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Part 1

Basic topics





CHAPTER 1

Definition and basic properties of covering spaces

Our first main topic is the theory of covering spaces. This chapter contains some basic definitions
and a large number of examples. A first-time reader might be tempted to skip the examples and
focus on the theory. This would be a mistake. The richness of the examples is what gives this subject
its flavor, and it is impossible to understand the theoretical aspects of covering spaces without having
absorbed a large store of these examples.

1.1. Definition and examples

Recall that a local homeomorphism is a map p : Z → X such that all z ∈ Z have open neighbor-
hoods V with U = p(V ) open and p|V : V → U a homeomorphism. Roughly speaking, in a covering
space this condition is strengthened by adding a uniformity condition to these V .

1.1.1. Definition of covering space. The definition is as follows:

Definition 1.1.1. A covering space or simply a cover of a space X is a space X̃ equipped with

a map p : X̃ → X such that for all x ∈ X, there is an open neighborhood U of x satisfying:

• the preimage p−1(U) is the disjoint union of open subsets {Ũi}i∈I of X̃ such that for all

i ∈ I, the restriction p|Ũi
: Ũi → U is a homeomorphism.

p

U1
~

U2
~

U3
~

Ux

We call U a trivialized neighborhood of x (or just a trivialized open set if we do not want to emphasize

x) and each Ũi a sheet of X̃ over U . We will also often call the map p : X̃ → X a covering space, and
refer to X as the base of the cover. □

Remark 1.1.2. We allow p−1(U) = ∅. In particular, for any space X the map p : ∅ → X is a
covering space. This convention is controversial, and some authors require the maps in covering
spaces to be surjective. □

Remark 1.1.3. Covering spaces are local homeomorphisms, but the converse does not hold.

However, if X̃ is compact Hausdorff then all local homeomorphisms p : X̃ → X are covering spaces.
We will say more about this in §1.2 below. □

1.1.2. Two examples of covering spaces. Here are two basic examples:

Example 1.1.4 (Trivial cover). For a space X, the identity map 1X : X → X is a covering space.
More generally, for any discrete set I the projection map p : X × I → X is a covering space. We will
call these the trivial covers of X. □

3
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Example 1.1.5 (Universal cover of circle). Regard S1 as the unit circle in the complex plane C.
Let p : R → S1 be the map p(θ) = e2πiθ. This is a covering space. Indeed, consider x ∈ S1. Write
x = e2πiθ0 . Pick ϵ > 0 with ϵ < 1. For n ∈ Z, set

Ũn = (θ0 + n− ϵ, θ0 + n+ ϵ) ⊂ R.

Let U = p(Ũ0). The set U is an open neighborhood of x, and p−1(U) is the disjoint union of the Ũn:

p
U0
~ U1

~U-1
~

x

U

Each Ũn projects homeomorphically to U , so U is a trivialized neighborhood of x and the Ũn are the
sheets over U . The covering space p : R → S1 is the universal cover of S1. The reason for this name
will become clear later when we classify covering spaces in Chapter YYY. □

1.1.3. Degree of cover. Let p : X̃ → X be a covering space. The preimages p−1(x) ⊂ X̃ of

points x ∈ X are called the fibers of p : X̃ → X. For x ∈ X, the fiber p−1(x) is called the fiber over
x. The first main property of covering spaces is that if X is connected, then the cardinalities of its
fibers are all equal. More generally:

Lemma 1.1.6. Let p : X̃ → X be a covering space. Let f : X → Z ∪ {∞} be the function

f(x) = |p−1(x)| for x ∈ X.

Then f is locally constant. In particular, if X is connected then f is constant.

Proof. Consider x ∈ X. Let U be a trivialized neighborhood of x and let {Ũi}i∈I be the sheets

of X̃ over U . For y ∈ U , the preimage p−1(y) consists of one point in each Ũi, and thus f(y) = |I|.
The lemma follows. □

This suggests the following definition:

Definition 1.1.7. Let p : X̃ → X be a covering space. We say that p : X̃ → X has degree n if

all of its fibers have cardinality n. This degree might be infinity. We will also say that p : X̃ → X is
an n-sheeted or an n-fold cover. □

Lemma 1.1.6 implies that if X is connected, then every covering space p : X̃ → X has a degree.1

For instance, the degree of the universal cover p : R → S1 is infinity.

1.1.4. More examples. Here are some more examples of covering spaces:

Example 1.1.8 (Degree n cover of circle). Regard S1 as the unit circle in C. Fix some n ≥ 1,
and define pn : S1 → S1 via the formula pn(z) = zn. This is a degree n covering space. Indeed,
consider x ∈ S1. The preimage p−1

n (x) consists of n distinct points: writing x = e2πiθ0 , we have

p−1
n (x) =

{
e2πi(θ0+m)/n | m is an integer with 0 ≤ m < n

}
.

Fix some ϵ > 0 with ϵ < 1, and let

U =
{
e2πiθ | θ ∈ (θ0 − ϵ, θ0 + ϵ)

}
.

1This is false for non-connected spaces. See Exercise 1.3.
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The set U is an open neighborhood of x, and p−1
n (U) is the disjoint union of n subsets of S1 each of

which projects homeomorphically onto U :

x

p8

Thus U is a trivialized neighborhood of x and the components of p−1
n (U) are the sheets over U . □

Example 1.1.9 (Cosets of discrete subgroups). Let G be a topological group, i.e., a group
that is a topological space such that the product map G×G → G and inversion map G → G are
continuous. Let H be a discrete subgroup of G. Here are two examples to keep in mind:

• G the additive group Rn, and H = Zn; and
• G = SLn(R) and H = SLn(Z).

Endow the set G/H = {gH | g ∈ G} of left cosets with the quotient topology. Then the quotient
map p : G → G/H is a cover of degree |H|. Indeed, consider a point g0H of G/H. Since H is a
discrete subgroup of G, we can find an open neighborhood V of 1 ∈ G whose translates {V h | h ∈ H}
are all disjoint.2 Set U = p(g0V ), so

p−1(U) =
⊔
h∈H

g0V h.

These are all disjoint sets that project homeomorphically to U , so U is a trivialized neighborhood
and the sets g0V h with h ∈ H are the sheets above U . □

Example 1.1.10. Two of our previous examples are special cases of Example 1.1.9:

• The universal cover p : R → S1. Indeed, the additive topological group R contains the discrete
subgroup Z. The satisfies R/Z ∼= S1, and this homeomorphism fits into a commutative
diagram

R

R/Z S1

p

∼=

Using this, we can identify the covers R → R/Z and p : R → S1.
• The covers pn : S1 → S1 defined by pn(z) = zn. Indeed, S1 ⊂ C is a topological group under
multiplication, and it contains the discrete group µn of nth roots of unity. The quotient
S1/µn is homeomorphic to S1, and just like above we can identify the covers S1 → S1/µn
and pn : S1 → S1.

As another example, as we noted in Example 1.1.9 the additive group Rn contains the discrete
subgroup Zn. The quotient Rn/Zn is homeomorphic to an n-dimensional torus Tn = (S1)×n:

2Here are some more details. Since H is discrete, we can find an open neighborhood W of 1 ∈ G such that
W ∩ H = {1}. Let f : G × G → G be the map f(xy) = xy−1. Since f is continuous, the set f−1(W ) is an open

neighborhood of (1, 1) and thus we can find open neighborhoods V1 and V2 of 1 such that V1 × V2 ⊂ f−1(W ). Letting
V = V1 ∩ V2, we then have f(V × V ) ⊂ W . We now claim that the sets {V h | h ∈ H} are all disjoint. Indeed, if

h1, h2 ∈ H are such that (V h1) ∩ (V h2) ̸= ∅, then we can find v1, v2 ∈ V with v1h1 = v2h2, and hence

h2h
−1
1 = v1v

−1
2 ∈ f(V × V ) ∩H ⊂W ∩H = {1}.

In other words, h1 = h2.
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ℝ2

=
ℝ2/ℤ2 𝕋2

This figure shows the case n = 2. The action of Z2 on R2 identifies all the horizonal (resp. vertical)
lines together, and the indicated region is a fundamental domain which in the quotient becomes a
square with sides identified as indicated. Identifying Rn/Zn with Tn via this isomorphism, we get an
infinite-degree cover p : Rn → Tn. □

Example 1.1.11 (Real projective space). Let RPn be n-dimensional real projective space, that
is, the set of lines through the origin in Rn+1. Topologize RPn as follows:

• Let π : Rn+1 \ 0 → RPn be the map taking a nonzero point z ∈ Rn+1 to the line determined
by 0 and z. Give RPn the quotient topology determined by π, so a set U ⊂ RPn is open if
and only if π−1(U) is open.

We have Sn ⊂ Rn+1. Let p : Sn → RPn be the restriction of π to p. This is a degree 2 covering space.
Indeed, consider some point ℓ ∈ RPn. The line ℓ intersects Sn in two antipodal points z,−z ∈ Sn.
Let U ⊂ RPn be the set of all lines ℓ′ that are not orthogonal to ℓ. This is an open set, and the

preimage p−1(U) is the disjoint union of two open hemispheres Ũ1 and Ũ2 centered at z and −z,
respectively:

U1
~

U2
~

z

-z

ℓ

Each Ũi projects homeomorphically to U , so U is a trivialized neighborhood and the Ũi are the
sheets over U . □

Example 1.1.12 (Cover of surface). Let Σ2 be a genus 2 surface and let T be a genus 1 surface
with two boundary components. Let f : T → Σ2 be the map that glues the boundary components to
form a loop γ:

f
Σ2γ

glue
together

T

For 1 ≤ i ≤ 3, let S̃i be a copy of T . As in the following figure, we can glue the S̃i together to form a

genus 4 surface Σ4 and use f to map each S̃i to Σ2, yielding a map p : Σ4 → Σ2:
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p

Σ4

Σ2
γ

S1
~

S2
~S3

~

Each of the three black loops in Σ4 maps homeomorphically onto the black loop γ in Σ2. The map
p : Σ4 → Σ2 is a degree 3 covering space. Indeed, consider a point x ∈ Σ2. If x /∈ γ, then for our

trivialized neighborhood we can take U = Σ2 \ γ. The sheets above U are the Int(S̃i). If instead
x /∈ S, then x ∈ γ. In this case, as in the following figure we can take a small open disk U around x:

p

Σ4

Σ2

U

The three disks shown in Σ4 are each mapped homeomorphically to U , so U is a trivialized neighbor-
hood. □

1.2. Covers versus local homeomorphisms, and the fundamental theorem of algebra

We now give conditions that ensure a local homeomorphism is a covering space, and as an
application give a simple proof of the fundamental theorem of algebra.

1.2.1. Criterion. Recall that a space Z is locally compact Hausdorff3 if it is Hausdorff and
every point z ∈ Z has an open neighborhood W whose closure W is compact. Also, a map f : Y → Z
is proper if for all compact subsets K ⊂ Z, the preimage f−1(K) is compact. With these definitions,
we have:

Lemma 1.2.1. Let p : X̃ → X be a proper local homeomorphism between locally compact Hausdorff

spaces. Then p : X̃ → X is a covering space.

Proof. Consider x ∈ X. Since p is proper, the set p−1(x) is compact. Since p is a local
homeomorphism at each point of p−1(x), the set p−1(x) is also discrete. We deduce that p−1(x) is

finite. Enumerate it as p−1(x) = {x̃1, . . . , x̃n}. For each 1 ≤ i ≤ n, there exists a neighborhood Ṽi of

x̃i such that p|Ṽi
is a homeomorphism onto its image Vi ⊂ X. Since X̃ is Hausdorff, we can shrink

the Ṽi and assume they are all disjoint. Set U = V1 ∩ · · · ∩ Vn and Ũi = Ṽi ∩ p−1(U). The set Ũi is
an open neighborhood of x̃i, and p|Ũi

is a homeomorphism onto U .

By construction, p−1(U) contains Ũ1 ⊔ · · · ⊔ Ũn. However, we are not done since p−1(U) might

contain points that do not lie in some Ũi. We want to shrink U to ensure that this does not happen.
Since we need U to be open, we need to delete a closed set C of “bad points” from U .

The first step is to shrink U to ensure that U is compact. Since X is locally compact, we can

find an open neighborhood W of x such that W is compact. Replacing U with W ∩ U and each Ũi

3Local compactness is poorly behaved on non-Hausdorff spaces.
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with p−1(W ) ∩ Ũi, we can assume that U ⊂W . Since U is a closed subset of the compact set W , it
follows that U is compact.

Since p is proper p−1(U) is compact, so since X̃ is Hausdorff p−1(U) is closed. Let

C̃ = p−1(U) \
n⋃
i=1

Ũi.

Since C̃ is a closed subset of the compact set p−1(U), it follows that C̃ is compact. This implies that

C = p(C̃) is compact, and hence closed. Replacing U with U \ C and each Ũi with Ũi \ p−1(C), we

now have p−1(U) = Ũ1 ⊔ · · · ⊔ Ũn, as desired. □

1.2.2. Fundamental theorem of algebra. As a first application of Lemma 1.2.1, we give a
simple proof of the fundamental theorem of algebra. One way of stating this theorem is that every
degree-n complex polynomial has n roots, at least if you count these roots with multiplicity. The
nontrivial part of this is that every nonconstant polynomial has a root, so this is what we will prove:

Theorem 1.2.2 (Fundamental theorem of algebra). Let f(z) ∈ C[z] be a nonconstant polynomial.
Then there exists some z0 ∈ C such that f(z0) = 0.

Proof. We will prove more generally that regarded as a map f : C → C, the polynomial f(z)
is surjective. Let f ′(z) be the derivative of f(z) and C = {z ∈ C | f ′(z) = 0}. Define X = f(C)
and Y = f−1(X). Both X and Y are finite sets, and f restricts to a map F : C \ Y → C \X. It
is enough to prove that F is surjective. Since C \X is path-connected, it is enough to prove that
F : C \ Y → C \X is a covering space; indeed, since the image of F contains some point of C \X the
degree of this covering space must be postive. To do this, we check the hypotheses of Lemma 1.2.1:

• That C \ Y and C \X are locally compact Hausdorff spaces is clear.
• Since f(z) is a nonconstant polynomial, f : C → C is proper. Indeed, this follows from the
fact that limz 7→∞ f(z) = ∞. This implies that F : C \ Y → C \X is proper.

• For z ∈ C \ Y , since f ′(z) ̸= 0 the inverse function theorem implies that f and hence F is a
local homeomorphism at z. □

1.2.3. More with polynomials. Here is another example of how Lemma 1.2.1 can be used.

Example 1.2.3 (Roots of square-free polynomials). For some n ≥ 1, let Polyn be the space of
degree-n monic polynomials over C. Such an f ∈ Polyn can be written as

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an with a1, . . . , an ∈ C.

The topology comes from the coefficients, so Polyn
∼= Cn. By the fundamental theorem of algebra,

such a polynomial has n roots (counted with multiplicity). Define

RPolyn = {(f, x) ∈ Polyn×C | f(x) = 0} .

In other words, RPolyn is the space of polynomials equipped with a root. Let p : RPolyn → Polyn
be the map p(f, x) = f . For n ≥ 2 this is not a covering space since the fibers of p have different
cardinalities. For example,

|p−1(zn)| = |{(zn, 0)}| = 1 but |p−1(zn − 1)| = |
{
(zn − 1, µ) | µ an nth root of unity

}
| = n.

As suggested by this, the issue arises because of polynomials with repeated roots. Define

Polysfn = {f ∈ Polyn | f has n distinct roots}

and

RPolysfn =
{
(f, x) ∈ Polysfn ×C | f(x) = 0

}
.

The “sf” stands for “square-free”. The spaces Polysfn and RPolysfn are open subsets of Polyn and

RPolyn, respectively.
4 The projection p : RPolysfn → Polysfn is a degree-n covering space. Indeed,

4This is an elementary exercise. A sophisticated way to see it is to use the fact that having a multiple root is

equivalent to the vanishing of the discriminant, which is a polynomial in the coefficients of the polynomial.
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since p is a proper map5 whose fibers all have cardinality n, by Lemma 1.2.1 it is enough to prove that
p : RPolysfn → Polysfn is a local homeomorphism. But this is easy: for (f, x) ∈ RPolysfn , since f(z) has
no repeated roots we have f ′(x) ̸= 0, so by the implicit function theorem there is a neighborhood
U ⊂ Polyn of f such that around (f, x) the subspace

RPolysfn ⊂ Polyn×C ⊂ Cn × C
is the graph of a function U → C. □

1.3. Isomorphisms between covering spaces

We would like to classify the covers of a space X. To do this, we must first define what it means
for two covers to be be the same, i.e., we must say what it means to have an isomorphism between
two covers of X.

1.3.1. Isomorphisms. The definition is as follows:

Definition 1.3.1. Let X be a space and let p1 : X̃1 → X and p2 : X̃2 → X be two covers of

X. A covering space isomorphism from X̃1 to X̃2 is a homeomorphism f : X̃1 → X̃2 such that the
diagram

X̃1 X̃2

X

f

p1 p2

commutes, i.e., such that p2 ◦ f = p1. If a covering space isomorphism from X̃1 to X̃2 exists, we say

that X̃1 and X̃2 are isomorphic covers of X. This is clearly an equivalence relation. □

Remark 1.3.2. This can be rephrased using categorical language as follows. Recall that Top is
the category of topological spaces and continuous maps. For a space X, let Top/X be the category
whose objects are spaces Y equipped with maps ϕ : Y → X and whose morphisms from ϕ1 : Y1 → X
to ϕ2 : Y2 → X are maps f : Y1 → Y2 such that the diagram

Y1 Y2

X

f

ϕ1 ϕ2

commutes. A covering space p : X̃ → X is an object of Top/X , and a covering space isomorphism is
an isomorphism in Top/X between two covering spaces. □

1.3.2. Basic examples. Here are two basic examples.

Example 1.3.3. For λ ̸= 0, define pλ : R → S1 via the formula pλ(θ) = e2πiλθ. The universal
cover of S1 is thus p1 : R → S1. Each pλ : R → S1 is also a covering space, but is isomorphic to the
universal cover. Indeed, letting f : R → R be the homeomorphism f(θ) = λθ, the diagram

R R

S1

f

pλ p1

commutes, so f is a covering space isomorphism from pλ : R → S1 to p1 : R → S1. □

Example 1.3.4. For n ≥ 1, let pn : S1 → S1 be the covering space defined by the formula
pn(z) = zn and let qn : S1 → S1 be the covering space defined by the formula qn(z) = z−n. The covers
pn : S1 → S1 and qn : S1 → S1 are isomorphic. Indeed, letting f : S1 → S1 be the homeomorphism
f(z) = z−1, the diagram

5To see that p : RPolysfn → Polysfn is proper, note first that the projection q : Polyn ×C → Polyn is proper.
This implies that the map p : RPolyn → Polyn is proper; indeed, for a compact K ⊂ Polyn we have p−1(K) =

q−1(K) ∩ RPolyn, which is compact since it is a closed subset of the compact set q−1(K). This immediately implies

that p : RPolysfn → Polysfn is proper.
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S1 S1

S1

f

pn qn

commutes, so f is a covering space homomorphism from pn : S1 → S1 to qn : S1 → S1. □

1.3.3. Goal. Our of our main goals is to classify all the covers of a space up to isomorphism.
Remarkably, for a reasonable space X there is a simple algebraic classification of covers of X. We
will describe this classification later after we define the fundamental group of X (see Chapter YYY).
As an example of what it says, here is one example:

Example 1.3.5. For the circle S1, we have already seen the universal cover p : R → S1 and
the covers pn : S1 → S1 defined by pn(z) = zn. Once we have the classification, we will see that

every covering space q : X̃ → S1 with X̃ connected is isomorphic to either p : R → S1 or to some
pn : S1 → S1. □

1.4. Deck transformations

We now study the automorphisms of a cover, i.e., the isomorphisms from the cover to itself.

1.4.1. Deck group. These automorphisms are called deck transformations:

Definition 1.4.1. Let p : X̃ → X be a covering space. A deck transformation of p : X̃ → X. is

a covering space isomorphism f : X̃ → X̃. These form a group under composition called the deck

group of p : X̃ → X, denoted Deck(p : X̃ → X) or simply Deck(X̃). □

Here is an example:

Example 1.4.2. Let p : R → S1 be the universal cover, so p(θ) = e2πiθ for all θ ∈ R. For each
n ∈ Z, we can define a deck transformation fn : R → R via the formula fn(θ) = θ + n. □

1.4.2. Determined by one point. The following lemma says that in favorable situations deck
transformations are completely determined by what they do to a single point.

Lemma 1.4.3. Let p : X̃ → X be a covering space with X̃ connected. Let f, g : X̃ → X̃ be two

deck transformations such that there exists some z0 ∈ X̃ with f(z0) = g(z0). Then f = g.

Proof. Let E =
{
z ∈ X̃ | f(z) = g(z)

}
. Our goal is to prove that E = X̃. By assumption

z0 ∈ E, so since X̃ is connected it is enough to prove that E is both open and closed.6 Consider

z ∈ X̃. We must prove that if z ∈ E (resp. z /∈ E) then there is an open neighborhood of z contained
in E (resp. disjoint from E). Let U be a trivialized neighborhood of p(z).

Assume first that z ∈ E. Let Ũ be the sheet above U containing f(z) = g(z). Set V =

f−1(Ũ) ∩ g−1(Ũ), so V is an open neighborhood of z with f(V ), g(V ) ⊂ Ũ . For z′ ∈ V , both f(z′)

and g(z′) are the unique point of Ũ projecting to p(z′) ∈ U , so in particular f(z′) = g(z′). This
implies that V ⊂ E, as desired.

Assume now that z /∈ E, so f(z) ̸= g(z). Let Ũ1 and Ũ2 be the sheets above U with f(z) ∈ Ũ1

and g(z) ∈ Ũ2. Since f(z) ̸= g(z), the sheets Ũ1 and Ũ2 are distinct and hence disjoint. Set

W = f−1(Ũ1)∩ g−1(Ũ2), so W is an open neighborhood of z with f(W ) ⊂ Ũ1 and g(W ) ⊂ Ũ2. Since

Ũ1 ∩ Ũ2 = ∅, this implies that f(z′) ̸= g(z′) for all z′ ∈W , so W is disjoint from E, as desired. □

6Note that if X is Hausdorff (like most spaces in this book) it is automatic that E is closed; indeed, if X is

Hausdorff then for any continuous maps f, g : Y → X the set of y ∈ Y with f(y) = g(y) is closed.
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1.4.3. Determining the deck group. The following example shows a typical way to determine
the deck group of a covering space:

Example 1.4.4 (Universal cover of circle). Let p : R → S1 be the universal cover of S1. For
n ∈ Z, let fn : R → R be the deck transformation defined by the formula fn(z) = z + n. We claim
that

Deck(p : R → S1) = {fn | n ∈ Z} ∼= Z.

To see this, consider an arbitrary deck transformation f : R → R. Since p(f(0)) = p(0), we must have
f(0) = n for some n ∈ Z. It follows that f−n ◦ f(0) = 0, so by Lemma 1.4.3 we have f−n ◦ f = 1R
and hence f = fn. □

1.5. Regular covers

Roughly speaking, a regular cover7 is a cover with a deck group that is as large as possible.

