1 if we do not require the homotopy to fix the endpoints of the path. □

Exercise 4.2. Let p : X̃ → X be a cover and let γ : I → X be a path in X. Assume that γ is

an embedding. Let γ̃1 and γ̃2 be two lifts of γ to X̃ such that γ̃1(0) ̸= γ̃2(0). Prove that the images
of γ̃1 and γ̃2 are disjoint. □

Exercise 4.3. Let n1, . . . , nm ≥ 2. Fix basepoints xi ∈ Sni for all 1 ≤ i ≤ nm. Define
Sn1 ∨ · · · ∨ Snm to be the space obtained from the disjoint union Sn1 ⊔ · · · ⊔ Snm by identifying all the
xi to a single point p0 (this is called the wedge sum of the Sni ; see §8.6). Prove that Sn1 ∨ · · · ∨ Snm

is 1-connected. □

Exercise 4.4. Prove that a nonempty space X is 1-connected if and only if any two maps
f, g : S1 → X are homotopic. □

Exercise 4.5. Calculate a complete set of homotopy classes of paths from 1 ∈ S1 ⊂ C to
−1 ∈ S1 ∈ C. Hint: the ideas from Example 4.1.3 will be helpful. □

Exercise 4.6. As discussed in Example 1.4.4, let Polysfn be the space of monic degree-n

polynomials without repeated roots, let RPolysfn be the space of pairs (f, x) with f ∈ Polysfn and

f(x) = 0, and let p : RPolysfn → Polysfn be the map p(f, x) = f , so p is a degree n covering space. Fix

points f, g ∈ Polysfn . Letting x1, . . . , xn ∈ C be the roots of f and y1, . . . , yn ∈ C be the roots of g,
we have

p−1(f) = {(f, x1), . . . , (f, xn)},
p−1(g) = {(g, y1), . . . , (g, yn)}.
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Let Sn be the symmetric group on n elements and let σ ∈ Sn. Prove that there is a path γ in Polysfn
from f to g such that the map ϕγ : p

−1(f) → p−1(g) is given by

ϕγ(f, xi) = (g, yσ(i)) for all 1 ≤ i ≤ n.

Hint: the ideas from the proof of Lemma 3.3.1 might be helpful. □

Exercise 4.7. This exercise explains why we defined 0- and 1-connectivity the way we did. The
sphere Sd and the disk Dd are usually defined for d ≥ 0. As a convention, for any d < 0 define
Sd = ∅ and Dd = ∅. For all d ∈ Z, the space Dd+1 contains Sd as a subspace. Say that a space X is
n-connected if the following holds for all d ≤ n:

• All continuous maps Sd → X extend to continuous maps Dd+1 → X.

Prove the following using the above definition for 0- and 1-connectivity rather than the one we gave
in the text:

(a) All spaces are n-connected for n ≤ −2.
(b) A space X is −1-connected if and only if it is nonempty.
(c) A space X is 0-connected if and only if it is nonempty and path-connected.
(d) A space X is 1-connected if and only if it is nonempty, path-connected, for all x, y ∈ X

there is a unique homotopy class of paths from x to y. □

Exercise 4.8. Let X be a graph and let p : X̃ → X be a cover. Prove that X̃ is a graph. Hint:
Start by adding vertices to the interiors of edges as necessary to ensure that X has no loops (make
sure this does not change the truth of the exercise!). Next, use Theorem 4.6.1 to prove that the

restriction of p : X̃ → X to each edge of X is trivial. □

Exercise 4.9. Let p : X̃ → X be a covering space, let Ỹ be a path component of X̃, and let

q = p|Ỹ . Assume that X is locally path connected. Prove that q : Ỹ → X is a covering space. □

Exercise 4.10. For n ≥ 1, let Cn ⊂ R2 be the circle of radius 1/n with center (0, 1/n). Let
X = ∪∞

n=1Cn, topologized as a subspace of R2. This is sometimes called the “earring space” or the
“shrinking wedge of circles”:

Construct a collection of covers {pi : X̃i → X}i∈I with the following property. Let X̃ be the disjoint

union of the X̃i and let p : X̃ → X be the map that is pi on Xi for all i ∈ I. Then p : X̃ → X is not
a cover. This shows that the converse to Exercise 4.9 is false. □

Exercise 4.11. The quasi-circle is the space Y obtained from the topologist’s sine curve

X =
{
(x, sin(1/x)) ∈ R2 | 0 < x ≤ 1

}
∪ {(0, y) | −1 ≤ y ≤ 1}

by connecting (1, sin(1)) to (0, 0) by an arc; see here:

Prove the following:

(a) The space Y is 1-connected.

(b) There exists a nontrivial cover p : Ỹ → Y . □
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Exercise 4.12. Let p : R → S1 be the universal cover. Set I = p−1(1). For z ∈ S1, let γz : I → S1
be the path that goes from 1 to z clockwise at constant speed and let

τγz
: I = p−1(1) −→ p−1(z)

be the map constructed in §4.3 by lifting γz to R starting at different points of I. Define ϕ : S1×I → R
as follows:

ϕ(z, z̃0) = τγz
(z̃0) for z ∈ S1 and z̃0 ∈ I.

Give an explicit formula for ϕ, and use this formula to show that ϕ is a non-continuous bijection of
sets. □



CHAPTER 5

Fundamental group: definition and basic properties

As the last chapter showed, there is a close connection between covers of a space X and the
collection of homotopy classes of paths in X. In this section, we organize the collection of homotopy
classes of paths in algebraic objects called the fundamental group and groupoid.

5.1. Multiplying homotopy classes of paths

Let X be a space. Our goal is to endow the set of homotopy classes of paths between points of X
with an algebraic structure. In this structure, only some paths can be “multiplied”. The definition is
as follows:

Definition 5.1.1. Let γ : I → X and γ′ : I → X be paths between points of X. We say that
γ and γ′ are composable if the terminal point of γ equals the initial point of γ′. If γ and γ′ are
composable, then γ·γ′ : I → X is the path defined by the formula

(γ·γ′)(s) =
{
γ(2s) if 0 ≤ s ≤ 1/2,

γ′(2s− 1) if 1/2 ≤ s ≤ 1.
for s ∈ I. □

In other words, γ·γ′ first traverses γ at 2× speed and then traverses γ′ at 2× speed:

γ'
γ

x y z

If γ goes from x to y and γ′ goes from y to z, then γ·γ′ goes from x to z. This only makes sense if γ
and γ′ are composable, and we do not define γ·γ′ if they are not.

Remark 5.1.2. Being composable is not symmetric: if γ·γ′ is defined, then it need not be the
case that γ′·γ is defined. □

For a path γ : I → X, recall that [γ] denotes its homotopy class. The following lemma says that
our “multiplication” descends to a multiplication on homotopy classes:

Lemma 5.1.3. Let X be a space. Let γ0 and γ′0 be composable paths in X. Let γ1 be a path that
is homotopic to γ0 and let γ′1 be a path that is homotopic to γ′0, so [γ0] = [γ1] and [γ′0] = [γ′1]. Then
[γ0·γ′0] = [γ′0·γ′1].

Proof. Assume that γ0 goes from x to y and that γ′0 goes from y to z. Let γt be a homotopy
from γ0 to γ1 and let γ′t be a homotopy from γ′0 to γ′1. For each t ∈ I, we have

γt(0) = x and γt(1) = γ′t(0) = y and γ′t(1) = z,

so γt and γ
′
t are composable and γt·γ′t is a well-defined path from x to z. As t varies over I, the

paths γt·γ′t form a homotopy from γ0·γ′0 to γ1·γ′1. □

5.2. Properties of multiplication

Let X be a space. This section explores properties of our multiplication that resemble the
properties of a group. We start with associativity. Let γ and γ′ and γ′′ be paths in X such that γ
and γ′ are composable and γ′ and γ′′ are composable. It follows that γ·γ′ and γ′′ are composable,
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and also that γ and γ′·γ′′ are composable:

γ'
γ γ''

Both (γ·γ′)·γ′′ and γ·(γ′·γ′′) thus make sense; however except in degenerate cases we have (γ·γ′)·γ′′ ̸=
γ·(γ′·γ′′). The following lemma shows that passing to homotopy fixes this:

Lemma 5.2.1 (Associativity). Let X be a space. Let γ and γ′ and γ′′ be paths in X such that γ
and γ′ are composable and γ′ and γ′′ are composable. Then [(γ·γ′)·γ′′] = [γ·(γ′·γ′′)].

Proof. The paths f1 = (γ·γ′)·γ′′ and f2 = γ·(γ′·γ′′) are almost the same. They both traverse
γ and then γ′ and then γ′′; however, they do this at different speeds. As functions on I = [0, 1], we
have the following:

• The path f1 traverses γ at 4× speed on the interval [0, 1/4], then γ′ at 4× speed on the
interval [1/4, 1/2], and then γ′′ at 2× speed on the interval [1/2, 1].

• The path f2 traverses γ at 2× speed on the interval [0, 1/2], then γ′ at 4× speed on the
interval [1/2, 3/4], and then γ′′ at 4× speed on the interval [3/4, 1].

Let ρ : I → I be the piecewise linear function with the graph

1/4 1/2 3/4 1

1/4

1/2

3/4

1

ρ

We then have f2 = f1 ◦ ρ. The lemma now follows from Lemma 5.2.2 below. □

Lemma 5.2.2 (Reparameterization lemma). Let X be a space and γ : I → X be a path. Let
ρ : I → I be a function such that f(0) = 0 and f(1) = 1. Then [γ ◦ ρ] = [γ].

Proof. The desired homotopy from γ ◦ ρ to γ is given by

γt(s) = γ((1− t)ρ(s) + ts) for t, s ∈ I.

Here we use the fact that f(0) = 0 and f(1) = 1 to ensure that the endpoints of γt do not move:

γt(0) = γ((1− t)ρ(0) + 0) = γ(0) and γt(1) = γ((1− t)ρ(1) + t) = γ(1− t+ t) = γ(1). □

We now turn to multiplicative identities. For a point x ∈ X, let cx : I → X be the constant path

cx(s) = x for s ∈ I.

This serves as an identity for our multiplication. However, since we can only multiply composable
paths an appropriate cx must be chosen for the left- and right-identities of any given path:

Lemma 5.2.3 (Multiplicative identities). Let X be a space and let γ be a path in X from x to y.
Then [γ·cx] = [γ] and [cy·γ] = [γ].

Proof. The path γ·cx stays at x on the interval [0, 1/2] and then traverses γ at 2× speed:

(γ·cx)(s) =
{
x if s ∈ [0, 1/2],

γ(2s− 1) if s ∈ [1/2, 1].
for s ∈ I.
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Letting ρ : I → I be the map

ρ(s) =

{
0 if s ∈ [0, 1/2],

2s− 1 if s ∈ [1/2, 1]
for s ∈ I,

we thus have γ·cx = γ ◦ ρ. Applying Lemma 5.2.2, we see that [γ·cx] = [γ ◦ ρ] = [γ], as desired. The
proof that [cy·γ] = [γ] is similar. □

Having found identities, our final goal is to find inverses. Let γ be a path in X from x to y.
Define γ : I → X to be the path that traverses γ in the reverse order:

γ(s) = γ(1− s) for s ∈ I.

The path γ goes from y to x, and serves as a sort of “inverse” to our multiplication:

Lemma 5.2.4 (Inverses). Let X be a space and let γ be a path in X from x to y. Then [γ·γ] = [cx]
and [γ·γ] = [cy].

Proof. The path γ·γ goes from x to x. For t ∈ I, define δt : I → X to be the path

δt(s) =


γ(2s) if s ∈ [0, t/2],

γ(t) if s ∈ [t/2, 1− t/2],

γ(2(1− s)) if s ∈ [1− t/2, 1].

for s ∈ I.

This makes sense since
γ(2(t/2)) = γ(t) = γ(2(1− (1− t/2))).

Geometrically, δt travels along γ to γ(t), waits for a while, and then goes back along γ:

γ

γ(1/4)

γ(1/2)

γ(3/4)

x y

δ1/4
δ1/2

δ3/4 δ1

Since δt is a homotopy from cx to γ·γ, we deduce that [cx] = [γ·γ], as desired. The proof that
[γ·γ] = [cy] is similar. □

5.3. Categorical language

Let X be a space. In the previous sections, we showed that the set of homotopy classes of paths
between points of X has a partially-defined “multiplication” that is associative, has identities, and
has inverses. What kind of algebraic structure could this be?

To answer this question, we need the language of category theory. Recall that a category C
consists of the following data:

• A collection of objects. We will write A ∈ C to indicate that A is an object of C.
• For all objects A,B ∈ C, a set C(A,B) of morphisms. We will often write f : A → B to
indicate that f is a morphism from A to B.

• For all objects A ∈ C, an identity morphism 1A : A→ A.

These morphisms can be composed: if f : A → B and g : B → C are morphisms, then we have a
morphism g ◦ f : A→ C. This composition should be associative in the sense that if f : A→ B and
g : B → C and h : C → D are morphisms, then

(f ◦ g) ◦ h = f ◦ (g ◦ h).
Because of this, there is no need to insert parentheses when composing morphisms. Under this
composition, the identity morphisms should be units: if f : A→ B is a morphism, then f ◦ 1A = f
and 1B ◦f = f .
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Example 5.3.1. The collection of all sets and set maps forms a category Set. □

Example 5.3.2. The collection of all topological spaces and continuous maps forms a category
Top. □

Example 5.3.3. The collection of all groups and homomorphisms forms a category Group. □

Example 5.3.4. For a group G, there is a category (also written G) with one object x and with
G(x, x) = G. □

Remark 5.3.5. The language of category theorem might seem overly abstract, but it turns out
to be very useful and clarifying. Fundamentally, it is just a way of organizing information. Typically
you cannot prove interesting new theorems by just defining a category, but the language of category
theory often suggests useful constructions. □

5.4. Fundamental groupoid

Our goal now is to encode the homotopy classes of paths in a space X into a category. The
objects of this category will be the points of X. For points x, y ∈ X, the morphisms from x to y will
be the homotopy classes of paths from x to y. There is one annoying technical point: in a category,
composition goes from right to left like functions. However, we multiply paths from left to right: if γ
is a path from x to y and γ′ is a path from y to z, then γ·γ′ is a path from x to z. To fix this, we
introduce the following notation:

Notation 5.4.1. Let X be a space. For points x, y, z ∈ X, let γ be a path in X from x to y and
let δ be a path in X from y to z. We then define γ′ ∗ γ = γ·γ′. This descends to homotopy classes of
paths, and we also write [γ′] ∗ [γ] = [γ′ ∗ γ]. □

We now define the following:

Definition 5.4.2. Let X be a space. The fundamental groupoid of X, denoted Π(X), is the
following category:

• The objects of Π(X) are the points of X.
• For points x and y, the Π(X)-morphisms from x to y are the set of all homotopy classes of

paths from x to y. For a path γ from x to y, we will write [γ] : x→ y for the corresponding
morphism from x to y.

• If γ is a path from x to y and γ′ is a path from y to z, then the composition of the morphisms
[γ] : x→ y and [γ′] : y → z is the morphism [γ′] ∗ [γ] : x→ z.

• For a point x ∈ X, the identity morphism of x is the constant path [cx] : x→ x. □

Lemma 5.2.4 says that all the morphisms in the fundamental groupoid Π(X) are invertible. This
is the defining property of a groupoid:

Definition 5.4.3. A groupoid is a category G in which all morphisms are invertible, i.e., such
that for all morphisms ϕ : A→ B, there is a morphism ϕ : B → A with ϕ◦ϕ = 1A and ϕ◦ϕ = 1B . □

Remark 5.4.4. Let G be a groupoid and ϕ : A→ B be a morphism in G. In Exercise 5.7, you

will prove that the inverse to ϕ is unique in the following sense. Consider ϕ, ϕ
′
: B → A. Then ϕ = ϕ

′

if any of the following conditions are satisfied:

• ϕ ◦ ϕ = ϕ
′ ◦ ϕ = 1A; or

• ϕ ◦ ϕ = ϕ ◦ ϕ′ = 1B ; or

• ϕ ◦ ϕ = 1A and ϕ ◦ ϕ′ = 1B .

Because of this, we can safely talk about the inverse to ϕ. □

As we discussed in Example 5.3.4, a group can be viewed as a category with one object. Under
this identification, a group is a groupoid. Conversely, consider a groupoid G. For A ∈ G, write

AutG(A) = {f | f : A→ A is a morphism in G} .
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Since all morphisms in G are invertible, this is a group. What is more, for a morphism ψ : A→ B in
G there is an isomorphism ψ∗ : AutG(A) → AutG(B) defined by

ψ∗(ϕ) = ψ ◦ ϕ ◦ ψ for all ϕ : A→ A in AutG(A).

In this way, a groupoid packages together a collection of groups along with certain isomorphisms
between them.

5.5. Fundamental group

Let X be a space. For x0 ∈ X the fundamental group of X with basepoint x0, denoted π1(X,x0),
is

π1(X,x0) = AutΠ(X)(x0).

In other words, π1(X,x0) is the group whose objects are homotopy classes of loops based at x0, i.e.,
paths γ from x0 to itself. In the fundamental group, we will use the concatanation product · rather
than ∗. This does not change the group (see Exercise 5.8).

If α is a path from x0 to x′0, then we get an isomorphism

α∗ : π1(X,x
′
0) → π1(X,x0)

defined by

α∗([γ]) = [α·γ·α] for all [γ] ∈ π1(X,x
′
0).

From these isomorphisms, we see the following:

Lemma 5.5.1. Let X be a path-connected space. Then for all x0, x
′
0 ∈ X we have π1(X,x0) ∼=

π1(X,x
′
0).

Proof. Just use the above isomorphism associated to a path from x0 to x′0. □

We will give many computations of π1(X,x0) over the next few chapters. For X path-connected,
Lemma 5.5.1 says that the isomorphism type of π1(X,x0) is independent of the basepoint x0.
The isomorphism type of π1(X,x0) is thus a useful invariant of path-connected spaces, i.e., if two
path-connected spaces have different fundamental groups, then they are not homeomorphic. The
fundamental groupoid is not so useful as an invariant since it knows far too much about the space;
for instance, its objects are literally the points of the space.

You might wonder why we bothered to introduce the fundamental groupoid at all. There are
two reasons:

• While for a path-connected space the isomorphism type of the fundamental group does not
depend on the basepoint, the isomorphisms between the fundamental groups at different
basepoints are not canonical. The fundamental groupoid packages them all together, and
is present at least implictly in all serious treatements of the fundamental group. It seems
perverse to refuse to give a name to a structure you use.

• There are many constructions in topology that are most naturally phrased in terms of the
fundamental groupoid. For instance, the most general form of the classification of covering
spaces uses the fundamental groupoid (see Chapter 11). Later volumes of this book will
contain other examples.

We remark that serious applications of π1(X,x0) often require a careful treatment of the basepoint x0.
Simply identifying the fundamental group at different basepoints will quickly lead you astray. This is
analogous to the fact that while all finite-dimensional vector spaces over a field k are isomorphic to
kn for some n ≥ 0, one cannot simply identify vector spaces with kn. Such an identification requires
a choice of basis, and often there is no natural choice. Much of linear algebra focuses on carefully
choosing bases adapted to different situations and studying how all these different bases are related.
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5.6. Functoriality: fundamental group

Before discussing how to calculate the fundamental group, we must study the way in which the
fundamental group and groupoid of X depend on X. We start with the fundamental group. Consider
a map f : X → Y and x0 ∈ X. If γ is a loop in X based at x0, then f ◦γ is a loop in Y based at f(x0).
The loop [f ◦ γ] only depends on the homotopy class of γ, and the map f∗ : π1(X,x0) → π1(Y, f(x0))
defined by

f∗([γ]) = [f ◦ γ] for all [γ] ∈ π1(X,x0)

is a homomorphism called the homomorphism induced by f .
Since the fundamental group is the group of homotopy classes of loops, one expects the homo-

morphism induced by a map to only depend on the homotopy class of the map. However, this is not
quite right since we have to be careful about the basepoint. To state things properly, we introduce
the following terminology:

Definition 5.6.1. A pointed space is a pair (X,x0) with X a space and x0 ∈ X. A map between
pointed space (X,x0) and (Y, y0) is a map f : X → Y such that f(x0) = y0. We will denote such a
map by f : (X,x0) → (Y, y0). A homotopy of maps from (X,x0) to (Y, y0) is a homotopy ft : X → Y
such that ft(x0) = y0 for all t ∈ I. Just like for maps, we will denote this by ft : (X,x0) → (Y, y0), and
if such an ft exists we will say that f0 : (X,x0) → (Y, y0) and f1 : (X,x0) → (Y, y0) are homotopic. □

With this setup, a map f : (X,x0) → (Y, y0) between pointed spaces induces a homomorphism
f∗ : π1(X,x0) → π1(Y, y0), and if f : (X,x0) → (Y, y0) and g : (X,x0) → (Y, Y0) are homotopic maps
between pointed spaces then f∗ = g∗. The homomorphisms induced by maps of pointed spaces have
the following two simple properties:

• for maps of pointed space f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0), we have (g ◦ f)∗ =
g∗ ◦ f∗; and

• the identity map 1 : (X,x0) → (X,x0) induces the identity homomorphism, i.e., 1∗ = 1.

All of this can be summarized in categorical language as follows. Recall that if C and D are categories,
then a functor F : C → D consists of the following data:

• For all objects C ∈ C, an object F (D) ∈ D.
• For all morphisms f : C1 → C2 between objects of C, a morphism F (f) : F (C1) → F (C2).

These are required to satisfy:

• for all morphisms f : C1 → C2 and g : C2 → C3 between objects of C, we have F (g ◦ f) =
F (g) ◦ F (f); and

• for all identity morphisms 1C : C → C in C, we have F (1C) = 1F (C).

To fit the fundamental group into this, let Top∗ be the category of pointed spaces, so the objects
of Top∗ are pointed spaces (X,x0) and the morphisms in Top∗ are the maps f : (X,x0) → (Y, y0)
between pointed spaces. We can then summarize our discussion by:

Lemma 5.6.2. The fundamental group is a functor π1 : Top∗ → Group.

5.7. Homotopies that move the basepoint

Let (X,x0) be a pointed space and let f0, f1 : X → Y be two homotopic maps. Set y0 = f0(x0)
and y1 = f1(x0). We therefore have maps f0 : (X,x0) → (Y, y0) and f1 : (X,x0) → (Y, y1). Since
their targets are different, it does not make sense to say that the induced maps

(f0)∗ : π1(X,x0) →π1(Y, y0),

(f1)∗ : π1(X,x0) →π1(Y, y1)

are equal. Instead, they are related as follows:

Lemma 5.7.1. Let X and Y be spaces and let ft : X → Y be a homotopy of maps from X to Y .
Let x0 ∈ X be a basepoint, and set y0 = f0(x0) and y1 = f1(x0). Let δ : I → Y be the following path
from y0 to y1:

δ(s) = fs(x0) for s ∈ I.

Then for all [γ] ∈ π1(X,x0) we have (f0)∗([γ]) = [δ](f1)∗([γ])[δ] ∈ π1(Y, y0).
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Proof. For t ∈ I, let yt = δ(t) and let δt : I → Y be the path

δt(s) = fts(x0) = δ(ts) for s ∈ I.

The path δt thus goes from δ(0) = y0 to δ(t) = yt:

y0=f0(x0)

yt=ft(x0)

δt

y1=f1(x0)ft⚬γ

f1⚬γf0⚬γ

Since ft ◦ γ is a loop based at ft(x0) = δ(t) = yt, it follows that the map t 7→ δt·(ft ◦ γ)·δt is a
homotopy of paths. Since δ0 is the constant path based at y0, we conclude that

(f0)∗([γ]) = [f0 ◦ γ] = [δ0·(f0 ◦ γ)·δ0] = [δ1·(f1 ◦ γ)·δ1] = [δ](f1)∗([γ])[δ]. □

5.8. Functoriality: fundamental groupoid

It will play less of a role in this book, but for completeness we now explain how to think about
the fundamental groupoid as a functor. Recall that a groupoid is a category in which all morphisms
are invertible. For groupoids G1 and G2, a groupoid homomorphism from G1 to G2 is a functor
F : G1 → G2. Unpacking this, F consists of the following data:

• For each object x ∈ G1, an object F (x) ∈ G2.
• For each morphism ϕ : x→ y in G1, a morphism F (ϕ) : F (x) → F (y) in G2.

The morphisms F (ϕ) must respect composition in the obvious sense. For each x ∈ G1, we have the
group AutG1

(x), and F : G1 → G2 induces a group homomorphism F∗ : AutG1
(x) → AutG2

(f(x)).
If we think of a groupoid as a collection of groups connected by isomorphisms, the homomorphism
F : G1 → G2 can be regarded as a collection of group homomorphisms that respect the given
isomorphisms.

Let Groupoid be the category whose objects are groupoids and whose objects are groupoid
homomorphisms. The fundamental groupoid can then be regarded as a functor Π: Top → Groupoid:

• For a space X, we have the groupoid Π(X).
• For a map of space f : X → Y , we have the groupoid homomorphism f∗ : Π(X) → Π(Y )
defined as follows:

– An object of Π(X) is a point x ∈ X, and f∗(x) = f(x) ∈ Y .
– A morphism in Π(X) from x ∈ X to y ∈ X is the homotopy class of a path γ from x

to y, and f∗([γ]) = [f ◦ γ].
We remark that unlike for the fundamental group, the groupoid homomorphisms f∗ : Π(X) → Π(Y )
are not homotopy invariant, at least not in a naive sense. See Exercise 5.9 for one way to think about
this.

5.9. Exercises

Exercise 5.1. Let (X,x0) and (Y, y0) be pointed spaces. Prove that

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0). □

Exercise 5.2. Let X be a space and let x0, x
′
0 ∈ X. For each path α from x0 to x′0, we defined

a change of basepoint isomorphism α∗ : π1(X,x
′
0) → π1(X,x0) in §5.5:

α∗([γ]) = [α·γ·α] for all [γ] ∈ π1(X,x
′
0).

Prove that α∗ is independent of the path α if and only if π1(X,x0) is abelian. This exercise shows that
when the fundamental group is abelian there is a canonical isomorphism between the fundamental
groups at different basepoints. □

Exercise 5.3. Prove that π1(S1, 1) ∼= Z. Hint: though this does not follow directly from the fact
that the degree is a complete invariant of homotopy classes of maps S1 → S1 (Lemma 3.8.2), it can
be proved by carefully examining the construction of the degree and the proof of Lemma 3.8.2. □
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Exercise 5.4. Let (X,x0) be a pointed space. Do the following:

(a) Prove that there is a bijection between elements of π1(X,x0) and homotopy classes of maps
of pointed spaces f : (S1, 1) → (X,x0).

(b) Let f : (S1, 1) → (X,x0) be a map of pointed spaces. Prove that f represents the trivial
element of π1(X,x0) if and only if f extends to a map F : (D2, 1) → (X,x0).

