Math 60330: Basic Geometry & Topology, Homework 2

- 1. Let $f: M^m \to N^n$ be a smooth map. Assume that M^m is connected and that $D_p f = 0$ for all $p \in M^m$. Prove that f is a constant map.
- 2. For $n, m \ge 1$, identify $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ with \mathbb{R}^{nm} . Let $\operatorname{Sur}(\mathbb{R}^n, \mathbb{R}^m)$ be the subspace of $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ consisting of surjections. Prove that $\operatorname{Sur}(\mathbb{R}^n, \mathbb{R}^m)$ is open in $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$.
- 3. Let M^n be an *n*-dimensional manifold in \mathbb{R}^d . Define

$$TM = \{(p, v) \in \mathbb{R}^d \times \mathbb{R}^d \mid p \in M^n \text{ and } v \in T_p(M)\}.$$

- (a) Prove that TM is a 2n-dimensional manifold in \mathbb{R}^{2d} .
- (b) Define the *normal bundle* to M to be

$$T^{\perp}M = \left\{ (p, v) \in \mathbb{R}^d \times \mathbb{R}^d \mid p \in M^n \text{ and } v \in (T_p(M))^{\perp} \right\},$$

where \perp is taken with respect to the ordinary dot product on \mathbb{R}^d . Prove that $T^{\perp}M$ is a smooth d-dimensional manifold in \mathbb{R}^{2d} .

- (c) Prove that if $f: M^m \to N^n$ is a smooth map, then f induces a smooth map $Df: TM \to TN$ that for $p \in M$ restricts to the derivative $D_p f: T_p M \to T_{f(p)} N$.
- 4. A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is homogeneous of degree d if $f(tx_1, \dots, tx_n) = t^d f(x_1, \dots, x_n)$.
 - (a) Prove *Euler's identity*: for a homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ of degree d, we have

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = df.$$

- (b) Let $f \in \mathbb{R}[x_1, \dots, x_n]$ be a homogeneous polynomial of degree d. For $a \in \mathbb{R}$, let $M(a) = \{x \in \mathbb{R}^n \mid f(x) = a\}$. Prove that M(a) is a smooth (n-1)-dimensional manifold for $a \neq 0$.
- (c) Prove that $M(a) \cong M(a')$ for a, a' > 0 and that $M(b) \cong M(b')$ for b, b' < 0.
- 5. (a) Identify the space $\operatorname{Mat}_n(\mathbb{R})$ of $n \times n$ real matrices with \mathbb{R}^{n^2} . Prove that $\operatorname{SL}_n(\mathbb{R})$ is a smooth $(n^2 1)$ -dimensional submanifold of $\operatorname{Mat}_n(\mathbb{R})$.
 - (b) Identify the tangent spaces of $\operatorname{Mat}_n(\mathbb{R})$ with $\operatorname{Mat}_n(\mathbb{R})$. Prove that the tangent space to $\operatorname{SL}_n(\mathbb{R})$ at the identity matrix consists of all matrices $A \in \operatorname{Mat}_n(\mathbb{R})$ with trace 0.