1.5.1. Definition of regular cover. Let p : X̃ → X. The group Deck(X̃) acts on X̃. For

x ∈ X, the action of Deck(X̃) on X̃ preserves the fiber f−1(x), so Deck(X̃) acts on f−1(x). For

z1, z2 ∈ f−1(x), Lemma 1.4.3 implies that if X̃ is connected then there exists at most one f ∈ Deck(X̃)
with f(z1) = z2. A regular cover is a cover where such an f always exists:

Definition 1.5.1. A regular cover is a cover p : X̃ → X such that for all x ∈ X, the group

Deck(X̃) acts transitively on f−1(x). A cover that is not regular is irregular. □

1.5.2. Examples. The calculation in Example 1.4.4 shows that the universal cover p : R → S1
is regular. In fact, most of the covers we have seen so far are regular:

Example 1.5.2 (Trivial cover). Let X be a space and I be a discrete set. Consider the trivial
cover p : X × I → X. Set G = Deck(p : X × I → X). For each bijection σ : I → I, we can define an
element fσ ∈ G via the formula fσ(x, i) = (x, σ(i)). These elements act transitively on the fibers, so
p : X × I → X is regular. One can check that all elements of G are of the form fσ if X is connected
(see Exercise 1.10). □

Example 1.5.3 (Degree n cover of circle). Let pn : S1 → S1 be the cover defined by the formula
pn(z) = zn. We claim that pn : S1 → S1 is a regular cover with deck group isomorphic to the cyclic
group Cn of order n. Indeed, let G = Deck(pn : S1 → S1). Let f ∈ G be the map f : S1 → S1 defined
by the formula f(z) = e2πi/nz. The element f has order n and its powers act transitively on the
fiber p−1

n (1), which equals the nth roots of unity. This implies that the cover is regular, and also by
Lemma 1.4.3 that G is the cyclic group of order n generated by f . □

Example 1.5.4 (Cosets of discrete subgroups). Let G be a topological group and let H < G be
a discrete subgroup. Then the projection p : G → G/H is a regular cover. Indeed, for h ∈ H define
fh : G → G via the formula fh(g) = gh. Then fh ∈ Deck(p : G → G/H), and the fh act transitively
on the fibers of p : G → G/H. If G is connected, then by Lemma 1.4.3 this is the entire deck group,
so Deck(p : G → G/H) ∼= H. As a special case, the deck group of the cover p : Rn → Tn is the group
Zn, which acts on Rn by translations. □

Example 1.5.5 (Real projective space). The cover p : Sn → RPn is regular. Indeed, the map
f : Sn → Sn defined by f(z) = −z is an element of the deck group that swaps the two elements in
the fiber over any point of RPn. By Lemma 1.4.3, the deck group of p : Sn → RPn is the cyclic group
C2 of order 2 generated by f . □

Example 1.5.6 (Cover of surface). Consider the covering space p : Σ4 → Σ2 from Example
1.1.12. Set G = Deck(p : Σ4 → Σ2). There is a deck transformation f ∈ G that rotates Σ4 by 2π/3
as follows:

7These are also often called normal covers.
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p
S1

S2S3

~

~~

Σ4

Σ2
γ

rotate by 2π/3

The element f has order 3 and its powers act transitively on all the fibers. This implies that the
cover is regular, and also by Lemma 1.4.3 that G is the cyclic group of order 3 generated by f . □

Example 1.5.7 (Roots of square-free polynomials). The degree-n covering space p : RPolysfn →
Polysfn discussed in Example 1.2.3 is regular for n = 2 (see Exercise 1.9), but is irregular for n ≥ 3.
We do not have the technology to prove this yet (see §YYY for the proof), but it should not be
surprising. Indeed, if it was regular then the deck group G would act simply transitively on the roots
of every degree-n polynomial with distinct roots, and if such a canonical group action existed then
we would surely teach about it in elementary abstract algebra classes.8 □

We will meet more examples of irregular covers in the next section when we discuss covers of
graphs.

1.6. Graphs

Graphs9 provide a rich source of examples of covering spaces.

1.6.1. Vertices and edges. Recall that a graph is a set of vertices connected by oriented edges:
u

v

w
e1 e2

e3

e4

e5

We formalize this as follows.10 A graph is a topological space X constructed as follows:

• Start with a discrete set V = X(0), called the vertices or the 0-simplices.
• Let {D1

e}e∈E be a set of copies of the interval D1 = [−1, 1] indexed by a set E. We call
these the edges or the 1-simplices. For e ∈ E, we have a map fe from ∂D1

e = {−1, 1} to
X(0) called the attaching map. We call fe(−1) the initial vertex of e and fe(1) the terminal
vertex of e, and we say that e connects fe(−1) to fe(1).

• The space X = X(1) is formed by attaching the D1
e to X(0) using the fe. Formally,

X = X(1) =

(
X(0) ⊔

⊔
e∈E

D1
e

)
/ ∼,

where for e ∈ E the equivalence relation ∼ identifies x ∈ ∂D1
e with fe(x) ∈ X(0).

For e ∈ E, there is a map Fe : D1
e → X taking D1

e to D1
e/ ∼ called the characteristic map. We will

identify e with the image of the characteristic map, so depending on whether the attaching map is
injective or not e is homeomorphic to either D1 = [−1, 1] or to

D1/ (−1 ∼ 1) ∼= S1.

8For n = 2, this group action just exchanges the two roots.
9Our conventions about graphs are that unless otherwise specified they are oriented and we allow multiple edges

and loops.
10When the reader learns about CW complexes (see Chapter YYY), they will see that these are exactly the

1-dimensional CW complexes.
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The space X is given the weak topology with respect to the characteristic maps, so a set U ⊂ X is
open if and only if F−1

e (U) ⊂ D1
e is open for all e ∈ E. The orientations on the D1

e = [−1, 1] give
orientations on our edges. To help the reader absorb this, we spell it out in the above example:

Example 1.6.1. Let V = X(0) be the discrete set {u, v, w} and let E = {e1, . . . , e5}. Define the
attaching maps via the formulas

fe1(−1) = v fe2(−1) = u fe3(−1) = u fe4(−1) = v fe5(−1) = w

fe1(1) = u fe2(1) = v fe3(1) = w fe4(1) = w fe5(1) = w

These describe how to attach 1-simplices D1
ei to form X = X(1) as follows:

u

v

w
e1 e2

e3

e4

e5

u

v

w
𝔻1

e1
𝔻1

e2

𝔻1
e3

𝔻1
e4

𝔻1
e5

glue 𝔻1
ei

Note that the characteristic maps Fei : D1
ei → X are injective for 1 ≤ i ≤ 4, but Fe5 is not injective

since it identifies the two endpoints of D1
e5 to the single point w. □

1.6.2. Maps of graphs. Let X and Y be graphs. To define a continuous map ϕ : X → Y ,
we must specify where ϕ sends each vertex and edge. This is particularly easy to do if we require
our map to take vertices to vertices and oriented edges to oriented edges, which will suffice for the
examples in this section. This is best explained by an example:

Example 1.6.2. Let Y be the following graph:

u v
e1e2 e3
Y

We specify a graph X and a map ϕ : X → Y as follows:

u v

uv

e1

e1
e1e1

e2

e2

e3

e3

X

u v
e1e2 e3
Y

φ

Here we label the vertices and oriented edges of X by the vertices and oriented edges they map to.
What this map does is map each edge of the central square of X to the single non-loop edge of Y
and map each loop in X to the appropriate loop in Y . On the interiors of edges, the map ϕ respects
the evident linear structure coming from the construction of the graph. In other words, if e is an
edge of X and ϕ(e) is the corresponding edge of Y , then letting Fe : D1

e → X and Gϕ(e) : D1
f(e) → Y

be the characteristic maps the diagram

D1
e [−1, 1] D1

f(e)

X Y

Fe Gf(e)

ϕ

commutes. □

1.6.3. Covers of graphs. The above example is not a covering map. The problem is that it is
not a local homeomorphism at the vertices. What is needed for a covering map is informally that for
each vertex “the same edges enter and exist as in the target”. Here is an example of a covering map
with the same Y as above but a different X:



14 1. DEFINITION AND BASIC PROPERTIES OF COVERING SPACES

Example 1.6.3. The following describes a covering space map p : X → Y :

u v
e1e2 e3
Y

u v

vu

e1

e1
e3e2

X

e2 e3
p

This is a covering space map since:

• for both vertices of X mapping to u, one edge exits mapping to e1, one edge exits mapping
to e2, and one edge enters mapping to e2; and

• for both vertices of X mapping to v, one edge enters mapping to e1, one edge exits mapping
to e3, and one edge enters mapping to e3; and

This is a regular cover with deck group isomorphic to C2. The generator of C2 acts on X by the
involution that swaps the two vertices labeled u, the two vertices labeled v, and for i = 1, 2, 3 the
two oriented edges labeled ei. □

We conclude this section by giving a several different covers of the following graph Z:

Since Z has only one vertex, there is no need to give it a name since all vertices of a cover map to
that one vertex. We also use colors rather than letters to distinguish the two edges of Z, and label
the edges in the domain of our covering space maps by coloring them with the appropriate colors.

Example 1.6.4. Consider the cover

p
Z~

Z
This is a degree 2 regular cover. The deck group is isomorphic to C2, and acts on Z̃ by the involution
that swaps the two vertices, the two orange loops, and the two blue edges. □

Example 1.6.5. Consider the cover

p

ZZ~

This is an irregular cover. To see this, note that a homeomorphism f : Z̃ → Z̃ must take vertices to

vertices since the vertices are the only z ∈ Z̃ such that Z̃ \ z is disconnected.11 One can then check
that other than the identity there is no such homeomorphism that also preserves the orientations
and colors of the edges, so the deck group is trivial. □

Example 1.6.6. Consider the cover

p

Z
Z~

This ia a degree 3 regular cover. The deck group is C3, which acts on Z̃ by rotations. □

Example 1.6.7. Consider the cover

p

... ...
Z~

Z

11In fact, if X is a graph with no valence 2 vertices, then any homeomorphism X → X must take vertices to
vertices and edges to edges. This can be proved directly with a certain amount of pain, but we will wait to prove it

until we have introduced homology, which makes the proof easy.
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This is an infinite degree regular cover. The deck group is isomorphic to Z, which acts on Z̃ as
translations. □

Example 1.6.8. Consider the cover

p

Z
Z~

Here Z̃ is the graph embedded in R2 whose vertices are at Z2 and whose edges are horizontal and
vertical lines. This is an infinite degree regular cover. The deck group is isomorphic to Z2, which

acts on Z̃ ⊂ R2 via the action of Z2 on R2 by integer translations. □

Example 1.6.9. Consider the cover

p

ZZ~

The indicated pattern in the domain repeats infinitely often, making it an infinite 4-valent12 tree.13

The horizontal edges are oriented going right, and the vertical edges are oriented going up. This is
an infinite degree regular cover (we leave this as Exercise 1.11). □

Example 1.6.10. Consider the cover

p

ZZ~

This is an infinite degree irregular cover. To see this, note that any homeomorphism f : Z̃ → Z̃ must
take the interior of the orange loop to itself since the interior of the orange loop equals the set of all

p ∈ Z̃ such that Z̃ \ p is connected. This implies that it must fix the vertex at which the orange loop

is based. Since Z̃ is connected, the identity is the only element of the deck group that fixes a vertex,
so we conclude that the deck group is trivial. □

1.7. Covering space actions

Let p : X̃ → X be a cover with deck group G. The group G acts on X̃. If X̃ is connected, then

Lemma 1.4.3 says that action is free, i.e., that for all z ∈ X̃ the stabilizer subgroup Gz is trivial. In
fact, even more is true, and this section is devoted to studying this action.

12This means that the valence of each vertex is 4. The valence of a vertex of a graph is the number of edges

entering/exiting it. If there is a loop based at a vertex, then it counts for two edges in the valence, one going in and
one going out.

13A tree is a nonempty graph with no cycles, that is, no embedded circles.
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Remark 1.7.1. In this book, a group action is always assumed to preserve any structure a set
has. In particular, an action of a group G on a topological space Z is assumed to be continuous.
In other words, for all g ∈ G the map Z → Z that multiplies points by g is assumed to be a
homeomorphism. □

1.7.1. Covering space actions. The following lemma isolates the key property of the action
of the deck group of a connected cover:

Lemma 1.7.2. Let p : X̃ → X be a covering space with X̃ connected, let G = Deck(p : X̃ → X),

and let z ∈ X̃. Then there is an open neighborhood V of z whose translates {g·V | g ∈ G} are all
disjoint.

Proof. Let U be a trivialized neighborhood of p(z) and let Ũ be the sheet lying above U

with z ∈ Ũ . We claim that V = Ũ has the indicated property. Indeed, let g1, g2 ∈ G satisfy

(g1·Ũ) ∩ (g2·Ũ) ̸= ∅. We must prove that g1 = g2. Pick z1, z2 ∈ Ũ with g1·z1 = g2·z2. Since the

action of G preserves the fibers of p : X̃ → X, the points z1, z2 ∈ Ũ must lie in the same fiber. Since

the restriction of p : X̃ → X to Ũ is injective, this implies that z1 = z2. Letting w = z1 = z2 be this
common value, we have g1·w = g2·w. Lemma 1.4.3 now implies that g1 = g2, as desired. □

Actions satisfying the conclusions of this lemma are important, so we give them a special name:

Definition 1.7.3. A covering space action is an action of a group G on a space Z such that for
all z ∈ Z, there exists an open neighborhood V of z such that the translates {g·V | g ∈ G} are all
disjoint. □

Remark 1.7.4. All covering space actions are free. If G is finite and Z is Hausdorff, then the
converse is true: all free action of G on Z are covering space actions (see Exercise 1.8). □

1.7.2. Covers from quotients. Let G be a group and let Z be a space equipped with a left
action of G. Endow the quotient14 X/G with the quotient topology. In other words, if q : Z → Z/G
is the projection then a set U ⊂ Z/G is open if and only if q−1(U) is open. If the action of G on Z
is a covering space action, then the quotient map q : Z → Z/G is a regular covering space:

Lemma 1.7.5. Let G be a group acting a space Z by a covering space action. Then quotient map
q : Z → Z/G is a regular covering space. Moreover, if Z is connected then G = Deck(q : Z → Z/G).

Proof. Consider x ∈ Z/G. Write x = q(z) with z ∈ Z. Let V be an open neighborhood of z
such that the sets in the G-orbit of V are disjoint. Set U = q(V ). We have

q−1(U) =
⋃
g∈G

g·V.

Since each g·V is open, it follows that q−1(U) is open and thus by definition U is open. The g·V
are disjoint open subsets of Z and each projects homeomorphically onto U . We conclude that U
is a trivialized neighborhood of x and the g·V are the sheets lying above U . This implies that
q : Z → Z/G is a covering space. By construction, the action of G on Z is by deck transformations
of q : Z → Z/G, so G < Deck(q : Z → Z/G). This action is transitive on fibers, so if Z is connected
then Lemma 1.4.3 implies that G = Deck(q : Z → Z/G). □

1.7.3. Examples. All of our examples of regular covering spaces could have been constructed
using Lemma 1.7.2. For instance, C2 acts on Sn via the antipodal map z 7→ −z. This is a free
action, so since C2 is finite it is a covering space action (c.f. Remark 1.7.4). We could have defined
RPn = Sn/C2 and identified the covering space p : Sn → RPn with the quotient projection. This
would be a little artificial, but here is an example where this point of view is essential:

14This is potentially confusing notation since G is acting on the left. A purist would insist that Z/G is the

quotient of Z by an action of G on the right, and denote the quotient of Z by an action of G on the left by G\Z.
However, our notation is common and traditional, and we will follow it. There will be a few situations where we will

have both left and right actions, and we will work hard to be clear about what our notation means in those cases.
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Example 1.7.6 (Configuration space). Let X be any space. The ordered configuration space of
n points on X is the space15

PConfn(X) =
{
(x1, . . . , xn) ∈ X×n | xi ̸= xj for all distinct 1 ≤ i, j ≤ n

}
.

Topologize this as a subset of X×n. The symmetric group Sn on n letters acts on Confn(X) via the
formula

σ·(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) for σ ∈ Sn and (x1, . . . , xn) ∈ PConfn(X).

The inverses are there to make this a left action.16 This is a free action since the xi are all distinct,
and thus since Sn is finite it is a covering space action. The configuration space of n points on
X is the quotient Confn(X) = PConfn(X)/Sn. Points of Confn(X) can be viewed as unordered
sets {x1, . . . , xn} of n distinct points in X. The projection p : PConfn(X) → Confn(X) is a regular
covering space. □

1.8. Exercises

Exercise 1.1. Carefully prove that the following are covering spaces. Let C× = C \ {0}.
(a) The map p : C → C× defined by p(z) = ez.
(b) For n ∈ Z \ {0}, the map p : C× → C× defined by p(z) = zn. □

Exercise 1.2. Prove that the map p : C → C defined by p(z) = z2 is not a covering space. □

Exercise 1.3. Let p1 : X̃1 → X1 and p2 : X̃2 → X2 be covering spaces. Define q : X̃1 ⊔ X̃2 →
X1 ⊔X2 via the formula

q(z) =

{
p1(z) if z ∈ X̃1,

p2(z)if z ∈ X̃2.

Prove that q : X̃1 ⊔ X̃2 → X1 ⊔X2 is a cover space. Use this construction to find a covering space
over a non-connected base that does not have a degree. □

Exercise 1.4. Let p1 : X̃1 → X1 and p2 : X̃2 → X2 be covering spaces. Define q : X̃1 × X̃2 →
X1 ×X2 via the formula q(z1, z2) = (p1(z1), p2(z2)). Prove that q : X̃1 × X̃2 → X1 ×X2 is a covering
space. □

Exercise 1.5. Prove the following:

(a) Let p : X̃ → X be a cover and let X ′ ⊂ X be a subspace. Define X̃ ′ = f−1(X ′) and

p′ = p|X̃′ . Prove that p′ : X̃ ′ → X ′ is a covering space. We will call this the restriction of p
to X ′.

(b) Let X be a locally connected space with connected components {Xj}j∈J . For each j ∈ J ,
let qj : Yj → Xj be a covering space. Define

Y =
⊔
j∈J

Yj ,

and let q : Y → X be the map that for j ∈ J and y ∈ Yj satisfies q(y) = qj(y) ∈ Yj ⊂ Y .
Prove that q : Y → X is a covering space. □

(c) Construct a counterexample to part (b) in the case where X is not locally connected.

Exercise 1.6. Let p : X̃ → X be a covering space such that p−1(x) is finite and nonempty for

all x ∈ X. Prove that X is compact Hausdorff if and only if X̃ is compact Hausdorff. □

Exercise 1.7. Let α ∈ R be an irrational number. Let G ∼= Z be an infinite cyclic group
generated by s ∈ G. Let G act on S1 via the formula

t·z = e2πiαz for z ∈ S1.
Let p : S1 → S1/G be the quotient map.

(a) Prove directly that p is not a covering space.

15This is sometimes also called the pure configuration space, which is why it is written PConfn(X).
16This is the same reason that inverses appear in the action of GL(V ) on the dual of a vector space V .



18 1. DEFINITION AND BASIC PROPERTIES OF COVERING SPACES

(b) Prove that S1/G is not Hausdorff. □

Exercise 1.8. Let X be a Hausdorff space and let G be a finite group acting freely on X. Prove
that the action of G on X is a covering space action. □

Exercise 1.9. Let p : X̃ → X be a degree 2 cover. Prove that X̃ is a regular cover. □

Exercise 1.10. Let X be a space and I be a discrete set, and let p : X × I → X be the trivial
cover.

(a) If X is connected, prove that all elements of the deck group of p : X × I → X are of the
form fσ(x, i) = (x, σ(i)) for some bijection σ : I → I.

(b) If X is not connected, construct elements of the deck group that are not of this form. □

Exercise 1.11. Verify that the cover in Example 1.6.9 is regular. □



CHAPTER 2

Lifting paths and homotopies

This chapter studies lifting problems, which play a key role in both the classification of covering
spaces and their applications. As an application, we develop the theory of winding numbers and
degrees of maps from S1 to iteself. More applications are in Chapter 3.

2.1. Lifting problems in general

Let p : X̃ → X be a covering space and let f : Y → X be a map. A lift of f through p is a map

f̃ : Y → X̃ such that the diagram

X̃

Y X

p

f

f̃

commutes, i.e., such that f = p ◦ f̃ .

Example 2.1.1. A deck transformation f̃ : X̃ → X̃ is a lift of the covering space map p : X̃ → X
itself:

X̃

X̃ X

p

p

f̃

Of course, it is possible that a lift of p : X̃ → X to a map f̃ : X̃ → X̃ exists such that f̃ is not a
homeomorphism, so not all such lifts are deck transformations. □

A lift might or might not exist. However, just like a deck transformation if a lift exists then
under favorable hypotheses it is determined by what it does to a single point:

Lemma 2.1.2. Let p : X̃ → X be a covering space and let f : Y → X be a map. Assume that

Y is connected. Let f̃1, f̃2 : Y → X̃ be two lifts of f through p such that there is some y0 ∈ Y with

f̃1(y0) = f̃2(y0). Then f̃1 = f̃2.

Proof. The proof is identical to that of Lemma 1.4.3, but for the reader’s convenience we repeat

the argument. Let E =
{
y ∈ y | f̃1(y) = f̃2(y)

}
. Our goal is to prove that E = Y . By assumption

y0 ∈ E, so since Y is connected it is enough to prove that E is both open and closed. Consider
y ∈ Y . We must prove that if y ∈ E (resp. y /∈ E) then there is an open neighborhood of y contained
in E (resp. disjoint from E). Let U be a trivialized neighborhood of f(y).

Assume first that y ∈ E. Let Ũ be the sheet above U containing f̃1(y) = f̃2(y). Set V =

f̃−1
1 (Ũ)∩ f̃−1

2 (Ũ), so V is an open neighborhood of y with f̃1(V ), f̃2(V ) ⊂ Ũ . For y′ ∈ V , both f̃1(y
′)

and f̃2(y
′) are the unique point of Ũ projecting to f(y′) ∈ U , so in particular f̃1(y

′) = f̃2(y
′). This

implies that V ⊂ E, as desired.

Assume now that y /∈ E, so f̃1(y) ̸= f̃2(y). Let Ũ1 and Ũ2 be the sheets above U with f̃1(y) ∈ Ũ1

and f̃2(y) ∈ Ũ2. Since f̃1(y) ̸= f̃2(y), the sheets Ũ1 and Ũ2 are distinct and hence disjoint. Set

W = f̃−1
1 (Ũ1) ∩ f̃−1

2 (Ũ2), so W is an open neighborhood of y with f̃1(W ) ⊂ Ũ1 and f̃2(W ) ⊂ Ũ2.

Since Ũ1 ∩ Ũ2 = ∅, this implies that f̃1(y
′) ̸= f̃2(y

′) for all y′ ∈ W , so W is disjoint from E, as
desired. □

19
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2.2. Sections

We now discuss a special kind of lifting problem.

2.2.1. Definition of section. Let p : X̃ → X be a covering space. A section of p is a lift

σ : X → X̃ of the identity map 1X : X → X through p. In other words, σ : X → X̃ is a map such
that p(σ(x)) = x for all x ∈ X.

Example 2.2.1. LetX be a space and I be a discrete set. Consider the trivial cover p : X×I → X.
Let i0 ∈ I, and define σ : X → X × I via the formula σ(x) = (x, i0). Then σ is a section. □

2.2.2. Most covers have no sections. The above example might be unsatisfying; however,
covers typically have no sections:

Lemma 2.2.2. Let p : X̃ → X be a covering space with X̃ connected. Assume that there exists a

section σ : X → X̃. Then p : X̃ → X is a homeomorphism, and in particular has degree 1.