(c) Let Z be a graph with a single vertex ∗ and two loops ℓ1 and ℓ2 based at ∗. Regarding
the ℓi as circles, for maps f1, f2 : (S1, 1) → (X,x0) let f1 ∨ f2 : (Z, ∗) → (X,x0) be the map
that equals f1 on ℓ1 and f2 on ℓ2. Problem: Construct a map m : (S1, 1) → (Z, ∗) with
the following property:

• Consider elements [γ1], [γ2] ∈ π1(X,x0). Represent [γi] by a map fi : (S1, 1) → (X,x0).
Then [γ1·γ2] is represented by the map (f1 ∨ f2) ◦m : (S1, 1) → (X,x0). □

Exercise 5.5. Let X be a space and let ft : X → X be a homotopy from f0 = 1X to f1 = 1X .
For a basepoint x0 ∈ X, let γ : I → X be the path γ(s) = fs(x0). Prove that [γ] ∈ π1(X,x0) is a
central element, that is, that [γ] commutes with all elements of π1(X,x0). □

Exercise 5.6. Let G be a topological group, that is, a space G that is also a group such that
the multiplication map G×G → G and the inversion map G → G are continuous. Letting 1 ∈ G
be the identity, prove the following:

(a) Define an alternate multiplication on π1(G, 1) using the multiplication on G as follows: for
[γ1], [γ2] ∈ π1(G, 1), define [γ1] ∗ [γ2] = [γ3] where γ3 : I → G is the loop

γ3(s) = γ1(s)γ2(s) for s ∈ I.

Prove that ∗ is the same as the usual multiplication on π1(G, 1).
(b) Prove that π1(G, 1) is abelian. □

Exercise 5.7. Let G be a groupoid and ϕ : A→ B be a morphism in G. Consider ϕ, ϕ
′
: B → A.

Then ϕ = ϕ
′
if any of the following conditions are satisfied:

• ϕ ◦ ϕ = ϕ
′ ◦ ϕ = 1A; or

• ϕ ◦ ϕ = ϕ ◦ ϕ′ = 1B ; or

• ϕ ◦ ϕ = 1A and ϕ ◦ ϕ′ = 1B . □

Exercise 5.8. Let G be a group with multiplication ∗. The opposite group, denoted Gop, has
the same elements as G. However, the multiplication · in Gop is the “opposite” multiplication to G:

x·y = y ∗ x for all x, y ∈ Gop.

Prove the following:

(a) The opposite group Gop is a group.
(b) The group Gop is isomorphic to G. □

Exercise 5.9. Let ft : X → Y be a homotopy of maps between spaces. Prove that ft induces
a natural isomorphism between the functors f0 : Π1(X) → Π1(Y ) and f1 : Π1(X) → Π1(Y ) giving
the induced maps between fundamental groupoids. Here recall that if F,G : C → D are functors
between categories C and D, then a natural isomorphism Ψ: F → G consists of the following data:

• For all objects A of C, a D-isomorphism Ψ(A) : F (A) → G(A).

These must satisfy the following:

• For all morphisms λ : A→ B between objects of C, the diagram

F (A) F (B)

G(A) G(B)

F (λ)

Ψ(A) ΨB

G(λ)

must commute. □



CHAPTER 6

Fundamental group: triviality

In this chapter and the next, we calculate the fundamental groups of many spaces. This chapter
focuses on spaces with trivial fundamental groups. The results we prove will be needed in the next
chapter to handle spaces with nontrivial fundamental groups.

6.1. 1-connectivity and the fundamental group

Recall that a space X is 1-connected if it is nonempty and for all x, y ∈ X there is a unique
homotopy class of paths from x to y. If X is 1-connected and locally path connected, then Theorem
4.6.1 says that all covers of X are trivial. We can relate this to the fundamental group as follows:

Lemma 6.1.1. Let (X,x0) be a path-connected pointed space.1 Then X is 1-connected if and only
if π1(X,x0) = 1.

Proof. If X is 1-connected, then in particular there is only one homotopy class of paths from
x0 to itself, so π1(X,x0) = 1. Conversely, assume that π1(X,x0) = 1. Let p and q be two points of
X, and let γ and γ′ be paths from p to q:

γ'

γ

x0

p q

Since X is path-connected, Lemma 5.5.1 implies that π1(X, p) = 0. The path γ·γ′ is a path from p
to p, so [γ·γ′] ∈ π1(X, p) must be trivial. We therefore have

[γ′] = 1[γ′] = [γ·γ′][γ′] = [γ][γ′][γ′] = [γ],

as desired. □

Lemma 4.5.2 says that Sn is 1-connected for n ≥ 2, so we deduce the following:

Lemma 6.1.2. For n ≥ 2, we have π1(Sn, x0) = 1 for all x0 ∈ Sn.

6.2. Retracts and deformation retracts

Let X be a space and let A ⊂ X be a subspace. A retract of X to A is a map r : X → A such
that r(a) = a for all a ∈ A, i.e., such that r|A = 1. A deformation retraction of X to A is a homotopy
rt : X → X from the identity 1 : X → X to a map r1 : X → X such that:

• the map r1 is a retraction of X to A; and
• for all t ∈ I and a ∈ A, we have rt(a) = a.

If there exists a deformation retraction of X to A, then we say that A is a deformation retract of X
and that X deformation retracts to A. Here are several examples:

Example 6.2.1. Let U ⊂ Rn be a set that is star-shaped, i.e., such that there exists a point
p0 ∈ U such that for all x ∈ U the line segment from p0 to x is contained in U . For instance, U might
be convex. We claim that U deformation retracts to p0. Indeed, the maps rt : U → U defined by

rt(x) = (1− t)x+ tp0 for x ∈ U and t ∈ I

1Since x0 ∈ X, the space X is nonempty and thus 0-connected.
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form a deformation retraction. □

Example 6.2.2. Let f : Z → A be a map between spaces. The mapping cylinder of f , denoted
Cyl(f), is the quotient of the disjont union (Z × I) ⊔A that identifies (z, 1) ∈ Z × I with f(z) ∈ A
for all z ∈ Z:

Z×0

Z×1

f

A

Cyl(f)

For z ∈ Z and s ∈ I, let (z, s) be the image of (z, s) ∈ Z × I in Cyl(f). Both Z and A are subspaces

of Cyl(f): the space Z can be identified with
{
(z, 0) | z ∈ Z

}
, and the copy of A in (Z × I) ⊔ A

maps homeomorphically to a copy of A in Cyl(f). The space Cyl(f) deformation retracts to A via
the deformation retract rt : Cyl(f) → A defined by

{
rt(z, s) = (z, (1− t)s) for (z, s) ∈ Z × [0, 1],

rt(a) = a for a ∈ A.

The reader can easily check that this makes sense and is continuous. □

Example 6.2.3. As in the following figure, let A be the letter A embedded in the plane and for
some small ϵ > 0 let X be a closed ϵ-neighborhood of A:

Then X deformation retracts to A via a deformation retraction during which points travel along
straight line segments to A. In fact, this is a special case of the previous example: the boundary
of X consists of two circles S1 ⊔ S1, and X is homeomorphic to the mapping cylinder of a map
f : S1 ⊔ S1 → A. □

Example 6.2.4. We claim that Sn−1 is a deformation retract of Rn\0. Geometrically, the picture
is as follows, where the blue arrows show the paths points of Rn \ 0 travel during the deformation
retraction:
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In formulas, this deformation retraction is given by the maps rt : Rn \ 0 → Rn \ 0 defined by

rt(x) =

(
(1− t) +

t

∥x∥

)
x for x ∈ Rn \ 0 and t ∈ I. □

Recall from §5.6 that the fundamental group is functorial under maps of pointed spaces. Using
this, we have:

Lemma 6.2.5. Let X be a space, let A ⊂ X be a subspace, and let a0 ∈ A. Let ι : (A, a0) → (X, a0)
be the inclusion. Then:

(i) If A is a retract of X, then the map ι∗ : π1(A, a0) → π1(X, a0) is injective.
(ii) If A is a deformation retraction of X, then the map ι∗ : π1(A, a0) → π1(X, a0) is an

isomorphism.

Proof. We start with (i). Let r : X → A be a retraction. Since r ◦ ι = 1A, it follows that
r∗ ◦ ι∗ = 1π1(A,a0), i.e., that the following composition is the identity:

π1(A, a0) π1(X, a0) π1(A, a0).
ι∗ r∗

This implies that ker(ι∗) is trivial, so ι∗ is injective.
We now prove (ii). Let rt : X → X be a deformation retraction. In light of (i), it is enough to

prove that the map ι∗ : π1(A, a0) → π1(X, a0) is surjective. Consider a loop δ : I → X based at p.
We must prove that δ can be homotoped to a loop lying in A. Since rt(a0) = a0 for all t ∈ I, we
have a homotopy of paths rt ◦ δ. Since r1(X) ⊂ A, the image of the endpoint r1 ◦ δ of this homotopy
lies in A, as desired. □

Here is one consequence:

Lemma 6.2.6. Let n ≥ 3. For x0 ∈ Rn \ 0, we have π1(Rn \ 0, x0) = 0.

Proof. Since Rn \ 0 is path-connected, we can change x0 without changing the fundamental
group. Choose x0 such that x0 ∈ Sn−1 ⊂ Rn \ 0. Since Rn \ 0 deformation retracts to Sn−1, Lemma
6.2.5 implies that

π1(Rn \ 0, x0) ∼= π1(Sn−1, x0).

Since n ≥ 3, this vanishes by Lemma 4.5.2. □

6.3. Contractibility

A nonempty space X is said to be contractible if the identity map 1 : X → X is homotopic to
a constant map. This holds, for instance, if X deformation retracts to any one-point subspace x0.
Star-shaped or convex subspaces of Rn are therefore contractible. However, being contractible is
more general than this since none of the points of X need to be fixed during the contraction. See
Exercise 6.12 for an example where these are genuinely different notions.

If a space X deformation retracts to a point x0 ∈ X, then it follows from Lemma 6.2.5 that

π1(X,x0) ∼= π1(x0, x0) = 1.

The following shows that this vanishing holds more generally if X is merely contractible.
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Lemma 6.3.1. Let X be a contractible space and let x0 ∈ X. Then π1(X,x0) = 1.

Proof. Let ft : X → X be a homotopy from the identity 1 : X → X to a constant map. Since
X is path connected, its fundamental groups at different basepoints are all isomorphic. We can
therefore assume without loss of generality that x0 is the constant value of f1. Let δ : I → X be the
following path from x0 to x0:

δ(s) = fs(x0) for s ∈ I.

Consider [γ] ∈ π1(X,x0). Since f0 = 1 we have (f0)∗([γ]) = [γ], and since f1 is the constant map x0
we have (f1)∗([γ]) = 1. By Lemma 5.7.1, we therefore have

[γ] = (f0)∗([γ]) = [δ](f1)∗([γ])[δ] = [δ][δ] = 1. □

6.4. Trees

Here is an important example. Recall that we discussed graphs in §2.5. A tree is a nonempty
connected graph with no cycles. We will prove:

Lemma 6.4.1. Let T be a tree and let v0 be a vertex of T . Then T deformation retracts to v0,
and in particular T is contractible.

Proof. We will omit some of the point-set details, and invite the reader in Exercise 6.9 to verify
that all the maps we construct are continuous. Inductively define subtrees

T0 ⊂ T1 ⊂ T2 ⊂ · · ·

of T in the following way. Start by letting T0 = v0. Next, if Tn−1 has been constructed, let Tn be
the subtree obtained from Tn−1 by adding all edges of T with an endpoint in Tn−1:

T0T0 T1 T2 T3 T4
v0

Since T is a tree, each new edge e added to Tn−1 to form Tn has the property that exactly one
endpoint of e lies in Tn−1; otherwise, e would form part of a cycle in Tn. This implies that Tn
deformation retracts to Tn−1 via a deformation retract where the points of these new edges e move
along e to the vertex lying in Tn−1. Let rnt : Tn → Tn be this deformation retract. Since T is
connected, we have

T =

∞⋃
n=0

Tn.

For each n ≥ 1 and m ≥ 0, consider the retractions

Rn
m = rn1 ◦ · · · ◦ rn+m

1 : Tn+m → Tn−1.

For m1 ≥ m2 ≥ 0, the retractions Rn
m1

and Rn
m2

agree where they both are defined, namely on Tn+m2
.

It follows that for a fixed n ≥ 1 the different Rn
m glue together to give a retraction Rn : T → Tn−1.

Assume first that T = Tn1
for some n1 ≫ 0 (which holds, for instance, if T is a finite tree). In

this case, we can deformation retract T = Tn1
to T0 = v0 by first using rn1

t to deformation retract
Tn1

to Tn1−1, then using rn1−1
t to deformation retract Tn1−1 to Tn1−2, etc. For the general case, we

have to be a bit more careful. Write

I = {0} ∪
∞⋃

n=1

In with In = [1/2n, 1/2n−1],

so In has length 1/2n. Define rt : T → T in the following way:

• For t ∈ In and x ∈ T , let rt(x) = rn2n(t−1/2n)(R
n+1(x)).

• For t = 0 and x ∈ T , define r0(x) = x.
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The reader will check in Exercise 6.9 that this definition makes sense and is continuous. By definition
we have r0 = 1, and since 1 ∈ I1 we have

r1(x) = r11(R
2(x)) = v0 for x ∈ T ,

where we recall that T0 is the vertex v0. It follows that rt is a deformation retraction of T to v0, as
desired. □

6.5. Projective spaces

Recall that real projective space RPn is the space of lines through the origin in Rn+1. This has
the degree 2 cover p : Sn → RPn taking x ∈ Sn ⊂ Rn+1 to the line through x. This reflects the fact
that RPn is not 1-connected, as we will see rigorously in Chapter 7.

An important relative of RPn is complex projective space, that is, the space CPn of lines through
the origin in Cn+1. This can be topologized just like RPn: letting Cn+1 \ 0 → CPn be the map taking
z ∈ Cn+1 to the line through z, we give CPn the quotient topology:

• A set U ⊂ CPn is open if and only if its preimage in Cn+1 \ 0 is open.

The space CPn will play an important role in subsequent volumes when we discuss homology and
cohomology. However, it is less important in this volume since it turns out to be 1-connected. We
outline a proof of this in Exercise 6.3.

6.6. Exercises

Exercise 6.1. Let X be a contractible space and let A ⊂ X be a subspace such that there is a
retract r : X → A. Prove that A is contractible. □

Exercise 6.2. Let X be a space. Letting p be a one-point space, the cone on X, denoted
Cone(X), is the mapping cylinder of the constant map X → p. The space X is a subspace of
Cone(X). Also, the image of p in Cone(X) is called the cone point. The suspension of X, denoted
ΣX, is the quotient of the disjoint union Cone(X) ⊔ Cone(X) that identifies the copies of X in the
two cones. Do the following:

(a) Prove that Cone(X) deformation retracts to the cone point, and in particular is contractible.
(b) Prove that ΣSn ∼= Sn+1.
(c) If X is 0-connected, then prove that ΣX is 1-connected. Note that by (b) this generalizes

the fact that Sn is 1-connected for n ≥ 2. Hint: apply Lemma 4.5.3 (general position). □

Exercise 6.3. This exercise outlines a proof that CPn is 1-connected. As notation, for
(z1, . . . , zn+1) ∈ Cn+1 \ 0 let [z1, . . . , zn+1] be the corresponding point in CPn, i.e., the line in
Cn+1 though the origin and (z1, . . . , zn+1). The proof will be by induction.

(a) For the base case, prove that CP1 ∼= S2, so CP1 is 1-connected.
(b) Now assume that n ≥ 2 and that CPn−1 is 1-connected. Fix a basepoint x0 ∈ CPn−1.

Embed CPn−1 into CPn via the map taking [z1, . . . , zn] ∈ CPn−1 to [z1, . . . , zn, 0] ∈ CPn.
Using this, we identify x0 with a point in CPn. Finally, set r = [0, . . . , 0, 1] ∈ CPn.
Problem: for [γ] ∈ π1(CPn, x0), prove that γ can be homotoped such that its image does
not contain r. Hint: use Lemma 4.5.3 (general position).

(c) Prove that CPn \r deformation retracts to CPn−1. Since our inductive hypothesis implies
that π1(CPn−1, x0) = 1, this will imply that π1(CPn \r, x0) = 0 and thus by (b) that
π1(CPn, x0) = 1. We conclude that CPn is 1-connected. □

Exercise 6.4. Let X be a space. Prove the following:

(a) The space X is contractible if and only if for all spaces Y , every map f : X → Y is
nullhomotopic.

(b) The space X is contractible if and only if for all spaces Z, every map g : Z → X is
nullhomotopic. □

Exercise 6.5. Let X be a space. Let Cone(X) be the cone on X from Exercise 6.2. Prove that
X is contractible if and only if X is a retract of Cone(X). □
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Exercise 6.6. Let f : X → Y be a map. Prove that there exists a map g : Y → X such that
g ◦ f : X → X is homotopic to the identity if and only if X is a retract of the mapping cylinder
Cyl(f). □

Exercise 6.7. Do the following:

(a) Let X be a space. Assume that X = U ∪ V where U and V are 1-connected open sets such
that U ∩ V is 0-connected. For x0 ∈ U ∩ V , prove that π1(X,x0) = 1. Hint: Start with
some [γ] ∈ π1(X,x0) and try to write [γ] = [γ1] · · · [γn] where each [γi] ∈ π1(X,x0) is such
that the image of γi lies in either U or V . The Lebesgue number lemma will be useful.

(b) Use part (a) to give an alternate proof that Sn is 1-connected for n ≥ 2.
(c) Generalize part (a) as follows. Let X be a space and let X = ∪i∈IUi with each Ui open.

Let x0 ∈ X be a basepoint such that x0 ∈ Ui for all i ∈ I. Assume the following:
• The open set Ui is 0-connected for all i ∈ I.
• The open set Ui ∩ Uj is 0-connected for all i, j ∈ I.
• The map π1(Ui, x0) → π1(X,x0) is trivial for all i ∈ I.

Prove that π1(X,x0) = 1.

□

Exercise 6.8. Let X and Y be spaces. The join of X and Y , denoted X ∗ Y , is

X ∗ Y = X ⊔ Y ⊔ (X × Y × I)/ ∼,
where ∼ makes the following identifications for all x ∈ X and y ∈ Y :

(x, y, 0) ∼ x and (x, y, 1) ∼ y.

Identify X and Y with their images in X ∗ Y . The space X ∗ Y can be viewed as the space of all
lines connecting points of X to points of Y . In analogy with the usual way of writing a line segment
between points of Rn using barycentric coordinates, it is useful to denote the image in X ∗ Y of
(x, y, t) ∈ X × Y × I by the formal sum (1− t)x+ ty. Do the following:

(a) For n,m ≥ 0, we have Sn ∗ Sm ∼= Sn+m+1.
(b) For n,m ≥ 0, we have Dn ∗ Dm ∼= Dn+m+1.
(c) Prove that (X ∗ Y ) \X deformation retracts to Y .
(d) Assume that Y is nonempty. For x0 ∈ X, prove that the map π1(X,x0) → π1(X ∗ Y, x0) is

trivial.
(e) Assume that Y is 0-connected and that Y is nonempty and locally path connected. Prove

that X ∗ Y is 1-connected. Hint: Part (c) of Exercise 6.7 might be useful. It also might
be easier to first prove this when Y is 0-connected. For the general case, since Y is locally
path connected, we can decompose it into clopen path components Y = ⊔i∈IYi. □

Exercise 6.9. Verify that the maps constructed in the proof of Lemma 6.4.1 are well-defined
and continuous. □

Exercise 6.10. Let O(n) be the n-dimensional orthogonal group. Prove that GLn(R) deformation
retracts to O(n). Hint: analyze the Gram–Schmidt orthogonalization process. □

Exercise 6.11. Let X ⊂ R2 be the union of the following subspaces:

• the horizontal segment [0, 1]× 0; and
• for each r ∈ Q, the vertical segment r × [0, 1− r].

See here:

Prove the following:
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(a) The space X deformation retracts to any point on the horizontal segment [0, 1]× 0.
(b) The space X does not deformation retract to any point that does not lie on [0, 1]× 0. □

Exercise 6.12. Let X ⊂ R2 be the subspace from Exercise 6.11. Let Y ⊂ R2 be the space
obtained by identifying countably many copies of X in the following pattern:

......

Prove the following:

(a) The space Y is contractible.
(b) The space Y does not deformation retract to any point. □





CHAPTER 7

Fundamental group: basic calculations

We now calculate a number of nontrivial fundamental groups. One of the main places areas to
which the fundamental group can be applied is group theory, where it allows geometric arguments
that would be difficult to express purely algebraically. We give a first example of this at the end of
this chapter, where we use the fundamental group to construct free groups.

7.1. Calculating the fundamental group using covering spaces

The following is our main tool for calculating fundamental groups:

Theorem 7.1.1. Let p : X̃ → X be a regular cover such that X̃ is 1-connected. Set G = Deck(X̃).
Then for x0 ∈ X we have π1(X,x0) ∼= G.

Proof. Pick x̃0 ∈ X̃ with p(x̃0) = x0. Define a set map f : π1(X,x0) → G as follows. Consider

[γ] ∈ π1(X,x0). By path lifting (Lemma 3.4.1), we can lift γ to a path γ̃ in X̃ starting at x̃0.
Lemma 4.2.1 implies that the homotopy class of γ̃ only depends on the homotopy class of γ. In

particular, γ̃(1) ∈ X̃ only depends on [γ] ∈ π1(X,x0). The point γ̃(1) projects to γ(1) = x0:

x0~

x0 γ

γ~
γ(1)=gx0~ ~

p

Since X̃ is a path-connected regular cover of X, there exists a unique g ∈ G with gx̃0 = γ̃(1); see
Lemma 2.2.1. Define f([γ]) = g. To prove the theorem, it is enough to prove that f is a group
homomorphism that is injective and surjective. We do this in the following three claims:

Claim 1. The set map f is a group homomorphism.

Consider [γ1], [γ2] ∈ π1(X,x0). For i = 1, 2, let γ̃i be the lift of γi to X̃ with γ̃i(0) = x̃0. Letting

gi = f([γi]), the path γ̃i thus goes from x̃0 to gix̃0. The deck group G acts not only on X̃, but also

on paths in X̃. Under this group action, the path g1γ̃2 goes from g1x̃0 to g1g2x̃0. It follows that γ̃1
and g1γ̃2 are composable paths, and γ̃1·(g1γ̃2) goes from x̃0 to g1g2x̃0:

p

x0
γ1γ2

x0~
γ1~

g2x0~

g1x0~
γ2~

p

x0
γ1γ2

x0~

γ1~
g1x0~

g1g2x0~g1γ2~

The path γ̃1·(g1γ̃2) is the lift of γ1·γ2, so by definition this implies that f([γ1·γ2]) = g1g2, as desired.
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Claim 2. The homomorphism f is surjective.

Consider g ∈ G. Since X̃ is path-connected, we can find a path γ̃ in X̃ from x̃0 to gx̃0. The path
γ̃ projects to a path γ in X from x0 to x0, so [γ] ∈ π1(X,x0). By definition, f([γ]) = g.

Claim 3. The homomorphism f is injective.

Consider [γ] ∈ π1(X,x0) such that f([γ]) = 1. Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Since

f([γ]) = 1, we must have γ̃(1) = x̃0, so γ̃ is a loop based at x̃0. Since X̃ is 1-connected, the loop γ̃

is homotopic to a constant loop. Composing this homotopy with the map p : X̃ → X, we obtain a
homotopy from γ to a constant loop, so [γ] = 1, as desired. □

7.2. The lifting map

Before giving examples of Theorem 7.1.1, we give a name to the isomorphism underlying its

conclusion. Let p : X̃ → X be a regular cover such that X̃ is 1-connected. Let x̃0 ∈ X̃, and set

x0 = p(x̃0) and G = Deck(X̃). Theorem 7.1.1 says that π1(X,x0) ∼= G. In the proof of that theorem,
this isomorphism is given by the following set map f : π1(X,x0) → G:

• Consider [γ] ∈ π1(X,x0). Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. There exists a unique
g ∈ G with γ̃(1) = gx̃0. We then have f([γ]) = g.

We will call this isomorphism f : π1(X,x0) → G the lifting map. The proof that it is a well-defined

homomorphism does not use the fact that X̃ is 1-connected. Moreover, the proof that it is surjective

only uses the fact that X̃ is path connected. The 1-connectedness of X̃ is only used in the proof that
f is injective. We record these observations in the following lemma:

Lemma 7.2.1. Let p : X̃ → X be a regular cover. Let x̃0 ∈ X̃, and set x0 = p(x̃0) and

G = Deck(X̃). The following hold:

(i) The lifting map f : π1(X,x0) → G is a homomorphism.

(ii) If X̃ is path connected, then the lifting map f : π1(X,x0) → G is surjective.

7.3. Circle and torus

We now give some calculations using Theorem 7.1.1. Our first is important enough that we single
it out as a lemma. Recall that we identify S1 with a subset of C, so 1 ∈ S1.

Lemma 7.3.1 (Circle). We have π1(S1, 1) ∼= Z, where n ∈ Z corresponds to the loop γn : I → S1
defined by γn(s) = e2πins for s ∈ I.

Proof. Consider the universal cover p : R → S1 of S1, so p(θ) = e2πiθ. As we observed in
Example 2.2.2, this is a regular cover with deck group Z, which acts on R by integer translations.
Since R is contractible, it is 1-connected. We can therefore apply Theorem 7.1.1 to see that
π1(S1, 1) ∼= Z. This isomorphism is given by the lifting map, and under the lifting map n ∈ Z
corresponds to the loop γn. □

Our next example generalizes this:

Example 7.3.2 (Torus). As in Example 1.3.3 let Zn act on Rn by integer translations and
identify the quotient Rn/Zn with the n-dimensional torus Tn = (S1)×n:

ℝ2

=

ℝ2/ℤ2 𝕋2
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This figure shows the case n = 2. The projection p : Rn → Zn is a regular cover with deck group Zn.
Set x0 = p(0). Since Rn is contractible, it is 1-connected. We can thus apply Theorem 7.1.1 to see
that π1(Tn, x0) = π1((S1)×n, x0) ∼= Zn. □

Remark 7.3.3. More generally, by Exercise 5.1 if X and Y are spaces with basepoints x0 ∈ X
and y0 ∈ Y , then π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0). □

7.4. Brouwer fixed point theorem

Since π1(S1, 1) ∼= Z but Sn is 1-connected for all n ≥ 2, it follows that S1 is not homeomorphic
to Sn for any n ≥ 2. This is not a particularly profound result, and can be proved in many other
ways.1 In the next chapter we will talk about homotopy equivalences, and we will be able to deduce
the more interesting result that S1 and Sn are not homotopy equivalent for any n ≥ 2.

Here, however, we give an interesting application of a different flavor that also illustrates how
the functorality of the fundamental group can be used to obstruct the existence of maps. Regard S1
as the boundary of D2.

Lemma 7.4.1. There does not exist a retraction r : D2 → S1.

Proof. Assume for the sake of contradiction that a retraction r : D2 → S1 exists. Let ι : S1 → D2

be the inclusion, and fix some x0 ∈ S1. Since r ◦ ι = 1S1 , the following composition is the identity:

π1(S1, x0) π1(D2, x0) π1(S1, x0).

