Math 60330: Basic Geometry & Topology, Homework 3

- 1. Let $A \subset \mathbb{R}^n$ be arbitrary and let $f: A \to \mathbb{R}^m$ be a continuous map. Assume that for all $a \in A$, there exists an open neighborhood $U \subset \mathbb{R}^n$ of a such that $f|_{A \cap U}: A \cap U \to \mathbb{R}^m$ extends to a smooth map $U \to \mathbb{R}^m$. Prove that f is smooth, i.e., there exists an open neighborhood $V \subset \mathbb{R}^m$ of A such that f extends to a smooth map $V \to \mathbb{R}^m$. Hint: partitions of unity!
- 2. Let M be a smooth manifold and let $f, g: M \to \mathbb{S}^n$ be two smooth maps such that ||f(p) g(p)|| < 2 for all $p \in M$. Prove that f and g are smoothly homotopic.
- 3. Let $f: M_1^n \to M_2^n$ and $g: M_2^n \to M_3^n$ be smooth maps between n-dimensional manifolds with M_1 and M_2 compact. Letting \deg_2 denote the mod-2 degree, prove that $\deg_2(g \circ f) = \deg_2(g) \deg_2(f)$. Hint: part of this is showing that you can pick regular values that work for all the maps in sight!
- 4. Let $f: M_1^n \to M_2^n$ be a smooth map between *n*-manifolds with M_1 compact and M_2 non-compact. Prove that $\deg_2(f) = 0$.
- 5. Let M be a smooth manifold and let ν be a vector field on M. Recall from Homework 1 that given a function $f: M \to \mathbb{R}$ and a tangent vector $\vec{v} \in T_pM$, we can define $\nabla_{\vec{v}}(f) \in \mathbb{R}$. Given a smooth function $f: M \to \mathbb{R}$, we define $\nu(f): M \to \mathbb{R}$ via the formula

$$\nu(f)(p) = \nabla_{\nu(p)}(f) \qquad (p \in M).$$

(a) Let $\phi_t \colon M \to M$ be the flow generated by ν . Prove that

$$\nu(f)(p) = \frac{(f \circ \phi_t)(p)}{\partial t}|_{t=0}$$

for all $p \in M$.

(b) Given vector fields ν_1 and ν_2 on M, prove that there exists a unique vector field $[\nu_1, \nu_2]$ on M such that

$$[\nu_1, \nu_2](f) = \nu_1(\nu_2(f)) - \nu_2(\nu_1(f))$$

for all smooth functions $f: M \to \mathbb{R}$.

(c) Prove that if ν_1 and ν_2 and ν_3 are smooth vector fields on M, then

$$[\nu_1, [\nu_2, \nu_3]] + [\nu_2, [\nu_3, \nu_1]] + [\nu_3, [\nu_1, \nu_2]] = 0.$$

- 6. Let G be a Lie group, that is, a smooth manifold that is also a group such that the following hold:
 - For all $g \in G$, the map $m_q : G \to G$ defined by $m_q(x) = gx$ is smooth.

1

• The inversion map $\iota: G \to G$ is smooth.

For instance, G might be $GL_n(\mathbb{R})$. A vector field ν on G is said to be *left invariant* if for all $g \in G$, we have

$$D_x m_g(\nu(x)) = \nu(gx)$$
 for all $x \in G$.

The set of all left-invariant vector fields on G is a vector space called the Lie algebra of G.

- (a) Letting e be the identity element of G, construct a vector space isomorphism between the Lie algebra of G and T_eG .
- (b) Prove that if ν_1 and ν_2 are left-invariant vector fields on G, then $[\nu_1, \nu_2]$ is also a left invariant vector fields on G.
- (c) Look up the definition of a Lie algebra (say on wikipedia) and verify that with the aforementioned bracket operation the Lie algebra of G is indeed a Lie algebra.
- (d) Prove that the Lie algebra of $GL_n(\mathbb{R})$ is precisely the set of $n \times n$ real matrices with the bracket

$$[A, B] = AB - BA.$$