Proof. It is enough to prove that p : X̃ → X has degree 1; indeed, this will imply that p is
a bijection, and since covering space maps are open maps we will be able to conclude that p is a

homeomorphism.1 To prove that p has degree 1, it is enough to prove that σ is surjective. Since X̃ is
connected, this will follow if we prove that the image of σ is both open and closed.

Consider x ∈ X. It is enough to prove that σ(x) lies in the interior of σ(X) and that all points

of p−1(x) other than σ(x) lie in the interior of X̃ \ σ(X). Let U be a trivialized neighborhood of x

and let {Ũi}i∈I be the sheets lying above U . Let i0 ∈ I be such that σ(x) ∈ Ũi0 . Naively, one might

expect that σ(U) = Ũi0 ; however, without further assumptions (like U being connected, which could
only be ensured if X is locally connected) this need not hold.

However, let V = σ−1(Ũi0). The set V is also a trivialized neighborhood of x. Let {Ṽi}i∈I be

the sheets lying above V , enumerated such that Ṽi ⊂ Ũi for all i ∈ I. Then Ṽi0 = σ(V ) is an open

neighborhood of σ(x) lying in σ(X). Also, the union of the Ṽi with i ̸= i0 is an open neighborhood

of p−1(x) \ σ(x) lying in X̃ \ σ(X). The lemma follows. □

2.2.3. Square-free polynomials. We explain an interesting application of Lemma 2.2.2.
As discussed in Example 1.2.3, let Polysfn be the space of monic degree-n polynomials without

repeated roots, let RPolysfn be the space of pairs (f, x) with f ∈ Polysfn and f(x) = 0, and let

p : RPolysfn → Polysfn be the map p(f, x) = f , so p is a degree n covering space. We start by proving

that RPolysfn is path-connected:

Lemma 2.2.3. For n ≥ 1, the space RPolysfn is path-connected.

Proof. Let (f1, x1) and (f2, x2) be two points of RPolysfn . We want to find a path from (f1, x1)
to (f2, x2). Since the polynomial fi(z) has no repeated roots, we can factor it as

fi(z) = (z − xi)(z − λi,1) · · · (z − λi,n−1).

Here the λi,j are distinct complex numbers that are different from xi. We remark that the ordering

on {λi,1, . . . , λi,n−1} is not canonical. We can move (fi, xi) in RPolysfn by moving xi and the λi,j
while keeping them distinct. Moving x1 and the λ1,j slightly, we can ensure that the numbers

Z = {x1, λ1,1, . . . , λ1,n−1, x2, λ2,1, . . . , λ2,n−1}
are all distinct. We will now move the points x1, λ1,1, . . . , λ1,n−1 to x2, λ2,1, . . . , λ2,n−1 one at a time,
starting with x1.

Since removing finitely many points from C does not disconnect it, the space (C \ Z) ∪ {x1, x2}
is path-connected. We can therefore find a path in (C \ Z) ∪ {x1, x2} from x1 to x2:

1We remark that there is a simpler proof that p has degree 1 if X̃ is path connected. Consider x ∈ X. Set

z1 = σ(x), so z1 ∈ p−1(x). Consider z2 ∈ p−1(x). We must prove that z1 = z2. Let γ̃ : [0, 1] → X̃ be a path with

γ̃(0) = z1 and γ̃(1) = z2. Set γ = p ◦ γ, so γ : [0, 1] → X is a path in X from x = p(z1) to x = p(z2). Define γ̃′ = σ ◦ γ.
Both γ̃ and γ̃′ are lifts of γ : [0, 1] → X to X̃ with γ̃(0) = γ̃′(0) = z1, so by Lemma 2.1.2 we have γ̃ = γ̃′. We conclude

that z1 = γ̃(1) = γ̃′(1) = z2, as desired.
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x1

λ1,1

λ1,3

λ1,4

λ1,2

λ2,4

λ2,3

λ2,2

x2

λ2,1

By moving x1 along this path, we move (f1, x1) and reduce ourselves to the case where x1 = x2.
Next, the space (C \ Z) ∪ {λ1,1, λ2,1} is path-connected, so we can find a path in it from λ1,1 to λ2,1.
By moving λ1,1 along this path, we move (f1, x1) and reduce ourselves to the case where x1 = x2
and λ1,1 = λ2,1. Repeating this process, we move (f1, x1) to (f2, x2). □

Combining this with Lemma 2.2.2, we deduce the following:

Corollary 2.2.4. For n ≥ 2, the covering space p : RPolysfn → Polysfn has no section.

Why is this interesting? Recall that Polysfn ⊂ Cn, where

f(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an ∈ Polysfn

is identified with (a1, . . . , an) ∈ Cn. A section of p : RPolysfn → Polysfn is thus a function that takes
as input the coefficients of a polynomial f(z) with no repeated roots and returns (f, x), where x ∈ C
is a root of f(z). In other words, it is a continuous “formula” for the roots of a degree-n polynomial.

The fact that these do not exist for n ≥ 2 might seem to contradict that we do in fact have such
formulas in low degrees. For instance, we have the quadratic formula: for a quadratic polynomial
f(z) = z2 + bz1 + c, its roots are

−b±
√
b2 − 4c

2
.

The point here is that this is not really a well-defined function because of the ±, and indeed there
is no way to choose a canonical square root of a complex number in a continuous way. In Chapter
YYY, we will see that this forms the germ of a beautiful proof of Arnold of the classical fact (usually
proved with Galois theory) that there is no elementary formula for the roots of a degree-n polynomial
for n ≥ 5, even if you allow multivalued kth roots like in the quadratic formula.

2.3. Lifting paths

Once the basic theory of the fundamental group is in place, we will be able to give a satisfying
necessary and sufficient condition for a lift to exist, at least for reasonable spaces (see §YYY). Before
we can do this, we need to solve some important special cases. As notation, let I = [0, 1]. A path in
a space X is a map γ : I → X. The initial point of γ is γ(0) and the terminal point is γ(1), and we
say that γ goes from γ(0) to γ(1). Paths can always be lifted:

Lemma 2.3.1. Let p : X̃ → X be a covering space and let γ : I → X be a path. For all x̃0 ∈ X̃

with p(x̃0) = γ(0), there exists a unique lift γ̃ : I → X̃ of γ through p with γ̃(0) = x̃0.

Proof. Uniqueness follows from Lemma 2.1.2, so we must only prove existence. Using the
Lebesgue number lemma,2 we can partition I into subintervals

0 = ϵ1 < ϵ2 < · · · < ϵn = 1

2Recall that the Lebesgue number lemma says that if Z is a compact metric space and {Wj}j∈J is an open cover
of Z, then we can find some ϵ > 0 such that for all z ∈ Z the ϵ-ball Bϵ(z) is contained in some Wj . To find the

indicated partition of I, apply this to the cover of I by preimages of trivialized open subsets of X and choose the
partition such that each segment [ϵk, ϵk+1] has diameter at most the ϵ > 0 given by the lemma.

The Lebesgue number lemma can be proved as follows. Since Z is compact, we can write Z as a union of open

balls

Z = Bϵ1 (z1) ∪ · · · ∪Bϵm (zm) for some z1, . . . , zm ∈ Z and ϵ1, . . . , ϵm > 0

such that for each 1 ≤ k ≤ m the open ball B2ϵk (zk) is contained in some Wj . Set ϵ = min(ϵ1, . . . , ϵm), and consider

z ∈ Z. We can find some 1 ≤ k ≤ m such that z ∈ Bϵk (zk). By assumption the set B2ϵk (zk) is contained in some Wj ,

and by the triangle inequality we have Bϵ(z) ⊂ B2ϵk (zk) and thus Bϵ(z) ⊂Wj .
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such that for all 1 ≤ k < n the image γ([ϵk, ϵk+1]) is contained in a trivialized open set in X. We
construct our lift γ̃ inductively as follows.

First, define γ̃(0) = x̃0. Next, assume that for some 1 ≤ k < n we have constructed a lift

γ̃ : [0, ϵk] → X̃ of γ|[0,ϵk] : [0, ϵk] → X. We extend γ̃ to [0, ϵk+1] as follows. Let U be a trivialized

open set in X such that γ([ϵk, ϵk+1]) ⊂ U . Let Ũ be the sheet lying above U with γ̃(ϵk) ∈ Ũ . The

restriction p|Ũ : Ũ → U is a homeomorphism, and on the interval [ϵk, ϵk+1] we define γ̃ to be the
composition

[ϵk, ϵk+1] U Ũ X̃.
γ (p|Ũ )−1

By construction, this agrees with our already-constructed partial lift γ̃ : [0, ϵk] → X̃ at ϵk. □

To help the reader understand the content of this lemma, we give several examples.

Example 2.3.2 (Circle). Let p : R → S1 be the universal cover of S1, so p(θ) = e2πiθ. Let
γ : [0, 1] → S1 be the path that starts at 1 ∈ S1 ⊂ C and travels clockwise half-way around the circle:

γ(t) = e−πit for 0 ≤ t ≤ 1.

The points of R that project to γ(0) = 1 are precisely the integers. For n ∈ Z, the lift γ̃ : [0, 1] → R
of γ with γ̃(0) = n is the map that looks like this:

p

γ

n n+1n-1 γ~

In coordinates, γ̃(t) = n− t/2 for 0 ≤ t ≤ 1. □

Example 2.3.3 (Torus). As in Example 1.1.10, identify R2/Z2 with the 2-torus T2 and let
p : R2 → R2/Z2 = T2 be the associated cover. Here is an example of a path γ : [0, 1] → T2 and one
choice of lift γ̃ : [0, 1] → T2:3

ℝ2

𝕋2

The other possible lifts are obtained by varying the initial point, which results in translating the
entire lift by some element of Z2. □

3The torus on the right is obtained by gluing the sides of the square together as indicated. Because of this gluing,

a path can e.g. pass through the top edge of the square and come out of the bottom edge.
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Example 2.3.4 (Graph). As in §1.6, consider the following cover p : Z̃ → Z:

p

Z~
Z

Let γ : [0, 1] → Z be the path that starts at the vertex, goes around the orange circle in the positive
direction, then goes around the blue circle in the positive direction, and finally goes around the

orange circle in the negative direction. There are five possible lifts, one starting at each vertex of Z̃.
Here are pictures of them, with the initial and final vertices in purple:

Constructing these illustrates the necessity that each vertex of Z̃ has one incoming edge of each color
and one outgoing edge of each color. □

Example 2.3.5 (Polar coordinates). Points of R2 \ 0 can be expressed using polar coordinates
(r, θ) with r > 0 and θ ∈ R:

(x, y) = (r cos(θ), r sin(θ)).

While r =
√
x2 + y2 is unambiguous, the θ-coordinate is ambiguous since (r, θ) = (r, θ + 2πn) for all

n ∈ Z. Letting p : R → S1 be the universal cover, a choice of polar coordinates for (x, y) ∈ R2 \ 0 is
the same as a choice of lift θ ∈ R for the point

(
x√

x2 + y2
,

y√
x2 + y2

) ∈ S1.

Lemma 2.3.1 explains why maps f : I → R2 \ 0 can always be continuously expressed using polar
coordinates. This is depends on the topology of I, and I cannot be replaced by an arbitrary space.

For instance, the inclusion ι : S1 ↪→ R2\0 cannot be continuously described using polar coordinates
as ι(x) = (r(x), θ(x)) for some r : S1 → R>0 and θ : S1 → R. Indeed, in such an expression the
function r would be identically 1, but the function θ would be a section of the cover p : R → S1, and
Lemma 2.2.2 implies that such a section does not exist. □

2.4. Homotopies

In algebraic topology, spaces are modeled by algebra. Spaces can vary continuously, while
algebraic objects are typically discrete. In this section, we introduce a formalism called homotopy for
studying deformations of maps. The algebraic invariants we later study will be insensitive to these
deformations.

Remark 2.4.1. It might not be immediately obvious why the reader should care about homotopies.
In the next chapter (Chapter 3), we will give a number of applications of our work that use homotopies
in an essential way. □

2.4.1. Homotopies of maps. Consider two maps f, g : X → Y . We say that f and g are
homotopic if there exists a continuous map H : X × I → Y such that

f(x) = H(x, 0) and g(x) = H(x, 1)

for all x ∈ X. For t ∈ I, let ht : X → Y be the map ht(x) = H(x, t). We thus have f = h0 and g = h1,
and we view the ht as a continuous family of maps witnessing f being deformed to g. Typically we
will demonstrate that f and g are homotopic by describing the ht rather than H, and will call ht a
homotopy from f to g. This is an equivalence relations on the set of maps from X to Y (see Exercise
2.1).
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Example 2.4.2. Let X be a space. Any two maps f, g : X → Rn are homotopic via the
straight-line homotopy ht : X → Rn defined via the formula

ht(x) = (1− t)f(x) + tg(x) for all x ∈ X and t ∈ I.

In this, we have h0 = f and h1 = g. □

2.4.2. Null-homotopic. We say that a map f : X → Y is null-homotopic if f is homotopic to
a constant map. As Example 2.4.2 shows, any map f : X → Rn is null-homotopic. Here is another
example:

Example 2.4.3. Let X be a space. Then any map f : Rn → X is null-homotopic via the
homotopy ht : Rn → X defined via the formula

ht(x) = f((1− t)x) for all x ∈ X and t ∈ I.

In this, we have h0 = f and h1 is the constant map taking all points of Rn to f(0). □

To show that two maps are homotopic, one typically exhibits an explicit homotopy. It is harder
to show that two maps are not homotopic. This requires invariants of maps. For instance, the
identity map S1 → S1 is not null-homotopic, but this is not so easy to prove directly. In §2.6 below
we will prove this by developing the theory of degrees and winding numbers. In fact, using this we
will completely describe all homotopy classes of maps S1 → S1. Doing this requires studying the
interaction between homotopies and lifting problems.

2.5. Lifting homotopies

Roughly speaking, our goal in this section is to prove that lifting problems are insensitive to

homotopies. To make this precise, consider a covering space p : X̃ → X. Let f, g : Y → X be two

homotopic maps. One thing we would like to prove is that a lift f̃ : Y → X̃ of f exists if and only if

a lift g̃ : Y → X̃ exists. We would also like to prove that if these lifts exist then we can choose lifts

f̃ : Y → X̃ and g̃ : Y → X̃ such that f̃ and g̃ are themselves homotopic. The following result implies
both of these claims.

Lemma 2.5.1. Let p : X̃ → X be a covering space. Let f : Y → X be a map and let f̃ : Y → X̃
be a lift of f through p. Let ht : Y → X be a homotopy with h0 = f . There is then a unique lift of ht
through p to a homotopy h̃t : Y → X̃ such that h̃0 = f̃ .

Proof. Let H : Y × I → X be the map with H(y, t) = ht(y) for all y ∈ Y and t ∈ I. Our goal

is to prove that there is a unique lift H̃ : Y × I → X̃ of H through p such that H̃(y, 0) = f̃(y) for all
y ∈ Y . Uniqueness follows from Lemma 2.1.2, so we must only prove existence. In fact, even more is
true. For y ∈ Y , let γy : I → X be the path γy(t) = H(y, t). By path-lifting (Lemma 2.3.1), we can

lift γy to a path γ̃y : I → X̃ such that γ̃y(0) = f̃(0). Define H̃ : Y × I → X̃ via the formula

H̃(y, t) = γ̃y(t) for all y ∈ Y and t ∈ I.

By construction, H̃ is a lift of H with H̃(y, 0) = f̃(y) for all y ∈ Y .
There is only one problem: it is not obvious that this H is continuous. To see that it is, fix some

y0 ∈ Y . We will prove that H̃ is continuous at all points of the form (y0, t) by imitating our proof of
the path-lifting lemma (Lemma 2.3.1). Just like in that proof, using the Lebesgue number lemma we
can partition I into subintervals

0 = ϵ1 < ϵ2 < · · · < ϵn = 1

such that for all 1 ≤ k < n the image H(y0 × [ϵk, ϵk+1]) is contained in a trivialized open set in X.
In fact, we can even find some open neighborhood Vk of y0 such that the image H(Vk × [ϵk, ϵk+1]) is
contained in a trivialized open set in X.

DefineW1 = V1∩· · ·∩Vn−1, soW1 is an open neighborhood of y0. We will find a nested sequence

W1 ⊃W2 ⊃ · · · ⊃Wn

of open neighborhoods of y0 such that H̃ is continuous on each Wk × [0, ϵk] by constructing H̃ on
this set in such a way that it is clearly continuous. The picture is:
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W2 ×[ε1,ε2] W3 ×[ε2,ε3] W4 ×[ε3,ε4]y0

W1 ×ε1

The construction will be inductive. First, define H̃ : W1 × 0 → X̃ via the formula H̃(y, 0) = f̃(y).

Next, assume that for some 1 ≤ k < n we have constructed a continuous lift H̃ : Wk × [0, ϵk] → X̃ of
H|Wk×[0,ϵk] : Wk × [0, ϵk] → X. We find an open neighborhood Wk+1 of y0 with Wk+1 ⊂Wk and an

extension of H̃ to Wk+1 × [0, ϵk+1] as follows.
Let U be a trivialized open set in X such that H(Wk × [ϵk, ϵk+1]) ⊂ U :

Wk ×[εk-1,εk] Wk+1 ×[εk,εk+1]y0

U

Let Ũ be the sheet lying above U with H(y0, ϵk) ∈ Ũ . Let Wk+1 be the preimage of Ũ under the
map4

Wk =Wk × ϵk X̃.
H̃(−,ϵk)

The setWk+1 is an open neighborhood of y0 and H̃ takesWk+1×ϵk to Ũ . The restriction p|Ũ : Ũ → U

is a homeomorphism, and on Wk+1 × [ϵk, ϵk+1] we define H̃ to be the composition

Wk+1 × [ϵk, ϵk+1] U Ũ X̃.H (p|Ũ )−1

By construction, this agrees with our already-constructed partial lift H̃ : Wk+1 × [0, ϵk] → X̃ on
Wk+1 × ϵk. □

2.6. Winding numbers and degrees

To illustrate the meaning of all this machinery, we study the classical subject of winding numbers
and degrees of maps from S1 to itself. Fix a point x0 ∈ C.

2.6.1. Intuition. Consider a map f : S1 → C \ x0. Roughly speaking, the winding number
windx0

(f) of f around x0 measures the number of times the vector f(z) − x0 rotates as z moves
around S1. The “number” here includes a sign: a counterclockwise rotation counts as +1, while a
clockwise rotation counts as −1. Here are several examples, with the point x0 the black dot:

windx0(f)=0 windx0(f)=1 windx0(f)=-2 windx0(f)=-2 windx0(f)=0

One feature of the winding number is that it is invariant under homotopies of f through maps that
avoid x0. In fact, we will prove that it is a complete invariant of such maps. It is enlightening to
verify that the different f above with the same winding number are homotopic.

4If we could ensure that H̃(Wk × ϵk) ⊂ Ũ (which would hold, for instance, if Wk and Ũ were connected), then
there would be no need to pass to the nested sequence W1 ⊃W2 ⊃ · · · . Since we are not assuming that our spaces are

locally connected, this is unfortunately necessary.
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2.6.2. Formal definition. Let p : R → S1 be the universal cover. Consider some f : S1 → C\x0.
Define a map F : I → S1 via the formula

F (t) =
f(e2πit)− x0
∥f(e2πit)− x0∥

for t ∈ I.

This definition makes sense since f(z) ̸= x0 for all z ∈ S1. Pick some θ0 ∈ R such that p(θ0) = F (0),

and use path lifting (Lemma 2.3.1) to lift F through p to F̃ : I → R with F̃ (0) = θ0. Since

F (0) = F (1), the lifts F̃ (0) = θ0 and F̃ (1) differ by an integer. We define

windx0
(f) = F̃ (1)− F̃ (0) ∈ Z.

The only arbitrary choice we made was the lift θ0. Any other choice of θ0 is of the form θ0 +m for

some m ∈ Z, and using θ0 +m as our initial lift would change F̃ to F̃ +m. Since

(F̃ (1) +m)− (F̃ (0) +m) = F̃ (1)− F̃ (0),

this would not change windx0
(f). In other words, windx0

(f) ∈ Z is well-defined.

Example 2.6.1. Fix k ∈ Z, and define f : S1 → C \ x0 via the formula

f(z) = x0 + zk for z ∈ S1 ⊂ C.

In the above recipe, we then have

F (t) =
f(e2πit)− x0

∥f(e2πit)− x0∥
= e2πikt for t ∈ I.

We can take θ0 = 0, and then

F̃ (θ) = kθ for θ ∈ R.
It follows that windx0(f) = k. We thus see that all integers can be winding numbers. □

2.6.3. Homotopy invariance. One of the main properties of the winding number is that it is
unchanged under homotopies:

Lemma 2.6.2. Let x0 ∈ C, and let f, g : S1 → C \ x0 be homotopic maps. Then windx0
(f) =

windx0(g).

Proof. Let p : R → S1 be the universal cover. As in the definition of the winding number,
define F : I → S1 and G : I → S1 via the formulas5

F (s) =
f(e2πis)− x0
∥f(e2πis)− x0∥

and G(s) =
g(e2πis)− x0
∥g(e2πis)− x0∥

for s ∈ I.

Pick some θ0 ∈ R such that p(θ0) = F (0), and use path lifting (Lemma 2.3.1) to lift F through

p : R → S1 to F̃ : I → R with F̃ (0) = θ0. We then have windx0(f) = F̃ (1)− F̃ (0). We will hold off
on constructing the lift of G that would determine windx0(g).

Now let ht : S1 → C \ x0 be a homotopy from f to g. Define Ht : I → S1 via the formula

Ht(s) =
ht(e

2πis)− x0
∥ht(e2πis)− x0∥

for s ∈ I,

soHt is a homotopy fromH0 = F toH1 = G. Use the homotopy lifting lemma (Lemma 2.5.1) to liftHt

to a homotopy H̃t : I → R with H̃0 = F̃ . It follows that H̃1 is a lift of G, so windx0(g) = H̃1(1)−H̃1(0).

More generally, we have windx0
(ht) = H̃t(1)− H̃t(0) for all t ∈ I. This implies that the map

t 7→ H̃t(1)− H̃t(0) for t ∈ I

is a continuous integer-valued function. It is thus constant, so

windx0
(f) = H̃0(1)− H̃0(0) = H̃1(1)− H̃1(0) = windx0

(g). □

5We use s instead of t since we will later use t when we talk about homotopies.
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2.6.4. Degree of map of circle. Consider a map f : S1 → S1. We can regard f as a map
to C \ 0, giving an integer wind0(f) that we will call the degree6 of f . Denote this by deg(f).
Lemma 2.6.2 implies that deg(f) is invariant under homotopy, and just like in Example 2.6.1 we have
deg(zn) = n for all n ∈ Z. In particular, the degree of the identity is 1 and the degree of a constant
map is 0. Since these are different, we deduce the following, which was promised at the end of §2.4:

Lemma 2.6.3. The identity map 1 : S1 → S1 is not nullhomotopic.

2.6.5. Completeness of degree. The following basic result says that the degree is a complete
invariant of homotopy classes of maps from S1 to itself:

Lemma 2.6.4. Let f, g : S1 → S1 be maps with deg(f) = deg(g). Then f is homotopic to g.

Proof. By postcomposing f and g with paths of rotations of S1, we can homotope them to
maps with f(1) = g(1) = 1. Define F : I → S1 and G : I → S1 via the formulas

F (s) = f(e2πis) and G(s) = g(e2πis) for s ∈ I.