Z 0 Z

ι∗ r∗

However, since the middle group is 0 this composition is also the 0 map, a contradiction. □

This has the following consequence:

Theorem 7.4.2 (Brouwer fixed point theorem). Let f : D2 → D2 be a continuous map. Then f
has a fixed point, i.e., there exists some x ∈ D2 with f(x) = x.

Proof. Assume for the sake of contradiction that f(x) ̸= x for all x ∈ D2. Define r : D2 → S1
to be following map:

• For x ∈ D2, let r(x) be the point where the ray from f(x) to x intersects S1:

r(x)

f(x)
x

By construction, f is a continuous retraction, contradicting Lemma 7.4.1. □

Remark 7.4.3. The Brouwer fixed point theorem (Theorem 7.4.2) actually holds for maps
f : Dn → Dn with n ≥ 1 arbitrary. See Exercise 7.5 for the (easy) proof when n = 1. Similarly,
Lemma 7.4.1 holds in all dimension. For general n ≥ 1, we gave an elementary proof of both of
these results in Volume 1 using a combinatorial result called Sperner’s Lemma. Once we develop the
theory of homology, we will be able to give a proof of the general case that is very similar to the
proof we gave above for n = 2. □

7.5. Real projective space

We now turn to real projective space:

1For instance, by observing that S1 \ {p, q} has two path components for any distinct p, q ∈ S1, while removing

two points from Sn cannot disconnect Sn for any n ≥ 2.
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Example 7.5.1 (Real projective space). Let n ≥ 2. Recall that RPn is the space of lines through
the origin in Rn+1. As we described in Example 1.3.4, there is a 2-fold cover p : Sn → RPn taking
x ∈ Sn to the line through x. This is a regular cover with deck group the cyclic group C2 of order 2,
which acts on Sn by the antipodal map x 7→ −x. Fix some x0 ∈ Sn, and let ℓ0 = p(x0) ∈ RPn. Since
n ≥ 2, we have π1(Sn, x0) = 1 (Lemma 4.5.2). We can therefore apply Theorem 7.1.1 and see that

π1(RPn, ℓ0) ∼= C2.

This isomorphism is given by the lifting map, and under the lifting map the generator of C2

corresponds to the loop in π1(RPn, ℓ0) that rotates the line ℓ0 around an axis by an angle of π,
coming back to itself but with the reversed orientation. □

Remark 7.5.2. We have RP1 ∼= S1 (see Exercise 7.7), so π1(RP1, ℓ0) ∼= Z. □

7.6. Free groups: definition

Before we can give our next example, we need some background about free groups. Let S be a
set. Roughly speaking, a free group on S is a group that is easy to map out of. One need only say
where the elements of S must go. Here is the formal definition:

Definition 7.6.1. Let S be a set. A free group on S is a group F (S) equipped with a map of
sets ι : S → F (S) such that the following holds:

(†) Let G be a group and h : S → G be a map of sets. Then there is a unique homomorphism
H : F (S) → G such that h = H ◦ ι.

The set S is called a free basis for F (S). □

Remark 7.6.2. The condition (†) is an example of a universal mapping property. □

The map ι in the definition of a free group is necessarily injective:

Lemma 7.6.3. Let S be a set and let F (S) be a free group on S. Then the associated map
ι : S → F (S) is injective.

Proof. Let G be a group of cardinality at least |S| and let h : S → G be an injection. By the
universal property (†), there is a homomorphism H : F (S) → G such that h = H ◦ ι. Since h is
injective, it follows that ι is injective. □

Let F (S) be a free group on a set S. By Lemma 7.6.3, we can identify S with a subset of F (S)
via the corresponding map ι. Having done this, we can now rephrase (†) as follows:

(†′) Let G be a group and h : S → G be a map of sets. Then h extends uniquely to a
homomorphism H : F (S) → G.

Whenever we work with free groups in this book, we will identify S with a subset of F (S) and use
(†′) as the defining property of F (S). The subset S generates F (S):

Lemma 7.6.4. Let S be a set and let F (S) be a free group on S. Then S generates F (S).

Proof. Let G < F (S) be the subgroup generated by S. By (†′), the inclusion h : S ↪→ G
extends uniquely to a homomorphism H : F (S) → G. The composition

F (S) G F (S)H

and the identity map 1F (S) : F (S) → F (S) both extend 1S : S → S, and thus must be equal. We
conclude that G = F (S), as desired. □

It is not obvious that a free group on a set S exists. We will soon construct one, but first we
prove that they are unique in the following sense:

Lemma 7.6.5. Let S be a set and let F (S) and F ′(S) be free groups on S. There is then a unique
isomorphism ϕ : F (S) → F ′(S) with ϕ|S = 1S.

Proof. Applying (†′) to the identity maps between S ⊂ F (S) and S ⊂ F ′(S), we get:

• a homomorphism ϕ : F (S) → F ′(S) such that ϕ|S = 1S ; and
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• a homomorphism ϕ′ : F ′(S) → F (S) such that ϕ′S = 1S .

The composition ϕ′ ◦ ϕ : F (S) → F (S) fixes each element of the generating set S, so ϕ′ ◦ ϕ = 1F (S).
Similarly, ϕ ◦ ϕ′ = 1F ′(S). We conclude that ϕ and ϕ′ are inverse isomorphisms. □

Remark 7.6.6. A similar argument shows uniqueness for other mathematical objects defined by
universal mapping properties. □

7.7. Free groups: reduced words

Let S be a set. A word in S is a formal expression w = sϵ11 · · · sϵnn with si ∈ S and ϵi ∈ {±1} for
all 1 ≤ i ≤ n. This word is reduced if for all 1 ≤ i < n we do not have

sϵii s
ϵi+1

i+1 ∈
{
ss−1, s−1s | s ∈ S

}
.

By cancelling terms of the form ss−1 and s−1s with s ∈ S we can reduce any word to a reduced
word. If S is a subset of a group Γ, then we can regard words in S as elements of Γ. Cancelling
terms of the form ss−1 and ss−1 does not change the associated element of Γ, so every element of Γ
that can be written as a word in S can be written as a reduced word in S.

The main existence theorem for free groups is:

Theorem 7.7.1. Let S be a set. There then exists a group F (S) with S ⊂ F (S) such that:

(i) the group F (S) is a free group on S; and
(ii) every element of F (S) can be represented by a unique reduced word in S.

The standard proof of this is algebraic, and proves the two parts separately:

• First, free groups are proved to exist, establishing (i).
• Next, (ii) is proved using the universal property of the free group.

See Exercises 7.13 and 7.14 for an outline of this proof. We will prove Theorem 7.7.1 geometrically
in the next section. Our argument will reverse the logic of the algebraic proof:

• First, we will use geometry to construct a group F (S) containing a set S such that every
element of F (S) can be represented by a unique reduced word in S. This establishes part
(ii) of Theorem 7.7.1.

• Next, we will prove that F (S) has the desired universal property, establishing part (i).

In fact, the second step is quite formal:

Lemma 7.7.2. Let S be a set and let Γ be a group containing S such that every element of Γ can
be represented by a unique reduced word in S. Then Γ is a free group on S.

Proof. Let G be a group and let h : S → G be a set map. We extend h to H : Γ → G as follows.
Consider g ∈ Γ. We can uniquely write g as a reduced word in S:

g = sϵ11 · · · sϵnn with s1, . . . , sn ∈ S and ϵ1, . . . , ϵn ∈ {±1}.

We then define

H(g) = h(s1)
ϵ1 · · ·h(sn)ϵn .

This is a homomorphism. Indeed, consider g, g′ ∈ Γ. Write them as reduced words in S:

g =sϵ11 · · · sϵnn with s1, . . . , sn ∈ S and ϵ1, . . . , ϵn ∈ {±1},
g′ =te11 · · · temm with t1, . . . , tm ∈ S and e1, . . . , em ∈ {±1}.

Then the reduced word representing gg′ is obtained from

sϵ11 · · · sϵnn t
e1
1 · · · temm

by cancelling terms. The images of those terms under H also cancel, so

H(gg′) = h(s1)
ϵ1 · · ·h(sn)ϵnh(t1)e1 · · ·h(tm)em = H(g)H(g′).

It follows that H is a well-defined homomorphism. Since S generates Γ, it is the only possible
homomorphism extending h. □
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7.8. Constructing free groups using graphs

We now prove Theorem 7.7.1. In fact, we prove something better. Recall our convention from
§2.5 that all graphs are oriented. Let S be a set. Denote by XS the graph with one vertex x0 and
with |S| oriented edges, each labeled with an element of S. For instance, if S = {a, b, c} then XS is

x0
a b

c

Each s ∈ S corresponds to a loop in XS based at x0, and we will identify s with the corresponding
element of π1(XS , x0). The elements of S correspond to distinct elements of π1(XS , x0). Indeed, for
s ∈ S let rs : (XS , x0) → (S1, 1) be the retraction onto the loop labeled s. The induced map

(rs)∗ : π1(XS , x0) → π1(S1, 1) ∼= Z
takes s to 1 ∈ Z and each s′ ∈ S \ {s} to 0 ∈ Z, so s ≠ s′ for all s′ ∈ S \ {s}. We can therefore
identify S with a subset of π1(XS , x0). We then have:

Theorem 7.8.1. Let S be a set. The following hold:

(i) the group π1(XS , x0) is a free group on S; and
(ii) every element of π1(XS , x0) can be represented by a unique reduced word in S.

Proof. By Lemma 7.7.2, it is enough to prove (ii). Define TS to be an infinite tree each of
whose vertices has valence 2|S|. Label the oriented edges of TS by elements of S such that for each
vertex v of TS there are:

• |S| edges coming out of v labeled by elements of S; and
• |S| edges going into v labeled by elements of S.

For instance, if S = {a, b, c} then the local picture of TS around v looks like

a

b
c

a

bc

Fix a vertex x̃0 of TS .
There is a covering space p : TS → XS taking each vertex of TS to x0 and each oriented edge of

TS labeled by s ∈ S to the corresponding loop in XS labeled by s. For instance, if S = {a, b} this is
the cover

p

XS
TS

x0
a bx0~

Just like in the S = {a, b} case, the cover p : TS → XS is regular.2 Since TS is a tree, it is contractible
and hence 1-connected (see Lemma 6.4.1).

Letting G be the deck group of p : TS → X, we can apply Theorem 7.1.1 to see that

(7.8.1) π1(XS , x0) ∼= G.

2The point here is that T is a tree each of whose vertices has the same local picture, so there are edge-label

preserving graph automorphisms of T taking any vertex to any other vertex. These are deck transformations.
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The group G acts simply transitively on the vertices of T , so each vertex is of the form gx̃0 for some
unique g ∈ G. The isomorphism (7.8.1) is given by the lifting map, so the element of π1(X,x0)
corresponding to g ∈ G is the homotopy class of the loop in X based at x0 obtained by taking a
path in T from x̃0 to gx̃0 and projecting it to X.

For each vertex x̃1 of T , there is a unique sequence of edges connecting x̃0 to x̃1 that does not
backtrack, that is, traverse an edge in one direction and then go backwards along the same edge.
This non-backtracking condition is exactly what is needed to ensure that this edge-path corresponds
to an element of π1(XS , x0) represented by a reduced word in S. In this way, we see that every
element of π1(XS , x0) is represented by a unique reduced word in S, as desired. □

7.9. Exercises

Exercise 7.1. For d ≥ 2, construct a pointed space (X,x0) with π1(X,x0) ∼= Cd. Hint:
generalize the construction of RPn as Sn/C2. It might be helpful to view S2n−1 as a subspace of
Cn ∼= R2n. □

Exercise 7.2. Let A be a finitely generated abelian group. Construct a pointed space (X,x0)
with π1(X,x0) ∼= A. Hint: the previous exercise might be helpful here. □

Exercise 7.3. Let M be the Mobius band:

M

Fixing a basepoint x0 ∈M , prove that π1(M,x0) ∼= Z in two ways:

(a) By identifying M as Z/Z for an explicit 1-connected space Z equipped with a covering
space action of Z.

(b) By showing that M deformation retracts to a subspace A ⊂M with A ∼= S1. □

Exercise 7.4. Let X be the “line with two origins”, i.e., the quotient of R ⊔ R that for x ∈ R
nonzero identifies the points x in the two copies of R to a single point. This is a non-Hausdorff space
composed of an open set R \ 0 along with two “origins”:

02

01

Letting x0 ∈ X, prove that π1(X,x0) ∼= Z. Hint: Exercise 6.7 might be useful for proving that the
cover you produce is 1-connected. □

Exercise 7.5. Prove the 1-dimensional Brouwer fixed point theorem: every continuous map
f : D1 → D1 has a fixed point. □

Exercise 7.6. Say that a space X has the fixed point property if every continuous map f : X → X
has a fixed point.

(a) Prove that if X has the fixed point property and Y ⊂ X is a retract of X, then Y has the
fixed point property.

(b) Prove that every finite tree T has the fixed point property. Hint: embed T into D2 such
that D2 retracts to T , and apply the Brouwer fixed point theorem.

(c) A challenging problem: give a direct proof of part (b) that does not use the Brouwer fixed
point theorem. □

Exercise 7.7. Prove that RP1 ∼= S1, and thus that for all x0 ∈ RP1 we have π1(RP1, x0) ∼= Z. □

Exercise 7.8. Let X be a graph with one vertex x0 and two oriented edges labeled a and b, so
π1(X,x0) is the free group F (a, b) on a and b. Define a map f : (X,x0) → (X,x0) as in the following
figure:
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f

X

x0
a bX

x0a
bb

b

Here the three vertices on the left hand side all map to the single vertex x0 on the right hand side,
and the edges connecting those three vertices map to the edges on the right hand side as indicated.
Do the following:

(a) Calculate the induced map f∗ : π1(X,x0) → π1(X,x0) by determining the images of the
two generators a, b ∈ F (a, b) = π1(X,x0) in π1(X,x0) = F (a, b).

(b) Prove that the map f∗ you computed in the previous part is not the identity, and conclude
that f : (X,x0) → (X,x0) is not homotopic to the identity as a map of pointed spaces.

(c) Prove f : X → X is homotopic to the identity as a map of unpointed spaces. □

Exercise 7.9. Let Σ2 be a closed oriented genus 2 surface and let X be a graph with one vertex
x0 and two oriented edges labeled a and b. Fix a basepoint y0 ∈ Σ2:

X

x0
a b

y0

Σ2

We do not yet know how to calculate π1(Σ2, y0), but in this exercise and the next we will prove some
things about it. Your goal in this exercise is to construct a map f : (Σ2, y0) → (X,x0) such that the
induced map f∗ : π1(Σ2, y0) → π1(X,x0) is surjective. Hint: To prove it is surjective, draw explicit
elements of π1(Σ2, y0) mapping to a and to b. □

Exercise 7.10. Just like in the previous exercise, let Σ2 be a closed oriented genus 2 surface
with a basepoint y0. Let [γ1], . . . , [γ4] ∈ π1(Σ2, y0) be the following curves:

γ1

γ2 γ3

γ4

Let T4 = (S1)×4 be the 4-dimensional torus. Construct a map f : Σ2 → T4 such that the map
f∗ : π1(Σ2, y0) → π1(T4, f(y0)) ∼= Z4 takes [γi] to the ith basis vector of Z4. Hint: It might be easier
to construct maps f1, f2 : Σ2 → T2 such that:

• (f1)∗ takes [γ1] and [γ2] to the basis elements of π1(T2, f1(y0)) ∼= Z2 and has [γ3], [γ4] ∈
ker((f1)∗); and

• (f2)∗ takes [γ3] and [γ4] to the basis elements of π1(T2, f1(y0)) ∼= Z2 and has [γ1], [γ2] ∈
ker((f2)∗).

You can then take f = f1 × f2. To construct the fi, think about collapsing subsurfaces of Σ2 to
points. □

Exercise 7.11. Let G be a group. The goal of this exercise is to construct a pointed space
(X,x0) with π1(X,x0) ∼= G. This exercise uses the notion of the join of spaces from Exercise 6.8. Do
the following:

(a) Let A and B be spaces equipped with left G-actions. Prove that there is an induced action
of G on the join A ∗B.

(b) Let X = G and Y = G, both viewed as discrete spaces. Let J be the join J = X ∗Y . Prove
that J is 0-connnected.

(c) Let Z = G, again viewed as a discrete space. Prove that K = Z ∗ J is 1-connected. Hint:
Exercise 6.8 will be useful.



7.9. EXERCISES 67

(d) The group G acts on itself on the left. By part (a), we get induced actions of G on J and
K. Prove that the action of G on K is a covering space action. Letting X = G/K and
fixing a basepoint x0 ∈ X, deduce that π1(X,x0) ∼= G. □

Exercise 7.12. Let F (a1, . . . , an) be the free group on elements a1, . . . , an. Recall that the
abelianization of a group G is the abelian group G/[G,G], where [G,G] is the normal subgroup
generated by elements of the form [g, h] = ghg−1h−1 with g, h ∈ G. Prove that the abelianization of
F (a1, . . . , an) is isomorphic to Zn. Hint: start by constructing a map F (a1, . . . , an) → Zn using the
universal property of the free group. □

Exercise 7.13. In this exercise, we outline one of the classical constructions of a free group on
a set S.

(a) Let M be the set of all words w = sϵ11 · · · sϵnn , including the empty word. Prove that M is
an associative monoid under concatanation. Here an associative monoid is a set equipped
with an associative multiplication with an identity, but unlike in a group there need not be
inverses.

(b) Let ∼ be the equivalence relation on M where w ∼ w′ if w′ can be obtained from w by a
sequence of the following two moves:

• For some s ∈ S, insert either ss−1 or s−1s somewhere in w.
• For some s ∈ S, delete a subword of the form ss−1 or s−1s from w.

Set F =M/ ∼. Prove that the multiplication onM descends to an associative multiplication
on M , and that F is a group.

(c) Prove that F along with the evident map ι : S → F satisfies the universal property of a free
group. Hint: first prove that M satisfies an appropriate universal property to be a “free
associative monoid” on S. □

Exercise 7.14. Let S be a set and let F (S) be a free group on S. This exercise outlines the
classical algebraic proof that every element of F (S) is represented by a unique reduced word in S.

(a) Let W be the set of reduced words in S. Use the universal property of the free group to
construct a left action of F (S) on W that for s ∈ S multiplies a word w ∈ W by s to get
sw and then reduces appropriately to get a reduced word. Hint: an action is the same as a
homomorphism F (S) → Sym(W) where Sym(W) is the symmetric group consisting of all
bijections of W. You can construct such homomorphisms using the universal property of
F (S).

(b) Prove that every element of F (S) is represented by a unique reduced word. Hint: consider
w ∈ F (S), and think about where w takes the trivial word 1 ∈ W. □

Exercise 7.15. For a group G generated by a set S, we have the following two classic decision
problems:

• The word problem: decide if two words in S represent the same element of G.
• The conjugacy problem: decide if two words in S represent conjugate elements of G, that is,
elements g1, g2 ∈ G such that there is some h ∈ G with g2 = hg1h

−1.

For a free group F (S) on a set S, the word problem is easy since two words in S represent the same
element of G if and only if they become the same reduced word after repeatedly cancelling terms of
the form ss−1 and s−1s with s ∈ S. In this exercise, you will solve the conjugacy problem in F (S).

(a) Consider a word w = sϵ11 · · · sϵnn in S. For some k ≥ 1, let

w′ = s
ϵ1+k

1+k · · · sϵn+k

n+k ,

where the subscripts are interpreted modulo n. Prove that w and w′ are conjugate elements
of F (S). We say that they are cyclically conjugate.

(b) Say that a word w = sϵ11 · · · sϵnn is cyclically reduced if w is reduced and sϵ11 ̸= s−ϵn
n . Prove

that every element of F (S) is conjugate to a cyclically reduced word.
(c) Prove that if w and w′ are cyclically reduced words, then w and w are conjugate elements of

F (S) if and only if they are cyclically conjugate. Since we can check this by just enumerating
all the cyclic conjugates of w, this gives an algorithm for solving the conjugacy problem. □





CHAPTER 8

Fundamental group: homotopy equivalences

In this chapter, we discuss a weakening of a homeomorphism called a homotopy equivalences
that plays an important role in algebraic topology.

8.1. Pointed homotopy equivalences

A map f : (X,x0) → (Y, y0) between pointed spaces is a homotopy equivalence if there exists a
map g : (Y, y0) → (X,x0) such that g ◦ f : (X,x0) → (X,x0) and f ◦ g : (Y, y0) → (Y, y0) are both
homotopic to the identity. We call g a homotopy inverse to f , and if there is a homotopy equivalence
between (X,x0) and (Y, y0) then we will say that (X,x0) is homotopy equivalent to (Y, y0) and write
(X,x0) ≃ (Y, y0). Here is an example:

Example 8.1.1. Let X be a space, let A ⊂ X be a subspace, and let rt : X → X be a deformation
retract to A. We can therefore regard r1 as a retraction r1 : X → A. Pick a basepoint a0 ∈ A, and
let ι : (A, a0) → (X, a0) be the inclusion. Then ι is a homotopy equivalence with homotopy inverse
r1 : (X, a0) → (A, a0). Indeed, r1 ◦ ι : (A, a0) → (A, a0) is literally the identity, and rt is a homotopy
from the identity r0 = 1X : (X,x0) → (X,x0) to r1 = ι ◦ r1. □

It will become more and more clear as we delve deeper into algebraic topology that homotopy
equivalent pointed spaces are in many ways the “same” from the perspective of the tools of the
subject. Here is one easy way in which this is true, which generalizes the corresponding fact for
deformation retracts (Lemma 6.2.5):

Lemma 8.1.2. Let f : (X,x0) → (Y, y0) be a homotopy equivalence between pointed spaces. Then
f∗ : π1(X,x0) → π1(Y, y0) is an isomorphism.

Proof. Let g : (Y, y0) → (X,x0) be a homotopy inverse to f . Since g ◦f : (X,x0) → (X,x0) and
f◦g : (Y, y0) → (Y, y0) are homotopic to the identity, the induced maps (g◦f)∗ : π1(X,x0) → π1(X,x0)
and (f ◦ g)∗ : π1(Y, y0) → π1(Y, y0) are the identity. Functorality implies that

1π1(X,x0) =(g ◦ f)∗ =g∗ ◦ f∗ and

1π1(Y,y0) =(f ◦ g)∗ =f∗ ◦ g∗,
so f∗ and g∗ are inverses to each other. This implies that that f∗ and g∗ are isomorphisms. □

8.2. Composing deformation retractions

As we already noted, if X deformation retracts to a subspace Y and y0 ∈ Y , then (Y, y0) ≃ (X, y0).
Being homotopy equivalent is an equivalence relation (see Exercise 8.1), so by applying this multiple
times we can get interesting homotopy equivalences. For instance, if Y is a subspace of both X and
Z and both X and Z deformation retract to Y , then (X, y0) ≃ (Z, y0) even though neither X or Z
is contained in the other. Here is an example:

Example 8.2.1. Let (X,x0) and (Y, y0) be the following surfaces with boundary:

x0

y0X
Y
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Both X and Y deformation retract to the same space Z, with x0 and y0 corresponding to the same
point of Z:

def
retract

= def
retract =

x0 x0

x0

x0

x0

y0 =
y0

Z

It follows that (X,x0) ≃ (Y, y0). Moreover, since the fundamental group of Z is a free group on
two generators (Theorem 7.8.1), it follows that π1(X,x0) and π1(Y, y0) are free groups on two
generators. □

8.3. Unpointed homotopy equivalences

We now explain how this works without basepoints. A map f : X → Y between spaces is a
homotopy equivalence if there exists a map g : Y → X such that g ◦ f : X → X and f ◦ g : Y → Y are
homotopic to the identity. The difference between this and the pointed case is that these homotopies
need not fix a basepoint. We call g a homotopy inverse to f , and if a homotopy equivalence from X
to Y exists we say that X and Y are homotopy equivalent and write X ≃ Y .

In Lemma 6.3.1, we proved that even though contractions need not fix a basepoint, it is still
true that contractible spaces have trivial fundamental groups. By being similarly careful with the
basepoint, we prove the following:

Lemma 8.3.1. Let f : X → Y be a homotopy equivalence and let x0 ∈ X. Set y0 = f(x0). Then
f∗ : π1(X,x0) → π1(Y, y0) is an isomorphism.

Remark 8.3.2. Since π1(S1, 1) ∼= Z but Sn is 1-connected for n ≥ 2, it follows from this lemma
that S1 and Sn are not homotopy equivalent for n ≥ 2. Similarly, since π1(RPn, 1) ∼= C2 for n ≥ 2 it
follows that RPn and Sn are not homotopy equivalent for n ≥ 2. We remark that RP1 and S1 are
homeomorphic (see Exercise 7.7). □

Proof of Lemma 8.3.1. Let g : Y → X be a homotopy inverse to f . Set x1 = g(y0) and
y1 = f(x1). The naive thing to do would be to prove that the maps f∗ : π1(X,x0) → π1(Y, y0) and
g∗ : π1(Y, y0) → π1(X,x1) were inverses to each other. However, this does not make sense since the
domain π1(X,x0) of f∗ is not the same as the codomain π1(X,x1) of g∗.

Instead, what we will prove is that

(8.3.1) (g ◦ f)∗ : π1(X,x0) → π1(X,x1) and (f ◦ g)∗ : π1(Y, y0) → π1(Y, y1)

are both isomorphisms. This will imply that f∗ : π1(X,x0) → π1(Y, y0) and g∗ : π1(Y, y0) → π1(X,x1)
are both injections. We claim that this implies that f∗ is a surjection and hence an isomorphism.
Indeed, consider ζ ∈ π1(Y, y0). We want to find some η ∈ π1(X,x0) with f∗(η) = ζ. Since g∗ ◦ f∗ is
an isomorphism by (8.3.1), there exists some η ∈ π1(X,x0) such that g∗(f∗(η)) = g∗(ζ). Since g∗ is
an injection, we must have f∗(η) = ζ, as desired.

It remains to prove that the two maps in (8.3.1) are isomorphisms. The proofs are the same, so
we will give the details for (g ◦ f)∗ : π1(X,x0) → π1(X,x1). Since g is a homotopy inverse to f , the
map g ◦ f : X → X is homotopic to the identity. Let ht : X → X be a homotopy from g ◦ f to 1X .
Let δ : I → X be the following path from x1 = (g ◦ f)(x0) = h0(x0) to x0 = h1(x0):

δ(s) = hs(x0) for s ∈ I.
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For [γ] ∈ π1(X,x0), Lemma 5.7.1 implies that

(g ◦ f)∗([γ]) = (h0)∗([γ]) = [δ](h1)∗([γ])[δ] = [δ][γ][δ].

In other words, (g ◦ f)∗ equals the change of basepoint isomorphism from π1(X,x0) to π1(X,x1)
given by the path δ. In particular, (g ◦ f)∗ is an isomorphism. □

8.4. Mapping cylinder neighborhoods

LetX be a space and Y be a contractible subspace ofX. Consider the quotient map q : X → X/Y .
It turns out that in many cases q is a homotopy equivalence. Roughly speaking, this holds as long
as Y is embedded into X with reasonable local properties. There are a number of conditions that
ensure this. Our next goal is to give one that is fairly easy to state and prove. This requires some
preliminary definitions.

