Math 60330: Basic Geometry & Topology, Homework 4

- 1. Recall that we oriented \mathbb{S}^n by saying that an ordered basis (v_1, \ldots, v_n) for $T_p \mathbb{S}^n$ is positively oriented if (p, v_1, \ldots, v_n) is a positively oriented basis for \mathbb{R}^{n+1} . Prove that this orientation depends smoothly on p (as defined in class).
- 2. Let $f: X \to Y$ be a diffeomorphism between connected oriented manifolds. Assume that there exists some $p_0 \in X$ such that $D_{p_0}f: T_{p_0}X \to T_{f(p_0)}Y$ is orientation-preserving. Prove that for all $p \in X$ the map $D_{p_0}f: T_{p_0}X \to T_{f(p_0)}Y$ is orientation-preserving.
- 3. Let $f: \mathbb{S}^n \to \mathbb{S}^n$ be a smooth map with $\deg(f) \neq (-1)^{n+1}$. Prove that there is some $x \in \mathbb{S}^n$ with f(x) = x.
- 4. Let $f: \mathbb{S}^n \to \mathbb{S}^n$ be a map with $\deg(f)$ odd. Prove that there exists some $x \in \mathbb{S}^n$ such that f(-x) = -f(x).
- 5. Let M^m and N^n be compact oriented submanifolds of \mathbb{R}^{k+1} such that $M^m \cap N^n = \emptyset$. Assume that m+n=k. Define the map $\lambda \colon M^m \times N^n \to \mathbb{S}^k$ via

$$\lambda(x,y) = \frac{x-y}{\|x-y\|}.$$

The *linking number* of M^m and N^n is then the degree $lk(M^m, N^n)$ of the linking map λ . Prove the following:

- (a) $lk(N^n, M^m) = (-1)^{(m+1)(n+1)} lk(M^m, N^n)$.
- (b) If M^m is the boundary of a compact oriented manifold X^{m+1} such that $X^{m+1} \cap N^n = \emptyset$, then $lk(N^n, M^m) = 0$.
- (c) Now assume that M^m and N^n lie in \mathbb{S}^{k+1} rather than \mathbb{R}^{k+1} . For each $p \in \mathbb{S}^{k+1}$, construct an orientation-preserving diffeomorphism $f_p \colon \mathbb{S}^{k+1} \setminus p \to \mathbb{R}^{k+1}$. If p is disjoint from M^m and N^n , we can then define $\operatorname{lk}(f_p(M^m), f_p(N^n))$. Prove that this does not depend on p. We call this common value $\operatorname{lk}(M^m, N^n)$.
- 6. Let $f: \mathbb{S}^{2p-1} \to \mathbb{S}^p$ be a smooth map. For distinct regular values p and q of f, we have that $f^{-1}(p)$ and $f^{-1}(q)$ are disjoint (p-1)-manifolds in \mathbb{S}^{2p-1} . Orienting them as described in Chapter 5 of Milnor, we can talk about $\text{lk}(f^{-1}(p), f^{-1}(q))$. Prove the following:
 - (a) For regular values p and q of f, the integer $lk(f^{-1}(p), f^{-1}(q))$ is locally constant as a function of q.
 - (b) Let $g: \mathbb{S}^{2p-1} \to \mathbb{S}^p$ be another smooth map such that p and q are regular values of both f and g. Assume that ||f(x)-g(x)|| < ||p-q|| for all $x \in \mathbb{S}^{2p-1}$. Prove that

$$lk(f^{-1}(p), f^{-1}(q)) = lk(g^{-1}(p), f^{-1}(q)) = lk(g^{-1}(p), g^{-1}(q)).$$

(c) Prove that $lk(f^{-1}(p), f^{-1}(q))$ depends only on the smooth homotopy class of f and is independent of the choice of regular values p and q.

The common value $lk(f^{-1}(p), f^{-1}(q))$ is called the *Hopf invariant* of f, and is written H(f).

- 7. Prove the following results about the Hopf invariant:
 - (a) Let p be odd and let $f: \mathbb{S}^{2p-1} \to \mathbb{S}^p$ be a smooth map. Then H(p) = 0.
 - (b) Let $f: \mathbb{S}^{2p-1} \to \mathbb{S}^p$ be a smooth map and let $g: \mathbb{S}^p \to \mathbb{S}^p$ be another smooth map. Prove that $H(g \circ f) = \deg(g)^2 H(f)$.
 - (c) Go and read the wikipedia article on the Hopf fibration $\pi \colon \mathbb{S}^3 \to \mathbb{S}^2$. Prove that $H(\pi) = 1$.