We thus have F (0) = G(0) = 1. Letting p : R → S1 be the universal cover, by the path lifting lemma

(Lemma 2.3.1) we can lift F and G through p to maps F̃ , G̃ : I → R with F̃ (0) = G̃(0) = 0. We

have F̃ (1) = deg(f) and G̃(1) = deg(g), which are equal by assumption. Define Ht : I → S1 via the
formula

Ht(s) = p((1− t)F̃ (s) + tG̃(s)) for s ∈ I.

The maps Ht are a homotopy from F to G, and since F̃ (0) = G̃(0) = 0 and F̃ (1) = G̃(1) ∈ Z we
have Ht(0) = 1 and Ht(1) = 1 for all t ∈ I. This implies that there exists some ht : S1 → S1 with

Ht(s) = ht(e
2πis) for s ∈ I.

This ht is a homotopy from f to g. □

Remark 2.6.5. Once we have developed some basic results about homology, we will generalize
the notion of degree to an integer-valued invariant of maps f : Mn → Nn with Mn and Nn compact
oriented n-manifolds. Lemma 2.6.4 generalizes to a deep theorem of Hopf saying that this degree is a
complete invariant for maps f : Mn → Sn. □

2.6.6. Completeness of winding number. The following is the analogue for the winding
number of Lemma 2.6.4:

Lemma 2.6.6. Let x0 ∈ C and let f, g : S1 → C \ x0 be maps with windx0
(f) = windx0

(g). Then
f is homotopic to g.

Proof. Translating everything, we can assume that x0 = 0. Define homotopies ft : S1 → C \ 0
and gt : S1 → C \ 0 as follows:

ft(z) =

(
(1− t) +

t

∥f(z)∥

)
f(z) and gt(z) =

(
(1− t) +

t

∥g(z)∥

)
g(z) for t ∈ I and z ∈ S1.

This makes sense since ft(z) ̸= 0 and gt(z) ̸= 0 for all z ∈ S1. We have f0 = f and g0 = g, and
the images of f1 and g1 lie in S1. We can thus talk about the degrees of f1 and g1. Since winding
numbers are invariant under homotopy (Lemma 2.6.2), we have

deg(f1) = wind0(f1) = wind0(f0) = wind0(g0) = wind0(g1) = deg(g1).

Lemma 2.6.4 thus implies that f1 is homotopic to g1. The lemma follows. □

2.7. Exercises

Exercise 2.1. Let X and Y be spaces. Prove that the relation of being homotopic is an
equivalence relation on maps from X to Y . □

6If f is a covering space, this is different from the degree of f as a covering space. For instance, it can be negative.





CHAPTER 3

Applications of winding numbers and degrees

This section contains four applications of the material from Chapter 2: the fundamental theorem
of algebra (§3.1), the two-dimensional Brouwer fixed point theorem (§3.2), the two-dimensional
Borsuk–Ulam theorem (§3.3), and the ham Sandwich theorem (§3.4).

Remark 3.0.1. The statements of all the theorems we prove do not involve homotopies, but as
the reader will see their proofs use homotopies in an important way. □

3.1. Fundamental theorem of algebra

We gave a proof of the fundamental theorem of algebra using covering spaces in §1.2. Here is a
proof using winding numbers:

Theorem 1.2.2 (Fundamental theorem of algebra). Let f(z) ∈ C[z] be a nonconstant polynomial.
Then there exists some z0 ∈ C such that f(z0) = 0.

Proof. Let n ≥ 1 be the degree of f(z). Multiplying f(z) by an appropriate nonzero constant,
we can assume that f(z) is monic, i.e.,

f(z) = zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a0 for some a0, . . . , an−1 ∈ C.

Assume for the sake of contradiction that f(z) has no roots, so f(z) ̸= 0 for all z ∈ C. For R ≥ 0, let
hR : S1 → C \ 0 be the map

hR(z) = f(Rz) for z ∈ S1.
The map h0 is the constant map f(0), so each hR is homotopic to a constant map. Since the winding
number is invariant under homotopies (Lemma 2.6.2), we thus have

wind0(hR) = 0 for all R ≥ 0.

On the other hand, pick R large enough such that

R > |an−1|+ |an−2|+ · · ·+ |a0|+ 1.

For z ∈ S1, we then have

|an−1(Rz)
n−1 + an−2(Rz)

n−2 + · · ·+ a0| ≤ |an−1R
n−1|+ |an−2R

n−2|+ · · ·+ |a0|
≤ Rn−1(|an−1|+ |an−2|+ · · ·+ |a0|)
< Rn.

For t ∈ I, let gt : S1 → C be the map

gt(z) = (Rz)n + t
(
an−1(Rz)

n−1 + an−2(Rz)
n−2 + · · ·+ a0

)
for z ∈ S1.

Since the above inequality is strict, we have gt(z) ̸= 0 for all z ∈ S1 and t ∈ I. We can therefore
regard gt as a map gt : S1 → C \ 0. We have g1 = hR, so again using the invariance of the winding
number under homotopies (Lemma 2.6.2) we have

0 = wind0(hR) = wind0(g1) = wind0(g0).

We have g0(z) = (Rz)n = Rnzn. For t ∈ I, let ht : S1 → C \ 0 be the map

ht(z) = ((1− t) +
t

Rn
)Rnzn for z ∈ S1.

29
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We have h0 = g0 and h1(z) = zn. As we noted in Example 2.6.1, the winding number around 0 of
h1(z) = zn is n. We conclude that

wind0(g0) = wind0(h1) = n ̸= 0,

a contradiction. □

3.2. Two-dimensional Brouwer fixed point theorem

Our next goal is the two-dimensional Brouwer fixed point theorem, which says that every map
f : D2 → D2 fixes a point of D2.

3.2.1. Retractions. A retraction of a space X to a subspace Y ⊂ X is a map r : X → Y such
that r(y) = y for all y ∈ Y . If such a retraction exists, we say that Y is retract of X.

Example 3.2.1. Let ℓ be a line in Rn. We can then define a retraction r : Rn → ℓ by letting
r(x) be the point of ℓ that is closest to x for all x ∈ Rn. □

Example 3.2.2. Let D1 = [−1, 1], so S0 = {−1, 1} is ∂D1. There does not exist a retraction
r : D1 → S0. Indeed, since D1 is connected the image of any function D1 → D0 must be either {−1}
or {1}. □

3.2.2. Retractions of disks. For n ≥ 1, let Dn be the closed unit disk in Rn, so Sn−1 = ∂Dn.
Generalizing Example 3.2.2, it seems reasonable to expect that there does not exist a retraction
r : Dn → Sn−1 since intuitively such a retraction must “tear” Dn at some point. This turns out to be
true, but is not easy to prove directly. We have the technology to prove it for n = 2:

Proposition 3.2.3. There does not exist a retraction r : D2 → S1.

Proof. Assume that a retraction r : D2 → S1 exists. Define a homotopy ft : S1 → S1 via the
formula ft(z) = r((1 − t)z) for z ∈ S1. We have f0(z) = r(z) = z, so f0 = 1. On the other hand,
f1(z) = r(0), so f1 is a constant map. Since the identity map 1 : S1 → S1 is not null-homotopic (see
Lemma 2.6.3), this is a contradiction. □

3.2.3. Brouwer fixed point theorem. We can now prove our main result:

Theorem 3.2.4 (Two-dimensional Brouwer fixed point theorem). Let f : D2 → D2 be a continuous
map. Then f has a fixed point, i.e., there exists some x ∈ D2 with f(x) = x.

Proof. Assume that f has no fixed points. Define a function r : D2 → S1 as follows. For x ∈ D2,
consider the ray starting at f(x) and passing through x. This is well-defined since f(x) ̸= x, and it
intersects the boundary S1 in a single point. We define r(x) to be that intersection point:

r(x)

f(x)
x

For x ∈ S1, we have r(x) = x. In other words, r is a retraction from D2 to its boundary S1,
contradicting Proposition 3.2.3. □

Remark 3.2.5. Once we have developed the basic theory of homology in a later volume, we
will extend Proposition 3.2.3 and Theorem 3.2.4 to all Dn. The case n = 1 can be proved by
substituting Example 3.2.2 for Proposition 3.2.3 in the proof of Theorem 3.2.4, or more directly using
the intermediate value theorem (see Exercise 3.1). □

3.3. Two-dimensional Borsuk–Ulam theorem

We now turn to the Borsuk–Ulam theorem.



3.3. TWO-DIMENSIONAL BORSUK–ULAM THEOREM 31

3.3.1. One-dimensional warmup. We start with the following:

Lemma 3.3.1. Let f : S1 → R be a map. Then there exists some z ∈ S1 such that f(z) = f(−z).

Proof. Define F : I → R via the formula

F (t) = f(eπit)− f(eπi(t+1)) for t ∈ I.

We have

F (0) = f(1)− f(−1) = −(f(−1)− f(1)) = −F (1).
By the intermediate value theorem, there exists some t0 ∈ I such that F (t0) = 0, which implies that

f(eπit0) = f(eπi(t0+1)) = f(−eπit0). □

3.3.2. Two-dimensional theorem. Lemma 3.3.1 implies a similar result for maps f : S2 → R.
In fact, even more is true: for every plane P through the origin in R3, we can apply Lemma 3.3.1 to
the restriction of f to the circle P ∩ S2 and find some z ∈ P ∩ S2 with f(z) = f(−z). Set

F =
{
z ∈ S2 | f(z) = f(−z)

}
.

This set F is in general rather complicated, but by the above it cannot be too small. In fact, it is
reasonable to hope that in some sense it is at least 1-dimensional. Given another g : S2 → R, this
suggests that we might be able to apply something like Lemma 3.3.1 to the restriction of g to F and
find some z ∈ F with g(z) = g(−z). For instance, we could directly apply the argument in the proof
of Lemma 3.3.1 to do this if there existed a path γ : I → F with γ(1) = −γ(0). We would therefore
have found a single z ∈ S2 with

f(z) = f(−z) and g(z) = g(−z).

It is hard to turn the above into a rigorous proof, but the result it would give is true:

Theorem 3.3.2 (Two-dimensional Borsuk–Ulam theorem). Let f, g : S2 → R be two maps. Then
there exists some z ∈ S2 such that f(z) = f(−z) and g(z) = g(−z).

As an illustrative example, regard S2 as the surface of the earth. Let f : S2 → R and g : S2 → R
be the functions

f(z) = temperature at z,

g(z) = elevation at z.

Applying Theorem 3.3.2, we conclude that there exists a point z on the surface of the earth such
that the temperature and elevation at z are the same as at −z.

Proof of Theorem 3.3.2. Assume that no such z exists. Define maps ϕ : S2 → R2 \ 0 and
ψ : S2 → S1 via the formulas

ϕ(z) = (f(z)− f(−z), g(z)− g(−z)) and ψ(z) =
ϕ(z)

∥ϕ(z)∥
for z ∈ S2.

This makes sense since the fact that there is no z satisfying the conclusion of the theorem implies
that ϕ(z) ̸= 0 for all z ∈ S2. The functions ϕ and ψ are odd functions, i.e., ϕ(−z) = −ϕ(z) and
ψ(−z) = −ψ(z) for all z ∈ S2.

Regard S1 as a subspace of R2, and define h : S1 → S1 as the composition

S1 S2 S1,ι ψ

where the inclusion ι takes (x, y) ∈ S1 to (x, y, 0) ∈ S2. The function h is also an odd function. Below
in Lemma 3.3.3 we will prove that this implies that deg(h) ∈ Z is an odd number. However, the map
ι is null-homotopic via the homotopy ιt : S1 → S2 defined via the formula

ιt(x, y) = (tx, ty, 1− t
√
x2 + y2) ∈ S2 for t ∈ I and (x, y) ∈ S1.
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Geometrically, this “pulls” the inclusion ι over the top of S2 as in:

ι0

ι1/3

ι2/3
ι1

Letting ht = ψ ◦ ιt, we have h0 = h and h1 = ψ(0, 0, 1). In other words, ht is a homotopy from h to
a constant map. By the discussion in §2.6.4, this implies that deg(h) = 0. Summarizing, we have
proved that deg(h) is both odd and zero, which is a contradiction. □

The above proof used:

Lemma 3.3.3. Let h : S1 → S1 be an odd function. Then deg(h) is odd.

Proof. Let p : R → S1 be the universal cover. In §2.6.4, we defined the degree in terms of the
winding number. As in the definition of the winding number from §2.6, let H : I → S1 be the path

H(t) = h(e2πit), let θ0 ∈ R be such that p(θ0) = H(0), and let H̃ : I → R be the lift of H through p

with H̃(0) = θ0 (see Lemma 2.3.1). By definition, we have

deg(h) = wind0(h) = H̃(1)− H̃(0) ∈ Z.
We have H(0) = h(1). Since h is an odd function, we have H(1/2) = h(−1) = −h(1). It follows that

H̃(1/2) = H̃(0) + n+
1

2
for some n ∈ Z.

The function H̃ ′ : I → R defined by

H̃ ′(t) =

{
H̃(t) if 0 ≤ t ≤ 1/2

n+ 1
2 + H̃(t− 1/2) if 1/2 ≤ t ≤ 1

is continuous, and since h(−z) = −h(z) it is a lift of H : I → S1 through p. We thus have H̃ ′ = H̃, so

deg(h) = H̃(1)− H̃(0) = H̃ ′(1)− H̃(0) = n+
1

2
+ H̃(1/2)− H̃(0) = 2n+ 1. □

Remark 3.3.4. We will generalize the results from this section to n dimensions in after we
develop the theory of homology in a later volume. The general n-dimensional Borsuk–Ulam theorem
says that for all maps F : Sn → Rn, there exists some z ∈ Sn with F (z) = F (−z). This is harder
than the Brouwer Fixed Point Theorem, and will take more than just the basics of homology. The
hardest part is generalizing Lemma 3.3.3, which requires a deeper structure called the cup product
that exists on a variant of homology called cohomology. □

3.4. Ham sandwich theorem

We now give an interesting geometric application of the Borsuk–Ulam theorem called the “ham
sandwich theorem”.

3.4.1. Informal statement. Informally, it says that given any sandwich made up of bread and
meat and cheese, there is a way to cut the sandwich such that each half has equal amounts of bread
and meat and cheese. To make this precise, assume that the sandwich is in R3 and let U and V and
W be the regions composed of the meat and cheese and bread. What the theorem says is that there
is an affine hyperplane H that simultaneously divides U and V and W into sets of equal volume.

Since the author of this book is not good at 3-dimensional figures, here is an illustration of the
corresponding fact in two dimensions, where two sets U and V are cut in half by a hyperplane:

U

V

H
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More generally, the sets U and V and W can be any bounded Lebesgue measurable sets (even ones
that overlap). Proving this requires some preliminaries. Just like the Borsuk–Ulam theorem, there is
a version of the ham sandwich theorem for subsets of Rn. Since the preliminaries are no harder in
Rn, we discuss them in general.

3.4.2. Volume. For X ⊂ Rn, denote by µ(X) the volume of X. One of the basic insights of
measure theory is that this cannot be defined in a reasonable way for all X. For most of this section,
we will restrict ourselves to X that are bounded and open. Such sets are simple enough that all
definitions of µ(X) agree on them. For instance:

• For d1, . . . , dn > 0, let X be the open n-dimensional rectangle

X = (0, d1)× · · · × (0, dn) ⊂ Rn.

Then µ(X) = d1 · · · dn.

3.4.3. Affine hyperplanes. An affine hyperplane in Rn is a subset of the form p + L with
p ∈ Rn and L ⊂ Rn an (n − 1)-dimensional linear subspace. We parameterize these as follows.
Consider z ∈ Sn−1 and t ∈ R. We then let H(z, t) be the unique affine hyperplane passing through
tz that is orthogonal to the line through 0 and z. The set Rn \H(z, t) has two path components.
Let H+(z, t) be the path component of Rn \H(z, t) containing (t+ 1)z and let H−(z, t) be the path
component containing (t− 1)z:

z

tz

H(z,t)

H+(z,t)H-(z,t)

Note that

(3.4.1) H(−z,−t) = H(z, t) and H+(−z,−t) = H−(z, t) and H−(−z,−t) = H+(z, t).

3.4.4. Cutting in half along affine hyperplanes. Let U ⊂ Rn be a bounded open subset.
We can find an affine hyperplane dividing U in half as follows. Define F : Sn−1 × R → R via the
formula

(3.4.2) F (z, t) = µ(U ∩H+(z, t)) for z ∈ Sn−1 and t ∈ R.

This is a continuous function. For a fixed z0 ∈ Sn−1, the function t 7→ F (z0, t) monotonically goes
from 0 to µ(U) as t traverses R, so by the intermediate value theorem there exists some t0 ∈ R such
that F (z0, t0) = µ(U)/2. The affine hyperplane H(z0, t0) then divides U in half:

H(z0,t0)

The value t0 need not be unique. However, this can only happen if the map t 7→ F (z0, t) is not
strictly monotonic at t0. In other words, at least one of either increasing or decreasing t0 does not
cause the hyperplane to sweep out any more volume. This implies that U is not path-connected:
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If U is path-connected, then the function t 7→ F (z0, t) is strictly monotonic at all points where
F (z0, t) ̸= 0 and F (z0, t) ̸= µ(U). It follows that in this case t0 is unique, and we call the function
D : Sn−1 → R taking z0 ∈ Sn−1 to the unique t0 ∈ R with F (z0, t0) = µ(U)/2 the dividing function
of U .

3.4.5. Properties of dividing function. The dividing function satisfies:

Lemma 3.4.1. Let U ⊂ Rn be a path-connected bounded open subset and let D : Sn−1 → R be the
dividing function of U . Then D is continuous.

Proof. Let z0 ∈ Sn−1 and let ϵ > 0. Set t0 = D(z0). Our goal is to find an open neighborhood
X of z0 such that D(X) ⊂ (t0 − ϵ, t0 + ϵ). Let F : Sn−1 × R → R be the continuous function (3.4.2)
used to define D. Since U is path-connected, the function t 7→ F (z0, t) is strictly monotonic at t0. In
particular,

F (z0, t0 − ϵ) < µ(U)/2 and F (z0, t0 + ϵ) > µ(U)/2.

Since F is continuous, we can find some open neighborhood X of z0 such that

(3.4.3) F (z1, t0 − ϵ) < µ(U)/2 and F (z1, t0 + ϵ) > µ(U)/2 for all z1 ∈ X.

For z1 ∈ X, the value D(z1) is the unique number such that F (z1,D(z1)) = µ(U)/2. By (3.4.3), we
must have

t0 − ϵ < D(z1) < t0 + ϵ.

In other words, D(X) ⊂ (t0 − ϵ, t0 + ϵ), as desired. □

It also satisfies:

Lemma 3.4.2. Let U ⊂ Rn be a path-connected bounded open subset and let D : Sn−1 → R be the
dividing function of U . Then D is an odd function, i.e., D(−z) = −D(z) for all z ∈ Sn−1.

Proof. Fix some z ∈ Sn−1. By definition, the hyperplanes H(z,D(z)) and H(−z,D(−z)) divide
U in half. This implies that H(z,D(z)) = H(−z,D(−z)). Since the line through the origin and
z intersects this hyperplane at one point, we must have D(z)·z = D(−z)·(−z). This implies that
D(−z) = −D(z), as desired. □

3.4.6. Ham sandwich theorem for open sets. We now specialize to R3, and prove:

Theorem 3.4.3 (Ham sandwich theorem). Let U, V,W ⊂ R3 be bounded open sets. There exists
z ∈ S2 and t ∈ R such that the affine hyperplane H(z, t) divides U and V and W in half:

µ(U ∩H+(z, t)) = µ(U)/2,

µ(V ∩H+(z, t)) = µ(V )/2,

µ(W ∩H+(z, t)) = µ(W )/2.

Proof. We divide the proof into two steps. The key geometric idea is in the first step.

Step 1. The theorem is true when U is path-connected.

Let D : S2 → R be the dividing function for U , so

µ(U ∩H+(z,D(z))) = µ(U)/2 for all z ∈ S2.

By Lemma 3.4.1, the function D is continuous. Define f : S2 → R and g : S2 → R as follows:

f(z) = µ(V ∩H+(z,D(z))) and g(z) = µ(W ∩H+(z,D(z))) for all z ∈ S2.
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Since D is continuous, these are both continuous. The two-dimensional Borsuk–Ulam theorem
(Theorem 3.3.2) implies that there exists some z0 ∈ S2 such that f(−z0) = f(z0) and g(−z0) = g(z0).
Since f(−z0) = f(z0), we have

(3.4.4) µ(V ∩H+(z0,D(z0))) = µ(V ∩H+(−z0,D(−z0))) = µ(V ∩H−(z0,D(z0))).

The second equality uses the symmetries of our hyperplanes recorded in (3.4.1). The equality
(3.4.4) says that the portions of V in the half-spaces on either side of the hyperplane H(z0,D(z0))
contain equal volume. This implies that µ(V ∩ H+(z0,D(z0))) = µ(V )/2. Similarly, we have
µ(W ∩ H+(z0,D(z0))) = µ(W )/2. By the definition of the dividing function D, we also have
µ(U ∩H+(z0,D(z0))) = µ(U)/2. The theorem follows.

Step 2. The theorem is true in general.

The open set U has countably many connected components. Let x0 ∈ U be a point in one of
them, and let {xi}i∈I consist of one point in each of the other components. Let n ≥ 1, and fix some
collection {ri}i∈I of positive numbers. For i ∈ I, let τi be an open tube of radius ri about the line
segment connecting x0 and xi:

x0

Let U ′ be the union of U and the τi as i ranges over I. Choosing the ri small enough (and going to
0 fast enough if I is infinite), the following hold:

• U ′ is a path-connected bounded open set with U ⊂ U ′; and
• µ(U) ≤ µ(U ′) ≤ µ(U) + 1/n.

Applying Step 1 to U ′ and V and W , we get a zn ∈ Sn and tn ∈ R such that

µ(U ′ ∩H+(zn, tn)) = µ(U ′)/2,

µ(V ∩H+(zn, tn)) = µ(V )/2,

µ(W ∩H+(zn, tn)) = µ(W )/2.

Since U ⊂ U ′ and µ(U) ≤ µ(U ′) ≤ µ(U) + 1/n, we have

µ(U ∩H+(zn, tn)) ≤ µ(U ′ ∩H+(zn, tn)) = µ(U ′)/2 ≤ µ(U)/2 +
1

2n

and

µ(U)/2 ≤ µ(U ′)/2 = µ(U ′ ∩H+(zn, tn)) ≤ µ(U ∩H+(zn, tn)) +
1

n
.

Combining these two inequalities, we see that

(3.4.5) µ(U)/2− 1

n
≤ µ(U ∩H+(zn, tn)) ≤ µ(U)/2 +

1

2n
.

The zn are points of the compact space S2 and the tn ∈ R are bounded. Passing to a subsequence,
we can therefore assume that they converge to z ∈ S2 and t ∈ R. By the continuity of volume, (3.4.5)
implies that

µ(U ∩H+(z, t)) = µ(U)/2.

Similarly, since µ(V ∩H+(zn, tn)) = µ(V )/2 and µ(W ∩H+(zn, tn)) = µ(W )/2 we have

µ(V ∩H+(z, t)) = µ(V )/2,

µ(W ∩H+(z, t)) = µ(W )/2.

The theorem follows. □
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3.4.7. Measurable ham sandwich theorem. We now deduce the general form of the ham
sandwich theorem. This requires a small amount of measure theory for the statement and proof, but
no sophisticated measure theoretic results are needed. A reader who is not familiar with measure
theory can replace “Lebesgue measurable set” with any condition they know that ensures that the
set has a reasonable notion of volume.