Recall from Example 6.2.2 that for a map f : Z → Y between spaces, the mapping cylinder of f
is the space Cyl(f) obtained by quotienting the disjoint union (Z × I) ⊔ Y to identify (z, 1) ∈ Z × I

with f(z) ∈ Y for all z ∈ Z. For z ∈ Z and s ∈ I, let (z, s) be the image of (z, s) ∈ Z × I in Cyl(f).
We now define:

Definition 8.4.1. Let X be a space and let Y ⊂ X be a subspace. A mapping cylinder
neighborhood of Y is a closed subset N of X containing Y along with a closed subset Z ⊂ N such
that:

• N \ Z is an open neighborhood of Y in X; and

• there exists a map f : Z → Y and a homeomorphism ϕ : Cyl(f) → N such that f((z, 0)) = z
and f(y) = y for all z ∈ Z and y ∈ Y . □

Example 8.4.2. Let Y be the sidewise-Y shaped subspace of R2 shown here:

Y

Z

The subspace Y of R2 has a mapping cylinder neighborhood N indicated in blue. This blue subspace
is the mapping cylinder of a map f : Z → Y with Z ∼= S1 the indicated subspace. The lines connect
points z ∈ Z with their images f(z) ∈ Y . Since Y is contractible and has a mapping cylinder
neighborhood, it will follow from Theorem 8.5.1 below that the quotient map R2 → R2/Y is a
homotopy equivalence. In fact, R2/Y ∼= R2 (see Exercise 8.4). □

Example 8.4.3. Let X be the following surface with boundary and let Y ∼= I be the indicated
arc in X:

Y

A mapping cylinder neighborhood N of Y is drawn in blue. Here N ∼= Y ×I, and N is homeomorphic
to the mapping cylinder of the projection f : Y ⊔ Y → Y . Since Y is contractible and has a mapping
cylinder neighborhood, it will follow from Theorem 8.5.1 below that the quotient map q : X → X/Y
is a homotopy equivalence:
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/Y

In this case, X and X/Y are not homeomorphic; indeed, X/Y is not a manifold around the point
that is the image of Y . We showed in Example 8.2.1 that the fundamental group of X is the free
group on two generators, so the same is true for X/Y . □

Example 8.4.4. For readers who are familiar with smooth manifolds, here is an important
example. Let Mn be a smooth manifold with boundary and let Nd be a properly embedded
submanifold of Mn. A closed tubular neighborhood of Nd is then a mapping cylinder neighborhood
of Nd. Example 8.4.3 is a special case of this. □

Our final example will be important later, so we separate it out as a lemma:

Lemma 8.4.5. Let X be a graph and let Y ⊂ X be a subgraph. Then Y has a mapping cylinder
neighborhood.

Proof. Once an example is understood this lemma will be clear, so we give one in lieu of a
formal proof. Let X and Y be as follows, with Y in orange:

Y

The mapping cylinder neighborhood N is then the union of Y with the yellow region here:

N

Here Z consists of eight points, and N is the mapping cylinder of a map f : Z → Y taking each of
those eight points to a vertex of Y . □

8.5. Collapsing subspaces with mapping cylinder neighborhoods

We now prove:

Theorem 8.5.1. Let X be a space and let Y ⊂ X be a contractible subspace with a mapping
cylinder neighborhood. Then the quotient map q : X → X/Y is a homotopy equivalence.

Proof. We must use the hypotheses to construct a homotopy inverse g : X/Y → X to q. Let
N be a mapping cylinder neighborhood of Y . Identify N with Cyl(f) for some Z ⊂ N and some
map f : Z → Y . Let y0 be the point of X/Y corresponding to Y , let f ′ : Z → y0 be the projection,
and let N ′ = Cyl(f ′). We can identify N ′ with N/Y , and after making this identification N ′ is a
mapping cylinder neighborhood of y0 in X/Y with X \N = (X/Y ) \N ′. See here:
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q

N

Y

X∖N

Z
y0

N'

(X/Y)∖N'

Z

To construct a continuous map X/Y → X, it is enough to construct a continuous map N ′ → N that
is the identity on Z and then extend N ′ → N to X/Y by the identity.1 In a similar way, we can
construct continuous maps X → X (resp. X/Y → X/Y ) by constructing continuous maps N → N
(resp. N ′ → N) and extending by the identity.

For z ∈ Z and s ∈ I, let (z, s) ∈ N and (z, s)
′
∈ N ′ be the corresponding points. We now divide

the proof into three steps:

Step 1. We construct the purported homotopy inverse g : X/Y → X.

Since Y is contractible, there is a homotopy ht : Y → Y from 1Y to a constant map. Let y1 ∈ Y
be the constant value of h1. Define g : X/Y → X via the formulas

g((z, s)
′
) = (z, 2s) for z ∈ Z and s ∈ [0, 1/2],

g((z, s)
′
) = h2s−1(f(z)) for z ∈ Z and s ∈ [1/2, 1],

g(y0) = y1

g(x) = x for x ∈ (X/Y ) \N ′ = X \N.

See here, where the indicated map takes each line segment from z ∈ Z to y0 to the path that first
goes to f(z) (in black) and then in Y to y1 (in orange):

g

y0

N'

Z

y1

N

Z

Y

By what we said above, this map g : X/Y → X is continuous.

Step 2. We prove that the composition g ◦ q : X → X is homotopic to the identity.

The map g ◦ q : X → X is given by the formulas
g ◦ q((z, s)) = (z, 2s) for z ∈ Z and s ∈ [0, 1/2],

g ◦ q((z, s)) = h2s−1(f(z)) for z ∈ Z and s ∈ [1/2, 1],

g ◦ q(y) = y1 for y ∈ Y ,

g ◦ q(x) = x for x ∈ X \N.

1To see that this is continuous, note that the mapX/Y → X is continuous on the closed setsN ′ and (X/Y )\(N ′\Z);
indeed, on the latter set it is the identity. These cover X/Y . Now apply the fact that if ψ : A→ B is a map of sets

between spaces and {C1, . . . , Cn} is a cover of A by closed sets such that each ψ|Ci
is continuous, then ψ is continuous.

Note that this would be false if our cover had infinitely many closed sets in it.
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This is homotopic to the identity via the homotopy ϕt : X → X given by the formulas
ϕt((z, s)) = (z, (2− t)s) for z ∈ Z and s ∈ [0, 1/(2− t)],

ϕt((z, s)) = h(2−t)s−1(f(z)) for z ∈ Z and s ∈ [1/(2− t), 1],

ϕt(y) = h1−t(y) for y ∈ Y ,

ϕt(x) = x for x ∈ X \N.

By the discussion at the beginning of the proof this is continuous.

Step 3. We prove that the composition q ◦ g : X/Y → X/Y is homotopic to the identity.

The map q ◦ g : X/Y → X/Y is given by the formulas
q ◦ g((z, s)

′
) = (z, 2s)

′
for z ∈ Z and s ∈ [0, 1/2],

q ◦ g((z, s)
′
) = y0 for z ∈ Z and s ∈ [1/2, 1],

q ◦ g(y0) = y0

g ◦ q(x) = x for x ∈ (X/Y ) \N ′.

This is homotopic to the identity via the homotopy ψt : X/Y → X/Y given by the formulas
ψt((z, s)

′
) = (z, (2− t)s)

′
for z ∈ Z and s ∈ [0, 1/(2− t)],

ψt((z, s)
′
) = y0 for z ∈ Z and s ∈ [1/(2− t), 1],

ψt(y0) = y0

ψt(x) = x for x ∈ X \N.

By the discussion at the beginning of the proof this is continuous. □

8.6. Example of collapsing

We now give an example of how to this to analyze an interesting example.

Example 8.6.1. Let (X,x0) and (Y, y0) be the following spaces:

X Y

x0 y0

The space X is obtained by quotienting S2 to identify two points together,2 and the space Y is
obtained by gluing S2 and S1 together at a single point. We will prove that X ≃ Y and that
π1(X,x0) ∼= π1(Y, y0) ∼= Z.

Let Z be the following space and let I and D ∼= D2 be the indicated subspaces of Z:

I
D

We have Z/I ∼= X and Z/D ∼= Y . Since I is contractible and has a mapping cylinder neighborhood in

2It does not matter which two points are identified. Indeed, any two points “look the same” in the sense that

they differ by a homeomorphism of S2. More generally, if Mn is a connected n-manifold with n ≥ 2 and {p1, . . . , pk}
and {q1, . . . , qk} are two sets of k distinct points on Mn, then there exists a homeomorphism f : Mn → Mn with

f(pi) = qi for all 1 ≤ i ≤ k.
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Z, it follows that Z ≃ X. Similarly, since D is contractible and has a mapping cylinder neighborhood
in Z, it follows that Z ≃ Y . We conclude that X ≃ Y .

In particular, π1(X,x0) ∼= π1(Y, y0). It remains to prove that π1(Y, y0) ∼= Z. The space Y is the
union of S2 and S1. Identifying S2 and S1 with their images in Y , we have S2 ∩ S1 = y0. There is a
retraction Y → S1 that collapses S2 to y0. It follows that the inclusion (S1, y0) → (Y, y0) induces an
injection from π1(S1, y0) ∼= Z to π1(Y, y0).

We must prove that this injection is surjective. Consider some [γ] ∈ π1(Y, y0). Let r ∈ S2 be a
point other than y0. Just like in our proof that Sn has a trivial fundamental group (Lemma 4.5.2),
we can use Lemma 4.5.3 (general position) to homotope γ such that its image does not contain r.
Since S2 \ r ∼= R2 deformation retracts to y0, it follows that γ can be homotoped to a loop in S1, as
desired. □

We close this section by introducing some terminology. For pointed spaces {(Zi, zi)}i∈I , the
wedge product of the Zi is the space W = ∨i∈I(Zi, zi) obtained from the disjoint union of the Zi by
identifying all the basepoints zi together to a single point w0. The point w0 serves as a basepoint, so
(W,w0) is a pointed space. We will often omit explicit mention of the basepoints zi and just write
W = ∨i∈IZi, and if I is finite we will use the ∨ like a sum and e.g. write Z1 ∨ Z2. For instance, the
pointed space (Y, y0) in Example 8.6.1 is S2 ∨ S1.

8.7. Maximal trees

Our final goal in this chapter is to use these tools to calculate the fundamental group of an
arbitrary connected graph. This requires some preliminaries. Recall that a tree is a nonempty
connected graph with no cycles. Each tree is contractible (Lemma 6.4.1). For a graph X, a maximal
tree in X is a subtree T of X that contains every vertex of X. For instance:

T

These always exist:

Lemma 8.7.1. Let X be a nonempty connected graph. Then X contains a maximal tree.

Proof. Inductively define subtrees

T0 ⊂ T1 ⊂ T2 ⊂ · · ·

of X in the following way. Start by choosing a vertex v0 of X and letting T0 = v0. Next, if Tn−1 has
been constructed, let Tn be the subtree obtained from Tn−1 as follows:

• For each vertex v of X that does not lie in Tn−1 but is connected by an edge to Tn−1,
choose an edge connecting Tn−1 to v and add it to Tn.

Now define

T =

∞⋃
n=0

Tn.

This is a subgraph of G. Since a cycle in T only involves finitely many edges, a cycle of T must be
contained in some Tn. Since each Tn is a tree, it follows that T has no cycles, so T is a tree. Since X
is connected, each vertex of X must lie in T , so T is a maximal tree. □

8.8. Fundamental groups of graphs

Using maximal trees, we will prove:

Theorem 8.8.1. Let X be a connected graph and let v0 be a vertex of X. Then π1(X, v0) is a
free group.
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Proof. Let T be a maximal tree in X. The quotient graph X/T contains a single vertex w0

and a loop for each edge of X that does not lie in T :

q
T

X X/T

v0

w0

Note that though our graphs are always oriented, this picture does not indicate the orientations
of the edges. We saw in the proof of Theorem 7.7.1 that π1(X,w0) is a free group. Since T is a
contractible subspace of X with a mapping cylinder neighborhood (Lemma 8.4.5), the quotient map
q : X → X/T is a homotopy equivalence. The induced map q∗ : π1(X, v0) → π1(W,w0) is therefore
an isomorphism, so π1(X, v0) is also a free group. □

If X is a finite connected graph with vertices V(X) and edges E(X), then we can give a formula
for the rank of the free group π1(X, v0) as follows. The Euler characteristic of X is

χ(X) = |V(X)| − |E(X)| ∈ Z.

We then have:

Theorem 8.8.2. Let X be a finite connected graph and let v0 be a vertex of X. Then π1(X, v0)
is a free group of rank n, where χ(X) = 1− n.

Proof. Let T be a maximal tree of X. The proof of Theorem 8.8.1 shows that π1(X, v0) is a
free group of rank n where n is the number of edges of X/T . Collapsing a single non-loop edge to a
point does not change χ(X) since it causes the number of vertices and edges to both go down by 1.
Iterating this, we see that χ(X) = χ(X/T ) = 1− n, as desired. □

8.9. Free bases for fundamental groups of graphs

Let X be a connected graph and let v0 be a vertex of X. By analyzing the proof of Theorem
8.8.1, we can construct a free basis for the free group π1(X, v0). Begin by choosing a maximal tree
T of X. Let w0 be the single vertex of X/T . As in the proof of Theorem 8.8.1, the quotient map
q : X → X/T induces an isomorphism q∗ : π1(X, v0) → π1(X/T,w0).

Let {ei | i ∈ I} be the edges of X that do not lie in T . The map q maps each ei to a loop ei in
X/T that is based at w0. Recall our convention that each edge of a graph is oriented (cf. §2.5). Using
the orientation on ei, we get an element [ei] ∈ π1(X/T,w0). By Theorem 7.8.1, the set {[ei] | i ∈ I}
is a basis for the free group π1(X/T,w0).

For each i ∈ I, we must lift ei to a loop in X that is based at v0. To do this, let ti be a path in
T from v0 to the initial vertex of the edge ei and let t′i be a path in T from the terminal vertex of ei
back to v0. We then have a loop ti·ei·t′i in X based at v0, and q∗([ti·ei·t′i]) = [ei]. We deduce that
{[ti·ei·t′i] | i ∈ I} is a basis for the free group π1(X, v0).

Example 8.9.1. Consider the following graph X with maximal tree T :

v0

t1
t2

t3

t4t5

a

b

c
d

T

We have labeled and shown the orientation on each edge of X. Following the above algorithm, we
obtain a free basis for π1(X, v0). There is one element of this basis for each edge {a, b, c, d}. For the
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edge a, the corresponding element of π1(X, v0) is [t1·a·t5·t4·t2]:

v0

t1
t2

t3

t4t5

a

b

c
d

We similarly get basis elements corresponding to b and c and d. In summary, the following is a free
basis for π1(XS , v0):

{[t1·a·t5·t4·t2], [t1·b·t3·t2], [t2·t3·c·t4·t2], [d·t5·t4·t2]}. □

8.10. Exercises

Exercise 8.1. Prove that being homotopy equivalent is an equivalence relation on pointed
spaces and on spaces. □

Exercise 8.2. Prove that a space X is contractible if and only if it is homotopy equivalent to a
one-point space p0. □

Exercise 8.3. Let (X,x0) and (Y, y0) be pointed spaces. Let [(X,x0), (Y, y0)]∗ be the set of
homotopy classes of maps f : (X,x0) → (Y, y0). We will often omit the basepoints and just write
[X,Y ]∗. We remark that set of homotopy classes of maps f : X → Y that do not necessarily preserve
the basepoints is written [X,Y ]. Prove the following:

(a) Precomposition with a pointed homotopy equivalence h : (Z, z0) → (X,x0) induces a
bijection h∗ : [X,Y ]∗ → [Z, Y ]∗.

(b) Postcomposition with a pointed homotopy equivalence h : (Y, y0) → (Z, z0) induces a
bijection h∗ : [X,Y ]∗ → [X,Z]∗. □

Exercise 8.4. Let Y be the following subset of R2:

Y

Prove that R2/Y ∼= R2. □

Exercise 8.5. For some n ≥ 1, let X = {(x, y) ∈ Sn × Sn | x ̸= −y}. Define a map f : Sn → X
via the formula f(x) = (x, x). Prove that f is a homotopy equivalence. □

Exercise 8.6. Let A = S1 × [0, 1] be an annulus and let M be a closed Möbius band:

A

M

Prove that A and M are homotopy equivalent. □

Exercise 8.7. Let A = S1 × [0, 1] be an annulus and let Int(A) = S1 × (0, 1) be an open annulus.
Prove that A and Int(A) are homotopy equivalent. □
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Exercise 8.8. Let (X,x0) and (Y, y0) be the following spaces:

x0

X
y0
Y

Prove that X ≃ Y , and calculate π1(X,x0) ∼= π1(Y, y0). □

Exercise 8.9. Let X be six 2-spheres intersecting in 9 points, arranged as follows:

Do the following:

(a) Prove that X is homotopy equivalent to (∨6
i=1S2) ∨ (∨4

j=1S1).
(b) Letting x0 ∈ X be a basepoint, calculate π1(X,x0). The result will be a free group, and

you should also draw loops on X corresponding to generators of this free group. □

Exercise 8.10. As in Exercise 7.4, let X be the “line with two origins”, i.e., the quotient of
R ⊔ R that for x ∈ R nonzero identifies the points x in the two copies of R to a single point. This is
a non-Hausdorff space composed of an open set R \ 0 along with two “origins”:

02

01

Prove that X is not homotopy equivalent to any Hausdorff space. Hint: you proved in Exercise 7.4
that the fundamental group of X is Z. Prove that any map from X to a Hausdorff space induces the
trivial map on the fundamental group. □

Exercise 8.11. Calculate free generating sets for π1(X,x0) where X is one of the following
three graphs with the indicated base vertex x0:
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a
b

c

d

e
f

a b

c

d
e f

g

h i

... ...
b-1 b0 b1

a0a-1a-2 a1

(i)

(ii)

(iii)

x0

x0

x0
The edges are labeled to make it easy to describe loops based at x0. Hint: first find a maximal
tree. □

Exercise 8.12. As a silly exercise in pure point-set topology, prove that for all n ≥ 1 there exist
topological spaces X with exactly n points that are contractible. □





CHAPTER 9

Classifying covers: lifting criterion

In this chapter, we use the fundamental group to characterize when a map can be lifted to a
cover. Using this, we will prove that in favorable situations covering spaces can be understood using
fundamental group information. We will elaborate on this more in the next chapter when we describe
the classification of covering spaces.

9.1. Fundamental group of cover

Before giving the lifting criterion, we introduce some terminology and prove a preliminary result.

Let p : X̃ → X be a cover and let γ : I → X be a path. For x̃ ∈ X̃ such that p(x̃) = γ(0), Lemma

3.4.1 (path lifting) says that there is a unique lift γ̃ : I → X̃ of γ such that γ̃(0) = x̃. We will simply

call this the lift of γ to X̃ with γ̃(0) = x̃.

We will also need to be careful with basepoints. A pointed cover is a pointed map p : (X̃, x̃0) →
(X,x0) such that the map p : X̃ → X is a cover. A pointed cover p : (X̃, x̃0) → (X,x0) induces a

map p∗ : π1(X̃, x̃0) → (X,x0). This map is injective; in fact, the following holds:

Theorem 9.1.1. Let p : (X̃, x̃0) → (X,x0) be a pointed cover. Then the following hold:

(i) The map p∗ : π1(X̃, x̃0) → π1(X,x0) is injective.
(ii) The image of p∗ consists of all [γ] ∈ π1(X,x0) such that the following holds:

(†) Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Then γ̃ is a loop, i.e., γ̃(1) = x̃0.

(iii) If X̃ is path connected, then the index of Im(p∗) in π1(X,x0) equals the degree of the cover.

Proof. We prove each part separately:

Step 1. The map p∗ : π1(X̃, x̃0) → π1(X,x0) is injective.

Consider [γ̃] ∈ π1(X̃, x̃0) in the kernel of p∗. Our goal is to prove that [γ̃] = 1. Letting γ = p ◦ γ,
the element [γ] ∈ π1(X,x0) is trivial. Lemma 4.2.1 says that the homotopy class of the lift γ̃ of γ to

X̃ only depends on the homotopy class of γ. Since [γ] = 1, it follows that [γ̃] = 1.

Step 2. The image of p∗ consists of all [γ] ∈ π1(X,x0) such that the following holds:

(†) Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Then γ̃ is a loop, i.e., γ̃(1) = x̃0.

It is immediate from the definitions that the image of p∗ consists of all [γ] ∈ π1(X,x0) such that
γ is homotopic as a path to a loop γ′ based at x0 such that γ′ satisfies (†). Just like in Step 1, we
can lift a homotopy of paths from γ to γ′ to a homotopy of paths in the cover. It follows that γ also
satisfies (†). The step follows.

Step 3. If X̃ is path connected, then the index of Im(p∗) in π1(X,x0) equals the degree of the
cover.

We have x̃0 ∈ p−1(x0). Enumerate the entire fiber p−1(x0) as {x̃i | i ∈ I} for some indexing set

I with 0 ∈ I. The cardinality |I| is thus the degree of the cover. For each i ∈ I, pick a path δ̃i in X̃

from x̃0 to x̃i. Let δi be the image of δ̃i in X, so [δi] ∈ π1(X,x0). We claim that {[δi] | i ∈ I} is a
set of left coset representatives for Im(p∗).

To see this, consider [γ] ∈ π1(X,x0). Lift γ to a path γ̃ in X̃ starting at x̃0. Let x̃i0 be the
endpoint of γ̃. As in the previous steps, x̃i0 only depends on [γ]. We have

(9.1.1) [γ] = [γ·δi0 ][δi0 ].
81
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Since γ·δi0 lifts to the loop γ̃·δ̃i0 based at x̃0, Step 2 implies that [γ·δi0 ] ∈ Im(p∗). The equation
(9.1.1) exhibits [γ] as an element of the left [δi0 ]-coset of Im(p∗). Since this expression is clearly
unique, this proves the claim. □

9.2. Lifting criterion

Let p : (X̃, x̃0) → (X,x0) be a pointed cover. Consider a pointed map f : (Y, y0) → (X,x0).

Our goal is to understand when f can be lifted to X̃, i.e., when there exists a pointed map

f̃ : (Y, y0) → (X̃, x̃0) such that f = p ◦ f̃ . In other words, we want the following diagram to commute:

(X̃, x̃0)

(Y, y0) (X,x0).

p

f

f̃

There is one obvious necessary condition. Assume that f̃ exists, and pass to the fundamental group.
We get a commutative diagram

π1(X̃, x̃0)

π1(Y, y0) π1(X,x0).

p∗

f∗

f̃∗

Since p∗ ◦ f̃∗ = f∗, it follows immediately that the image of f∗ is contained in the image of the
injective map p∗. It turns out that for reasonable spaces Y , this necessary condition is sufficient.
Since the fundamental group only depends on the path component containing the basepoint, we
clearly need to assume that Y is path connected.

To avoid pathological local behavior, we also need to assume that Y is locally path connected, i.e.,
that for all y ∈ Y and all open neighborhoods U of y there exists a path connected open neighborhood
V of y with V ⊂ U . This property passes to covers in the sense that if Y is locally path connected

and q : Ỹ → Y is a cover, then Ỹ is locally path connected (see Exercise 9.1). Our lifting criterion is
as follows:

Theorem 9.2.1 (Lifting criterion). Let p : (X̃, x̃0) → (X,x0) be a pointed cover. Let f : (Y, y0) →
(X,x0) be a pointed map such that the image of f∗ : π1(Y, y0) → π1(X,x0) is contained in the image

of p∗ : π1(X̃, x̃0) → π1(X,x0). Assume that Y is path connected and locally path connected. Then f

can be uniquely lifted to a map f̃ : (Y, y0) → (X̃, x̃0).

Remark 9.2.2. See Exercise 9.12 for an example showing that it is necessary to assume that Y
is locally path connected. □

Proof of Theorem 9.2.1. We proved in Lemma 3.1.2 that for connected spaces lifts are

determined by what they do to a single point. Since we are assuming that our lift f̃ takes y0 to x̃0,
this implies that the lift is unique if it exists. We must prove existence.

Consider y ∈ Y . We define f̃(y) as follows. Since Y is path connected, we can find a path γ from

y0 to y. Its image δ = f ◦ γ is a path from f(y0) = x0 to f(y). Let δ̃ : I → X̃ be the lift of δ to X̃

with δ̃(0) = x̃0. We would like to define f̃(y) = δ̃(1). To do this, we must prove that this does not
depend on the choice of γ:

Claim. The above definition of f̃(y) ∈ X̃ does not depend on the choice of γ.

Proof of claim. Let γ′ be another path from y0 to y. Letting δ′ = f ◦ γ′ be its image in X

and δ̃′ : I → X̃ be the lift of δ′ with δ̃′(0) = x̃0, our goal is to prove that δ̃(1) = δ̃′(1). Observe that
γ·γ′ is a loop in Y based at y0:

γ

y0 y f
δ

x0 f(y)

γ '
_

δ '
_
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As is shown here, the image of [γ·γ′] ∈ π1(Y, y0) under f∗ is the loop [δ·δ′] ∈ π1(X,x0). By assumption,

this lies in the image of p∗. Theorem 9.1.1 therefore implies that δ·δ′ : I → X lifts to a loop in X̃
starting at x̃0:

δ~

η

x0~ f(y)~

p

γ

y0 y f
δ

x0 f(y)

γ '
_

δ '
_

As is shown here, this lifted loop equals δ̃·η, where:
• as introduced above, the path δ̃ is the lift of δ with δ̃(0) = x̃0; and

• the path η is the lift of δ
′
with η(0) = δ̃(1) = f̃(y).

Since η(1) = x̃0, it follows that η is the path δ̃′ introduced above that we obtained by lifting δ′ to a

path with δ̃′(0) = x̃0. We conclude that δ̃(1) = η(0) = δ̃′(1), as desired. □

We have now defined f̃ : Y → X̃. This map satisfies f̃(y0) = x̃0 since in its definition when

calculating f̃(y0) we can take γ to be the constant path at y0. All that remains to prove is that f̃ is
continuous. Consider some y1 ∈ Y . Let U ⊂ X be a trivialized open neighborhood of f(y1) ∈ X and

let Ũ ⊂ X be the sheet above U containing f̃(y1). Since Y is locally path connected, we can find a

path connected open neighborhood V of y1 such that V ⊂ f−1(U). To prove that f̃ is continuous at

y1, it is enough to prove that on V the map f̃ is the composition

V U Ũ.
f (p|ũ)−1

To see this, consider some y ∈ V . The image f̃(y) ∈ X̃ lies in the fiber p−1(f(y)), and we must prove

that it is the point of this fiber lying in Ũ . In other words, we must prove that f̃(y) ∈ Ũ .
Let γ1 be a path in Y from y0 to y1 and let γy be a path in V from y1 to y. The path γ1·γy

in Y goes from y0 to y, and thus can be used to compute f̃(y). Set δ1 = f ◦ γ1 and δy = f ◦ γy:

γ1

y0 y1
y

V

γy

δ1

x0 f(y1)

f(y)

U

δy

f

By definition, f̃(y) is the endpoint of the lift of δ1·δy to X̃ starting at x̃0. We construct this lift in
two steps:

• Let δ̃1 be the lift of δ1 to X̃ with δ̃1(0) = x̃0. By definition, f̃(y1) = δ̃1(1) ∈ Ũ .