Theorem 3.4.4 (Measurable ham sandwich theorem). Let X,Y, Z ⊂ R3 be bounded Lebesgue
measurable sets. Then there exists z ∈ S2 and t ∈ R such that the affine hyperplane H(z, t) divides
X and Y and Z in half:

µ(X ∩H+(z, t)) = µ(X)/2,

µ(Y ∩H+(z, t)) = µ(Y )/2,

µ(Z ∩H+(z, t)) = µ(Z)/2.

Proof. Fix some n ≥ 1. Since X and Y and Z are bounded Lebesgue measurable sets, we can
find bounded open sets U and V and W with X ⊂ U and Y ⊂ V and Z ⊂W such that

µ(X) ≤ µ(U) ≤ µ(X) +
1

n
,

µ(Y ) ≤ µ(V ) ≤ µ(Y ) +
1

n
,

µ(Z)≤ µ(W ) ≤ µ(Z) +
1

n
.

Applying Theorem 3.4.3, we obtain zn ∈ S2 and tn ∈ R such that

µ(U ∩H+(zn, tn)) = µ(U)/2,

µ(V ∩H+(zn, tn)) = µ(V )/2,

µ(W ∩H+(zn, tn)) = µ(W )/2.

Just like in the proof of Theorem 3.4.3, we can pass to a subsequence of the zn and tn such that they
converge to z ∈ S2 and t ∈ R. Also like in that proof, the above inequalities and the continuity of
measures implies that

µ(X ∩H+(z, t)) = µ(X)/2,

µ(Y ∩H+(z, t)) = µ(Y )/2,

µ(Z ∩H+(z, t)) = µ(Z)/2,

as desired. □

Remark 3.4.5. Once we have the general Borsuk–Ulam theorem discussed in Remark 3.3.4,
the proof of Theorem 3.4.4 will generalize word-for-word to give what is sometimes called the
“Stone–Tukey theorem”. It says that if X1, . . . , Xn ⊂ Rn are bounded measurable sets, then there
exists some z ∈ Sn−1 and t ∈ R such that µ(Xi ∩H+(z, t)) = µ(Xi)/2 for all 1 ≤ i ≤ n. □

3.5. Exercises

Exercise 3.1. Use the intermediate value theorem to prove the 1-dimensional Brouwer fixed
point theorem: all maps f : D1 → D1 have fixed points. □



CHAPTER 4

Paths and the fundamental group

As is suggested by our results about lifting paths (Lemma 2.3.1) and homotopies (Lemma 2.5.1),
the structure of covers of a space X is governed by the collection of homotopy classes of paths between
points of X. In this section, we collect these paths in an algebraic object called the fundamental
group.

4.1. Homotopies of paths

Let X be a space and let p, q ∈ X. Recall from §2.3 that a path in X from p to q is a map
γ : I → X with γ(0) = p and γ(1) = q.

4.1.1. Homotopies. We wish to study paths up to homotopy. This would be uninteresting if
we allowed the endpoints of γ to move during the homotopy since then all paths would be homotopic
if X is path-connected (see Exercise 4.1). We therefore make the following definition:

Definition 4.1.1. Let X be a space, let p, q ∈ X, and let γ0, γ1 : I → X be two paths from p to
q. We say that γ0 and γ1 are homotopic paths from p to q if there exists a homotopy γt : I → X
from γ0 to γ1 that fixes the endpoints in the sense that

γt(0) = p and γt(1) = q for all t ∈ I. □

4.1.2. Examples. Here are two examples:

Example 4.1.2. For all p, q ∈ Rn, there is a unique homotopy class of path from p to q. Indeed,
let γ0 : I → Rn be the straight line path

γ0(s) = (1− s)p+ sq for s ∈ I.

If γ : I → Rn is any other path, then γ0 is homotopic to γ via the homotopy γt : I → Rn defined by

γt(s) = (1− t)γ0(s) + tγ(s) for all s ∈ I and t ∈ I. □

Example 4.1.3. View S1 as a subspace of C, and let γ0 : I → S1 and γ1 : I → S1 be the paths
defined by the formulas

(4.1.1) γ0(s) = eπis and γ1(s) = e−πis for s ∈ I.

Both γ0 and γ1 are paths from 1 to −1:

γ1

γ0

We claim that γ0 and γ1 are not homotopic. To see this, assume that they are homotopic and that
γt : I → S1 is a homotopy. Let p : R → S1 be the universal cover, so p(θ) = e2πiθ for all θ ∈ R. The
lift of γ0 to R starting at 0 is the map γ̃0 : I → R defined by

(4.1.2) γ̃0(s) = s/2 for s ∈ I.

37



38 4. PATHS AND THE FUNDAMENTAL GROUP

By Lemma 2.5.1, we can lift the homotopy γt to a homotopy γ̃t : I → R with γ̃0 the map (4.1.2).
Since γt(0) = 1 and γt(1) = −1 for all t ∈ I, we have that

γ̃t(0) ∈ p−1(1) = 2πZ and γ̃t(1) ∈ p−1(−1) = 2πZ+ π for t ∈ I.

Since 2πZ is discrete, it follows that both γ̃t(0) and γ̃t(1) are constant functions of t, i.e., that
γ̃t(0) = 0 and γ̃t(1) = 1/2 for all t ∈ I. This implies in particular that γ̃1 is the lift of γ1 to R starting
at 0. From (4.1.1), we see that

γ̃1(s) = −s/2 for s ∈ I.

In particular, γ̃1(1) = −1/2, contradicting the fact that γ̃1(1) = 1/2. □

4.1.3. Spheres and general position. To illustrate an important tool for understanding
paths, we prove the following, which the reader should contrast with the previous example:

Lemma 4.1.4. Let n ≥ 2 and let p, q ∈ Sn. Then there is a unique homotopy class of paths from
p to q.

Proof. Let r ∈ Sn be a point with r ̸= p, q. Since Sn \ r ∼= Rn, it follows from Example 4.1.2
that there exists a unique homotopy class of path from p to q in Sn \ r. Letting γ be a path from p
to q in Sn, to prove the claim it is enough to prove that γ can be homotoped into Sn \ r. This is
nontrivial since there do exist space-filling curves in Sn.

One way to do this is to use smooth manifold techniques. Indeed, it follows from standard results
that γ can be homotoped to a smooth map that is transverse to r. The point r is 0-dimensional, and
thus is a codimension n submanifold of Sn. It follows that γ−1(r) is a codimension n ≥ 2 submanifold
of I, and thus that γ−1(r) = ∅.

Here is another approach that avoids using any technology. Let V ∼= Rn be a small open
neighborhood of r with p, q /∈ V :

V
r

p q

The subspace V ∼= Rn is simply-connected (Example 4.1.2), and V \ r is path-connected. Intuitively,
we should be able to make a small homotopy to the portions of γ that pass through V to make them
miss r. Indeed, this is what the smooth manifold approach in the previous paragraph did. Lemma
4.1.5 below shows that this is in fact possible even in more general settings where smooth manifold
techniques are unavailable. □

The above proof used the following result, which for later use we prove in more generality than
is needed for spheres:

Lemma 4.1.5 (General position). Let X be a space, let p, q ∈ X, and let γ be a path in X from
p to q. Let {ri}i∈I be a discrete1 set of points of X that does not contain p or q. Assume that for
each i ∈ I there is an open neighborhood Vi of ri such that the following hold for all i ∈ I:

• Vi is simply-connected; and
• Vi \ ri is path-connected; and
• Vi does not contain ri′ for any i′ ∈ I with i′ ̸= i.

Then γ can be homotoped such that its image does not contain any of the ri..

Proof. Set U = X \ {ri | i ∈ I}. The set {U} ∪ {Vi}i∈I is an open cover of X, so by the
Lebesgue number lemma (cf. the proof of Lemma 2.3.1) we can find

0 = ϵ0 < ϵ1 < · · · < ϵk = 1

such that γ([ϵj−1, ϵj ]) is contained in either U or some Vi for all 1 ≤ j ≤ k. After possibly deleting
some ϵj whose adjacent intervals are mapped to the same open set we can also assume that for all

1In other words, the subset {ri | i ∈ I} of X is closed and inherits the discrete topology.
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1 ≤ j ≤ k − 1 we have either γ(ϵj) ∈ U ∩ Vi for some i or γ(ϵj) ∈ Vi ∩ Vi′ for some distinct i, i′ ∈ I.
This latter condition ensures that γ(ϵj) /∈ {ri | i ∈ I} for all 0 ≤ j ≤ k. Consider some j0 such that
γ([ϵj0−1, ϵj0 ]) ⊂ Vi0 for some i0:

γ(εj0-1)

γ(εj0)

ri0

Vi0
Since Vi \ ri0 is path-connected, there is some path δ in Vi0 \ rii from γ(ϵj0−1) to γ(ϵj0). Since Vi0
does not contain ri for any i ∈ I with i ≠ ii, the path δ passes through no point of {ri | i ∈ I}.
Since Vi is simply-connected, the path obtained by re-parameterizing γ|[ϵj0−1,ϵj0 ]

to make its domain

I = [0, 1] is homotopic to δ. It follows that we can homotope γ to change γ|[ϵj0−1,ϵj0 ]
to a suitable

re-parametrization of δ. This ensures that the image of γ|[ϵi0−1,ϵi0 ]
is disjoint from {ri | i ∈ I}. Doing

this repeatedly homotopes γ to a path that avoids {ri | i ∈ I}, as desired. □

4.1.4. Simple connectivity. We say that a space X is simply-connected or 1-connected if X is
nonempty and path-connected, and for all p, q ∈ X there is a unique homotopy class of paths from p
to q. The following summarizes Example 4.1.3 and Lemma 4.1.4 in this language:

Lemma 4.1.6. The sphere Sn is simply-connected for n ≥ 2. However, S1 is not simply-connected.

4.2. Composing paths

Let X be a space. Our goal is to endow the set of homotopy classes of paths between points of
X with an algebraic structure.

4.2.1. Composition. In this structure, only some paths can be “multiplied”. The definition is
as follows:

Definition 4.2.1. Let γ : I → X and γ′ : I → X be paths between points of X. We say that
γ and γ′ are composable if the terminal point of γ equals the initial point of γ′. If γ and γ′ are
composable, then γ·γ′ : I → X is the path defined by the formula

(γ·γ′)(s) =
{
γ(2s) if 0 ≤ s ≤ 1/2,

γ′(2s− 1) if 1/2 ≤ s ≤ 1.
for s ∈ I. □

In other words, γ·γ′ first traverses γ at 2× speed and then traverses γ′ at 2× speed:

γ'
γ

p q r

If γ goes from p to q and γ′ goes from q to r, then γ·γ′ goes from p to r. This only makes sense if γ
and γ′ are composable, and we do not define γ·γ′ if they are not.

Remark 4.2.2. Being composable is not symmetric: if γ·γ′ is defined, then it need not be the
case that γ′·γ is defined. □

4.2.2. Homotopies. The relation of being homotopic is an equivalence relation on the set of
paths between points of X. For such a path γ : I → X, let [γ] denote its equivalence class under
this relation. The following lemma says that our “multiplication” descends to a multiplication on
homotopy classes:

Lemma 4.2.3. Let X be a space. Let γ0 and γ′0 be composable paths in X. Let γ1 be a path that
is homotopic to γ0 and let γ′1 be a path that is homotopic to γ′0, so [γ0] = [γ1] and [γ′0] = [γ′1]. Then
[γ0·γ′0] = [γ′0·γ′1].
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Proof. Assume that γ0 goes from p to q and that γ′0 goes from q to r. Let γt be a homotopy
from γ0 to γ1 and let γ′t be a homotopy from γ′0 to γ′1. For each t ∈ I, we have

γt(0) = p and γt(1) = γ′t(0) = q and γ′t(1) = r,

so γt and γ
′
t are composable and γt·γ′t is a well-defined path from p to r. As t varies over I, the paths

γt·γ′t form a homotopy from γ0·γ′0 to γ1·γ′1. □

4.2.3. Associativity. Let γ and γ′ and γ′′ be paths in X such that γ and γ′ are composable
and γ′ and γ′′ are composable. It follows that γ·γ′ and γ′′ are composable, and also that γ and γ′·γ′′
are composable:

γ'
γ γ''

Both (γ·γ′)·γ′′ and γ·(γ′·γ′′) thus make sense; however except in degenerate cases we have (γ·γ′)·γ′′ ̸=
γ·(γ′·γ′′). The following lemma shows that passing to homotopy fixes this:

Lemma 4.2.4. Let X be a space. Let γ and γ′ and γ′′ be paths in X such that γ and γ′ are
composable and γ′ and γ′′ are composable. Then [(γ·γ′)·γ′′] = [γ·(γ′·γ′′)].

Proof. The paths f1 = (γ·γ′)·γ′′ and f2 = γ·(γ′·γ′′) are almost the same. They both traverse
γ and then γ′ and then γ′′; however, they do this at different speeds. As functions on I = [0, 1], we
have the following:

• The path f1 traverses γ at 4× speed on the interval [0, 1/4], then γ′ at 4× speed on the
interval [1/4, 1/2], and then γ′′ at 2× speed on the interval [1/2, 1].

• The path f2 traverses γ at 2× speed on the interval [0, 1/2], then γ′ at 4× speed on the
interval [1/2, 3/4], and then γ′′ at 4× speed on the interval [3/4, 1].

Let ρ : I → I be the piecewise linear function with the graph

1/4 1/2 3/4 1

1/4

1/2

3/4

1

ρ

We then have f2 = f1 ◦ ρ. The lemma now follows from Lemma 4.2.5 below. □

Lemma 4.2.5 (Reparameterization lemma). Let X be a space and γ : I → X be a path. Let
ρ : I → I be a function such that f(0) = 0 and f(1) = 1. Then [γ ◦ ρ] = [γ].

Proof. The desired homotopy from γ ◦ ρ to γ is given by

γt(s) = γ((1− t)ρ(s) + ts) for t, s ∈ I.

Here we use the fact that f(0) = 0 and f(1) = 1 to ensure that the endpoints of γt do not move:

γt(0) = γ((1− t)ρ(0) + 0) = γ(0) and γt(1) = γ((1− t)ρ(1) + t) = γ(1− t+ t) = γ(1). □
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4.2.4. Identity. For a point p ∈ X, let cp : I → X be the constant path

cp(s) = p for s ∈ I.

This serves as an identity for our multiplication. However, since we can only multiply composable
paths an appropriate cp must be chosen for the left- and right-identities of any given path:

Lemma 4.2.6. Let X be a space and let γ be a path in X from p to q. Then [γ·cp] = [γ] and
[cq·γ] = [γ].

Proof. The path γ·cp stays at p on the interval [0, 1/2] and then traverses γ at 2× speed:

(γ·cp)(s) =
{
p if s ∈ [0, 1/2],

γ(2s− 1) if s ∈ [1/2, 1].
for s ∈ I.

Letting ρ : I → I be the map

ρ(s) =

{
0 if s ∈ [0, 1/2],

2s− 1 if s ∈ [1/2, 1]
for s ∈ I,

we thus have γ·cp = γ ◦ ρ. Applying Lemma 4.2.5, we see that [γ·cp] = [γ ◦ ρ] = [γ], as desired. The
proof that [cq·γ] = [γ] is similar. □

4.2.5. Inverses. Let γ be a path in X from p to q. Define γ : I → X to be the path that
traverses γ in the reverse order:

γ(s) = γ(1− s) for s ∈ I.

The path γ goes from q to p, and serves as a sort of “inverse” to our multiplication:

Lemma 4.2.7. Let X be a space and let γ be a path in X from p to q. Then [γ·γ] = [cp] and
[γ·γ] = [cq].

Proof. The path γ·γ goes from p to p. For t ∈ I, define δt : I → X to be the path

δt(s) =


γ(2s) if s ∈ [0, t/2],

γ(t) if s ∈ [t/2, 1− t/2],

γ(2(1− s)) if s ∈ [1− t/2, 1].

for s ∈ I.

This makes sense since

γ(2(t/2)) = γ(t) = γ(2(1− (1− t/2))).

Geometrically, δt travels along γ to γ(t), waits for a while, and then goes back along γ:

γ

γ(1/4)

γ(1/2)

γ(3/4)

p q

δ1/4
δ1/2

δ3/4 δ1

Since δt is a homotopy from cp to γ·γ, we deduce that [cp] = [γ·γ], as desired. The proof that
[γ·γ] = [cq] is similar. □

4.3. Fundamental group and groupoid

Let X be a space. In the previous section, we showed that the set of homotopy classes of paths
between points of X has a partially-defined “multiplication” that is associative, has units, and has
inverses. What kind of algebraic structure could this be?



42 4. PATHS AND THE FUNDAMENTAL GROUP

4.3.1. Categories. To answer this question, we need the language of category theory. Recall
that a category C consists of the following data:

• A collection of objects. We will write A ∈ C to indicate that A is an object of C.
• For all objects A,B ∈ C, a set C(A,B) of morphisms. We will often write f : A → B to
indicate that f is a morphism from A to B.

• For all objects A ∈ C, an identity morphism 1A : A→ A.

These morphisms can be composed: if f : A → B and g : B → C are morphisms, then we have a
morphism g ◦ f : A→ C. This composition should be associative in the sense that if f : A→ B and
g : B → C and h : C → D are morphisms, then

(f ◦ g) ◦ h = f ◦ (g ◦ h).
Because of this, there is no need to insert parentheses when composing morphisms. Under this
composition, the identity morphisms should be units: if f : A→ B is a morphism, then f ◦ 1A = f
and 1B ◦f = f .

Example 4.3.1. The collection of all topological spaces and continuous maps forms a category
Top. □

Example 4.3.2. The collection of all groups and homomorphisms forms a category Group. □

Example 4.3.3. For a group G, there is a category (also written G) with one object ∗ and with
G(∗, ∗) = G. □

Remark 4.3.4. The language of category theorem might seem overly abstract, but it turns out
to be very useful and clarifying. Fundamentally, it is just a way of organizing information. Typically
you cannot prove interesting new theorems by just defining a category, but the language of category
theory often suggests useful constructions. □

4.3.2. Fundamental groupoid. We now define the following:

Definition 4.3.5. Let X be a space. The fundamental groupoid of X, denoted Π(X), is the
following category:

• The objects of Π(X) are the points of X.
• For points p and q, the Π(X)-morphisms from p to q are the set of all homotopy classes of

paths from p to q. For a path γ from p to q, we will write [γ] : p→ q for the corresponding
morphism from p to q.

• If γ is a path from p to q and γ′ is a path from q to r, then the composition of the morphisms
[γ] : p→ q and [γ′] : q → r is the morphism [γ·γ′] : p→ r.

• For a point p ∈ X, the identity morphism of p is the constant path [cp] : p→ p. □

Remark 4.3.6. We now come to an annoying technical point: in a category C, we said that the
composition of morphisms f : A→ B and g : B → C is the morphism g ◦ f : A→ C. Writing it like
this makes sense since in many natural categories the objects are sets with some kind of structure and
the morphisms are functions that preserve that structure. However, the objects of the fundamental
groupoid are not sets with some kind of structure. As is traditional, we compose the morphisms in
the fundamental groupoid from left to right (rather than right to left, like functions). □

4.3.3. Fundamental group. Lemma 4.2.7 says that all the morphisms in the fundamental
groupoid Π(X) are invertible. This is the defining property of a groupoid:

Definition 4.3.7. A groupoid is a category G in which all morphisms are invertible, i.e., such
that for all morphisms ϕ : A→ B, there is a morphism ϕ : B → A with ϕ◦ϕ = 1A and ϕ◦ϕ = 1B . □

Remark 4.3.8. Let G be a groupoid and ϕ : A→ B be a morphism in G. In Exercise 4.2, you

will prove that the inverse to ϕ is unique in the following sense. Consider ϕ, ϕ
′
: B → A. Then ϕ = ϕ

′

if any of the following conditions are satisfied:

• ϕ ◦ ϕ = ϕ
′ ◦ ϕ = 1A; or

• ϕ ◦ ϕ = ϕ ◦ ϕ′ = 1B ; or
• ϕ ◦ ϕ = 1A and ϕ ◦ ϕ′ = 1B .
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Because of this, we can safely talk about the inverse to ϕ. □

As we discussed in Example 4.3.3, a group can be viewed as a category with one object. Under
this identification, a group is a groupoid. Conversely, consider a groupoid G. For A ∈ G, write

AutG(A) = {f | ϕ : A→ A is a morphism in G} .
Since all morphisms in G are invertible, this is a group. What is more, for a morphism ψ : A→ B in
G there is an isomorphism ψ∗ : AutG(A) → AutG(B) defined by

ψ∗(ϕ) = ψ ◦ ϕ ◦ ψ for all ϕ : A→ A in AutG(A).

In this way, a groupoid packages together a collection of groups along with certain isomorphisms
between them.

We now return to the fundamental groupoid. For x0 ∈ X the fundamental group of X with
basepoint x0, denoted π1(X,x0), is

π1(X,x0) = AutΠ(X)(x0).

In other words, π1(X,x0) is the group whose objects are homotopy classes of loops based at x0, i.e.,
paths γ from x0 to itself. If α is a path from x0 to x′0, then we get an isomorphism

α∗ : π1(X,x
′
0) → π1(X,x0)

defined by

α∗([γ]) = [α·γ·α] for all [γ] ∈ π1(X,x
′
0).

From these isomorphisms, we see the following:

Lemma 4.3.9. Let X be a path-connected space. Then for all x0, x
′
0 ∈ X we have π1(X,x0) ∼=

π1(X,x
′
0).

Proof. Just use the above isomorphism associated to a path from x0 to x′0. □

4.3.4. Commentary. We will give many computations of π1(X,x0) over the next few sections.
For X path-connected, Lemma 4.3.9 says that the isomorphism type of π1(X,x0) is independent of
the basepoint x0. The isomorphism type of π1(X,x0) is thus a useful invariant of path-connected
spaces, i.e., if two path-connected spaces have different fundamental groups, then they are not
homeomorphic. The fundamental groupoid is not so useful as an invariant since it knows far too
much about the space; for instance, its objects are literally the points of the space.

You might wonder why we bothered to introduce the fundamental groupoid at all. There are
two reasons:

• While for a path-connected space the isomorphism type of the fundamental group does not
depend on the basepoint, the isomorphisms between the fundamental groups at different
basepoints are not canonical. The fundamental groupoid packages them all together, and
is present at least implictly in all serious treatements of the fundamental group. It seems
perverse to refuse to give a name to a structure you use.

• There are many constructions in topology that are most naturally phrased in terms of the
fundamental groupoid. For instance, the most general form of the classification of covering
spaces uses the fundamental groupoid (see §YYY). Later volumes of this book will contain
other examples.

We remark that serious applications of π1(X,x0) often require a careful treatment of the basepoint x0.
Simply identifying the fundamental group at different basepoints will quickly lead you astray. This is
analogous to the fact that while all finite-dimensional vector spaces over a field k are isomorphic to
kn for some n ≥ 0, one cannot simply identify vector spaces with kn. Such an identification requires
a choice of basis, and often there is no natural choice. Much of linear algebra focuses on carefully
choosing bases adapted to different situations and studying how all these different bases are related.

4.4. Simple connectivity, deformation retracts, and contractibility

Let X be a space and x0 ∈ X. We start our discussion of ways to calculate π1(X,x0) by
discussing cases where it is trivial.
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4.4.1. Simple connectivity. Recall that X is said to be simply-connected or 1-connected if X
is nonempty and path-connected, and there is a unique homotopy class of paths between any two
points of X. This has a nice interpretation in terms of the fundamental group:2

Lemma 4.4.1. Let X be a path-connected space and let x0 ∈ X. Then X is simply-connected if
and only if π1(X,x0) = 1.