• Let δ̃y be the lift of δy to X̃ with δ̃y(0) = δ̃1(1) ∈ Ũ . By definition, f̃(y) = δ̃y(1).

Since γy is a path in V and f(V ) ⊂ U , it follows that δy is a path in U . Since δ̃y(0) ∈ Ũ , we have

that δ̃y is a path in Ũ ; in fact, δ̃y = (p|ũ)−1 ◦ δy. We conclude that f̃(y) = δ̃y(1) ∈ Ũ , as desired. □

9.3. Pointed isomorphisms of covers

Our next goal is to apply Theorem 9.2.1 (lifting criterion) to help us classify pointed covers and
construct deck transformations using fundamental group information. We defined what it means for
two covers to be isomorphic in §1.5. Adding basepoints, we make the following definition:
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Definition 9.3.1. Let (X,x0) be a pointed space and p1 : (X̃1, x̃1) → (X,x0) and p2 : (X̃2, x̃2) →
(X,x0) be two pointed covers of (X,x0). A pointed covering space isomorphism from (X̃1, x̃1) to

(X̃2, x̃2) is a homeomorphism f̃ : (X̃1, x̃1) → (X̃2, x̃2) such that the diagram

(X̃1, x̃1) (X̃2, x̃2)

(X,x0)

f̃

p1 p2

commutes, i.e., such that p2 ◦ f̃ = p1. If a pointed covering space isomorphism from (X̃1, x̃1) to

(X̃2, x̃2) exists, we say that (X̃1, x̃1) and (X̃2, x̃2) are isomorphic pointed covers of X. This is clearly
an equivalence relation. □

Using Theorem 9.2.1 (lifting criterion), we will prove that in favorable situations pointed covers
are determined up to isomorphism by the images of their fundamental groups:

Theorem 9.3.2. Let p1 : (X̃1, x̃1) → (X,x0) and p2 : (X̃2, x̃2) → (X,x0) be two pointed covers
such that:

• the images of (p1)∗ : π1(X̃1, x̃1) → π1(X,x0) and (p2)∗ : π1(X̃2, x̃2) → π1(X,x0) are the
same; and

• both X̃1 and X̃2 are path connected.

Assume that X is path connected and locally path connected. Then (X̃1, x̃1) and (X̃2, x̃2) are
isomorphic pointed covers of (X,x0).

Proof. Since X is locally path connected, so are X̃1 and X̃2. Applying Theorem 9.2.1 twice,

we get pointed maps f̃ : (X̃1, x̃1) → (X̃2, x̃2) and g̃ : (X̃2, x̃2) → (X̃1, x̃1) such that the following
diagrams commute:

(X̃2, x̃2)

(X̃1, x̃1) (X,x0)

p2

p1

f̃ and

(X̃1, x̃1)

(X̃2, x̃2) (X,x0)

p1

p2

g̃

commute. To prove that f̃ is the desired isomorphism of pointed covers, it is enough to prove

that it is a homeomorphism. In fact, we will prove that f̃ and g̃ are inverse homeomorphisms, i.e.,

g̃ ◦ f̃ : (X̃1, x̃1) → (X̃1, x̃1) and f̃ ◦ g̃ : (X̃2, x̃2) → (X̃2, x̃2) are both the identity. The two proofs are
similar, so we will prove the first. By construction, the diagrams

(X̃1, x̃1)

(X̃1, x̃1) (X,x0)

p1

p1

g̃◦f̃ and

(X̃1, x̃1)

(X̃1, x̃1) (X,x0)

p1

p1

1

both commute. Since X̃1 is path connected and g̃ ◦ f̃ and 1 are both lifts of p1 : (X̃1, x̃1) → (X,x0)
that are equal at the point x̃1, it follows from Lemma 3.1.2 that they are equal, as desired. □

9.4. Deck transformations

Let p : X̃ → X be a cover with deck group G. For x0 ∈ X, the group G acts on the fiber p−1(x0).

If X̃ is connected, then Lemma 2.2.1 says that if g, g′ ∈ G are elements such that there is some
x̃0 ∈ p−1(x0) with gx̃0 = g′x̃0, then g = g′. In other words, the group G is not only determined by
its action on p−1(x0), but even by its action on any single point of p−1(x0). In favorable situations,
the following theorem therefore completely describes G:
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Theorem 9.4.1. Let p : X̃ → X be a cover with deck group G. Let x0 ∈ X and let x̃0, x̃
′
0 ∈

p−1(X). Set Γ = π1(X,x0), and let K and K ′ be the following subgroups of Γ:

K =Im(p∗ : π1(X̃, x̃0) → π1(X,x0)),

K ′ =Im(p∗ : π1(X̃, x̃
′
0) → π1(X,x0)).

Assume that X̃ is path connected and that X is locally path connected. Then there exists g ∈ G with
gx̃0 = x̃′0 if and only if K = K ′.

Proof. If such a g exists, then the corresponding deck transformation f̃g and its inverse f̃g−1

fit into commutative diagrams

(X̃, x̃′0)

(X̃, x̃0) (X,x0)

p

p

f̃g and

(X̃, x̃0)

(X̃, x̃′0) (X,x0).

p

p

f̃g−1

Applying the fundamental group, we get commutative diagrams

π1(X̃, x̃
′
0)

π1(X̃, x̃0) π1(X,x0)

p

p

f̃g and

π1(X̃, x̃0)

π1(X̃, x̃
′
0) π1(X,x0).

p

p

f̃g−1

From this, we see that K = K ′. Conversely, if K = K ′ then Theorem 9.2.1 (lifting criterion) says

that there exists f̃g and f̃g−1 making the above diagrams commute. Just like in the proof of Theorem

9.3.2, the compositions f̃g ◦ f̃g−1 and f̃g−1 ◦ f̃g are both the identity, so they are homeomorphisms
and thus the desired deck transformations. □

9.5. Regular covers

Let p : (X̃, x̃0) → (X,x0) be a pointed cover with deck group G. Recall that the cover is regular
if for all x ∈ X the group G acts transitively on the fiber p−1(x). In fact, if X is path connected then
Lemma 4.4.1 says that it is enough to check this transitivity on a single fiber, for instance p−1(x0).
Also, recall from §7.2 that the lifting map is the set map f : π1(X,x0) → G defined as follows:

• Consider [γ] ∈ Γ. Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Letting f([γ]) = g, we then
have γ̃(1) = gx̃0.

The lifting map is a well-defined group homomorphism, and is surjective if X̃ is path connected
(see Lemma 7.2.1). Moreover, when we proved Theorem 7.1.1 we showed that the lifting map is an

isomorphism if X̃ is 1-connected. Our final result in this chapter generalizes this as follows. See the
next section for some examples of it.

Theorem 9.5.1. Let p : (X̃, x̃0) → (X,x0) be a pointed cover. Let Γ = π1(X,x0), and let K be
the following subgroup of Γ:

K = Im(p∗ : π1(X̃, x̃0) → π1(X,x0) = Γ).

Assume that X̃ is path connected and that X is locally path connected. The following hold:

(i) The cover p : X̃ → X is a regular cover if and only if K is a normal subgroup of Γ.

(ii) Assume that p : X̃ → X is a regular cover, and let G be its deck group. Then the lifting
map f : Γ → G is a surjective homomorphism with kernel K.

Proof. We prove (i) and (ii) separately:

Step 1. The cover p : X̃ → X is a regular cover if and only if K is a normal subgroup of Γ.
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By Lemma 4.4.1, the cover is regular if and only if the deck group G acts transitively on p−1(x0).
For x̃1 ∈ p−1(x0), set

Kx̃1
= Im(p∗ : π1(X̃, x̃1) → π1(X,x0)).

By Theorem 9.4.1, there exists some g ∈ G with gx̃0 = x̃1 if and only if Kx̃1
= K. We deduce that

p : X̃ → X is regular if and only if Kx̃1
= K for all x̃1 ∈ p−1(x0).

For x̃1 ∈ p−1(x0), let γ̃x̃1
be a path in X̃ from x̃0 to x̃1. The change of basepoint isomorphism

from π1(X̃, x̃1) to π1(X̃, x̃0) takes [η] ∈ π1(X̃, x̃1) to [γ̃x̃1·η·γ̃x̃1
] ∈ π1(X̃, x̃0). Let γx̃1

be the image
of γ̃x̃1

in X, so γx̃1
is a path from x0 to x0. We thus have [γ̃x̃1

] ∈ π1(X,x0) = Γ. It follows that

[γx̃1
]K[γx̃1

]−1 = Kx̃1
.

Moreover, every g ∈ Γ = π1(X,x0) can be lifted to a path connecting x̃0 to x̃1 for some choice of
x̃1 ∈ p−1(x0). We conclude that our cover is regular if and only if gKg−1 = K for all g ∈ Γ, i.e., if
and only if K is a normal subgroup.

Step 2. Assume that p : X̃ → X is a regular cover, and let G be its deck group. Then the lifting
map f : Γ → G is a surjective homomorphism with kernel K.

Lemma 7.2.1 gives all of this except for the fact that the kernel of the lifting map is K, so this

is what we must prove. Consider [γ] ∈ π1(X,x0) such that f([γ]) = 1. Let γ̃ be the lift of γ to X̃
with γ̃(0) = x̃0. Since f([γ]) = 1, we must have γ̃(1) = x̃0, so γ̃ is a loop based at x̃0. It follows that
[γ] = p∗([γ̃]) ∈ K. Conversely, reversing the above logic we see that elements of K lie in the kernel of
f , as desired. □

9.6. Examples of regular and irregular covers

We now give two examples of Theorem 9.5.1.

Example 9.6.1. Consider the following pointed cover p : (X̃, x̃0) → (X,x0):

p
X~

X
b b

a

ax0~

x0
a b

This is a regular cover with deck group C2. Letting t be the generator of C2, the generator t acts on

X̃ by flipping the two vertices, the two oriented edges labeled a, and the two oriented edges labeled
b. We explain how we could see this using Theorem 9.5.1. To do this, we must prove:

• The image of p∗ : π1(X̃, x̃0) → π1(X,x0) is a normal subgroup of π1(X,x0).
• The quotient of π1(X,x0) by the image of p∗ is C2.

The group π1(X,x0) is isomorphic to the free group F (a, b) on generators a and b. We have labeled

the edges of X̃ with the loops in X they map to. We calculate the image of p∗ : π1(X̃, x̃0) → π1(X,x0)

as follows. Let T be the following maximal tree in X̃:

b b
a
ax0~

T

Using the algorithm described in §8.9, we can use T to calculate a free basis S for π1(X̃, x̃0). Since
p∗ is injective, we might as well describe the elements of this free basis by giving their images in
π1(X,x0) = F (a, b):

S = {b, a2, aba−1}.
The subgroup of F (a, b) generated by S is normal; indeed, it is the kernel of the map f : F (a, b) → C2

taking a to t and b to 1. □

Example 9.6.2. Consider the following pointed cover p : (X̃, x̃0) → (X,x0):

p

XX~

b

bx0~

a

a
b a a b

x0

As we noted in §2.5, this is an irregular cover. We explain how we could see this using Theorem
9.5.1. To do this, we must prove:
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• The image of p∗ : π1(X̃, x̃0) → π1(X,x0) is a non-normal subgroup of π1(X,x0).

The group π1(X,x0) is isomorphic to the free group F (a, b) on generators a and b. We have labeled

the edges of X̃ with the loops in X they map to. We calculate the image of p∗ : π1(X̃, x̃0) → π1(X,x0)

as follows. Let T be the following maximal tree in X̃:

b
bx0~

a
a

b a

T

Using the algorithm described in §8.9, we can use T to calculate a free basis S for π1(X̃, x̃0). Since
p∗ is injective, we might as well describe the elements of this free basis by giving their images in
π1(X,x0) = F (a, b):

S = {b, a2, ab2a−1, abab−1a−1}.
The subgroup of F (a, b) generated by S is not normal. Indeed, it contains b, but we claim it does
not contain aba−1. To see this, let S′ = S ∪ {aba−1}. Since

abab−1a−1 = (aba−1)(a2)(b−1)a−1,

the subgroup generated by S′ contains a−1 and hence a. But this implies that this subgroup contains
both a and b, and hence S′ generates all of F (a, b). Since S generates a proper subgroup1 of F (a, b),
this implies that aba−1 is not in the subgroup generated by S. □

9.7. Exercises

Exercise 9.1. Let X be a locally path connected space and let p : X̃ → X be a cover. Prove

that X̃ is locally path connected. □

Exercise 9.2. Let (X,x0) be a pointed space that is path connected and locally path connected.
Assume that π1(X,x0) is a finite group. Let f : (X,x0) → (S1, 1) be a map. Prove that f can be
lifted to the universal cover p : (R, 0) → (S1, 1). □

Exercise 9.3. Let n ≥ 2 and m ≥ 1. Let Tm = (S1)×m be the m-torus. Prove that every
continuous map f : Sn → Tm is null homotopic. □

Exercise 9.4. Let f : X → Y be a continuous map with X and Y both path connected and

locally path connected. Let p : X̃ → X and q : Ỹ → Y be covers such that X̃ and Ỹ are both
1-connected (we will prove in the next couple of chapters that such covers exist if X and Y are

reasonable; they are called universal covers). Prove that there exists a map f̃ : X̃ → Ỹ such that the
diagram

X̃ Ỹ

X X

f̃

p q

f

commutes. □

Exercise 9.5. Let X and Y be path connected and locally path connected space. As in the

previous exercise, let p : X̃ → X and q : Ỹ → Y be covers such that X̃ and Ỹ are both 1-connected.

Assume that X and Y are homotopy equivalent. Prove that X̃ and Ỹ are homotopy equivalent. □

Exercise 9.6. Let p : (X̃, x̃0) → (X,x0) be a pointed cover. Let Γ = π1(X,x0), and let K be
the following subgroup of Γ:

K = Im(p∗ : π1(X̃, x̃0) → π1(X,x0)).

Assume that X̃ is path connected and that X is locally path connected. Let N(K) be the normalizer
of K in Γ, i.e., the subgroup of Γ consisting of g ∈ Γ with gKg−1 = K. Prove that the deck group of

p : X̃ → X is isomorphic to N(K)/K. □

1For instance, we know that it generates a rank-4 free group, which has abelianization Z4 (see Exercise 7.12). On

the other hand, F (a, b) has abelianization Z2.
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Exercise 9.7. Let G be a topological group, i.e., a space that is also a group such that the
multiplication map m : G×G → G and the inversion map i : G → G are continuous. Assume that
G is path connected and locally path connected. Prove the following:

(a) Let p : G̃ → G be a cover. Prove that G̃ can be given the structure of a topological group
such that p is a group homomorphism.

(b) If G is abelian, then prove that G̃ is abelian.

(c) Prove that ker(p) is a central subgroup of G̃, i.e., that each g ∈ ker(p) commutes with all

elements of G̃. □

Exercise 9.8. Consider the following pointed covers p : (X̃, x̃0) → (X,x0):

p
X~

b
b

a
a

x0~

X

x0
a b

p

X
a b

x0
X~

x0~

a a a a

b

b

b
b

(a)

(b)

For both, give a free basis for image of p∗ : π1(X̃, x̃0) → (X,x0). Also, determine if these images are
normal. If they are, describe them as the kernels of maps to the deck group of the cover. If they are
not, prove it. □

Exercise 9.9. As in Example 1.4.4, let Polyn be the space of degree-n monic polynomials over
C. Such an f ∈ Polyn can be written as

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an with a1, . . . , an ∈ C,

so Polyn
∼= Cn. Let

Polysfn = {f ∈ Polyn | f has n distinct roots} ,

RPolysfn =
{
(f, x) ∈ Polysfn ×C | f(x) = 0

}
.

We showed in Example 1.4.4 that the projection p : RPolysfn → Polysfn is a degree n cover. In this
exercise, you will show that it is an irregular cover for n ≥ 3. Do the following:

(a) Let

Cn = {(λ1, . . . , λn) ∈ Cn | λi ̸= λj for all 1 ≤ i < j ≤ n} .
Let m : Cn → Polysfn be the map

m(λ1, . . . , λn) = (x− λ1) · · · (x− λn) for all (λ1, . . . , λn) ∈ Cn.

Prove that m : Cn → Polysfn is a regular cover with deck group the symmetric group Sn on
n generators.

(b) Let q : Cn → RPolysfn be the map

q(λ1, . . . , λn) = (m(λ1, . . . , λn), λn) for all (λ1, . . . , λn) ∈ Cn.

Prove that q : Cn → RPolysfn is a regular cover with deck group the symmetric group Sn−1

on (n− 1) generators.

(c) Use the previous two parts to prove that p : RPolysfn → Polysfn is an irregular cover for n ≥ 3.

Hint: Fix a basepoint f0 ∈ Polysfn . Let x1, . . . , xn ∈ C be the roots of f0. We will then use

r0 = (x1, . . . , xn) for our basepoint of Cn and (f0, xn) as our basepoint for RPoly
sf
n . Applying

Theorem 9.5.1 to the cover from (a), we get a homomorphism ϕ : π1(Poly
sf
n , f0) → Sn
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whose kernel is the image of m∗ : π1(Cn, r0) → π1(Poly
sf
n , f0). Argue using (b) that the

homomorphism ϕ takes the image of p∗ : π1(RPoly
sf
n , (f0, xn)) → π1(Poly

sf
n , f0) to the

subgroup Sn−1 of Sn. Conclude by using the fact that Sn−1 is a non-normal subgroup of
Sn for n ≥ 3. □

Exercise 9.10. Let Tn = (S1)×n be the n-torus. Using the group structure on S1 ⊂ C coming
from the multiplication on C, endow Tn with the structure of a topological group. Let Aut(Tn) be the
group of continuous group homomorphisms. Prove that Aut(Tn) ∼= GLn(Z). Hint: Let 0 ∈ Tn be the
identity, and let f : (Tn, 0) → (Tn, 0) be a continuous group homomorphism. Let p : (Rn, 0) → (Tn, 0)
be the pointed covering space obtained by taking the product of the universal cover R → S1. The
space Rn is a topological group under addition, and p is a group homomorphism. Prove that you can

lift f to a map f̃ : (Rn, 0) → (Rn, 0), then prove that f̃ is a linear map, and then finally prove that

f̃ ∈ GLn(Z). The uniqueness of lifts will be important here! □

Exercise 9.11. Let K be the Klein bottle:

= 𝕂

𝕂

In this figure, the green loop on the left corresponds to the two green lines on the right, whose ends
match up to form a circle. Prove that the fundamental group of K is the following group Γ:

• Let Z act on Z via the homomorphism ϕ : Z → Aut(Z) defined by

ϕ(n)(m) = (−1)nm for all n ∈ Z and m ∈ Z.
Then Γ = Z ⋉ϕ Z, i.e., the semidirect product of Z and Z given by the action ϕ.

Hint: Construct a regular degree 2 cover p : T2 → K with deck group C2 and use Theorem 9.5.1 to
analyze the fundamental group of K using this cover. □

Exercise 9.12. The quasi-circle is the space Y obtained from the topologist’s sine curve

X =
{
(x, sin(1/x)) ∈ R2 | 0 < x ≤ 1

}
∪ {(0, y) | −1 ≤ y ≤ 1}

by connecting (1, sin(1)) to (0, 0) by an arc; see here:

We saw in Exercise 4.11 that X is 1-connected but has nontrivial covers. Note that this would be
impossible if Y were locally path connected (cf. Theorem 4.6.1). Prove the following:

• Let f : Y → S1 be the map that collapses {(0, y) | −1 ≤ y ≤ 1} to a point and identifies
the resulting space with S1. Prove that f cannot be lifted to the universal cover p : R → S1.
Note that f could be lifted if Y were locally path connected (cf. Theorem 9.2.1). □





CHAPTER 10

Classifying covers: Galois correspondence

We now describe one version of the classification of covering spaces. The proof of the main
technical result used in its proof is postponed until later.

10.1. Rough statement of first version of classification

Let (X,x0) be a pointed space. Assume that X is path connected and locally path connected.

Let p : (X̃, x̃0) → (X,x0) be a pointed cover. We proved in Theorem 9.1.1 that the induced map

p∗ : π1(X̃, x̃0) → π1(X,x0)

is injective. We call its image the subgroup of π1(X,x0) corresponding to the cover. Call p : (X̃, x̃0) →
(X,x0) a connected pointed cover if X̃ is path connected. We proved in Theorem 9.3.2 that a connected
pointed cover of (X,x0) is determined up to isomorphism by its corresponding subgroup of π1(X,x0).

Ignoring some technical issues, the first version of the classification of covers says that every
subgroup of π1(X,x0) is the subgroup corresponding to a connected pointed cover. By what we
said above this connected pointed cover is unique up to isomorphism, so this establishes a bijection
between:

• isomorphism classes of connected pointed covers of (X,x0); and
• subgroups of π1(X,x0).

If pu : (X̃u, x̃u) → (X,x0) is the connected pointed cover corresponding to the trivial subgroup, then

since p∗ is injective it follows that X̃u is 1-connected. For reasons we will describe later in this
chapter, this is called the universal cover of (X,x0). We will also talk about the unpointed version

of this: if p : X̃u → X is a cover with X̃u a 1-connected space, then X̃u will be called the universal
cover of X.

Example 10.1.1. If X is already 1-connected, then X is its own universal cover with covering
space map the identity map 1 : X → X. □

Example 10.1.2. Since R is 1-connected, the universal cover p : R → S1 we have discussed since
the beginning of this book exhibits R as the universal cover of S1. □

Example 10.1.3. For n ≥ 2, the degree 2 cover p : Sn → RPn taking x ∈ Sn to the line through
x exhibits Sn as the universal cover of RPn. □

Example 10.1.4. Let X be a graph with one vertex and two edges. Let X̃ be a regular 4-valent

tree. As we have already seen several times, there is a covering space p : X̃ → X; see here:

p

Since X̃ is a tree, it is contractible and hence 1-connected (see Lemma 6.4.1). It follows that X̃ is
the universal cover of X. □

91
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Unfortunately, there are technical issues with the theorem described above, and it does not
hold for all (X,x0) such that X is path connected and locally path connected. In particular, these
conditions are not strong enough to ensure that a universal cover exists (see Exercises 10.13–10.14).
In the next section, we describe the needed extra hypotheses.

Remark 10.1.5. We emphasize that in the above we only defined a universal cover of a pointed
space (X,x0) that is path connected and locally path connected. If X is not locally path connected,

then a pointed cover p : (X̃, x̃0) → (X,x0) such that X̃ is 1-connected can have pathological properties.
For instance:

• The pointed space (X̃, x̃0) might have nontrivial covers, which is impossible if X is locally
path connected by Theorem 4.6.1. See Exercise 4.11.

• The pointed cover p : (X̃, x̃0) → (X,x0) might not be regular, though Theorem 9.5.1 says
that if X is locally path connected this cover is regular with deck group π1(X,x0). See
Exercise 10.15. □

10.2. Semilocal 1-connectedness

Let X be a space that is path connected and locally path connected. As we said in §10.1, there
might not exist a universal cover of X. One condition that would suffice for this is the following:

Definition 10.2.1. A space X is locally 1-connected if for all x ∈ X and all open neighborhoods
U of x, there is a 1-connected open neighborhood V of x with V ⊂ U . □

Most spaces of geometric interest are locally 1-connected; indeed, most of them are not just
locally 1-connected, but even locally contractible. For instance, all manifolds are locally contractible.
However, we can get away with less. One local property that spaces with universal covers have is as
follows:

Lemma 10.2.2. Let X be a space. Assume there exists a cover p : X̃ → X such that X̃ is
1-connected. Then for all x ∈ X, there exists an open neighborhood U of x such that the map
π1(U, x) → π1(X,x) is the trivial map.

Proof. Let x ∈ X, let U ⊂ X be a trivialized open neighborhood of X for p : X̃ → X, and let

Ũ ⊂ X̃ be any sheet lying above U . Let x̃ ∈ Ũ be the point lying in the fiber over x. We can factor
the inclusion (U, x) → (X,x) as

(U, x) (Ũ , x̃) (X̃, x) (X,x),
(p|Ũ )−1

p

where (Ũ , x̃) → (X̃, x) is the inclusion. Passing to fundamental groups, the map π1(U, x) → π1(X,x)
factors as

π1(U, x) π1(Ũ , x̃) π1(X̃, x) π1(X,x).

1

(p|Ũ )−1
∗ p∗

It follows that the map π1(U, x) → π1(X,x) is the trivial map, as desired. □

We call spaces X satisfying the conclusion of Lemma 10.2.2 semilocally 1-connected. This is an
awkward condition, but it holds for instance if X is locally 1-connected. It also passes to covers in

the sense that if p : X̃ → X is a cover and X is semilocally 1-connected, then so is X̃ (see Exercise
10.1). Most importantly, we have the following converse to Lemma 10.2.2:

Theorem 10.2.3 (Existence of universal covers). Let (X,x0) be a pointed space. Assume that X
is path connected, locally path connected, and semilocally 1-connected. Then it has a universal cover

pu : (X̃u, x̃u) → (X,x0).

We will prove Theorem 10.2.3 in Chapter 11. The details of the proof are beautiful, but not
important for applying it in concrete situations. The rest of this chapter and the next will explore
the consequences of Theorem 10.2.3.
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Remark 10.2.4. One nice feature of semilocal 1-connectedness is that unlike purely local
conditions like being locally 1-connected, it is preserved by homotopy equivalences. See Exercise
10.2. □

10.3. Galois correspondence

The first version of the classification of covering spaces is as follows. For reasons we will describe
soon, it should be thought of as analogous to the classical Galois correspondence.

Theorem 10.3.1 (Galois correspondence). Let (X,x0) be a pointed space that is path connected,
locally path connected, and semilocally 1-connected. There is then a bijection between the following
two sets:

• The set of isomorphism classes of connected pointed covers p : (X̃, x̃0) → (X,x0).
• The set of subgroups of π1(X,x0).

This bijection takes a connected pointed cover p : (X̃, x̃0) → (X,x0) to its corresponding subgroup, i.e.,

to the image K of the map p∗ : π1(X̃, x̃0) → π1(X,x0). The degree of the cover p : (X̃, x̃0) → (X,x0)
is the index of K in π1(X,x0).

Remark 10.3.2. Let (X,x0) be as in Theorem 10.3.1. That theorem classifies connected pointed
covers of (X,x0). Connected covers of X without distinguished basepoints are classified by conjugacy
classes of subgroups K < π1(X,x0). See Exercise 10.3. □

Proof of Theorem 10.3.1. Let Γ = π1(X,x0) and let K < Γ be a subgroup. Theorem 9.3.2
says that there is at most one isomorphism class of connected pointed covers corresponding to K,
and Theorem 9.1.1 says that its degree is the index of K in Γ. What we must prove is that there
exists a connected pointed cover whose corresponding subgroup is K.

Let pu : (X̃u, x̃u) → (X,x0) be the universal cover provided by Theorem 10.2.3. Since the trivial
subgroup 1 < Γ = π1(X,x0) is normal, Theorem 9.5.1 implies that the universal cover is a regular

cover with deck group Γ. We can therefore identify X with X̃u/Γ. Set X̃ = X̃u/K, and let x̃0 be the

image of x̃u under the projection q : X̃u → X̃u/K = X̃. Let p : (X̃, x̃0) → (X,x0) be the projection

X̃ = X̃u/K X̃u/Γ = X.

We claim that p : (X̃, x̃0) → (X,x0) is a covering space and that the image of p∗ : π1(X̃, x̃0) →
π1(X,x0) is K.

To see that p : (X̃, x̃0) → (X,x0) is a covering space, consider x ∈ X. Let U ⊂ X be a trivialized

neighborhood for pu : (X̃u, x̃u) → (X,x0) and let Ũu ⊂ X̃u be the sheet lying above U with x̃u ∈ Ũu.
The deck group Γ acts simply transitively on the sheets of the universal cover lying above U , so

p−1
u (U) =

⊔
g∈Γ

gŨu.

Let {gc | c ∈ Γ/K} be a set of left coset representatives for K in Γ. Recalling that q : X̃u → X̃u/K =

X̃ is the projection, it follows that

p−1(U) =
⊔

c∈Γ/K

q(gcŨ)

and that that the restriction of p to each q(gcŨ) is a homeomorphism. We conclude that U is a

trivialized neighborhood for p : (X̃, x̃0) → (X,x0) and that the q(gcŨ) are the sheets lying above U .

In particular, p : (X̃, x̃0) → (X,x0) is a covering space.

It remains to prove that the image of p∗ : π1(X̃, x̃0) → π1(X,x0) is K. For this, recall that
Theorem 9.1.1 says that the image of p∗ consists of all [γ] ∈ π1(X,x0) such that the following holds:

(†) Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Then γ̃ is a loop, i.e., γ̃(1) = x̃0.

Consider some g = [γ] ∈ π1(X,x0). Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0 and let γ̃u be the lift

of γ to the universal cover X̃u with γ̃u(0) = x̃u. The path γ̃u projects to γ̃. By Theorem 9.5.1, we
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have γ̃u(1) = gx̃u. It follows that γ̃ is a loop if and only if gx̃u maps to x̃0 ∈ X̃, i.e., if and only if
g ∈ K, as desired. □

Before giving some examples of Theorem 10.3.1, we extract two things from its proof:

Corollary 10.3.3. Let (X,x0) be a pointed space that is path connected, locally path connected,

and semilocally 1-connected. Set Γ = π1(X,x0), and let K < Γ be a subgroup. Let p : (X̃, x̃0) → (X,x0)

be the connected pointed cover whose corresponding subgroup is K and let pu : (X̃u, x̃u) → (X,x0) be
the universal cover. The following then hold:

(i) We have X̃ = X̃u/K.

(ii) There is a cover q : (X̃u, x̃u) → (X̃, x̃0). In particular, X̃u is the universal cover of X̃.

Proof. Immediate from the proof of Theorem 10.3.1. □

Remark 10.3.4. Conclusion (ii) of Corollary 10.3.3 explains why it is called the universal cover:
it covers all connected covers of the space. □

We now give some examples of Theorem 10.3.1:

Example 10.3.5 (Circle). We have π1(S1, 1) = Z. The subgroups of Z are all of the form nZ for
some n ≥ 0. These correspond to the following covers:

• For n ≥ 1, the index n subgroup nZ < Z corresponds to the degree n cover pn : (S1, 1) →
(S1, 1) defined by

pn(z) = zn for z ∈ S1 ⊂ C.
In particular, the whole group 1Z = Z corresponds to the trivial cover 1S1 : (S1, 1) → (S1, 1).

• The infinite index trivial subgroup 0 < Z corresponds to the universal cover p : R → S1. □

Example 10.3.6 (Real projective space). Let n ≥ 2 and let x0 ∈ RPn be a basepoint. We have
π1(RPn, x0) = C2. There are two subgroups of C2:

• The whole group C2 has index 1 and corresponds to the trivial cover 1RPn : (RPn, x0) →
(RPn, x0).

• The index 2 trivial group 0 < C2 corresponds to the degree 2 cover p : (Sn, x̃0) → (RPn, x0),
where x̃0 ∈ Sn is a point projecting to x0. This is the universal cover of RPn. □

10.4. Comparison with classical Galois correspondence

Theorem 9.3.2 should be viewed as an analogue for spaces of the classical Galois correspondence.1

Letting L/K be a finite Galois extension of fields, the classical Galois correspondence is a bijection
between:

• fields E with K ⊂ E ⊂ L; and
• subgroups of the Galois group Gal(L/K), which we recall is the set of automorphisms of L
that fix the subfield K.

This bijection tales a subgroup G of Gal(L/K) to the subfield LG = {ℓ ∈ L | gℓ = ℓ for all g ∈ G}.
The degree of the field extension LG/K is the index of the subgroup G of Gal(L/K).

We hope the analogy is clear: the field K corresponds to the base of the cover, the Galois group
Gal(L/K) corresponds to the fundamental group, and the field L = L1 corresponds to the universal
cover. Another feature of the classical Galois correspondence is that it is order-reversing:

• If G1, G2 < Gal(L/K) are subgroups with G1 < G2, then the corresponding fields satisfy
LG2 < LG1 .

Something similar holds for covers, where the relation “is contained in” is replaced with the relation
“covers”:

1Understanding this analogy is not essential for understanding covering spaces, so a reader should not worry if

they are unfamiliar with the classical Galois correspondence.
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Theorem 10.4.1. Let (X,x0) be a pointed space that is path connected, locally path connected,

and semilocally 1-connected. Let p1 : (X̃1, x̃1) → (X,x0) and p2 : (X̃2, x̃2) → (X,x0) be connected
pointed covers corresponding to subgroups K1,K2 < π1(X,x0) satisfying K1 < K2. Then there is a

pointed covering map q : (X̃1, x̃1) → (X̃2, x̃2) such that the following diagram commutes:

(X̃1, x̃1) (X̃2, x̃2) (X,x0).

p1

q p2

Proof. The proof is very similar to that of Theorem 10.3.1, so we leave it as Exercise 10.5. □

Here is an example:

Example 10.4.2 (Circle). For n ≥ 1, the cover of (S1, 1) corresponding to the subgroup
nZ < Z = π1(S1, 1) is the cover pn : (S1, 1) → (S1, 1) defined by pn(z) = zn. For n,m ≥ 1, we have
nZ < mZ if and only if m divides n. In this case, we have the covers

(S1, 1) (S1, 1) (S1, 1)
pm

pm/n pn

as in Theorem 10.4.1. □

10.5. Subgroups of free groups are free

We now explain an application of Theorem 10.3.1 to group theory. The following theorem
was originally proved algebraically by Nielsen (who proved it for finitely generated subgroups) and
Schreier (who proved it in general).

Theorem 10.5.1. Let F (S) be the free group on a set S and let G be a subgroup of F (S). Then
G is a free group.

Proof. Let XS be the graph with one vertex x0 and with |S| oriented edges, each labeled with
an element of S. Identify each s ∈ S with the corresponding loop in XS based at x0. Theorem 7.8.1
says that π1(XS , x0) is a free group on {[s] | s ∈ S}. By Theorem 10.3.1, there is a pointed cover

q : (X̃(G), x̃G) → (XS , x0) whose corresponding subgroup is G. Since XS is a graph, one way to
proceed would be to appeal to Exercise 4.8, which says that all covers of XS are also graphs. This

would imply that X̃(G) is a graph, and thus that G ∼= π1(X̃(G), x̃G) is a free group (Theorem 8.8.1).
Instead of doing this, we give a more explicit approach that will later allow us to compute free

generators for G. In the proof of Theorem 7.8.1, we identified the universal cover of (XS , x0), though
of course that term had not yet been defined. Namely, let TS to be an infinite tree each of whose
vertices has valence 2|S|. Label the oriented edges of TS by elements of S such that for each vertex v
of TS there are:

• |S| edges coming out of v labeled by elements of S; and
• |S| edges going into v labeled by elements of S.

Fix a vertex x̃0 of TS . There is a pointed covering space p : (TS , x̃0) → (XS , x0) taking each vertex
of TS to x0 and each oriented edge of TS labeled by s ∈ S to the corresponding loop in XS labeled
by s. For instance, if S = {a, b} this is the cover

p

XS
TS

x0
a bx0~

The tree TS is contractible (Lemma 6.4.1), so TS is the universal cover of XS . In particular, it is
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a regular cover with deck group F (S) (Theorem 9.5.1). Let X̃(G) = TS/G and let x̃G ∈ X̃(G) be

the image of of x̃0 ∈ TS . The map p factors through a map pG : (X̃(G), x̃G) → (XS , x0). Corollary

10.3.3 says that pG : (X̃(G), x̃G) → (XS , x0) is the pointed connected cover corresponding to G. In
particular,

π1(X̃(G), x̃G) ∼= G.

Since X̃(G) is a graph, Theorem 8.8.1 says that π1(X̃(G), x̃G) is a free group. The theorem follows. □

10.6. Computing free generators for subgroups of free groups

As in Theorem 10.5.1, let F (S) be a free group on a set S and let G be a subgroup of F (S). The
proof of Theorem 10.5.1 actually gives an algorithm to compute free generators for G. We start with
the following definition:

Definition 10.6.1. Let H be a group with generating set T . The Cayley graph of H with respect
to T , denoted Cay(H,T ), is the following graph:

• The vertices of Cay(H,T ) are the elements of H.
• For each h ∈ H and t ∈ T , there is an oriented edge of Cay(H,T ) connecting the vertices h
and ht. □

For a group H with a generating set T , the graph Cay(H,T ) is connected. Indeed, for h ∈ H we
can write h = te11 · · · tenn with t1, . . . , tn ∈ T and e1, . . . , en ∈ {±1}. The following is then an edge
path from the vertex 1 ∈ H to the vertex h ∈ H:

1, te11 , t
e1
1 t

e2
2 , t

e1
1 t

e2
2 t

e3
3 , . . . , t

e1
1 · · · tenn = h.

Here we are using the fact that for h′ ∈ H and t ∈ T there is an oriented edge from h′t−1 to h′. The
group H acts on Cay(H,T ) on the left. This action is transitive on the vertices, and the orbits of
the edges are in bijection with T .

Remark 10.6.2. In the above, we allow the generating set T to have repeated elements. It is
also allowed to contain the identity element 1 ∈ H. The same is true in what we do below. □

We now return to the setting of free groups. The tree TS constructed in the proof of Theorem

10.5.1 is exactly Cay(F (S), S). It follows that the graph X̃(G) from that proof with fundamental
group G < F (S) is Cay(F (S), S)/G. If G is a normal subgroup, then letting S be the image of
S in F (S)/G we have Cay(F (S), S)/G ∼= Cay(F (S)/G, S). More generally, Cay(F (S), S)/G is the
Schreier graph of F (S)/G with respect to S, whose definition is as follows:

Definition 10.6.3. Let H be a group with generating set T and let K < H be a subgroup. The
Schreier graph of H/K with respect to T , denoted Sch(H,K, T ), is the following graph:

• The vertices of Sch(H,K, T ) are the right cosets Kh with h ∈ H.
• For each right coset Kh and generator t ∈ T , there is an oriented edge of Sch(H,K, T )
connecting the vertices Kh and Kht. □

Here are three examples of how to use all this to compute free generators for subgroup G of free
group F (S):

Example 10.6.4. Consider the free group F (a, b) on a and b. Let C3 be the cyclic group of
order 3 generated by t. Let G be the kernel of the homomorphism F (a, b) → C3 taking a and b
to t. Following the above recipe, the group G is the fundamental group of the Cayley graph of
F (a, b)/G ∼= C3 with respect to the generating set {a, b}. These map to the same element of C3, so
this generating set has a repeated element in it:

a b
x0

a a

a

b

b
b

1 t

t2
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The basepoint is the vertex labeled 1. Let T be the following maximal tree in this Cayley graph:

a
a

a

b

b
b

1 t

t2

Using the recipe for computing fundamental groups of graphs from §8.9, we see that G < F (a, b) is a
free group on the following four generators: {ba−1, aba−2, a3, a2b}. □

Example 10.6.5. Consider the free group F (a, b) on a and b. Let G be the normal subgroup of
F (a, b) generated by a. We thus have F (a, b)/G ∼= Z. Under this isomorphism, a maps to 0 ∈ Z and
b maps to 1 ∈ Z. Following the above recipe, the group G is the fundamental group of the Cayley
graph of Z with respect to the generating set {a, b}:

a b
x0

aaa

bb
0 1-1

The basepoint is the vertex labeled 0. Let T be the following maximal tree in this Cayley graph:

aaa

bb

0 1-1
Using the recipe for computing fundamental groups of graphs from §8.9, we see that G < F (a, b) is
the free group on the following set of generators: {bnab−n | n ∈ Z}. □

Example 10.6.6. To illustrate this construction for a non-normal subgroup, let F (a, b) be the
free group on a and b and let G be the cyclic subgroup generated by b. We already know that G is
free on the single generator b. The cosets of G in F (a, b) are of the form Gw where w ∈ F (a, b) is a
reduced word that does not start with b or b−1. The Schreier graph of G in F (a, b) with respect to S
is thus of the following form:

aa G

b

a b
x0

For reasons of space, we only label the vertex corresponding to the trivial coset G, which is the
basepoint. Note that this Schreier graph deformation retracts to the single loop labeled by b, so G is
indeed the free group on the single generator b. □

Remark 10.6.7. It is enlightening to re-interpret the examples in §9.6 from this point of view. □

10.7. Exercises

Exercise 10.1. Let X be a space that is semilocally 1-connected and let p : X̃ → X be a cover.

Then X̃ is semilocally 1-connected. □

Exercise 10.2. Let X be a semilocally 1-connected space and let Y be a space that is homotopy
equivalent to X. Prove that Y is semilocally 1-connected. □

Exercise 10.3. Let X be a space that is path connected, locally path connected, and semilocally
1-connected. Fix a basepoint x0 ∈ X. Construct a bijection between the following two sets:

• The set of isomorphism classes of connected covers p : X̃ → X.
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• The set of conjugacy classes of subgroups of π1(X,x0). □

Exercise 10.4. Let p : (X̃, x̃0) → (X,x0) be a connected pointed cover and let f : (Y, y0) →
(X,x0) be a map. Assume that X and Y are path connected and locally path connected. Define

Ỹ =
{
(y, x̃) ∈ Y × X̃ | f(y) = p(x̃)

}
,

ỹ0 = (y0, x̃0) ∈ Ỹ ,

and let q : (Ỹ , ỹ0) → (y, y0) be the projection onto the first factor. You proved in Exercise 1.8 that

q : (Ỹ , ỹ0) → (Y, y0) is a covering space. Let Ỹ ′ be the path component of Ỹ containing ỹ0 and let
q′ = q|Ỹ ′ . Prove the following:

(a) The map q′ : (Ỹ ′, ỹ0) → (Y, y0) is a cover.
(b) Let

K = Im(p∗ : π1(X̃, x̃0) → π1(X,x0))

be the subgroup corresponding to p : (X̃, x̃0) → (X,x0) and let

K ′ = f−1
∗ (K) ⊂ π1(Y, y0).

Prove that K ′ is the subgroup corresponding to q′ : (Ỹ ′, ỹ0) → (y, y0). □

Exercise 10.5. Let (X,x0) be a pointed space that is path connected, locally path connected,

and semilocally 1-connected. Let p1 : (X̃1, x̃1) → (X,x0) and p2 : (X̃2, x̃2) → (X,x0) be connected
pointed covers corresponding to subgroups K1,K2 < π1(X,x0) satisfying K1 < K2. Prove that there

is a pointed covering map q : (X̃1, x̃1) → (X̃2, x̃2) such that the following diagram commutes:

(X̃1, x̃1) (X̃2, x̃2) (X,x0).

p1

q p2 □

Exercise 10.6. Let (X,x0) and (Y, y0) be the following spaces:

X Y

x0 y0

We proved in Example 8.6.1 that these spaces are homotopy equivalent, and also that π1(X,x0) and
π1(Y, y0) are isomorphic to Z. Explictly construct the universal covers of X and Y . □

Exercise 10.7. Let (X,x0) and (Y, y0) be the following surfaces with boundary:

x0

y0X
Y

We proved in Example 8.2.1 that these spaces are homotopy equivalent, and also that π1(X,x0) and
π1(Y, y0) are free groups on two generators. Explictly construct the universal covers of X and Y . □
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Exercise 10.8. Let K be the Klein bottle:

= 𝕂

𝕂

In Exercise 9.11, you proved that the fundamental group of K is the following group Γ:

• Let Z act on Z via the homomorphism ϕ : Z → Aut(Z) defined by

ϕ(n)(m) = (−1)nm for all n ∈ Z and m ∈ Z.

Then Γ = Z ⋊ϕ Z, i.e., the semidirect product of Z and Z given by the action ϕ.

Construct a covering space action of Γ on R2 such that R2/Γ ∼= K. This shows that the universal
cover of K is R2, and also gives a new proof that the fundamental group of K is Γ. □

Exercise 10.9. Let Σ2 be a closed oriented genus 2 surface, which can be identified with an
octagon with sides identified in pairs as follows:

=

a2

a1a2

b1

b1

b2

b2
a1

a2

b2 a1

b1

Prove that the universal cover of Σ2 is homeomorphic to R2. Hint: Let P ∼= D2 be an octagon, so
the above picture shows a surjection f : P → Σ2. The map f is an open embedding on the interior of

P , but is not injective on the boundary. Construct a space S̃ ∼= R2 and a covering map p : S̃ → Σ2

by carefully gluing together infinitely many copies of P and letting p equal f on each copy of P . We
remark that this same argument will show that for all g ≥ 1 the universal cover of a closed genus g
surface is homeomorphic to R2. □

Exercise 10.10. Let T2 = (S1)×2 be the 2-torus. Fix a basepoint x0 ∈ T2, so π1(T2, x0) ∼= Z2.

(a) Construct the universal cover of T2.

(b) Let K < Z2 be a finite-index subgroup and let p : (X̃, x̃0) → (T2, x0) be the cover whose

corresponding subgroup is K. Prove that X̃ ∼= T2.

(c) Let K < Z2 be a nontrivial subgroup of infinite index and let p : (X̃, x̃0) → (T2, x0) be the

cover whose corresponding subgroup is K. Prove that X̃ ∼= S1 × R. □

Exercise 10.11. Let X be a graph with one vertex x0 and two edges labeled a and b. We
can therefore identify π1(X,x0) with the free group F (a, b). Classify all the connected degree 2
and degree 3 covers of X, and for each cover determine if it is regular and give generators for its
corresponding subgroup of π1(X,x0) = F (a, b). □

Exercise 10.12. Let F = F (a, b) be the free group on a and b. Recall from Exercise 7.12 that
the abelianization of F is Z2. The kernel of the abelianization map F → Z2 is the commutator
subgroup [F, F ]. Compute a free basis for the free group [F, F ]. □

Exercise 10.13. For n ≥ 1, let Cn ⊂ R2 be the circle of radius 1/n with center (0, 1/n). Let
X = ∪∞

n=1Cn, topologized as a subspace of R2. This is sometimes called the “earring space” or the
“shrinking wedge of circles”:
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Prove the following:

(a) The space X is path connected.
(b) The space X is locally path connected.
(c) The space X has no universal cover. □

Exercise 10.14. Let X =
∏∞

n=1 S1, endowed with the product topology. Prove the following:

(a) The space X is path connected.
(b) The space X is locally path connected.
(c) The space X has no universal cover. □

Exercise 10.15. The quasi-circle is the space Y obtained from the topologist’s sine curve

X =
{
(x, sin(1/x)) ∈ R2 | 0 < x ≤ 1

}
∪ {(0, y) | −1 ≤ y ≤ 1}

by connecting (1, sin(1)) to (0, 0) by an arc; see here:

Let Z be the following space obtained from two quasi-circles by identifying basepoints on their arcs
together:

Prove the following:

(a) The space Z is 1-connected (recall that Exercise 4.11 says that the quasi-circle itself is
1-connected).

(b) There exists a finite irregular cover p : Z̃ → Z such that Z̃ is 1-connected. Hint: start with
a finite irregular cover of a graph with one vertex and two edges. □



CHAPTER 11

Classifying covers: monodromy and the universal cover

Our main goal in this chapter is to construct universal covers. We do this by proving a much
more general version of the classification of covering spaces.

Remark 11.0.1. The arguments in this chapter are more abstract and categorical than those
in the other chapters of this book. For a reader who just wants to get to the construction of the
universal cover as fast as possible, the traditional proof is in Essay C. In fact, the proof of our very
general classification theorem is essentially the same as the traditional construction of universal
covers. One of the reasons we wrote this chapter was to put that somewhat mysterious proof in its
natural context. □

11.1. Monodromy action of the fundamental group

Let p : X̃ → X be a cover. For x ∈ X, let F (x) = p−1(x) be the fiber over x. If γ is a path in X
from x ∈ X to y ∈ X, then in §4.3 we defined a map τγ : F (x) → F (y) as follows:

• For x̃ ∈ F (x), let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃. We then set τγ(x̃) = γ̃(1) ∈ F (y).

The picture is as follows:

p

γ
x

y

x~

τγ(x)~

γ~

Lemma 4.2.1 says that τγ only depends on the homotopy class of γ, and Lemma 4.3.1 says that τγ is
a bijection. These compose as follows:

Lemma 11.1.1. Let p : X̃ → X be a cover. For x ∈ X, let F (x) = p−1(x). Let γ be a path in X
from x ∈ X to y ∈ X and let δ be a path in X from y ∈ X to z ∈ X. Then τγ·δ = τδ ◦ τγ .

Proof. Consider some x̃ ∈ F (x). Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃. We thus have

γ̃(1) = τγ(x̃). Let δ̃ be the lift of δ to X̃ with δ̃(0) = γ̃(1). As the following figure shows, the path

γ̃·δ̃ is the lift of γ·δ to X̃ starting at x̃:

p

γ
x

y

x~

τγ(x)~

γ~

zδ

δ~ τδ(τγ(x))~

It follows that τγ·δ = δ̃(1) = τδ(δ̃(0)) = τδ(τγ(x̃)), as desired. □

Fix a basepoint x0 ∈ X. Define a right action of π1(X,x0) on F (x0) as follows:

x̃[γ] = τγ(x̃) for all x̃ ∈ F (x0) and [γ] ∈ π1(X,x0).

101
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The fact that this is an action uses Lemma 11.1.1: for x̃ ∈ F (x0) and [γ], [δ] ∈ π1(X,x0), we have

x̃[γ·δ] = τγ·δ(x̃) = τδ(τγ(x̃)) = τγ(x̃)[δ] = x̃[γ][δ].

This is called the monodromy action of π1(X,x0) on F (x0).

Remark 11.1.2. In Lemma 11.1.1, the order of γ and δ are reversed in τγ·δ = τδ ◦ τγ . This order
reversal is why we get a right action rather than a left action. It happens because we compose paths
from left to right, but functions from right to left. □

Remark 11.1.3. If p : (X̃, x̃0) → (X,x0) is a pointed regular cover with deck group G, then G
acts on F (x0) on the left. Composing this action with the homomorphism π1(X,x0) → G given
by Lemma 7.2.1, we get a left action of π1(X,x0) on F (x0). This is different from the monodromy
action, which is a right action and exists for all covers, not just regular ones. This left action also
depends on a choice of basepoint x̃0 in the cover, while the monodromy action does not. See Exercise
11.1 for how the two actions are related. □

11.2. All monodromy actions come from covers

Let G be a group. A right G-set is a set S equipped with a right G-action. Two right G-sets S
and T are isomorphic if there exists a bijection f : S → T such that

f(sg) = f(s)g for all s ∈ S and g ∈ G.

If p : X̃ → X is a cover and x0 ∈ X, then the fiber p−1(x0) is a right π1(X,x0)-set via the monodromy
action. The following theorem says that for reasonable pointed spaces (X,x0), covers of X can be
identified with right π1(X,x0)-sets:

Theorem 11.2.1. Let (X,x0) be a pointed space. Assume that X is path connected, locally path
connected, and semilocally 1-connected. The following then hold:

(i) Let S be a right π1(X,x0)-set. There then exists a cover p : X̃ → X such that the fiber
p−1(x0) over x0 is isomorphic to S as a right G-set.

(ii) Let p1 : X̃1 → X and p2 : X̃2 → X be covers. Assume that the fibers p−1
1 (x0) and p

−1
2 (x0)

are isomorphic as right π1(X,x0)-sets. Then p1 : X̃1 → X and p2 : X̃2 → X are isomorphic
covers.

Just like Theorem 10.3.1 (Galois correspondence), Theorem 11.2.1 is a classification of covers of
X. It differs from Theorem 10.3.1 in two ways:

• Theorem 10.3.1 classifies covers with X̃ path connected, while Theorem 11.2.1 allows X̃ to
not be path connected.

• Theorem 10.3.1 is about pointed covers p : (X̃, x̃0) → (X,x0), while Theorem 11.2.1 does

not specify a basepoint in X̃. The notion of isomorphism of covers in the two theorems is
thus slightly different (pointed vs unpointed isomorphisms of covers).

We will prove Theorem 11.2.1 later in this chapter; see §11.6 below. First, we will explain how to use
it to construct the covers given by Theorem 10.3.1 (Galois correspondence), including the universal
cover.

We start with the following. If G is a group, a right G-set S is transitive if for all s, s′ ∈ S there
exists some g ∈ G with sg = s′.

Lemma 11.2.2. Let p : X̃ → X be a cover with X path connected and let x0 ∈ X. The path

components of X̃ are in bijection with the π1(X,x0)-orbits of the right π1(X,x0)-set p
−1(x0). In

particular, X̃ is path connected if and only if the right π1(X,x0)-set p
−1(x0) is transitive.

Proof. For x̃ ∈ X̃, a path δ in X from p(x̃) to x0 lifts to a path from x̃ to a point of p−1(x0).

It follows that each path component of X̃ contains at least one point of p−1(x0). To prove the lemma,
it is therefore enough to prove that two points of p−1(x0) can be connected by a path if and only if
they are in the same π1(X,x0)-orbit.

Consider x̃, x̃′ ∈ p−1(x0). A path γ̃ from x̃ to x̃′ projects to a loop γ with [γ] ∈ π1(X,x0) such

that x̃[γ] = x̃′. Conversely, if [γ] ∈ π1(X,x0) satisfies x̃[γ] = x̃′ then the lift of γ to X̃ starting at x̃
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is a path from x̃ to x̃′. It follows that x̃ and x̃′ can be connected by a path if and only if they are in
the same π1(X,x0)-orbit, as desired. □

Next, if G is a group and S is a right G-set, for s ∈ S we will write Gs for the stabilizer subgroup
of s, i.e., Gs = {g ∈ G | sg = s}. We then have:

Lemma 11.2.3. Let p : (X̃, x̃0) → (X,x0) be a pointed cover and let G = π1(X,x0). Then the

subgroup of G corresponding to p : (X̃, x̃0) → (X,x0) is Gx̃0
.

Proof. Recall that the subgroup of G = π1(X,x0) corresponding to the cover is the image

of the induced map p∗ : π1(X̃, x̃0) → π1(X,x0). By Theorem 9.1.1, this subgroup consists of all
[γ] ∈ π1(X,x0) such that the following holds:

(†) Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Then γ̃ is a loop, i.e., γ̃(1) = x̃0.