Proof. If X is simply-connected, then in particular there is only one homotopy class of paths
from x0 to itself, so π1(X,x0) = 1. Conversely, assume that π1(X,x0) = 1. Let p and q be two points
of X, and let γ and γ′ be paths from p to q:

γ'

γ

x0

p q

Since X is path-connected, Lemma 4.3.9 implies that π1(X, p) = 0. The path γ·γ′ is a path from p
to p, so [γ·γ′] ∈ π1(X, p) must be trivial. We therefore have

[γ′] = 1[γ′] = [γ·γ′][γ′] = [γ][γ′][γ′] = [γ],

as desired. □

This implies:

Lemma 4.4.2. For n ≥ 2 and x0 ∈ Sn arbitrary, we have π1(Sn, x0) = 1.

Proof. We proved in Lemma 4.1.6 that Sn is simply-connected for n ≥ 2, so by Lemma 4.4.1
we deduce that π1(Sn, x0) = 1 for all x0 ∈ Sn. □

Remark 4.4.3. We proved in Lemma 4.1.6 that S1 is not simply-connected, so π1(S1, x0) ̸= 1.
In fact, we will later show that π1(S1, x0) ∼= Z via an analysis similar to the one we used to prove
that S1 is not simply-connected. □

Remark 4.4.4. Let X be a path-connected space and let p, q ∈ X be points. Let P(p, q) be the
set of morphisms in Π(X) from p to q, i.e., the set of homotopy classes of paths in X from p to q.
The proof of Lemma 4.4.1 shows how to relate P(p, q) to π1(X, p). Indeed, π1(X, p) acts on the set
P(p, q) via

[γ][δ] = [γ·δ] for [γ] ∈ π1(X, p) and [δ] ∈ P(p, q).

This action has two key properties, both of which follow from easy calculations in the fundamental
groupoid Π(X):

• It is faithful, i.e., for [γ] ∈ π1(X, p) and [δ] ∈ P(p, q) if [γ][δ] = [δ] then [γ] = 1. Indeed:

[γ] = [γ·δ·δ] = [γ·δ][δ] = [δ][δ] = 1.

• It is transitive, i.e., for all [δ], [δ′] ∈ P(p, q) there exists some [γ] ∈ π1(X, p) with [γ][δ] = [δ′].
Indeed, just take γ = δ′·δ:

[δ′·δ][δ] = [δ′][δ·δ] = [δ′].

Fixing some [δ0] ∈ P(p, q), there is thus a bijection between π1(X, p) and P(p, q) taking [γ] ∈ π1(X, p)
to [γ·δ0] ∈ P(p, q). One might think that this bijection allows us to turn P(p, q) into a group; however,
this is not a good idea since the bijection depends on the choice of [δ0], and is thus not canonical.
Instead, this makes P(p, q) into what is called a torsor for the group π1(X, p). □

2This lemma explains why this is sometimes called being 1-connected. In Chapter YYY we will define groups

πn(X,x0) for all n ≥ 1, and a nonempty path-connected space is said to be n-connected if πd(X,x0) = 0 for d ≤ n.
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4.4.2. Deformation retracts. Let A ⊂ X be a subspace. A retract of X to A is a map
r : X → A such that r(a) = a for all a ∈ A, i.e., such that r|A = 1. A deformation retraction of X to
A is a homotopy rt : X → X from the identity 1 : X → X to a map r1 : X → X such that:

• the map r1 is a retraction of X to A; and
• for all t ∈ I and a ∈ A, we have rt(a) = a.

If there exists a deformation retraction of X to A, then we say that A is a deformation retract of X
and that X deformation retracts to A. Here are several examples:

Example 4.4.5. Let U ⊂ Rn be a set that is star-shaped, i.e., such that there exists a point
p0 ∈ U such that for all x ∈ U the line segment from p0 to x is contained in U . For instance, U might
be convex. We claim that U deformation retracts to p0. Indeed, the maps rt : U → U defined by

rt(x) = (1− t)x+ tp0 for x ∈ U and t ∈ I

form a deformation retraction. □

Example 4.4.6. Let f : Z → A be a map between spaces. The mapping cylinder of f , denoted
Cyl(f), is the quotient of the disjont union (Z × I) ⊔A that identifies (z, 1) ∈ Z × I with f(z) ∈ A
for all z ∈ Z:

Z×0

Z×1

f

A

Cyl(f)

For z ∈ Z and s ∈ I, let (z, s) be the image of (z, s) ∈ Z×I in Cyl(f). The space Cyl(f) deformation
retracts to A via the deformation retract rt : Cyl(f) → A defined by{

rt(z, s) = (z, (1− t)s) for (z, s) ∈ Z × [0, 1],

rt(a) = a for a ∈ A.

The reader can easily check that this makes sense and is continuous. □

Example 4.4.7. As in the following figure, let A be the letter A embedded in the plane and for
some small ϵ > 0 let X be a closed ϵ-neighborhood of A:

Then X deformation retracts to A via a deformation retraction during which points travel along
straight line segments to A. In fact, this is a special case of the previous example: the boundary
of X consists of two circles S1 ⊔ S1, and X is homeomorphic to the mapping cylinder of a map
f : S1 ⊔ S1 → A. □

Example 4.4.8. We claim that Sn−1 is a deformation retract of Rn\0. Geometrically, the picture
is as follows, where the blue arrows show the paths points of Rn \ 0 travel during the deformation
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retraction:

In formulas, this deformation retraction is given by the maps rt : Rn \ 0 → Rn \ 0 defined by

rt(x) =

(
(1− t) +

t

∥x∥

)
x for x ∈ Rn \ 0 and t ∈ I. □

Assume now that A ⊂ X is a subspace and a0 ∈ A. Loops in A based at a0 can also be regarded
as loops in X based at a0, and if two loops in A based at p are homotopic in A then are also
homotopic in X. This gives a natural homomorphism3 π1(A, a0) → π1(X, a0). This homomorphism
need not be injective since it is possible for two loops in A based at a0 to be homotopic in X but not
in A. However:

Lemma 4.4.9. Let X be a space, let A ⊂ X be a subspace, and let a0 ∈ A. Then:

(i) If A is a retract of X, then the map π1(A, a0) → π1(X, a0) is injective.
(ii) If A is a deformation retraction of X, then the map π1(A, a0) → π1(X, a0) is an isomor-

phism.

Proof. We start with (i). Let r : X → A be a retraction. Let [γ] ∈ π1(A, a0) lie in the kernel
of the map π1(A, a0) → π1(X, a0). There is thus a homotopy γt : I → X with γ0 = γ and γ1 = ca0 .
Since r(a0) = a0, the homotopy r ◦ γt : I → A is also a homotopy of paths from γ to ca0 , so [γ] is
trivial in π1(A, a0), as desired.

We now prove (ii). Let rt : X → X be a deformation retract. In light of (i), it is enough to
prove that the map π1(A, a0) → π1(X, a0) is surjective. Consider a loop δ : I → X based at p. We
must prove that δ can be homotoped to a loop lying in A. Since rt(a0) = a0 for all t ∈ I, we have a
homotopy of paths rt ◦ δ. Since r1(X) ⊂ A, the image of the endpoint r1 ◦ δ of this homotopy lies in
A, as desired. □

Here is one consequence:

Lemma 4.4.10. Let n ≥ 3. For x0 ∈ Rn \ 0, we have π1(Rn \ 0, x0) = 0.

Proof. Since Rn \ 0 is path-connected, we can change x0 without changing the fundamental
group. Choose x0 such that x0 ∈ Sn−1 ⊂ Rn \ 0. Since Rn \ 0 deformation retracts to Sn−1, Lemma
4.4.9 implies that

π1(Rn \ 0, x0) ∼= π1(Sn−1, x0).

Since n ≥ 3, this vanishes by Lemma 4.4.2. □

4.4.3. Contractibility. A nonempty space X is said to be contractible if the identity map
1 : X → X is homotopic to a constant map. This holds, for instance, if X deformation retracts to any
one-point subspace x0. Star-shaped or convex subspaces of Rn are therefore contractible. However,
being contractible is more general than this since none of the points of X need to be fixed during the
contraction. See Exercise 4.4 for an example where these are genuinely different notions.

If a space X deformation retracts to a point x0 ∈ X, then it follows from Lemma 4.4.9 that

π1(X,x0) ∼= π1(x0, x0) = 1.

3This is an instance of the functorality of the fundamental group, which we will discuss more carefully in §4.6.
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The following shows that this vanishing holds more generally if X is merely contractible. Contrasting
the proof of this with that of Lemma 4.4.9 illustrates the care that must sometimes be taken with
the basepoint:

Lemma 4.4.11. Let X be a contractible space and let x0 ∈ X. Then π1(X,x0) = 1.

Proof. Let ft : X → X be a homotopy from the identity 1 : X → X to a constant map. Let
p ∈ X be the constant value of f1. Consider [γ] ∈ π1(X,x0) We must prove that γ is homotopic to a
constant path. A first idea is to consider the loop γt = ft ◦ γ. However, this does not work since
γt(0) = γt(1) need not equal x0, and in fact as t varies in I the point γt(0) = γt(1) traverses a path
from x0 to f1(x0) = p.

To fix this, for t ∈ I let δt : I → X be the path defined by

δt(s) = fts(x0) for all s ∈ I.

This path goes from x to ft(x0). We put the t in the superscript to remind the reader that this is

not a homotopy of paths since one endpoint is changing. We have a loop δt·γt·δt based at x0:

x0

ft(x0)

γ0=γ
γt=ft⚬γ

δt

p

Recall that for x ∈ X we denote by cx the constant path at x. For t = 0, we have

[δ0·γ0·δ0] = [δ0][γ0][δ
0
] = [cx0

][γ][cx0
] = [γ],

and for t = 1 we have

[δ1·γ1·δ1] = [δ1][γ1][δ
1
] = [δ1][cp][δ

1
] = [δ1·δ1] = 1.

Using this homotopy, we thus see that [γ] = 1, as desired. □

Here is another important example. Recall that we discussed graphs in §1.6. A tree is a nonempty
connected graph with no cycles. We will prove:

Lemma 4.4.12. Let T be a tree and let v0 be a vertex of T . Then T deformation retracts to v0,
and in particular T is contractible.

Proof. We will omit some of the point-set details, and invite the reader in Exercise 4.5 to verify
that all the maps we construct are continuous. Inductively define subtrees

T0 ⊂ T1 ⊂ T2 ⊂ · · ·

of T in the following way. Start by letting T0 = v0. Next, if Tn−1 has been constructed, let Tn be
the subtree obtained from Tn−1 by adding all edges of T with an endpoint in Tn−1:

T0T0 T1 T2 T3 T4
v0

Since T is a tree, each new edge e added to Tn−1 to form Tn has the property that exactly one
endpoint of e lies in Tn−1; otherwise, e would form part of a cycle in Tn. This implies that Tn
deformation retracts to Tn−1 via a deformation retract where the points of these new edges e move
along e to the vertex lying in Tn−1. Let rnt : Tn → Tn be this deformation retract. Since T is
connected, we have

T =

∞⋃
n=0

Tn.
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For each n ≥ 1 and m ≥ 0, consider the retractions

Rnm = rn1 ◦ · · · ◦ rn+m1 : Tn+m → Tn−1.

For m1 ≥ m2 ≥ 0, the retractions Rnm1
and Rnm2

agree where they both are defined, namely on Tn+m2
.

It follows that for a fixed n ≥ 1 the different Rnm glue together to give a retraction Rn : T → Tn−1.
Assume first that T = Tn1 for some n1 ≫ 0 (which holds, for instance, if T is a finite tree). In

this case, we can deformation retract T = Tn1 to T0 = v0 by first using rn1
t to deformation retract

Tn1 to Tn1−1, then using rn1−1
t to deformation retract Tn1−1 to Tn1−2, etc. For the general case, we

have to be a bit more careful. Write

I = {0} ∪
∞⋃
n=1

In with In = [1/2n, 1/2n−1],

so In has length 1/2n. Define rt : T → T in the following way:

• For t ∈ In and x ∈ T , let rt(x) = rn2n(t−1/2n)(R
n+1(x)).

• For t = 0 and x ∈ T , define r0(x) = x.

The reader will check in Exercise 4.5 that this definition makes sense and is continuous. By definition
we have r0 = 1, and since 1 ∈ I1 we have

r1(x) = r11(R
2(x)) = v0 for x ∈ T ,

where we recall that T0 is the vertex v0. It follows that rt is a deformation retraction of T to v0, as
desired. □

4.5. Calculating the fundamental group using covering spaces

Thus far we have not calculated any nontrivial fundamental groups. In this section, we describe
the most important tool for making these calculations.

4.5.1. Regular covers and the fundamental group. Recall that we discussed regular covers
in §1.5. Our main result is:

Theorem 4.5.1. Let p : X̃ → X be a regular cover with X̃ simply-connected. Set G = Deck(X̃).
Then for x0 ∈ X we have π1(X,x0) ∼= G.

Proof. Pick x̃0 ∈ X̃ with p(x̃0) = x0. We define a set map f : π1(X,x0) → G as follows.

Consider [γ] ∈ π1(X,x0). By path lifting (Lemma 2.3.1), we can lift γ to a path γ̃ in X̃ starting at
x̃0. By homotopy lifting (Lemma 2.5.1), the homotopy class of γ̃ only depends on the homotopy class

of γ. In particular, γ̃(1) ∈ X̃ only depends on [γ] ∈ π1(X,x0). The point γ̃(1) projects to γ(1) = x0,
so γ̃(1) lies in the fiber p−1(x0):

x0~

x0
γ

γ~
γ(1)=gx0~ ~

p

Since X̃ is a path-connected regular cover of X, there exists a unique g ∈ G with gx̃0 = γ̃(1); see
Lemma 1.4.3. Define f([γ]) = g.

To prove the theorem, it is enough to prove that f is a group homomorphism and also that f is
both injective and surjective. We do this in the following three claims:

Claim 1. The set map f is a group homomorphism.
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Consider [γ1], [γ2] ∈ π1(X,x0). For i = 1, 2, let γ̃i be the lift of γi to X̃ with γ̃i(0) = x̃0. Letting

gi = f([γi]), the path γ̃i thus goes from x̃0 to gix̃0. The deck group G acts not only on X̃, but also

on paths in X̃. Under this group action, the path g1γ̃2 goes from g1x̃0 to g1g2x̃0. It follows that γ̃1
and g1γ̃2 are composable paths, and γ̃1·(g1γ̃2) goes from x̃0 to g1g2x̃0:

x0~

γ1~

g2x0~

p

x0
γ1γ2

g1x0~
γ2~

x0~

γ1~

p

x0
γ1γ2

g1x0~

g1g2x0~

g1γ2~

The path γ̃1·(g1γ̃2) is the lift of γ1·γ2, so by definition this implies that f([γ1·γ2]) = g1g2, as desired.

Claim 2. The homomorphism f is surjective.

Consider g ∈ G. Since X̃ is path-connected, we can find a path γ̃ in X̃ from x̃0 to gx̃0. The path
γ̃ projects to a path γ in X from x0 to x0, so we have an element [γ] ∈ π1(X,x0). By definition,
f([γ]) = g.

Claim 3. The homomorphism f is injective.

Consider [γ] ∈ π1(X,x0) such that f([γ]) = 1. Let γ̃ be the lift of γ to X̃ with γ̃(0) = x̃0. Since

f([γ]) = 1, we must have γ̃(1) = x̃0, so γ̃ is a loop based at x̃0. Since X̃ is simply-connected, the

loop γ̃ is homotopic to a constant loop. Composing this homotopy with the map p : X̃ → X, we
obtain a homotopy from γ to a constant loop, so [γ] = 1, as desired. □

4.5.2. Understanding isomorphism. As in Theorem 4.5.1, let p : X̃ → X be a regular cover

with X̃ simply-connected. Let x̃0 ∈ X̃, and set G = Deck(X̃) and x0 = p(x̃0). Theorem 4.5.1 says
that π1(X,x0) ∼= G. Examining its proof, this isomorphism is as follows:

• Consider g ∈ G. Let γ̃ be a path in X̃ from x̃0 to gx̃0, and let γ be the projection of γ̃ to
X. Then the element of π1(X,x0) corresponding to g is [γ] ∈ π1(X,x0).

4.5.3. Examples. We now give five calculations of π1(X,x0) using Theorem 4.5.1. The first is
important enough to separate it out as a lemma. Recall that we identify S1 with a subset of C, so
1 ∈ S1.

Lemma 4.5.2 (Circle). We have π1(S1, 1) ∼= Z, where n ∈ Z corresponds to the loop γn : I → S1
defined by

γn(s) = e2πins for s ∈ I.

Proof. Consider the universal cover p : R → S1 of S1, so p(θ) = e2πiθ. As we observed in
Example 1.4.4, this is a regular cover with deck group Z, which acts on R by integer translations.
Since R is contractible, it is simply-connected. We can therefore apply Theorem 4.5.1 to see that

π1(S1, 1) ∼= Z.
That n ∈ Z corresponds to the loop γn is immediate from the description of this isomorphism in
§4.5.2. □

Our next example generalizes this:
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Example 4.5.3 (Torus). As in Example 1.1.10 let Zn act on Rn by integer translations and
identify the quotient Rn/Zn with the n-dimensional torus Tn = (S1)×n:

ℝ2

=
ℝ2/ℤ2 𝕋2

This figure shows the case n = 2. The projection p : Rn → Zn is a regular cover with deck group Zn.
Set x0 = p(0). Since Rn is contractible, it is simply-connected. We can thus apply Theorem 4.5.1 to
see that

π1(Tn, x0) = π1((S1)×n, x0) ∼= Zn.

More generally, you will show in Exercise 4.3 that if X and Y are spaces with basepoints x0 ∈ X
and y0 ∈ Y , then

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0). □

We now turn to real projective space:

Example 4.5.4 (Real projective space). Let n ≥ 2. Recall that RPn is the space of lines through
the origin in Rn+1. As we described in Example 1.1.11, there is a 2-fold cover p : Sn → RPn taking
x ∈ Sn to the line through x. This is a regular cover with deck group the cyclic group C2 of order 2,
which acts on Sn by the antipodal map x 7→ −x. Fix some x0 ∈ Sn, and let ℓ0 = p(x0) ∈ RPn. Since
n ≥ 2, we have π1(Sn, x0) = 1 (Lemma 4.4.2). We can therefore apply Theorem 4.5.1 and see that

π1(RPn, ℓ0) ∼= C2.

From the description of this isomorphism in §4.5.2, we see that the generator of C2 corresponds to
the loop in π1(RPn, ℓ0) that rotates the line ℓ0 around an axis by an angle of π, coming back to itself
but with the reversed orientation. □

Remark 4.5.5. We have RP1 ∼= S1, so π1(RP1, ℓ0) ∼= Z. □

Here is a variant on this:

Example 4.5.6 (Finite cyclic groups). Let d ≥ 2 and let ζ ∈ C be a primitive dth root of unity.
For m ∈ Cd, there is a well-defined complex number ζm. Regarding S3 as a subspace of C2, the
group Cd acts on S3 via

m(z1, z2) = (ζmz1, ζ
mz2) for m ∈ Cd and (z1, z2) ∈ S3 ⊂ C2.

The action is free, and since Cd is finite this is a covering space action (Exercise 1.8). Fixing a
basepoint x0 ∈ S3/Cd, we can therefore apply Theorem 4.5.1 and see that

π1(S3/Cd, x0) ∼= Cd. □

Remark 4.5.7. Let A be a finitely generated abelian group. We can find a space X and x0 ∈ X
with π1(X,x0) ∼= A as follows. Write A ∼= Zn × F with F a product of finite cyclic groups. For X,
we can then take the product of a torus Tr with a product of quotients of S3 by these finite cyclic
groups as in Example 4.5.6. □
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Example 4.5.8 (Free group). As in Example 1.6.9, consider the cover p : T → X shown here:

p

X
T

x0~
x0

a b

Each of the blue horizontal edges of T maps to the blue loop labeled a on the left side of X, and each
of the orange vertical edges of T maps to the orange loop labeled b on the right side of X. Let x0 ∈ X
be the vertex, and let x̃0 ∈ T be the indicated lift of x0. This is a regular cover (Exercise 1.11), and
since T is a tree it is contractible (Lemma 4.4.12). Letting G be the deck group of p : T → X, we
can therefore apply Theorem 4.5.1 to see that

π1(X,x0) ∼= G.

What kind of group is G? It acts simply transitively on the vertices of T , so each vertex is of the
form gx̃0 for some unique g ∈ G. From the description of the isomorphism in §4.5.2, the element of
π1(X,x0) corresponding to g ∈ G is the homotopy class of the loop in X based at x0 obtained by
taking a path in T from x̃0 to gx̃0 and projecting it to X.

Consider the elements [a], [b] ∈ π1(X,x0). Let W be the set of reduced words in [a] and [b], that
is, products of [a] and [a]−1 = [a] and [b] and [b]−1 = [b] such that:

• neither [a][a]−1 nor [a]−1[a] appears as a subword; and
• neither [b][b]−1 nor [b]−1[b] appears as a subword.

For instance, W contains [b][a][a][b]−1[a]−1. The empty word is allowed, so 1 ∈ W. Since each
element of W is a product of elements of π1(X,x0), there is a set map W → π1(X,x0).

For each vertex x̃1 of T , there is a unique sequence of edges connecting x̃0 to x̃1 that does not
backtrack, that is, traverse an edge in one direction and then go backwards along the same edge.
This non-backtracking condition is exactly what is needed to ensure that this edge-path corresponds
to an element of π1(X,x0) represented by a reduced word. In this way, we see that the set map
W → π1(X,x0) is a bijection.

To sum up, π1(X,x0) is generated by [a] and [b], and each element in it can be uniquely written
as reduced word in [a] and [b]. This implies that π1(X,x0) is the free group on [a] and [b]. In fact,
for a set S some authors define the free group F (S) on S to be the set of reduced words on elements
of S. They construct a product on F (S) by concatanating reduced words and then cancelling terms
of the form ss−1 and s−1s to obtain a reduced word.

This is not a particularly good construction of a free group; for instance, it takes work to show
that this product is associative since there are choices to be made as to what order to cancel terms
to reduce a non-reduced word. More conceptual constructions first define free groups in a way that
is manifestly a group and then prove that each element can be uniquely expressed as a reduced word.
There are algebraic approaches to this (see Chapter YYY). However, in §5.4 we will show how to do
this using the geometry of trees. □

4.6. Functoriality

We now study the ways in which the fundamental group and groupoid of X depends on X.

4.6.1. Initial thoughts. We start with the fundamental group. For a path-connected space X
and x0 ∈ X, Lemma 4.3.9 implies that up to isomorphism π1(X,x0) does not depend on the choice
of x0. The isomorphism class of π1(X,x0) therefore is an invariant of the X in the sense that if Y
is another path-connected space with a basepoint y0 and π1(X,x0) ≇ π1(Y, y0), then X ≇ Y . For
instance, since π1(S1, 1) ∼= Z but π1(S2, x0) = 1, it follows that S1 is not homeomorphic to S2.
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Remark 4.6.1. Of course, this can be proved in other ways as well; for instance, removing any
two points from S1 gives a disconnected space, but removing a finite collection of points from S2
does not disconnect it. We will soon see results that can be proved with π1 but seem resistant to
more simple-minded ideas. □

4.6.2. Induced maps. Now consider a map f : X → Y and x0 ∈ X. If γ is a loop in X based
at x0, then f ◦ γ is a loop in Y based at f(x0). The loop [f ◦ γ] only depends on the homotopy class
of γ, and the map f∗ : π1(X,x0) → π1(Y, f(x0)) defined by

f∗([γ]) = [f ◦ γ] for all [γ] ∈ π1(X,x0)

is a homomorphism called the homomorphism induced by f . We have already seen an example of this
when we discussed retractions in §4.4.2: if A is a subspace of X and and a0 ∈ A, then the inclusion
map ι : A ↪→ X induces a homomorphism ι∗ : π1(A, a0) → π1(X, a0).