By definition, these are exactly the [γ] such that x̃0[γ] = x̃0. □

For a pointed space (X,x0) satisfying appropriate hypotheses and a subgroup H < π1(X,x0),

Theorem 10.3.1 gives a connected pointed cover p : (X̃, x̃0) → (X,x0) whose corresponding subgroup
is H. The following theorem shows how to produce this cover with Theorem 11.2.1. For the statement
of the theorem, note that if G is a group and H < G is a subgroup, then the set H\G of right
H-cosets is a transitive right G-set. Moreover, if S is a transitive right G-set and s ∈ S, then we have
an isomorphism Gs\G ∼= S of transitive right G-sets. This isomorphism takes a coset Gsg to sg.

Theorem 11.2.4. Let (X,x0) be a pointed space. Assume that X is path connected, locally
path connected, and semilocally 1-connected. Let G = π1(X,x0) and let H < G be a subgroup. Let

p : X̃ → X be the cover obtained by applying Theorem 11.2.1 to the right G-set H\G. Let x̃0 ∈ X̃ be

the point in the fiber p−1(x0) corresponding to the trivial coset H ∈ H\G. Then p : (X̃, x̃0) → (X,x0)
is a connected pointed cover whose corresponding subgroup is H.

Proof. Immediate from Lemmas 11.2.2 and 11.2.3. □

From this, we will deduce the following theorem from Chapter 10 whose proof was postponed:

Theorem 10.2.3 (Existence of universal covers). Let (X,x0) be a pointed space. Assume that
X is path connected, locally path connected, and semilocally 1-connected. Then it has a universal

cover pu : (X̃u, x̃u) → (X,x0).

Proof. Let pu : X̃u → X be the cover obtained by applying Theorem 11.2.1 to the right

π1(X,x0)-set 1\π1(X,x0) and let x̃u ∈ X̃u be the point in the fiber p−1(x0) corresponding to the

trivial coset 1. It follows from Theorem 11.2.4 that pu : (X̃u, x̃u) → (X,x0) is a universal cover. □

11.3. Reminder about fundamental groupoid and functors

To prove Theorem 11.2.1, we will actually prove an even more general result. This more general
result is most naturally stated in terms of the fundamental groupoid. Since we have not discussed
the fundamental groupoid since introducing it in Chapter 5, we recall some basic facts about it.

Let X be a space. The fundamental groupoid of X is a category that endodes the collection of
homotopy classes of paths between poitns of X. As we discussed in §5.4, in a category morphisms
are composed right-to-left like functions. However, our conventions for composing paths goes from
left to right: if γ is a path from x to y and γ′ is a path from y to z, then γ·γ′ is the path from x to z
that first traverses γ and then traverses γ′. To fix this mismatch of conventions, we introduced the
following notation:

Notation 11.3.1. Let X be a space. For points x, y, z ∈ X, let γ be a path in X from x to y
and let δ be a path in X from y to z. We then define γ′ ∗ γ = γ·γ′. This descends to homotopy
classes of paths, and we also write [γ′] ∗ [γ] = [γ′ ∗ γ]. □

With this notation, the fundamental groupoid of X, denoted Π(X), is the following category:

• The objects of Π(X) are the points of X.
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• For points x and y, the Π(X)-morphisms from x to y are the set of all homotopy classes of
paths from x to y. For a path γ from x to y, we will write [γ] : x→ y for the corresponding
morphism from x to y.

• If γ is a path from x to y and γ′ is a path from y to z, then the composition of the morphisms
[γ] : x→ y and [γ′] : y → z is the morphism [γ′] ∗ [γ] : x→ z.

• For a point x ∈ X, the identity morphism of x is the constant path [cx] : x→ x.

We will encode covers of spaces as functors on the fundamental groupoid. We recall that a
functor is defined as follows:

Definition 11.3.2. Let C and D be categories. A functor F from C to D consists of the
following data:

• For each object c ∈ C, an object F (c) ∈ D.
• For each morphism f : c→ c′ in C, a morphism F (f) : F (c) → F (c′) in D.

This data should respect composition in the sense that if f : c→ c′ and g : c′ → c′′ are morphisms in
C, then F (g ◦ f) = F (g) ◦ F (f). □

Example 11.3.3. If Top∗ is the category whose objects are pointed spaces (X,x0) and whose
morphisms are pointed maps f : (X,x0) → (Y, y0), then the fundamental group π1 is a functor from
Top∗ to the category Group of groups. □

11.4. Fiber functors

Let X be a space and let p : X̃ → X be a covering space. The fiber functor of p : X̃ → X is the

following functor F from Π(X) to the category Set of sets. For an object x ∈ X̃, we define F (x) to
be the set of points in the fiber of x, i.e.,

F (x) = p−1(x).

For a morphism [γ] : x→ y in Π(X), we define F ([γ]) : F (x) → F (y) to be the map τγ we discussed
in §11.1 above. To see that this is a functor, consider morphisms [γ] : X → y and [δ] : y → z in Π(X).
We must prove that F ([δ] ∗ [γ]) = F ([δ]) ◦ F ([γ]), i.e., that

τγ·δ = τδ ◦ τγ .

This is exactly Lemma 11.1.1.

Remark 11.4.1. Using ∗ instead of the concatanation product · in the fundamental groupoid
accomplised the same thing for the fiber functor that using right actions did for the monodromy
action of the fundamental group. □

11.5. Realizing fiber functors

Our main theorem says that every functor from the fundamental groupoid to Set is the fiber
functor of a cover. This result will also have a uniqueness statement. For this, we make the following
categorical definition:

Definition 11.5.1. Let F and G be two functors from a category C to a category D. A natural
isomorphism Φ from F to G consists of the following data:

• For each object c ∈ C, an isomorphism Φ(c) : F (c) → G(c) in D.

These isomorphisms should satisfy the follow consistency condition. Let f : c→ c′ be a morphism in
C. We then require that the diagram

F (c) F (c′)

G(c) G(c′)

F (f)

Φ(c) Φ(c′)

G(f)

commutes, i.e., that Φ(c′) ◦F (f) = G(f) ◦Φ(c). If a natural isomorphism from F to G exists, we say
that F and G are naturally isomorphic. □
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Our theorem is as follows. Note that unlike in Theorem 11.2.1, the space X below is not assumed
to be path connected.

Theorem 11.5.2. Let X be a space that is locally path connected and semilocally 1-connected.
The following then hold:

(i) For all functors F : Π(X) → Set, there exists a cover p : X̃ → X whose fiber functor is
naturally isomorphic to F .

(ii) If p : X̃ → X and p′ : X̃ ′ → X are covers whose fiber functors are naturally isomorphic,

then p : X̃ → X and p′ : X̃ ′ → X are isomorphic.

Proof. We prove (i), and then deduce (ii) by meditating on our proof of (i).

Step 1. Let F : Π(X) → Set be a functor. There then exists a cover p : X̃ → X whose fiber
functor is F .

Roughly speaking, we start by defining X̃ to be the disjoint union of all points in all the purported
fibers given by F . To ensure that this really is a disjoint union, we actually define this as follows:

X̃ = {(x, x̃) | x ∈ X and x̃ ∈ F (x)} .

Let p : X̃ → X be the projection onto the first factor. Our main goal is to construct a topology on

X̃ such that p : X̃ → X is a covering map.
Say that a set U ⊂ X is an sl1c-set if U is open and path connected, and for all x ∈ U the map

π1(U, x) → π1(X,x) is the trivial map. These satisfy the following property:

• If U is an sl1c-set and V ⊂ U is open and path connected, then V is an sl1c-set.

Since X is locally path connected and semilocally 1-connected, every point has a open neighborhood
that is an sl1c-set. Combined with the above bullet point, we deduce that the sl1c-sets form a basis
for the topology of X.

Let U ⊂ X be an sl1c-set. For some x ∈ U , let x̃ ∈ F (x). Since U is an sl1c-set, for each
y ∈ U there exists a path γy in U from x to y. Moreover, any two such paths are homotopic in
X. The morphism [γy] : x→ y thus only depends on y. Applying the functor F , we get a bijection
F ([γy]) : F (x) → F (y). Define

Ũ(x̃) =
{
(y, ỹ) ∈ X̃ | y ∈ U and ỹ = F ([γ])(x̃)

}
.

The projection p : X̃ → X takes Ũ(x̃) bijectively to U . By the functorality of F , these sets Ũ(x̃)
satisfy the following key properties:

(a) Let U ⊂ X be an sl1c-set, let x ∈ U , and let x̃ ∈ F (x). For all (y, ỹ) ∈ U(x̃), we have
U(x̃) = U(ỹ).

(b) Let U ⊂ X be an sl1c-set, let x ∈ U , and let x̃ ∈ F (x). Let V ⊂ U be an open path

connected subset of U , so V is also an sl1c-set. Assume that x ∈ V . Then Ṽ (x̃) = Ũ(x̃).

We claim that the collection of all sets of the form Ũ(x̃) forms the basis for a topology on X̃. This
requires checking the following:

• Let U, V ⊂ X be sl1c-sets, let x ∈ U and y ∈ V , and let x̃ ∈ F (x) and ỹ ∈ F (y). We

must prove that Ũ(x̃) ∩ Ṽ (ỹ) is the union of sets of this form. To see this, consider some

(z, z̃) ∈ Ũ(x̃) ∩ Ṽ (ỹ). Let W ⊂ U ∩ V be a path connected open neighbrohood of z. Using
(a) and (b), we have

W̃ (Z̃) ⊂ Ũ(z̃) ∩ Ṽ (z̃) = Ũ(x̃) ∩ Ṽ (ỹ).

The claim follows.

We can therefore endow X̃ with the topology generated by the Ũ(x̃).

By construction, this topology makes the projection p : X̃ → X continuous. In fact, even more

is true: if U ⊂ X is an sl1c-set and x ∈ U and x̃ ∈ F (x), then the restriction of p to Ũ(x̃) is a
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homeomorphism Ũ(x̃) → U . This implies that p : X̃ → X is a covering map. Indeed, for x ∈ X
letting U ⊂ X be an sl1c-set containing x we have

p−1(U) =
⊔

x̃∈F (x)

Ũ(x̃).

These are the sheets lying above U .

It remains to check that the fiber functor of p : X̃ → X is naturally isomorphic to F . For x ∈ X,
we have

p−1(x) = {(x, x̃) | x̃ ∈ F (x)} .
Our natural isomorphism takes this to F (x) via the map (x, x̃) 7→ x̃. We must check that this
purported natural isomorphism respects the morphisms in the fundamental groupoid. Let [γ] : x→ y
be a morphism in Π(X) and let x̃ ∈ F (x). Unwinding the definitions, what we must check is the
following:

(†) Let γ̃ be the lift of γ to X̃ with γ̃(0) = (x, x̃). Then γ̃(1) = (y, ỹ).

Using the Lebesgue number lemma just like in our proof of path lifting for covers (cf. Lemma 3.4.1),
we can divide the domain I of γ : I → X into subintervals

0 = ϵ1 < ϵ2 < · · · < ϵn = 1

such that for all 1 ≤ k < n the image γ([ϵk, ϵk+1]) is contained in an sl1c-set Uk ⊂ X. After
re-parameterizing γ (which changes it by a homotopy), we can therefore write γ = γ1· · · · ·γn such
that each γk is contained in the sl1c-set Uk. We can lift γ by lifting γ1, then γ2, etc. This reduces us
to checking (†) for a γ that is contained in an sl1c-set U , and for these paths (†) is immediate from
our construction.

Step 2. Let p : X̃ → X and p′ : X̃ ′ → X be covers whose fiber functors are naturally isomorphic.

Then p : X̃ → X and p′ : X̃ ′ → X are isomorphic.

Let F be the fiber functor of p : X̃ → X and F ′ be the fiber functor of p′ : X̃ ′ → X. Examining

our proof in Step 1, it is clear that p : X̃ → X and p′ : X̃ ′ → X are isomorphic to the covering spaces
obtained by applying the construction in Step 1 to F and F ′, respectively. We can therefore assume
without loss of generality that

X̃ = {(x, x̃) | x ∈ X and x̃ ∈ F (x)} ,

X̃ ′ = {(x, x̃′) | x ∈ X and x̃′ ∈ F ′(x)}
with the topologies from Step 1. Let Φ be a natural isomorphism from F to F ′, so for x ∈ X we

have bijections Φ(x) : F (x) → F ′(x). We can therefore define a map ϕ : X̃ → X̃ ′ via the formula

ϕ(x, x̃) = (x,Φ(x)(x̃)) for all x ∈ X and x̃ ∈ F (x).

It is clear that ϕ is a homeomorphism commuting with the projections p and p′, i.e., an isomorphism

from p : X̃ → X to p′ : X̃ ′ → X. □

11.6. Realizing monodromy representations using fiber functors

In this section, we use Theorem 11.5.2 to prove Theorem 11.2.1, whose statement we recall:

Theorem 11.2.1. Let (X,x0) be a pointed space. Assume that X is path connected, locally path
connected, and semilocally 1-connected. The following then hold:

(i) Let S be a right π1(X,x0)-set. There then exists a cover p : X̃ → X such that the fiber
p−1(x0) over x0 is isomorphic to S as a right G-set.

(ii) Let p1 : X̃1 → X and p2 : X̃2 → X be covers. Assume that the fibers p−1
1 (x0) and p

−1
2 (x0)

are isomorphic as right π1(X,x0)-sets. Then p1 : X̃1 → X and p2 : X̃2 → X are isomorphic
covers.

Proof. We divide the proof into two steps:

Step 1. Let S be a right π1(X,x0)-set. There then exists a cover p : X̃ → X such that the fiber
p−1(x0) over x0 is isomorphic to S as a right G-set.



11.6. REALIZING MONODROMY REPRESENTATIONS USING FIBER FUNCTORS 107

We construct a functor F : Π(X) → Set as follows. For x ∈ X, define F (x) = S. To define F on
morphisms of Π(X), for each x ∈ X fix some arbitrary path δx from x0 to x. The only thing we will
assume is that δx0

is the constant path. We are going to define F such that for all x ∈ X the map

F ([δx]) : F (x0) → F (x)

is the identity map S → S. Of course, we do not want F ([γ]) to be the identity map for all paths γ
since then we would just get the fiber functor of the trivial cover X × S → X. We must incorporate
the right action of π1(X,x0) on S.

Consider a path γ in X from x ∈ X to y ∈ X. We therefore have a loop δx·γ·δy based at x0.
We define

F ([γ])(s) = s[δx·γ·δy] for all s ∈ F (x) = S.

We must check that this is a functor. Let γ be a path from x ∈ X to y ∈ X and let γ′ be a path
from y ∈ X to z ∈ Z. We must prove that

F ([γ′] ∗ [γ]) = F (γ·γ′)
equals F ([γ′]) ◦ F ([γ]). To see this, note that for s ∈ F (x) = S we have

F (γ·γ′) = s[δx·γ·γ′·δz] = s[δx·γ·δy][δy·γ′·δz] = F ([γ])(s)[δy·γ′·δz] = F ([γ′]) ◦ F ([γ])(s),

as desired.
We can therefore apply Theorem 11.5.2 to construct a cover p : X̃ → X with fiber functor

naturally isomorphic to F . We must check that p−1(x0) is isomorphic to S as a right π1(X,x0)-set.

Since F is naturally isomorphic to the fiber functor of p : X̃ → X, we can identify p−1(x0) with
F (x0) = S. To check that it has the right π1(X,x0)-action, consider some [γ] ∈ π1(X,x0) and s ∈ S.
By our construction, under the monodromy action the image of s under [γ] is

F ([γ])(s) = s[δx0·γ·δx0
] = s[γ],

as desired. Here we are using the fact that δx0 is the constant path.

Step 2. Let p1 : X̃1 → X and p2 : X̃2 → X be covers. Assume that the fibers p−1
1 (x0) and

p−1
2 (x0) are isomorphic as right π1(X,x0)-sets. Then p1 : X̃1 → X and p2 : X̃2 → X are isomorphic

covers.

Let S1 = p−1
1 (x0) and S2 = p−1

2 (x0). Let ϕ : S1 → S2 be an isomorphism of right π1(X,x0)-sets.
Let F1 be the fiber functor of p1 and F2 be the fiber functor of p2. By the uniqueness part of Theorem
11.5.2, it is enough to prove that F1 is naturally isomorphic to F2.

As in Step 1, for each x ∈ X let δx be a path in X from x0 to x. Choose these paths such that δx0

is the constant path. We therefore have bijections F1([δx]) : S1 → F1(x) and F2([δx]) : S2 → F2(x) for
all x ∈ X. To simplify our notation,1 we will rename the points in our sets so that in fact F1(x) = S1

and F2(x) = S2 for all x ∈ X, with the bijections F1([δx]) : S1 → F1(x) and F2([δx]) : S2 → F2(x)
the identity maps.

We then define a natural isomorphism Φ from F1 to F2 as follows:

• Consider x ∈ X, so F1(x) = S1 and F2(x) = S2. Let Φ(x) : S1 → S2 equal ϕ : S1 → S2.

We must check that this is compatible with morphisms. Let γ be a path in X from x to y. We must
prove that the diagram

F1(x) F1(y)

F2(x) F2(y)

F1([γ])

Φ(x) Φ(y)

F2([γ])

commutes. Consider s1 ∈ F1(x) = S1. We must prove that the two ways of applying the maps in
this diagram take s1 to the same element of F2(y). We trace these through as follows:

1This might seem a confusing thing to do, but it makes our notation line up as much as possible with Step 1.
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• Recall that we identify s1 with an element of F1(x0) = S1 via the identity map F1([δx]) : S1 →
F1(x). Similarly, we identify F1([γ])(s1) ∈ F1(y) = S1 with an element of F1(x0) = S1 via
the identity map F1([δy]) : S1 → F1(y). By naturality, under these identifications we have

F1([γ])(s1) = s1[δx·γ·δy].
Applying Φ(y) = ϕ to this, we get

(11.6.1) ϕ(s1[δx·γ·δy]).
• First apply Φ(x) = ϕ to s1 ∈ F1(x) = S1 to get ϕ(s1) ∈ S2 = F2(y). Just like in the
previous bullet point F2([γ]) takes this to

(11.6.2) ϕ(s1)[δx·γ·δy].
The commutativity of our diagram is equivalent to the equality of (11.6.1) and (11.6.2), which follows
from the fact that ϕ is a map of right π1(X,x0)-sets. □

11.7. Exercises

Exercise 11.1. WRITE IT!!! □
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CHAPTER 13

Calculating fundamental groups: preliminaries on group
presentations

Our final topic is the Seifert–van Kampen theorem, which describes how the fundamental group
of a space is built out of the fundamental groups of subspaces. Before we can describe this theorem,
we need some preliminary results about group presentations.

13.1. Some basic groups

There are a vast range of groups that arise throughout mathematics. For instance:

Example 13.1.1 (Cyclic groups). The cyclic groups include the infinite cyclic group C∞ ∼= Z
and the finite cyclic group Cn

∼= Z/n of order n. We will typically write the generator of these cyclic
group by t, so C∞ = {tn | n ∈ Z} and Cn = {1, t, . . . , tn−1}. □

Example 13.1.2 (Abelian groups). Let A be an abelian group. One possibility is that A might
be cyclic. When we are thinking of the cyclic groups as abelian groups we will often write them as Z
and Z/n. If A is a finitely generated abelian group, then we can write

A ∼= Zn ⊕
k⊕

i=1

Z/pdi
i

with n ≥ 0 and p1, . . . , pk prime and d1, . . . , dk ≥ 1. However, if A abelian but not finitely generated
then is no hope for any kind of simple classification. □

Example 13.1.3 (Finite dihedral groups). For n ≥ 3, the dihedral group D2n of order 2n
is the isometry group of a regular n-gon Pn. Enumerate the vertices of Pn counterclockwise
as [n] = {1, . . . , n}. The group D2n acts on [n], and an element σ ∈ D2n is determined by
σ(1) ∈ [n] and whether or not σ preserves the orientation of Pn. From this, we see that D2n =
{1, r, . . . , rn−1, s, rs, . . . , rn−1s} where r and s are as follows:

• The element r is the counterclockwise rotation by 2π/n:

3

24

15

2

13

54

r

• The element s is the reflection in the vertex 1 ∈ [n]:

3

24

15

4

53

12

s

111
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These elements satisfy the relations rn = 1 and s2 = 1 and srs−1 = r−1. There is a homomorphism
σ : D2n → C2 that records whether or not an element preserves orientation, so σ(r) = t0 = 1 ∈ C2

and σ(s) = t ∈ C2. We have ker(σ) = {1, r, . . . , rn−1} ∼= Cn, and σ splits via the map C2 → D2n

taking t ∈ C2 to s. We therefore have a semidirect product decomposition1 D2n
∼= Cn ⋊ C2 where

the generator of C2 acts on Cn by the automorphism taking tk ∈ Cn to t−k. □

Example 13.1.4 (Infinite dihedral group). The infinite dihedral group D∞ is the group of
isometries of R that preserve the subspace Z. We have D∞ =

{
rk, srk | k ∈ Z

}
, where:

• The element r : R → R is the translation map r(x) = x+ 1.
• The element s : R → R is the reflection map s(x) = −x.

These elements satisfy the relations s2 = 1 and srs−1 = r−1. Just like for the finite dihedral groups,
we have D∞ ∼= C∞ ⋊ C2 where C2 acts on C∞ by the automorphism taking tk to t−k. There are
also surjections fn : D∞ → D2n taking r ∈ D∞ to r ∈ D2n and s ∈ D∞ to s ∈ D2n. □

Example 13.1.5 (Symmetric groups). Fix n ≥ 2. Let [n] = {1, . . . , n} and let Sn be the
symmetric group on [n], i.e., the group of bijections σ : [n] → [n]. The group Sn contains every finite
group G of order n as a subgroup. Indeed, enumerate G as

G = {g1, . . . , gn}.
For g ∈ G, let σg ∈ Sn be the permutation such that ggi = gσg(i) for 1 ≤ i ≤ n. The map f : G→ Sn

defined by f(g) = σg for g ∈ G is then an injective homomorphism whose image is isomorphic to
G. More generally, if G is an arbitrary group then an action of G on the set [n] is the same as a
homomorphism G→ Sn. For instance, there is an injective homomorphism D2n → Sn arising from
the action of D2n on the n vertices of the regular n-gon Pn. □

Example 13.1.6 (Linear groups). For a field k, the group GLn(k) = Aut(kn) plays a basic role
in linear algebra. It contains many interesting subgroups; for instance, the orthogonal groups of
quadratic forms on kn. It also contains a copy of Sn consisting of the permutation matrices. A
subgroup of GLn(k) for some n and k is called a linear group. For instance, since Sn can be realized
as a linear group and all finite groups are subgroups of Sn for some n, it follows that all finite groups
can be realized as linear groups. □

Example 13.1.7 (Free groups). Let S be a set and let F (S) be the free group on S (see §7.6).
The group F (S) is generated by S, and each element w ∈ F (S) can be uniquely expressed as a
reduced word w = sϵ11 · · · sϵnn in S. Recall that this means that:

• si ∈ S and ϵi ∈ {±1} for all 1 ≤ i ≤ n; and
• for all 1 ≤ i < n we do not have sϵii s

ϵi+1

i+1 ∈
{
ss−1, s−1s | s ∈ S

}
. □

13.2. Presentations for groups

The examples in the previous section barely scratch the surface of the world of groups. To write
down an arbitrary group, we introduce the notation of a presentation. We start with some notation:

Notation 13.2.1. Let G be a group. For g, h ∈ G, write gh = h−1gh for the conjugate of G by
h. If C ⊂ G is a subset, then ⟨C⟩ denotes the subgroup generated by C and ⟪C⟫ denotes the normal
subgroup generated by C. We therefore have ⟪C⟫ = ⟨cg | c ∈ C and g ∈ G⟩. □

1Let G and H be groups such that G acts on H on the left. For g ∈ G and h ∈ H, we will write gh for the image

of h under the action of g. The corresponding semidirect product H ⋊G is the following group:

• The elements of H ⋊G are pairs (h, g) with h ∈ H and g ∈ G.
• For (h1, g1), (h2, g2) ∈ H ⋊G, their product is (h1, g1)(h2, g2) = (h1

g1h2, g1g2).

It is enlightening to prove that this is a group. If the G-action on H is trivial, this is just the usual direct product
H ×G. Identify H and G with the subgroups of H ⋊G consisting of elements of the form (h, 1) and (1, g), respectively.

The subgroup H is normal, and every x ∈ H ⋊G can be uniquely written as x = hg with h ∈ H and g ∈ G.
Conversely, let Γ be a group and H,G < Γ be subgroups such that H is normal and every x ∈ Γ can be uniquely

written as x = hg with h ∈ H and g ∈ G. Since H is a normal subgroup of Γ, the group Γ acts on H by conjugation.

This restricts to an action of G on H, and Γ ∼= H ⋊G. This isomorphism takes (h, g) ∈ H ⋊G to hg ∈ Γ. One way
this can arise is if Γ is a group and p : Γ → G is a surjection that splits via a map σ : G→ Γ. Identify G with its image

in Γ under the injective map σ, and set H = ker(p). We are then in the above situation, so Γ ∼= H ⋊G.
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This allows us to make the following key definition:

Definition 13.2.2. Let S be a set and let R be a subset of the free group F (S) on S. Define
G = ⟨S | R⟩ to be the quotient F (S)/⟪R⟫. We call S the generators and R the relations for the
presentation, and ⟨S | R⟩ is called a group presentation for G. If both S and R are finite, then ⟨S | R⟩
is a finite presentation for G. A finitely presented group is a group with a finite presentation. □

Example 13.2.3. For a set S, we have F (S) = ⟨S | ∅⟩. This is often written ⟨S | ⟩. If S is finite,
then this is a finite presentation and F (S) is a finitely presented group. □

Example 13.2.4. As a special case of the previous example, C∞ ∼= ⟨t | ⟩. Similarly, for n ≥ 2 we
have Cn

∼= ⟨t | tn⟩. Both C∞ and Cn are therefore finitely presented. □

Remark 13.2.5. Not all presentations of finitely presented groups are finite. For instance,
C∞ = ⟨t | ⟩ can also be written C∞ = ⟨t, x1, x2, . . . | x1, x2, . . .⟩. □

Every group has some presentation:

Lemma 13.2.6. Every group G can be written as G ∼= ⟨S | R⟩.

Proof. Let S be a generating set for G; e.g., S = G. The map S → G extends to a surjection
ϕ : F (S) → G. Set R = ker(ϕ), so ϕ induces an isomorphism from F (S)/R ∼= ⟨S | R⟩ to G. □

Before we give more examples, we introduce some notation. Let G = ⟨S | R⟩ be a group equipped
with a presentation. For w ∈ F (S), we write w for its image in G. A relation in G is an element
r ∈ ⟪R⟫ ⊂ F (S). The relations of the presentation are thus relations in G, but except in degenerate
cases there are many other relations in G. For instance, here are some relations in G =

〈
a, b | a2, b3

〉
:

a−2, a10, a2b3a2, ab3a−1a2 = ab3a.

If w, v ∈ F (S) are such that w = v, then wv−1 is a relation. We will sometimes write this relation as
w = v. This convention will also be used when giving presentations. For instance,〈

a, b, c | ab = c, b2 = 1, cab = a
〉
=

〈
a, b, c | abc−1, b2, caba−1

〉
.