4.6.3. Pointed spaces and homotopies. Since the fundamental group is the group of ho-
motopy classes of loops, one expects the homomorphism induced by a map to only depend on the
homotopy class of the map. However, this is not quite right since we have to be careful about the
basepoint. To state things properly, we introduce the following terminology:

Definition 4.6.2. A pointed space is a pair (X,x0) with X a space and x0 ∈ X. A map between
pointed space (X,x0) and (Y, y0) is a map f : X → Y such that f(x0) = y0. We will denote such a
map by f : (X,x0) → (Y, y0). A homotopy of maps from (X,x0) to (Y, y0) is a homotopy ft : X → Y
such that ft(x0) = y0 for all t ∈ I. Just like for maps, we will denote this by ft : (X,x0) → (Y, y0), and
if such an ft exists we will say that f0 : (X,x0) → (Y, y0) and f1 : (X,x0) → (Y, y0) are homotopic. □

With this setup, a map f : (X,x0) → (Y, y0) between pointed spaces induces a homomorphism
f∗ : π1(X,x0) → π1(Y, y0), and if f : (X,x0) → (Y, y0) and g : (X,x0) → (Y, Y0) are homotopic maps
between pointed spaces then f∗ = g∗.

4.6.4. Functors. The homomorphisms induced by maps of pointed spaces have the following
two simple properties:

• for maps of pointed space f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0), we have (g ◦ f)∗ =
g∗ ◦ f∗; and

• the identity map 1 : (X,x0) → (X,x0) induces the identity homomorphism, i.e., 1∗ = 1.

All of this can be summarized in categorical language as follows. Recall that if C and D are
categories, then a functor F : C → D consists of the following data:

• For all objects C ∈ C, an object F (D) ∈ D.
• For all morphisms f : C1 → C2 between objects of C, a morphism F (f) : F (C1) → F (C2).

These are required to satisfy:

• for all morphisms f : C1 → C2 and g : C2 → C3 between objects of C, we have F (g ◦ f) =
F (g) ◦ F (f); and

• for all identity morphisms 1C : C → C in C, we have F (1C) = 1F (C).

To fit the fundamental group into this, let Top∗ be the category of pointed spaces, so the objects
of Top∗ are pointed spaces (X,x0) and the morphisms in Top∗ are the map f : (X,x0) → (Y, y0)
between pointed spaces. We can then summarize our discussion by:

Lemma 4.6.3. The fundamental group is a functor π1 : Top∗ → Group.

Remark 4.6.4. It will play less of a role in this book, but see §4.6.6 below for a discussion of
the functoriality of the fundamental groupoid. □

4.6.5. Illustration of functoriality. Using functoriality, we can use the fundamental group to
obstruct the existence of maps between spaces. As a classic example of this, we give another proof of
the following, which we originally proved using winding numbers in §3.2:

Proposition 4.6.5. There does not exist a retraction r : D2 → S1.
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Proof. Assume that a retraction r : D2 → S1 exists. Let ι : S1 → D2 be the inclusion, so
r ◦ ι = 1S1 . Letting x0 ∈ S1 be a basepoint, we have ι(x0) = r(x0) = x0. The maps on fundamental
groups induced by ι and r are thus

π1(S1, x0) π1(D1, x0) π1(S1, x0).

Z 0 Z

ι∗ r∗

Since the central group is 0, this composition is the 0 map. However, since r◦ ι = 1S1 this composition
is also the identity map 1 : Z → Z, giving a contradiction. □

Remark 4.6.6. Geometrically, this proof relies on the same key facts as our proof in §3.2;
however, they are packaged in different ways. □

For the reader’s convenience, we explain again why this implies the two-dimensional Brouwer
fixed point theorem:

Theorem 4.6.7 (Two-dimensional Brouwer fixed point theorem). Let f : D2 → D2 be a continuous
map. Then f has a fixed point, i.e., there exists some x ∈ D2 with f(x) = x.

Proof. Assume that f has no fixed points. Define a function r : D2 → S1 as follows. For x ∈ D2,
consider the ray starting at f(x) and passing through x. This is well-defined since f(x) ̸= x, and it
intersects the boundary S1 in a single point. We define r(x) to be that intersection point:

r(x)

f(x)
x

For x ∈ S1, we have r(x) = x. In other words, r is a retraction from D2 to its boundary S1,
contradicting Proposition 4.6.5. □

4.6.6. Fundamental groupoid and functoriality. For completeness, we now explain how to
think about the fundamental groupoid as a functor. Recall that a groupoid is a category in which all
morphisms are invertible. For groupoids G1 and G2, a groupoid homomorphism from G1 to G2 is a
functor F : G1 → G2. Unpacking this, F consists of the following data:

• For each object p ∈ G1, an object F (p) ∈ G2.
• For each morphism ϕ : p→ q in G1, a morphism F (ϕ) : F (p) → F (q) in G2.

The morphisms F (ϕ) must respect composition in the obvious sense. For each p ∈ G1, we have the
group AutG1(p), and F : G1 → G2 induces a group homomorphism F∗ : AutG1(p) → AutG2(f(p)).
If we think of a groupoid as a collection of groups connected by isomorphisms, the homomorphism
F : G1 → G2 can be regarded as a collection of group homomorphisms that respect the given
isomorphisms.

Let Groupoid be the category whose objects are groupoids and whose objects are groupoid
homomorphisms. The fundamental groupoid can then be regarded as a functor Π: Top → Groupoid:

• For a space X, we have the groupoid Π(X).
• For a map of space f : X → Y , we have the groupoid homomorphism f∗ : Π(X) → Π(Y )
defined as follows:

– An object of Π(X) is a point p ∈ X, and f∗(p) = f(p) ∈ Y .
– A morphism in Π(X) from p ∈ X to q ∈ X is the homotopy class of a path γ from p

to q, and f∗([γ]) = [f ◦ γ].
We remark that unlike for the fundamental group, the groupoid homomorphisms f∗ : Π(X) → Π(Y )
are not homotopy invariant, at least not in a naive sense. See Exercise 4.6 for one way to think about
this.
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4.7. Exercises

Exercise 4.1. Let X be a path-connected space and let γ0, γ1 : I → X be two paths in X. Prove
that γ0 is homotopic to γ1 if we do not require the homotopy to fix the endpoints of the path. □

Exercise 4.2. Let G be a groupoid and ϕ : A→ B be a morphism in G. Consider ϕ, ϕ
′
: B → A.

Then ϕ = ϕ
′
if any of the following conditions are satisfied:

• ϕ ◦ ϕ = ϕ
′ ◦ ϕ = 1A; or

• ϕ ◦ ϕ = ϕ ◦ ϕ′ = 1B ; or
• ϕ ◦ ϕ = 1A and ϕ ◦ ϕ′ = 1B . □

Exercise 4.3. Let X and Y be spaces with basepoints x0 ∈ X and y0 ∈ Y . Prove that

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0). □

Exercise 4.4. TOWRITE: an example of a space that is contractible but does not deformation
retract to any point. □

Exercise 4.5. Verify that the maps constructed in the proof of Lemma 4.4.12 are well-defined
and continuous. □

Exercise 4.6. Let ft : X → Y be a homotopy of maps between spaces. Prove that ft induces
a natural isomorphism between the functors f0 : Π1(X) → Π1(Y ) and f1 : Π1(X) → Π1(Y ) giving
the induced maps between fundamental groupoids. Here recall that if F,G : C → D are functors
between categories C and D, then a natural isomorphism Ψ: F → G consists of the following data:

• For all objects A of C, a D-isomorphism Ψ(A) : F (A) → G(A).

These must satisfy the following:

• For all morphisms λ : A→ B between objects of C, the diagram

F (A) F (B)

G(A) G(B)

F (λ)

Ψ(A) ΨB

G(λ)

must commute. □

Exercise 4.7. Fix a basepoint x0 ∈ S1 and let f : (S1, x0) → (S1, x0) be a pointed map.
Recall that we defined deg(f) ∈ Z in §2.6.4. Let d = deg(f). Prove that the induced map
f∗ : π1(S1, x0) → π1(S1, x0) from Z to Z is4 multiplication by d. □

4Here we are choosing the same isomorphism π1(S1, x0) ∼= Z for the domain and codomain. If we chose different

isomorphisms with Z for the domain and codomain, it might be multiplication by −d.



CHAPTER 5

Fundamental groups: homotopy equivalences and more
examples

This chapter continues our development of the fundamental group. The topics include homotopy
equivalences and a variety of examples, including a proof that all groups appear as fundamental
groups of spaces.

5.1. Homotopy equivalences

It is often useful to regard homeomorphic spaces as being the same. In this section, we discuss a
weakening of this that plays an important role in algebraic topology.

5.1.1. Pointed homotopy equivalences. A map f : (X,x0) → (Y, y0) between pointed spaces
is a homotopy equivalence if there exists a map g : (Y, y0) → (X,x0) such that g ◦f : (X,x0) → (X,x0)
and f ◦ g : (Y, y0) → (Y, y0) are both homotopic to the identity. We call g a homotopy inverse to f ,
and if there is a homotopy equivalence between (X,x0) and (Y, y0) then we will say that (X,x0) is
homotopy equivalent to (Y, y0). Here is an example:

Example 5.1.1. Let X be a space, let A ⊂ X be a subspace, and let rt : X → X be a deformation
retract to A. We can therefore regard r1 as a retraction r1 : X → A. Pick a basepoint a0 ∈ A, and
let ι : (A, a0) → (X, a0) be the inclusion. Then ι is a homotopy equivalence with homotopy inverse
r1 : (X, a0) → (A, a0). Indeed, r1 ◦ ι : (A, a0) → (A, a0) is literally the identity, and rt is a homotopy
from the identity r0 = 1X : (X,x0) → (X,x0) to r1 = ι ◦ r1. □

It will become more and more clear as we delve deeper into algebraic topology that homotopy
equivalent pointed spaces are in many ways the “same” from the perspective of the tools of the
subject. Here is one easy way in which this is true, which generalizes the corresponding fact for
deformation retracts (Lemma 4.4.9):

Lemma 5.1.2. Let f : (X,x0) → (Y, y0) be a homotopy equivalence between pointed spaces. Then
f∗ : π1(X,x0) → π1(Y, y0) is an isomorphism.

Proof. Let g : (Y, y0) → (X,x0) be a homotopy inverse to f . Since g ◦f : (X,x0) → (X,x0) and
f◦g : (Y, y0) → (Y, y0) are homotopic to the identity, the induced maps (g◦f)∗ : π1(X,x0) → π1(X,x0)
and (f ◦ g)∗ : π1(Y, y0) → π1(Y, y0) are the identity. Functorality implies that

1 = (g ◦ f)∗ = g∗ ◦ f∗ and1 = (f ◦ g)∗ = f∗ ◦ g∗,

so f∗ and g∗ are inverses to each other. This implies that that f∗ and g∗ are isomorphisms. □

5.1.2. Composing deformation retractions. As we already noted, if X deformation retracts
to a subspace Y and y0 ∈ Y , then the inclusion ι : (Y, y0) → (X, y0) is a homotopy equivalence. Being
homotopy equivalent is an equivalence relation (see Exercise 5.1), so by applying this multiple times
we can get interesting homotopy equivalences. For instance, if Y is a subspace of both X and Z and
both X and Z deformation retract to Y , then (X, y0) is homotopy equivalent to (Z, y0) even though
neither X or Z is contained in the other.

Here is an example of a non-obvious homotopy equivalence proved using this approach:

55
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Example 5.1.3. Let X and Y following surfaces with boundary:

X
Y

Both X and Y deformation retract to the same space Z:

def
retract

= def
retract =

x0 x0

x0

x0

x0

y0 =
y0

Z

Letting x0 ∈ X and y0 ∈ Y be as indicated, it follows that (X,x0) is homotopy equivalent to (Y, y0).
Moreover, since the fundamental group of Z is a free group on two generators (Example 4.5.8), it
follows that π1(X,x0) and π1(Y, y0) are also free groups on two generators. □

5.1.3. Unpointed homotopy equivalences. We now explain how this works without base-
points. A map f : X → Y between spaces is a homotopy equivalence if there exists a map g : Y → X
such that g ◦ f : X → X and f ◦ g : Y → Y are homotopic to the identity. The difference between
this and the pointed case is that these homotopies need not fix a basepoint. We call g a homotopy
inverse to f , and if a homotopy equivalence from X to Y exists we say that X and Y are homotopy
equivalent.

In Lemma 4.4.11, we proved that even though contractions need not fix a basepoint, it is still
true that contractible spaces have trivial fundamental groups. By being similarly careful with the
basepoint, we prove the following:

Lemma 5.1.4. Let f : X → Y be a homotopy equivalence and let x0 ∈ X. Set y0 = f(x0). Then
f∗ : π1(X,x0) → π1(Y, y0) is an isomorphism.

Proof. Let g : Y → X be a homotopy inverse to f . Set x1 = g(y0) and y1 = f(x1). The naive
thing to do would be to prove that the maps f∗ : π1(X,x0) → π1(Y, y0) and g∗ : π1(Y, y0) → π1(X,x1)
were inverses to each other. However, this does not make sense since the domain π1(X,x0) of f∗ is
not the same as the codomain π1(X,x1) of g∗.

Instead, what we will prove is that

(5.1.1) (g ◦ f)∗ : π1(X,x0) → π1(X,x1) and (f ◦ g)∗ : π1(Y, y0) → π1(Y, y1)

are both isomorphisms. This will imply that f∗ : π1(X,x0) → π1(Y, y0) and g∗ : π1(Y, y0) → π1(X,x1)
are both injections. Since f∗ and g∗ are injections and g∗ ◦ f∗ = (g ◦ f)∗ is an isomorphism, it is
immediate that f∗ is also a surjection,1 so f∗ is an isomorphism.

It remains to prove that the two maps in (5.1.1) are isomorphisms. The proofs are the same, so
we will give the details for (g ◦ f)∗ : π1(X,x0) → π1(X,x1). Since g is a homotopy inverse to f , the

1Here are more details. Consider some ζ ∈ π1(Y, y0). We want to find some η ∈ π1(X,x0) with f∗(η) = ζ. Since
g∗ ◦ f∗ is an isomorphism, there exists some η ∈ π1(X,x0) such that g∗(f∗(η)) = g∗(ζ). Since g∗ is an injection, we

must have f∗(η) = ζ.
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map g ◦ f : X → X is homotopic to the identity. Let ht : X → X be a homotopy from g ◦ f to 1X .
Let δ : I → X be the path

δ(s) = hs(x0) for s ∈ I.

We have

δ(0) = h0(x0) = g(f(x0)) = x1 and δ(1) = h1(x0) = 1X(x0) = x0,

so δ is a path from x1 to x0. As in the proof of Lemma 4.3.9, the path δ induces an isomorphism
δ∗ : π1(X,x0) → π1(X,x1) defined by

δ∗([γ]) = [δ·γ·δ] for all [γ] ∈ π1(X,x0).

We will prove that (g ◦ f)∗ equals δ∗.
To see this, consider [γ] ∈ π1(X,x0). Since h0 = g ◦ f , we must prove that

[h0 ◦ γ] = [δ·γ·δ] in π1(X,x1).

The maps ht ◦ γ : I → X do not form a homotopy of paths since the basepoint x0 moves. To fix this,
define δt : I → X via the formula

δt(s) = hts(x0) for all s, t ∈ I.

The path δt thus goes from h0(x0) = g ◦ f(x0) = x1 to ht(x0). It follows that δ
t·(ht ◦ γ)·δt is a path

from x1 to x1, and thus as t varies over I is a homotopy of paths:

x0=h1(x0)

ht(x0)

δt

x1=h0(x0)ht⚬γ

h0⚬γγ=h1⚬γ

Recalling that cx1
is the constant path at x1, we deduce that

[δ0·(h0 ◦ γ)·δ0] = [cx1·(h0 ◦ γ)·cx1
] = [h0 ◦ γ]

equals

[δ1·(h1 ◦ γ)·δ1] = [δ·γ·δ],
as desired. □

5.2. Collapsing contractible subspaces

LetX be a space and Y be a contractible subspace ofX. Consider the quotient map q : X → X/Y .
It turns out that in many cases q is a homotopy equivalence. Roughly speaking, this holds as long
as Y is embedded into X with reasonable local properties. There are a number of conditions that
ensure this. In this section, we give one that is fairly easy to state and prove.

5.2.1. Mapping cylinder neighborhoods. Recall from Example 4.4.6 that for a map f : Z →
Y between spaces, the mapping cylinder of f is the space Cyl(f) obtained by quotienting the disjoint
union (Z × I) ⊔ Y to identify (z, 1) ∈ Z × I with f(z) ∈ Y for all z ∈ Z. For z ∈ Z and s ∈ I, let

(z, s) be the image of (z, s) ∈ Z × I in Cyl(f). We now define:

Definition 5.2.1. Let X be a space and let Y ⊂ X be a subspace. A mapping cylinder
neighborhood of Y is a closed subset N of X containing Y along with a closed subset Z ⊂ N such
that:

• N \ Z is an open neighborhood of Y in X; and

• there exists a map f : Z → Y and a homeomorphism ϕ : Cyl(f) → N such that f((z, 0)) = z
and f(y) = y for all z ∈ Z and y ∈ Y . □
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Example 5.2.2. Let Y be the sidewise-Y shaped subspace of R2 shown here:

Y

Z

The subspace Y of R2 has a mapping cylinder neighborhood N indicated in blue. This blue subspace
is the mapping cylinder of a map f : Z → Y with Z ∼= S1 the indicated subspace. The lines connect
points z ∈ Z with their images f(z) ∈ Y . Since Y is contractible and has a mapping cylinder
neighborhood, it will follow from Theorem 5.2.5 below that the quotient map R2 → R2/Y is a
homotopy equivalence. In fact, R2/Y ∼= R2 (see Exercise 5.4). □

Example 5.2.3. Let X be the following surface with boundary and let Y ∼= I be the indicated
arc in X:

Y

A mapping cylinder neighborhood N of Y is drawn in blue. Here N ∼= Y ×I, and N is homeomorphic
to the mapping cylinder of the projection f : Y ⊔ Y → Y . Since Y is contractible and has a mapping
cylinder neighborhood, it will follow from Theorem 5.2.5 below that the quotient map q : X → X/Y
is a homotopy equivalence:

/Y

In this case, X and X/Y are not homeomorphic; indeed, X/Y is not a manifold around the point
that is the image of Y . We showed in Example 5.1.3 that the fundamental group of X is the free
group on two generators, so the same is true for X/Y . □

Example 5.2.4. For readers who are familiar with smooth manifolds, here is an important
example. Let Mn be a smooth manifold with boundary and let Nd be a properly embedded
submanifold of Mn. A closed tubular neighborhood of Nd is then a mapping cylinder neighborhood
of Nd. Example 5.2.3 is a special case of this. □

5.2.2. Collapsing subspaces with mapping cylinder neighborhoods. We now prove:

Theorem 5.2.5. Let X be a space and let Y ⊂ X be a contractible subspace with a mapping
cylinder neighborhood. Then the quotient map q : X → X/Y is a homotopy equivalence.

Proof. We must use the hypotheses to construct a homotopy inverse g : X/Y → X to q. Let
N be a mapping cylinder neighborhood of Y . Identify N with Cyl(f) for some Z ⊂ N and some
map f : Z → Y . Let y0 be the point of X/Y corresponding to Y , let f ′ : Z → y0 be the projection,
and let N ′ = Cyl(f ′). We can identify N ′ with N/Y , and after making this identification N ′ is a
mapping cylinder neighborhood of y0 in X/Y with X \N = (X/Y ) \N ′. See here:
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q

N

Y

X∖N

Z
y0

N'

(X/Y)∖N'

Z

To construct a continuous map X/Y → X, it is enough to construct a continuous map N ′ → N that
is the identity on Z and then extend N ′ → N to X/Y by the identity.2 In a similar way, we can
construct continuous maps X → X (resp. X/Y → X/Y ) by constructing continuous maps N → N
(resp. N ′ → N) and extending by the identity.

For z ∈ Z and s ∈ I, let (z, s) ∈ N and (z, s)
′
∈ N ′ be the corresponding points. We now divide

the proof into three steps:

Step 1. We construct the purported homotopy inverse g : X/Y → X.

Since Y is contractible, there is a homotopy ht : Y → Y from 1Y to a constant map. Let y1 ∈ Y
be the constant value of h1. Define g : X/Y → X via the formulas

g((z, s)
′
) = (z, 2s) for z ∈ Z and s ∈ [0, 1/2],

g((z, s)
′
) = h2s−1(f(z)) for z ∈ Z and s ∈ [1/2, 1],

g(y0) = y1

g(x) = x for x ∈ (X/Y ) \N ′ = X \N.

See here, where the indicated map takes each line segment from z ∈ Z to y0 to the path that first
goes to f(z) (in black) and then in Y to y1 (in orange):

g

y0

N'

Z

y1

N

Z

Y

By what we said above, this map g : X/Y → X is continuous.

Step 2. We prove that the composition g ◦ q : X → X is homotopic to the identity.

The map g ◦ q : X → X is given by the formulas
g ◦ q((z, s)) = (z, 2s) for z ∈ Z and s ∈ [0, 1/2],

g ◦ q((z, s)) = h2s−1(f(z)) for z ∈ Z and s ∈ [1/2, 1],

g ◦ q(y) = y1 for y ∈ Y ,

g ◦ q(x) = x for x ∈ X \N.

2To see that this is continuous, note that the mapX/Y → X is continuous on the closed setsN ′ and (X/Y )\(N ′\Z);
indeed, on the latter set it is the identity. These cover X/Y . Now apply the fact that if ψ : A→ B is a map of sets

between spaces and {C1, . . . , Cn} is a cover of A by closed sets such that each ψ|Ci
is continuous, then ψ is continuous.

Note that this would be false if our cover had infinitely many closed sets in it.
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This is homotopic to the identity via the homotopy ϕt : X → X given by the formulas
ϕt((z, s)) = (z, (2− t)s) for z ∈ Z and s ∈ [0, 1/(2− t)],

ϕt((z, s)) = h(2−t)s−1(f(z)) for z ∈ Z and s ∈ [1/(2− t), 1],

ϕt(y) = h1−t(y) for y ∈ Y ,

ϕt(x) = x for x ∈ X \N.
By the discussion at the beginning of the proof this is continuous.

Step 3. We prove that the composition q ◦ g : X/Y → X/Y is homotopic to the identity.

The map q ◦ g : X/Y → X/Y is given by the formulas
q ◦ g((z, s)

′
) = (z, 2s)

′
for z ∈ Z and s ∈ [0, 1/2],

q ◦ g((z, s)
′
) = y0 for z ∈ Z and s ∈ [1/2, 1],

q ◦ g(y0) = y0

g ◦ q(x) = x for x ∈ (X/Y ) \N ′.