For w, v ∈ F (S), we will also write w ≡ v to mean that w = v, i.e., that w = v is a relation.

13.3. Mapping from groups with presentations

Let G = ⟨S | R⟩ be a group given by a presentation. For any group H that is well-understood,
it is easy to construct homomorphisms Φ: G → H. Indeed, choose a set map ϕ : S → H. The
map ϕ extends to a homomorphism ϕ : F (S) → H. To check if ϕ descends to a homomorphism
on G = F (S)/⟪R⟫, we must only verify that ϕ(r) = 1 for all r ∈ R. In summary, to construct a
homomorphism Φ: G→ H we must choose where the generators go and then verify that relations go
to relations. Here is an example of this:

Example 13.3.1. Let G be a group. Let S be the set of formal symbols {sg | g ∈ G} and let
R = {sgsh = sgh | g, h ∈ G}. Set Γ = ⟨S | R⟩. We claim that Γ ∼= ⟨S | R⟩. Indeed, the map sg 7→ g
gives a map S → G taking each relation sgsh = sgh to a relation in G. We thus get a surjective map
Φ: Γ → G.

To see that Φ is injective, consider w ∈ F (S). For g ∈ G the relation s−1
g ≡ sg−1 holds in Γ;

indeed, s1 ≡ 1 since s1s1 ≡ s1, so sgsg−1 ≡ s1 ≡ 1 ≡ sgs
−1
g . It follows that w is equivalent to a

word in S in which only positive powers of generators appear. Using the relations in Γ, we then see
that w is equivalent to a single generator sg. We conclude that Γ = {sg | g ∈ G}. Since Φ takes
{sg | g ∈ G} bijectively to G, we conclude that Φ is injective. □

Remark 13.3.2. If G is a finite group, then the presentation from Example 13.3.1 is finite and
thus G is finitely presented. □
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13.4. Normal forms

We abstract the argument from Example 13.3.1. Let G be a group with a generating set S. For
each g ∈ G, pick wg ∈ F (S) such that wg maps to g under the natural map F (S) → G. The collection
of elements {wg ∈ F (S) | g ∈ G} is called a normal form for G. Assume now that R ⊂ F (S) is a
collection of relations that hold in G. Letting Γ = ⟨S | R⟩, we want to prove that Γ ∼= G.

Since S generates G and each relation in R holds in G, we get a surjective homomorphism
Φ: Γ → G. We want to prove that Φ is an isomorphism. Observe that Φ restricts to a bijection from
{wg ∈ F (S) | g ∈ G} to G. It is therefore enough to prove that {wg ∈ F (S) | g ∈ G} = Γ. In other
words, we must prove that every w ∈ F (S) can be reduced to some wg using the relations in R. Here
are some examples:

Example 13.4.1 (Free abelian group). Fix n ≥ 1. For 1 ≤ i ≤ n, let xi ∈ Zn be the element
with a 1 in position i and zeros elsewhere. The elements S = {x1, . . . , xn} generate Zn. They satisfy
the relations

R = {xixj = xjxi | 1 ≤ i, j ≤ n} .

We claim that Zn ∼= ⟨S | R⟩. Indeed, Zn has the normal form
{
xd1
1 · · ·xdn

n | d1, . . . , dn ∈ Z
}
. We

must prove that an arbitrary w ∈ F (S) can be reduced to an element in this normal form. For this,
use the relations in R to move the x1 terms to the left, then the x2 terms to the left, etc. Here is an
example:2

x3x
−1
2 x1x

2
2x

−3
1 ≡ x1x

−3
1 x3x

−1
2 x22 ≡ x1x

−3
1 x−1

2 x22x3 ≡ x−2
1 x2x3. □

Example 13.4.2 (Finite dihedral group). Fix n ≥ 3. As in Example 13.1.3, let D2n be the
dihedral group of order 2n. This group is generated by the rotation r ∈ D2n and the reflection
s ∈ D2n. Set S = {r, s}. The elements r and s satisfy the relations

R = {rn = 1, s2 = 1, srs−1 = r−1}.

We claim that D2n
∼= ⟨S | R⟩. Indeed, as we observed in Example 13.1.3 the group D2n has the

normal form
{
rd, srd | 0 ≤ d ≤ n− 1

}
. We must prove that an arbitrary w ∈ F (S) can be reduced

to an element in this normal form. Using the relation s2 ≡ 1, we can replace all s−1 terms in w with
s. Also using s2 ≡ 1, the relation srs−1 ≡ r−1 can be rearranged to rs ≡ sr−1. This implies that we
also have r−1s ≡ sr. Applying all of these, we can pull all the s-terms in w to the left and reduce w
to serd as in the following example:

sr−1sr3sr2 ≡ ssr−1r3sr2 ≡ sssr−1r3r2 = s3r4.

Using the fact that s2 ≡ 1 and rn ≡ 1, we see that serd is equivalent to either rd or srd with
0 ≤ d ≤ n− 1, as desired. □

Example 13.4.3 (Infinite dihedral group). An argument identical to the one in the previous
example shows that D∞ ∼=

〈
r, s | s2 = 1, srs−1 = r−1

〉
. □

Remark 13.4.4. See Exercise 13.2 for a presentation of the symmetric group Sn. □

13.5. Free products and direct products

Let G1 = ⟨S1 | R1⟩ and G2 = ⟨S2 | R2⟩. Recall that the free product Γ of G1 and G2 is a group
with subgroups G1, G2 < Γ satisfying the following universal property:

• Let H be a group and let f1 : G1 → H and f2 : G2 → H be homomorphisms. Then there
is a unique homomorphism F : Γ → H whose restrictions to G1 and G2 are f1 and f2,
respectively.

Lemma 13.5.1. Let G1 = ⟨S1 | R1⟩ and G2 = ⟨S2 | R2⟩. Set Γ = ⟨S1 ⊔ S2 | R1 ⊔R2⟩. Then Γ
is a free product of G1 and G2.

2Here we are also using relations like x−1
i xj ≡ xjx

−1
i , which can be obtained from xjxi ≡ xixj by multiplying

both sides on the left by x−1
i and on the right by x−1

i .
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Proof. The set map

S1 ↪→ S1 ⊔ S2 → ⟨S1 ⊔ S2 | R1 ⊔R2⟩ = Γ

induces a homomorphism G1 → Γ. This splits via the map Γ → G1 taking S1 identically to S1 and
taking S2 to 1. This makes G1 a subgroup of Γ. Similarly, G2 is a subgroup of Γ. We will verify that
Γ satisfies the universal property of a free product.

Let H be a group and f1 : G1 → H and f2 : G2 → H be homomorphisms. For i = 1, 2, since
Gi = ⟨Si | Ri⟩ the map fi : Gi → H is induced by a homomorphism gi : F (Si) → H. By restricting
gi to Si, we get a set map gi : Si → H. Combining these, we get a set map g : S1 ⊔ S2 → H and thus
a homomorphism g : F (S1 ⊔ S2) → H. Since gi takes each element of Ri to a relation in H, this
descends to a homomorphism F : Γ → H, as desired. □

Remark 13.5.2. Since all groups have presentations, this proves in particular that free products
of groups always exist. □

As far as the direct product goes, we have:

Lemma 13.5.3. Let G1 = ⟨S1 | R1⟩ and G2 = ⟨S2 | R2⟩. Let RC be the following set of relations
in F (S1 ⊔ S2):

RC = {s1s2 = s2s1 | s1 ∈ S1 and s2 ∈ S2} .
Set Γ = ⟨S1 ⊔ S2 | R1 ⊔R2 ⊔RC⟩. Then Γ ∼= G1 ×G2.

Proof. This can be proved using normal forms; see Exercise 13.5.3. □

13.6. Abelianization

As we will elaborate on below, it is hard to determine much about a group G from a presentation.
The only easy thing to calculate is its abelianization Gab, which we recall is the largest abelian group
on which G surjects. Letting [G,G] be the commutator subgroup3 of G, we have Gab = G/[G,G].
For instance, if S is an n-element set, then F (S)ab ∼= Zn (see Exercise 7.12).

Assume that G has a finite presentation G = ⟨x1, . . . , xn | r1, . . . , rm⟩. Let V ∼= Zn be the free
abelian group with basis {X1, . . . , Xn}. For 1 ≤ i ≤ m, let Ri ∈ V be the following element:

• Write ri = xe1j1 · · ·x
ek
jk

with 1 ≤ j1, . . . , jk ≤ n and e1, . . . , ek ∈ {±1}. Then Ri = e1Xj1 +
· · ·+ ekXjk ∈ V .

It is immediate from the definitions that Gab is the quotient of V by ⟨R1, . . . , Rm⟩. As is discussed
in most treatements of the classification of finitely generated abelian groups, this quotient can be
calculated using tools like Smith normal form. However, it is often easier to work with it directly.
Here are some examples.

Example 13.6.1 (Infinite dihedral group). As we saw in Example 13.4.3, we have

D∞ ∼=
〈
r, s | s2 = 1, srs−1 = r−1

〉
.

Following the above recipe, the abelianization of D∞ is the quotient of the free abelian group with
basis R and S by the following two relations:4

• 2S = 0 and S +R− S = −R. This second relation can be rewritten 2R = 0.

We thus see that the abelianization of D∞ is (Z/2)⊕ (Z/2). □

Example 13.6.2 (Finite dihedral group). Fix n ≥ 3. As we saw in Example 13.4.2, we have

D2n =
〈
r, s | rn = 1, s2 = 1, srs−1 = r−1

〉
.

Following the above recipe, the abelianization of D2n is the quotient of the free abelian group with
basis R and S by the relations nR = 0 and 2S = 0 and S +R− S = −R. This last relation can be
rearranged to 2R = 0. From this, we see that there are two cases:

(a) If n is even, then the relations reduce to 2S = 0 and 2R = 0, so the abelianization is
(Z/2)⊕ (Z/2).

3The commutator subgroup [G,G] is the subgroup generated by commutators [g, h] = ghg−1h−1.
4Here quotienting an abelian group by a relation A = B should be interpreted as quotienting by A−B.
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(b) If n is odd, then nR = 0 and 2R = 0 combine to give that R = 0, so the abelianization is
Z/2. □

13.7. Some cautionary examples

As we said in the last section, it is not easy to extract information from a group presentation.
This section contains a number of cautionary examples. The first is as follows:

Example 13.7.1. Consider the group G = ⟨a, b | babab = 1⟩. What kind of group is this? We
first determine its abelianization. Following the recipe in the previous section, Gab is the quotient
of the free abelian group with basis {A,B} subject to the relation B + A + B + A + B = 0, or
2A + 3B = 0. After making the change of basis A = X − Y and B = Y , this relation becomes
2(X − Y ) + 3Y = 0, or −2X = Y . Eliminating the variable Y , we conclude that Gab ∼= Z.

In fact, it turns out that G is an abelian group, so G ∼= Z. To see this, note that we can conjugate
babab ≡ 1 by (bab)−1 and get

1 ≡ (bab)−1(babab)(bab) = abbab.

It follows that

1 ≡ (abbab)(babab)−1 ≡ (abbab)(b−1a−1b−1a−1b−1) = aba−1b−1,

so a and b commute and G is indeed abelian. □

Remark 13.7.2. Another way to see that G = ⟨a, b | babab = 1⟩ is isomorphic to Z is as follows.
Let H =

〈
x, y | x2y = 1

〉
. It is clear that H ∼= Z since y ≡ x−2. Define f : H → G via the formulas

f(x) = ba and f(y) = b.

This works since f takes the relation x2y = 1 to (ba)2b = 1, which is the relation in G. The map f is
an isomorphism with inverse the map g : G→ H defined by

g(a) = y−1x and g(b) = y.

Again, this works since g takes the relation babab = 1 to y(y−1x)y(y−1x)y = 1, which reduces to the
relation x2y = 1 in H. □

For our next examples, for n ≥ 1 define

Gn =
〈
x1, . . . , xn | xi+1xix

−1
i+1 = x2i for 1 ≤ i ≤ n

〉
.

Here the subscripts should be taken modulo n. These are called the Higman groups. All of these
groups have trivial abelianizations:

Lemma 13.7.3. For all n ≥ 1, we have Gab
n = 0.

Proof. The abelianization Gab
n is the free abelian group with basis X1, . . . , Xn modulo the

following relations:

• For 1 ≤ i ≤ n, we have Xi+1 +Xi −Xi+1 = 2Xi. This reduces to Xi = 0.

The lemma follows. □

The first three Gn are trivial:

Lemma 13.7.4. We have G1 = 1.

Proof. We have G1
∼=

〈
x1 | x1x1x−1

1 = x21
〉
= ⟨x1 | x1 = 1⟩ = 1. □

Lemma 13.7.5. We have G2 = 1.

Proof. Rewrite the relations in G2 as x2x1 ≡ x21x2 and x1x2 ≡ x22x1. These imply that

x21x
2
2 ≡ x2x1x2 ≡ x32x1 ≡ x81x

3
2,

so x2 ≡ x−6
1 . We conclude that x1 and x2 commute, so G2 is abelian and G2

∼= Gab
2 = 1. □

Lemma 13.7.6. We have G3 = 1.

Proof. The proof is a more elaborate version of the calculation we used to prove Lemma 13.7.6,
so we leave it as Exercise 13.5. □
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However, it turns out that Gn is infinite for n ≥ 4. We will discuss the proof in Essay B.
The reason this proof is difficult is that it is hard to map Gn to other well-understood groups. In
particular, we have the following theorem of Higman:

Theorem 13.7.7. For n ≥ 4, any homomorphism from Gn to a finite group is trivial.

Proof. Let Hn be the image of Gn in some finite group. Each element of Hn has finite order.
We can therefore write Hn = ⟨y1, . . . , yn | R⟩ where R contains the following relations:

• For 1 ≤ i ≤ n, the relation yi+1yiy
−1
i+1 = y2i . Here the subscripts should be interpreted

modulo n.
• For 1 ≤ i ≤ n, a relation of the form ydi

i = 1 for some di ≥ 1. Choose the di to be as small
as possible, so di is the order of yi.

There might also be some other relations. We will prove that these relations force Hn to be trivial.
Assume that Hn is nontrivial. We must have di ≥ 2 for all i. Indeed, if di0 = 1 for some i0, then

yi0−1 = yi0yi0−1y
−1
i0

= y2i0−1,

so yi0−1 = 1 and thus di0−1 = 1. Iterating this, we deduce that di = 1 for all i and hence that
Hn = 1, contrary to our assumptions.

Let p ≥ 2 be the smallest prime dividing some di. Since everything is invariant under cyclic
permutations of the generators, we can assume without loss of generality that p divides d1. Since d2
is the order of y2, we have

y1 = yd2
2 y1y

−d2
2 = y2

d2

1

and thus y2
d2−1

1 = 1. Since d1 is the order of y1, it follows that d1 and hence p divides 2d2 − 1. This
implies that p is odd. Since 2d2 ≡ 1 (mod p), we see that d2 is a multiple of the order p − 1 of 2
in (Z/p)×. This implies that a prime smaller than p divides d2, contradicting the fact that p is the
smallest prime dividing some di. □

Remark 13.7.8. Malcev proved that if k is a field and H is a nontrivial finitely generated
subgroup of GLm(k), then H has many nontrivial finite quotients. In fact, H is residually finite: for
any h ∈ H with h ≠ 1, there exists a finite group F and a homomorphism f : H → F with f(h) ̸= 1.
It therefore follows from Theorem 13.7.7 that all homomorphisms f : Gn → GLm(k) are trivial for
n ≥ 4. We outline a simple proof of this for k = C in Exercise 13.6. □

13.8. Decision problems for groups

In 1911, Dehn posed the following three problems about group presentations.

Problem 13.8.1 (Word problem). Let G = ⟨S | R⟩ be a finitely presented group. Give an
algorithm that for w, v ∈ F (S) determines whether or not w = v in G.

Problem 13.8.2 (Conjugacy problem). Let G = ⟨S | R⟩ be a finitely presented group. Give an
algorithm that for w, v ∈ F (S) determines whether or not w ∈ G and v ∈ G are conjugate.5

Problem 13.8.3 (Isomorphism problem). Give an algorithm that for finitely presented group
G = ⟨S | R⟩ and G′ = ⟨S′ | R′⟩ determines whether or not G and G′ are isomorphic.

Here are some simple observations about the relationship between these problems.

(a) Let G = ⟨S | R⟩ be a finitely presented group. To solve the word problem for G, it is
enough to give an algorithm that for w ∈ F (S) determines whether or not w = 1. Indeed,

for w, v ∈ F (S) such an algorithm allows us to determine whether or not wv−1 = 1, and
thus whether or not w = v.

(b) Let G = ⟨S | R⟩ be a finitely presented group. If we can solve the conjugacy problem for
G, then we can also solve the word problem for G. Indeed, an element w ∈ F (S) satisfies
w = 1 if and only if w is conjugate to 1.

5Recall that g, h ∈ G are conjugate if there exists some k ∈ G such that g = khk−1.
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(c) A special case of the isomorphism problem is the triviality problem: give an algorithm that
for a finitely presented group G = ⟨S | R⟩ determines whether or not G = 1. The group
satisfies G = 1 if and only if for all s ∈ S we have s = 1, so a solution to the word problem
gives a solution to the triviality problem.

While these problems can be solved in many special cases, they are quite difficult and our knowledge
about them is limited. For instance, consider a one-relator group G, that is, a group of the form
G = ⟨S | r⟩ where S is finite and r ∈ F (S). In 1932, Magnus showed how to solve the word problem
for one-relator groups. However, we still do not know how to solve the conjugacy problem for
one-relator groups. We also do not know an algorithm to determine if two one-relator groups are
isomorphic. For groups with two relations, even the word problem is open.

One reason that these problems are difficult is that they are unsolvable in general. Indeed, in
the 1950’s Novikov and Boone independently proved the following theorem:

Theorem 13.8.4 (Novikov–Boone). There exists a finitely presented group G = ⟨S | R⟩ for
which there does not exist an algorithm solving the word problem.

Remark 13.8.5. To make sense of Theorem 13.8.4, the notion of an “algorithm” must be formally
defined. Roughly speaking, an “algorithm” here means a program in any standard computer language
(C, Python, LISP, etc.) run on a computer with unlimited memory. This algorithm must terminate
in finite time for any input. The formal definition involves the notion of a Turing machine, and is
discussed in any book on computability theory. □

One observation about Theorem 13.8.4 is that the hard part in it is checking that some w ∈ F (S)
does not represent the identity. More precisely, we have the following:

Lemma 13.8.6. Let G = ⟨S | R⟩ be a finitely presentable group. There exists an algorithm that
takes as input w ∈ F (S) and does the following:

• If w = 1, then the algorithm terminates and certifies that w = 1.
• If w ̸= 1, then the algorithm does not terminate.

Proof. Each w ∈ F (S) can be uniquely be written as a reduced word w = sϵ11 · · · sϵnn with
si ∈ S and ϵi ∈ {±1} for all 1 ≤ i ≤ n, and we define the length of w to be ℓ(w) = n. Set
Bn(S) = {w ∈ F (S) | ℓ(w) ≤ n}. Define Bn(R) to be the set of all elements of F (S) that for some
m ≤ n can be expressed as

(w1r1w
−1
1 )ϵ1 · · · (wmrmw

−1
m )ϵm

with ri ∈ R and wi ∈ Bn(S) and ϵi ∈ {±1} for 1 ≤ i ≤ m. Note that the above is not necessarily a
reduced word. The set Bn(R) is a finite set, and can be effectively enumerated on a computer. We
have

B1(R) ⊂ B2(R) ⊂ B3(R) ⊂ · · · ,
and the normal closure ⟪R⟫ is ∪∞

n=1Bn(R). Our algorithm is as follows:

• Start at Step n = 1.
• At Step n, enumerate Bn(R) and check whether or not w ∈ Bn(R). If it does, terminate.
Otherwise, go on to Step n+ 1.

This terminates if and only if w ∈ ⟪R⟫, i.e., if and only if w = 1. □

We close with the following observation whose proof illustrates the fact that Theorem 13.8.4
touches on deep logical issues that seemingly have nothing to do with computers:

Theorem 13.8.7. Let G = ⟨S | R⟩ be the group with an unsolvable word problem from Theorem
13.8.4. There exists some w ∈ F (S) with the following two properties:

• We have w ̸= 1 in G.
• There is no proof in ZFC 6 that w ̸= 1 in G.

6There is nothing special about ZFC, and the same argument works in other foundational systems that are rich
enough to express facts about group theory and unsolvability. We focus on ZFC since that is the set of foundations we

are assuming in this book.
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Proof. Consider w ∈ F (S). Using two computers (or two threads on one computer), run the
following two algorithms on w at the same time, terminating if either of the two terminate:

• Computer one runs the algorithm from Lemma 13.8.6, and thus terminates if and only if
w = 1 in G.

• Computer two systematically enumerates all possible proofs in ZFC. For each proof, it first
determines whether or not it is a valid proof. If it is, it checks whether it proves that w ≠ 1
in G. If it does, then this algorithm terminates. Otherwise, it keeps going.

This algorithm will terminate if w = 1 in G or if there is a proof in ZFC that w ̸= 1 in G. Since
there is no algorithm to solve the word problem in G, there must be some w ∈ F (S) for which this
algorithm does not terminate. The theorem follows. □

Remark 13.8.8. Theorem 13.8.7 is not effective, and there is no way to determine which w ∈ F (S)
satisfies its conclusions since doing so would in particular provide a proof that w ̸= 1. □

13.9. Exercises

Exercise 13.1. Let

H =


1 a c
0 1 b
0 0 1

 | a, b, c ∈ Z

 .

The group H is often called the integer Heisenberg group.

(a) Set

x =

1 1 0
0 1 0
0 0 1

 and y =

1 0 0
0 1 1
0 0 1

 .

As notation, set [g1, g2] = g1g2g
−1
1 g−1

2 . Prove that H = ⟨x, y | [[x, y], x] = 1, [[x, y], y] = 1⟩.
Hint: work out a normal form.

(b) Calculate the abelianization of H. □

Exercise 13.2. Fix n ≥ 2. Let Sn be the symmetric group on [n] = {1, . . . , n}. For 1 ≤ i ≤ n−1,
let τi ∈ Sn be the transposition (i, i+ 1). Let

S = {τi | 1 ≤ i ≤ n− 1} ,
R =

{
τ2i = 1 | 1 ≤ i ≤ n− 1

}
∪ {τiτj = τjτi | 1 ≤ i, j ≤ n, |i− j| ≥ 2}

∪ {τiτi+1τi = τi+1τiτi+1 | 1 ≤ i ≤ n− 2} .

Prove the following:

(a) The group Sn is generated by S.
(b) Each element of R is a relation in Sn.
(c) We have Sn = ⟨S | R⟩. Hint: For 1 ≤ i ≤ j ≤ n, let σi,j = τj−1τj−1 · · · τi. For i = j, our

convention is that σi,j = 1. The key feature of σi,j is that as an element of Sn, it takes
i ∈ [n] to j ∈ [n]. Prove that Sn has the normal form{

σn−1,in−1
σn−2,in−2

· · ·σ1,i1 | ij ≥ j for 1 ≤ j ≤ n− 1
}
.

Use this normal form to prove the result.
(d) Calculate the abelianization of Sn. □

Exercise 13.3. Let G1 = ⟨S1 | R1⟩ and G2 = ⟨S2 | R2⟩. Let RC be the following set of relations
in F (S1 ⊔ S2):

RC = {s1s2 = s2s1 | s1 ∈ S1 and s2 ∈ S2} .
Set Γ = ⟨S1 ⊔ S2 | R1 ⊔R2 ⊔RC⟩. Prove that Γ ∼= G1 ×G2. Hint: use normal forms. □

Exercise 13.4. Let G1 = ⟨S1 | R1⟩ and G2 = ⟨S2 | R2⟩. Assume that G2 acts on G1 on the
left. Determine a presentation for the resulting semidirect product G1 ⋊G2. Hint: For each s ∈ S1

and t ∈ S2, start by writing ts as a word ws,t in S1. □
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Exercise 13.5. Recall that the third Higman group is

G3 =
〈
x1, x2, x3 | x2x1x−1

2 = x21, x3x2x
−1
3 = x22, x1x3x

−1
1 = x23

〉
.

Prove that G3 = 1. Hint: Start by applying the relations to x21x
2
2x3 to find an identity that lets you

write x3 in terms of x1 and x2. Plug this into x3x2x
−1
3 ≡ x22 and manipulate the result to show that

x2 equals a power of x1, and hence that x2 and x1 commute. □

Exercise 13.6. Recall from Remark 13.7.8 that if k is a field and Gn is the Higman group, then
all homomorphisms f : Gn → GLm(k) are trivial. This exercise explains how to prove this for k = C.
Let H < GLm(C) be the image of such a homomorphism. Let y1, . . . , yn ∈ H be the images of the
generators x1, . . . , xn of Gn. By Theorem 13.7.7, it is enough to prove that yi has finite order for all
1 ≤ i ≤ n. Do the following:

(a) Prove that all the eigenvalues of each yi are roots of unity. Hint: use the relation yi+1yiyi+1 =
y2i .

(b) Prove that there is some polynomial p ∈ C[z] such that for all 1 ≤ i ≤ n and all k ≥ 1, if
c ∈ C is one of the entries of the matrix yki then |c| ≤ p(k). Hint: use Jordan normal form
along with (a).

(c) Prove that the matrix yi is diagonalizable for 1 ≤ i ≤ n. Hint: think about the Jordan

normal form of yi, and consider the identity pki+1pip
−k
i+1 = p2

k

i . You will use part (b).
(d) Prove that the matrix yi has finite order for 1 ≤ i ≤ n. □

Exercise 13.7. Recall that a group G is residually finite if for all g ∈ G with g ≠ 1, there exists
a finite group F and a homomorphism f : G→ F with f(g) ̸= 1. Prove the following:

(a) The group G = GLn(Z) is residually finite. Hint: think about reducing matrices modulo p
for various primes p.

(b) Let G be a residually finite group and let G′ < G be a subgroup. Prove that G′ is residually
finite.

(c) Let G be a finitely generated group. For all g ∈ G with g ̸= 1, assume that there exists
a finite-index subgroup H < G with g /∈ H. Prove that G is residually finite. Hint: the
problem is that H might not be normal, so G/H might not be a group. Try to intersect
conjugates of H to get a smaller finite-index normal subgroup.

(d) Let F (S) be a free group on a finite set S. Prove that F (S) is residually finite. Hint: it
might be easier to first use part (b) to reduce to the case of the free group F (a, b) on a
and b. For w ∈ F (a, b) with w ̸= 1, try to use covering spaces to produce a finite-index
subgroup H of F (a, b) as in part (c).

(e) Let G = ⟨S | R⟩ be a finitely generated residually finite group. Prove that there is an
algorithm to solve the word problem in G. Hint: just like in the proof of Theorem 13.8.7,
it is enough to produce an algorithm that terminates for w ∈ F (S) with w ≠ 1. Try
to systematically list all finite groups F and all homomorphisms f : G → F . One key
observation is that a group structure on a finite set X is determined by its multiplication
table. □
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