This is homotopic to the identity via the homotopy ψt : X/Y → X/Y given by the formulas
ψt((z, s)

′
) = (z, (2− t)s)

′
for z ∈ Z and s ∈ [0, 1/(2− t)],

ψt((z, s)
′
) = y0 for z ∈ Z and s ∈ [1/(2− t), 1],

ψt(y0) = y0

ψt(x) = x for x ∈ X \N.
By the discussion at the beginning of the proof this is continuous. □

5.2.3. An example. We now give an example of how to this to analyze an interesting example.

Example 5.2.6. Let X and Y be the following spaces:

X Y

The space X is obtained by quotienting S2 to identify two points together,3 and the space Y is
obtained by gluing S2 and S1 together at a single point. We will prove that X and Y are homotopy
equivalent, and then we will prove that their fundamental groups are isomorphic to Z.

Let Z be the following space and let I and D ∼= D2 be the indicated subspaces of Z:

I
D

We have Z/I ∼= X and Z/D ∼= Y . Since I is contractible and has a mapping cylinder neighborhood
in Z, it follows that Z is homotopy equivalent to X. Similarly, since D is contractible and has a
mapping cylinder neighborhood in Z, it follows that Z is homotopy equivalent to Y . We conclude
that X and Y are homotopy equivalent, as claimed.

3It does not matter which two points are identified. Indeed, any two points “look the same” in the sense that

they differ by a homeomorphism of S2. More generally, if Mn is a connected n-manifold with n ≥ 2 and {p1, . . . , pk}
and {q1, . . . , qk} are two sets of k distinct points on Mn, then there exists a homeomorphism f : Mn → Mn with

f(pi) = qi for all 1 ≤ i ≤ k. See Exercise 5.5.
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In particular, the fundamental groups of X and Y are the same. It remains to prove that the
fundamental group of Y is isomorphic to Z. Consider the basepoint y0 ∈ Y , the covering space

p : Ỹ → Y , and the point ỹ0 ∈ Ỹ shown here:

y0... ...
y0~

p

The map p wraps each segment of the horizontal line connecting two spheres around the copy of

S1 in Y . This is a regular cover with deck group Z, which acts on Ỹ by horizontal translations. By

Theorem 4.5.1, to prove that π1(Y, y0) ∼= Z it is enough to prove that Ỹ is simply-connected. Since

Ỹ is path-connected, this is equivalent to showing that π1(Ỹ , ỹ0) = 1. Consider some [γ] ∈ π1(Ỹ , ỹ0).

Let P = {pi | i ∈ Z} and {ỹi | i ∈ Z} and Ỹ ′ ∼= R be as follows:

... ...
y0~

p0 p1p-1 p2p-2

Y'~ y1~ y2~y-1~y-2~

Just like when we proved that Sn is simply-connected for n ≥ 2, we can apply Lemma 4.1.5 (general

position) to homotope γ such that it lies in Ỹ \P . To prove that [γ] = 1, it is therefore enough to prove

that π1(Ỹ \ P, ỹ0) = 1. If Ỹi is the sphere in Ỹ containing {pi, ỹi}, then Ỹi \ pi deformation retracts

to ỹi. Using these deformation retractions, Ỹ \ P deformation retracts to Ỹ ′, which deformation

retracts to ỹ0. This implies that π1(Ỹ \ P, ỹ0) = 1, as desired. □

5.3. Every group is the fundamental group of a space

In this section, we prove that every group G is the fundamental group of some space.

5.3.1. Joins. This requires some topological preliminaries. Let X and Y be spaces. Recall that
X ⊔ Y is the disjoint union of X and Y . The join of X and Y , denoted X ∗ Y , is the quotient space

X ∗ Y = X ⊔ Y ⊔ (X × Y × I) / ∼,

where ∼ makes the following identifications:

• For x ∈ X and y ∈ Y , we identify (x, y, 0) ∈ X × Y × I with x ∈ X.
• For x ∈ X and y ∈ Y , we identify (x, y, 1) ∈ X × Y × I with y ∈ Y .

The space X ∗ Y contains subspaces X and Y , and the other points of X ∗ Y are all of the form
(x, y, s) with x ∈ X and y ∈ Y and s ∈ (0, 1). One should view X ∗ Y as consisting of X and Y as
well as line segments connecting points of X to points of Y . For x ∈ X and y ∈ Y and s ∈ (0, 1), the
point (x, y, s) lies on the line segment connecting x to y. We introduce the following notation:

Notation 5.3.1. For x ∈ X and y ∈ Y and s1, s2 ∈ I with s1 + s2 = 1, define s1x+ s2y to be
the image of (x, y, s2) ∈ X × Y × I in X ∗ Y . □

In this notation, we can move the point s1x+ s2y around by either:

• moving x around in X and y around in Y ; or
• varying the coefficients s1 and s2. If s1 goes to 0, then necessarily s2 goes to 1. In this case,
s1x disappears and we are left with y ∈ Y . Similarly, if s2 goes to 0 then necessarily s1
goes to 1. In this case, s2y disappears and we are left with x ∈ X.

Here are some examples:
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Example 5.3.2. Let X = {x0} be a one-point space. Then X ∗ Y is the cone on Y with cone
point x0:

y

0.25x0+0.75y

x0 Y

We denote this by Conex0
(Y ). This space deformation retracts to the cone point x0 via the deformation

retract ft : Conex0
(Y ) → Conex0

(Y ) defined by

ft(s1x0 + s2y) = (s1 + ts2)x0 + (s2 − ts2)y for t ∈ I and y ∈ Y and s1, s2 ∈ I with s1 + s2 = 1.

In particular, for y ∈ Y and s1, s2 ∈ I with s1 + s2 = 1 we have

f1(s1x0 + s2y) = (s1 + s2)x0 + 0y = x0. □

Example 5.3.3. Let X and Y be discrete sets. Then X ∗ Y is the complete bipartite graph with
vertices X and Y :

x1

x2

x3

y1

y2

0.65x1+0.35y1

For later use, note that this is connected as long as X and Y are both nonempty. □

Example 5.3.4. Recall that Dn is the closed unit disk in Rn. Here is a picture of D1 ∗ D1:

𝔻1

𝔻1

As is clear from this figure, we have D1 ∗ D1 ∼= D3. More generally, we have Dn ∗ Dm ∼= Dn+m+1; see
Exercise 5.2. □

Example 5.3.5. Here is a picture of S0 ∗ S1:

𝕊1𝕊0

As is clear from this figure, we have S0 ∗ S1 ∼= S2. More generally, we have Sn ∗ Sm ∼= Sn+m+1; see
Exercise 5.3. □

5.3.2. Simple connectivity of join. We now prove:

Lemma 5.3.6. Let X be a nonempty discrete space and let Y be a path-connected space. Then
X ∗ Y is simply-connected.
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Proof. Pick x0 ∈ X and enumerate X as X = {x0} ⊔ {ri | i ∈ I}. The space X ∗ Y looks like:

Y

x0

r1 r2
It is clear that X ∗ Y is path-connected, so it is enough to prove that π1(X ∗ Y, x0) = 1. Consider
some [γ] ∈ π1(X ∗ Y, x0). We will prove that γ can be homotoped to a constant map by a general
position argument similar to the one we used in Lemma 4.1.4 to prove that Sn is simply-connected
for n ≥ 2. Our argument will have two steps:

(i) The loop γ : I → X ∗ Y can be homotoped to lie in U = X ∗ Y \ {ri | i ∈ I}.
(ii) The subspace U of X ∗ Y deformation retracts to x0.

These two facts will imply the lemma; indeed, (i) implies that [γ] is in the image of the map
π1(U, x0) → π1(X ∗ Y, x0), and (ii) implies that π1(U, x0) = 1 and hence that [γ] = 1. Here are the
proofs of (i) and (ii):

Step 1. For [γ] ∈ π1(X ∗ Y, x0), the loop γ : I → X ∗ Y can be homotoped to lie in U =
X ∗ Y \ {ri | i ∈ I}.

For i ∈ I, let Vi = {s1ri + s2y | y ∈ Y , s1 ∈ (0, 1], s2 ∈ [0, 1), s1 + s2 = 1}:

ri

0.2ri+0.8y

y

Note that we do not allow s2 = 1, so Vi does not contain Y . The set Vi is an open neighborhood of
ri that deformation retracts to ri via the deformation retraction rt : Vi → Vi defined by

rt(s1ri + s2y) = (s1 + ts2)ri + (s2 − ts2)y for t ∈ I and s1ri + s2y ∈ Vi.

It follows that Vi is contractible and hence simply-connected. Also, since Y is path-connected the
space Vi \ {ri} ∼= Y × (0, 1) is path-connected. These are exactly the conditions we need to apply
Lemma 4.1.5 (general position), which shows that we can homotope γ so that its image does not
contain any of the ri and thus lies in U .

Step 2. The subspace U of X ∗ Y deformation retracts to x0.

Define

W = {s1x0 + s2y | y ∈ Y , s1, s2 ∈ I, s1 + s2 = 1} ,
V i = {s1ri + s2y | y ∈ Y , s1, s2 ∈ I, s1 + s2 = 1} .

Both W and each V i contain Y , and X ∗Y is the union of W and the V i. Additionally, the subspace
U is the union of W and the V i \ {ri}. We have V i \ {ri} ∼= Y × (0, 1], so V i deformation retracts to
Y . Combining all these deformation retractions gives a deformation retraction of U to W . Since
W ∼= Conex0

(Y ), the space W deformation retracts to x0 (see Example 5.3.2). The step follows. □
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5.3.3. Realizing fundamental groups. All the tools needed to prove that every group is the
fundamental group of some space are in place:

Theorem 5.3.7. Let G be a group. Then there exists a pointed space (X,x0) with π1(X,x0) ∼= G.

Proof. By Theorem 4.5.1, it is enough to construct a simply-connected space Z equipped with
a covering space action (see §1.7.1) by G. The desired space X will then be Z/G with an arbitrary
basepoint x0. Since G has no structure, the only easily-identified set on which it acts is itself. We
therefore must somehow build Z out of G.

Let A and B and C be three copies of G, regarded as sets with a left G-action. Endow A and
B and C with the discrete topology, so each is a discrete space on which G acts freely. The join
B ∗ C is the bipartite graph with vertices B and C (see Example 5.3.3), so B ∗ C is path-connected.
Lemma 5.3.6 therefore implies that X = A ∗ (B ∗C) is simply-connected. The free actions of G on A
and B and C induce a free action of G on X. You will verify in Exercise 5.6 that this action is a
covering space action. □

Remark 5.3.8. The above proof might seem a little abstract, so we will spell it out for G the
cyclic group C2 of order 2. Here are pictures in this case of B ∗ C and X = A ∗ (B ∗ C), with A in
orange and B in blue and C in yellow:

B*C≅𝕊1
X=A*(B*C)≅𝕊2

The action of C2 on X interchanges the vertices of the same color. In fact, identifying X with S2,
this is exactly the antipodal action of C2 on S2 with quotient RP2, which we recall has fundamental
group C2. □

5.4. Free groups

We now explain how to construct free groups as fundamental groups of graphs. Our results give
just a taste of what is possible. See Chapter YYY for far more, including algebraic proofs of the
results we prove geometrically.

5.4.1. Definition and uniqueness of free groups. Let S be a set. Roughly speaking, a free
group on S is a group that is easy to map out of. One need only say where the elements of S must
go. Here is the formal definition:4

Definition 5.4.1. Let S be a set. A free group on S is a group F (S) containing S such that for
all groups G, all set maps h : S → G extend uniquely to homomorphisms H : F (S) → G. The set S
is called a free basis for F (S). □

It is not obvious that a free group on a set S exists. We will soon construct one, but first we
prove that they are unique in the sense that any two free groups on S are isomorphic:5

Lemma 5.4.2. Let S be a set and let F (S) and F ′(S) be free groups on S. Then there is an
isomorphism ϕ : F (S) → F ′(S) with ϕ(s) = s for all s ∈ S.

Proof. By the definition of a free group, the inclusion S ↪→ F ′(S) extends to a homomorphism
H : F (S) → F ′(S). Similarly, the inclusion S ↪→ F (S) extends to a homomorphism H ′ : F ′(S) →
F (S). Both H ′ ◦ H : F (S) → F (S) and the identity 1F (S) : F (S) → F (S) extend the inclusion
S ↪→ F (S), so by the uniqueness in the definition of a free group we must have H ′ ◦ H = 1F (S).
Similarly, H ◦H ′ = 1F ′(S), so H and H ′ are isomorphisms. □

4It would be better to not require that S is a subset of F (S), but merely that there is a set map ι : S → F (S).

The definition then is that for all set maps h : S → G there is a homomorphism H : F (S) → G with h = H ◦ ι. One
then proves that this implies that ι is injective, so S can be regarded as a subset of F (S). We chose to make S ⊂ F (S)

part of the definition to make it easier to grasp for beginners.
5The definition of a free group is what is called a universal mapping property, and our proof of uniqueness works

for anything defined by a universal mapping property.
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5.4.2. Existence and reduced words. Let S be a set. A word in S is a formal expression
w = sϵ11 · · · sϵnn with si ∈ S and ϵi ∈ {±1} for all 1 ≤ i ≤ n. This word is reduced if for all 1 ≤ i < n
we do not have

sϵii s
ϵi+1

i+1 ∈
{
ss−1, s−1s | s ∈ S

}
.

By cancelling terms of the form ss−1 and s−1s with s ∈ S we can reduce any word to a reduced
word. If S is a subset of a group Γ, then we can regard words in S as elements of Γ and cancelling
terms of the form ss−1 and ss−1 does not change the associated element of Γ. We will prove:

Theorem 5.4.3. Let S be a set. Then:

• there exists a free group F (S) on S; and
• every element of F (S) can be represented by a unique reduced word in S.

Proof. If S = ∅ then we can take F (S) = 1, so assume that S ̸= ∅. Recall our convention from
§1.6 that all graphs are oriented. Let XS be a graph with one vertex x0 and with |S| oriented edges,
each labeled with an element of S. For instance, if S = {a, b, c} then XS is

x0
a b

c

Each element of S corresponds to an oriented loop in XS based at x0, so we can regard s ∈ S as
an element of π1(XS , x0). This allows us to regard words in S as elements of π1(XS , x0). We now
divide the proof into two steps:

Step 1. Each element of group π1(XS , x0) can be represented by a unique reduced word in S.
Consequently, S is a subset6 of π1(XS , x0) and π1(XS , x0) is generated by S.

Define TS to be an infinite tree each of whose vertices has valence 2|S|. The oriented edges of TS
are labeled by elements of S, and for each vertex v of TS there are:

• |S| edges coming out of v labeled by elements of S; and
• |S| edges going into v labeled by elements of S.

For instance, if S = {a, b, c} then the local picture of TS around v looks like

a

b
c

a

bc

This uniquely specifies TS .
There is a covering space p : TS → XS taking each vertex of TS to x0 and each oriented edge of

TS labeled by s ∈ S to the corresponding loop in XS labeled by s. For instance, if S = {a, b} this is
the now-familiar cover

p

XS
TS

x0
a bt0

6Before this step we explained how to regard elements of S as elements of π1(XS , x0), but until this step is
complete it is possible that some elements of S might be the trivial element of π1(XS , x0) or that two distinct elements

of S might represent the same element of π1(XS , x0).
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Just like in the S = {a, b} case, the cover p : TS → XS is regular.7 Since TS is a tree, it is contractible
and hence simply-connected (cf. Lemma 4.4.12).

Fix a vertex t0 of TS . Letting G be the deck group of p : TS → X, we can apply Theorem 4.5.1
to see that

π1(XS , x0) ∼= G.

The group G acts simply transitively on the vertices of T , so each vertex is of the form gt0 for
some unique g ∈ G. From the description of the isomorphism in §4.5.2, the element of π1(X,x0)
corresponding to g ∈ G is the homotopy class of the loop in X based at x0 obtained by taking a
path in T from t0 to gt0 and projecting it to X.

For each vertex t1 of T , there is a unique sequence of edges connecting t0 to t1 that does not
backtrack, that is, traverse an edge in one direction and then go backwards along the same edge.
This non-backtracking condition is exactly what is needed to ensure that this edge-path corresponds
to an element of π1(XS , x0) represented by a reduced word. In this way, we see that every element
of π1(XS , x0) is represented by a unique reduced word in S, as desired.

Step 2. The group π1(XS , x0) is a free group on S.

This could be proved algebraically from Step 1, but we will instead give a geometric proof. All
we will use from Step 1 is8 that S ⊂ π1(XS , x0) and that S generates π1(XS , x0). Consider a group
G and a set map h : S → G. Our goal is to prove that h extends uniquely to a homomorphism
H : π1(XS , x0) → G. Since S generates π1(XS , x0), uniqueness is immediate and we only need to
prove existence.

By Theorem 5.3.7, we can find a pointed space (Y, y0) with π1(Y, y0) ∼= G. Identify π1(Y, y0) with
G. For each s ∈ S, write h(s) = [γs] ∈ π1(Y, y0). We can then define a map ϕ : (XS , x0) → (Y, y0)
by requiring ϕ(x0) = y0 and then letting ϕ map the loop labeled by s to γs. By construction,
H = ϕ∗ : π1(XS , x0) → π1(Y, y0) = G extends h. □

5.4.3. Graphs with one vertex. For later use, we extract the following result from the proof
of Theorem 5.4.3:

Corollary 5.4.4. Let S be a set and let XS be a graph with one vertex x0 and with |S| oriented
edges, each labeled with an element of S. Identify each s ∈ S with the corresponding loop in XS based
at x0. Then π1(XS , x0) is a free group on {[s] | s ∈ S}.

5.5. Fundamental groups of graphs

We close this chapter by showing how to calculate the fundamental group of an arbitrary graph.

5.5.1. Maximal trees. Recall that a tree is a nonempty connected graph with no cycles. Each
tree is contractible (Lemma 4.4.12). For a graph X, a maximal tree in X is a subtree T of X that
contains every vertex of X. For instance:

T

These always exist:

Lemma 5.5.1. Let X be a nonempty connected graph. Then X contains a maximal tree.

7The point here is that T is a tree each of whose vertices has the same local picture, so there are edge-label

preserving graph automorphisms of T taking any vertex to any other vertex. These are deck transformations.
8If as described in the footnote before the definition of a free group we did not require the inclusion S ↪→ F (S) to

be injective, then we could get away here with only knowing that the image of S generates π1(XS , x0).
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Proof. Inductively define subtrees

T0 ⊂ T1 ⊂ T2 ⊂ · · ·
of X in the following way. Start by choosing a vertex v0 of X and letting T0 = v0. Next, if Tn−1 has
been constructed, let Tn be the subtree obtained from Tn−1 as follows:

• For each vertex v of X that does not lie in Tn−1 but is connected by an edge to Tn−1,
choose an edge connecting Tn−1 to v and add it to Tn.

Now define

T =

∞⋃
n=0

Tn.

This is a subgraph of G. Since a cycle in T only involves finitely many edges, a cycle of T must be
contained in some Tn. Since each Tn is a tree, it follows that T has no cycles, so T is a tree. Since X
is connected, each vertex of X must lie in T , so T is a maximal tree. □

5.5.2. Graphs. Using maximal trees, we will prove:

Theorem 5.5.2. Let X be a connected graph and let v0 be a vertex of X. Then π1(X, v0) is a
free group.

Proof. Let T be a maximal tree in X. The quotient graph X/T contains a single vertex w0

and a loop for each edge of X that does not lie in T :

q
T

X X/T

v0

w0

We saw in the proof of Theorem 5.4.3 that π1(X,w0) is a free group. Since T is a contractible
subspace of X with a mapping cylinder neighborhood, the quotient map q : X → X/T is a homotopy
equivalence. The induced map q∗ : π1(X, v0) → π1(W,w0) is therefore an isomorphism, so π1(X, v0)
is also a free group. □

5.5.3. Free bases. Let X be a connected graph and let v0 be a vertex of X. By analyzing the
proof of Theorem 5.5.2, we can construct a free basis for the free group π1(X, v0). Begin by choosing
a maximal tree T of X. Let w0 be the single vertex of X/T . As in the proof of Theorem 5.5.2, the
quotient map q : X → X/T induces an isomorphism q∗ : π1(X, v0) → π1(X/T,w0).

Let {ei | i ∈ I} be the edges of X that do not lie in T . The map q maps each ei to a loop ei in
X/T that is based at w0. Recall our convention that each edge of a graph is oriented (cf. §1.6). Using
the orientation on ei, we get an element [ei] ∈ π1(X/T,w0). By Corollary 5.4.4, the set {[ei] | i ∈ I}
is a basis for the free group π1(X/T,w0).

For each i ∈ I, we must lift ei to a loop in X that is based at v0. To do this, let ti be a path in
T from v0 to the initial vertex of the edge ei and let t′i be a path in T from the terminal vertex of ei
back to v0. We then have a loop ti·ei·t′i in X based at v0, and q∗([ti·ei·t′i]) = [ei]. We deduce that
{[ti·ei·t′i] | i ∈ I} is a basis for the free group π1(X, v0).

Example 5.5.3. Consider the following graph X with maximal tree T :

v0

t1
t2

t3

t4t5

a

b

c
d

T
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We have labeled and shown the orientation on each edge of X. Following the above algorithm, we
obtain a free basis for π1(X, v0). There is one element of this basis for each edge {a, b, c, d}. For the
edge a, the corresponding element of π1(X, v0) is [t1·a·t5·t4·t2]:

v0

t1
t2

t3

t4t5

a

b

c
d

We similarly get basis elements corresponding to b and c and d. In summary, the following is a free
basis for π1(XS , v0):

{[t1·a·t5·t4·t2], [t1·b·t3·t2], [t2·t3·c·t4·t2], [d·t5·t4·t2]}. □

We will give more examples of this in the next chapter when we discuss covers of graphs.

5.6. Exercises

Exercise 5.1. Prove that being homotopy equivalent is an equivalence relation on pointed
spaces and on spaces. □

Exercise 5.2. Define

∆n =
{
(x1, . . . , xn+1) ∈ Rn+1 | x1, . . . , xn+1 ≥ 0 and x1 + · · ·+ xn+1 = 1

}
.

The space ∆n is called an n-simplex. Prove the following:

(a) ∆n ∼= Dn.
(b) ∆n ∗∆m ∼= ∆n+m+1. Hint: recall that elements of the join ∆n ∗∆m can be written as

formal sums s1x + s2y with x ∈ ∆n and y ∈ ∆m and s1, s2 ∈ I such that s1 + s2 = 1,
where s1x disappears if s1 = 0 and s2y disappears if s2 = 0. Use this to write an explicit
homeomorphism ϕ : ∆n ∗∆m → ∆n+m+1. □

Exercise 5.3. Prove that Sn ∗ Sm ∼= Sn+m+1. Hint: this is similar to Exercise 5.2. □

Exercise 5.4. Let Y be the following subset of R2:

Y

Prove that R2/Y ∼= R2. □

Exercise 5.5. Let Mn be a connected n-manifold with n ≥ 2. Let {p1, . . . , pk} and {q1, . . . , qk}
be two sets of k distinct points on Mn. Prove that there exists a homeomorphism f : Mn → Mn

such that f(pi) = qi for all 1 ≤ i ≤ k. Hint: define

Xk(M
n) =

{
(x1, . . . , xk) ∈ (Mn)×k | xi ̸= xj for all 1 ≤ i, j ≤ k distinct

}
.

Prove that Xk(M
n) is connected (this is where you will use n ≥ 2). Next, prove that the orbit of

(p1, . . . , pk) ∈ Xk(M
n) under the homeomorphism group of Mn is both open and closed (reduce this

to a local statement about a single point in Rn), and thus is all of Xk(M
n). □

Exercise 5.6. Prove that the free action of G on X we constructed in the proof of Theorem
5.3.7 is a covering space action (see §1.7.1 for the definition). □
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