
Homological vanishing for the Steinberg representation

Avner Ash Andrew Putman∗ Steven V Sam†

November 20, 2017

Abstract

For a field k, we prove that the ith homology of the groups GLn(k), SLn(k), Sp2n(k),
SOn,n(k), and SOn,n+1(k) with coefficients in their Steinberg representations vanish for
n ≥ 2i + 2.

1 Introduction
Let G be a connected reductive group over a field k. A basic geometric object associated to
G(k) is its Tits building. By definition, this is the simplicial complex TG(k) whose i-simplices
are increasing sequences

0 ( P0 ( · · · ( Pi ( G(k)

of parabolic k-subgroups of G(k). Letting r be the semisimple k-rank of G, the complex
TG(k) is (r− 1)-dimensional, and the Solomon–Tits theorem [Br1, Theorem IV.5.2] says that
in fact TG(k) is homotopy equivalent to a wedge of (r − 1)-dimensional spheres. Letting R
be a commutative ring, the Steinberg representation of G(k) over R, denoted StG(k;R), is
H̃r−1(TG(k);R). This is one of the most important representations of G(k); for instance, if
G is any of the classical groups in Theorem 1.1 below (e.g. G = SLn) and k is a finite field
of characteristic p, then StG(k;C) is the unique irreducible representation of G(k) whose
dimension is a positive power of p (see [MalZ], which proves this aside from three small cases
that must be checked by hand). See [H] for a survey of many results concerning the Steinberg
representation.

The twisted homology groups Hi(G(k); StG(k;R)) play an interesting role in algebraic K-
theory; see [Q, Theorem 3]. If G(k) is a finite group of Lie type, then StG(k; k) is a projective
G(k)-module (see [H]), and thus the homology groups Hi(G(k); StG(k; k)) all vanish. However,
it is definitely not the case that StG(k;R) is projective for a general commutative ring R,
and if k is an infinite field then StG(k; k) need not be projective. Our main theorem says
that nevertheless for the classical groups, the homology groups Hi(G(k); StG(k;R)) always
vanish in a stable range.

Theorem 1.1. Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Then for all fields k
and all commutative rings R, we have Hi(Gn(k); StGn(k;R)) = 0 for n ≥ 2i+2. Furthermore,
there exists a surjection Hi(G2i(k); StG2i(k;R))→ Hi(G2i+1(k); StG2i+1(k;R)).
∗AP is supported in part by NSF grants DMS-1255350 and DMS-1737434.
†SS is supported in part by NSF grant DMS-1500069.
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Remark 1.2. When char(k) = 2, the groups SOn,n(k) and SOn,n+1(k) in Theorem 1.1 are to
be taken naively as the stabilizers of appropriate quadratic forms (see §2.1 below); we ignore
the Dickson invariant.

Theorem 1.1 (and its proof) is motivated by the following conjecture of Church–Farb–
Putman. Recall that Borel–Serre [BoSe] proved that the virtual cohomological dimension of
SLn(Z) is

(
n
2

)
.

Conjecture 1.3 ([CFaP, Conjecture 2]). We have H(n2)−i(SLn(Z);Q) = 0 for n ≥ i+ 2.

In other words, the rational cohomology of SLn(Z) vanishes in codimension i as long as n is
sufficiently large. Conjecture 1.3 was proved for i = 0 by Lee–Szczarba [LSz] and for i = 1 by
Church–Putman [CP]. It is open for i ≥ 2.

To connect Conjecture 1.3 to Theorem 1.1, recall that Borel–Serre [BoSe] proved that
SLn(Z) satisfies a version of Poincaré–Lefschetz duality called virtual Bieri–Eckmann duality.
This duality involves a “dualizing module” that measures the “homology at infinity”. In our
situation, that dualizing module is the Steinberg representation StSLn(Q;Q) and we have

H(n2)−i(SLn(Z);Q) = Hi(SLn(Z); StSLn(Q;Q)).

Conjecture 1.3 is thus equivalent to the following conjecture, which resembles Theorem 1.1
for Gn = SLn.

Conjecture 1.4. We have Hi(SLn(Z); StSLn(Q;Q)) = 0 for n ≥ i+ 2.

Remark 1.5. The proofs by Lee–Szczarba [LSz] and Church–Putman [CP] of special cases
of Conjecture 1.3 both start by translating things into the language of Conjecture 1.4.

We now briefly describe our proof of Theorem 1.1. As we will discuss in §3 below, there
is a natural inclusion StGn−1(k;R)→ StGn(k;R). This induces a stabilization map

Hi(Gn−1(k); StGn−1(k;R))→ Hi(Gn(k); StGn(k;R)). (1.1)

We will show in §3 that to prove that Hi(Gn(k); StGn(k;R)) = 0 for large n, it is enough to
prove the seemingly weaker assertion that (1.1) is a surjection for large n. This idea was first
introduced by Church–Farb–Putman [CFaP] as a strategy for proving Conjecture 1.4. It was
also noticed by Ash in unpublished work.

The surjectivity of (1.1) is a weak form of homological stability. There is an enormous
literature on homological stability theorems. The basic technique underlying most results
in the subject goes back to unpublished work of Quillen. In [Dw], Dwyer used these ideas
to prove a twisted homological stability theorem for GLn(k) with quite general coefficient
systems. This work was later generalized by van der Kallen [VdK] and very recently by
Randal-Williams–Wahl [RaWiWa], whose results cover all the classical groups in Theorem
1.1. Unfortunately, the Steinberg representation does not satisfy the conditions in any of
these known theorems. Indeed, these theorems are general enough that if it did, then this
would quickly lead to a proof of Conjecture 1.4. Nevertheless, we are able to use some delicate
properties of the Steinberg representation to jury-rig the Quillen machine such that it works
to prove that (1.1) is surjective for large n.
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Remark 1.6. Homological stability for a sequence of groups and homomorphisms X1 →
X2 → · · · states that the induced maps Hi(Xn) → Hi(Xn+1) are isomorphisms for n � 0.
Alternatively, we can think of each map as “multiplication by t” and give ⊕n Hi(Xn) the
structure of a R[t]-module, where R denotes our coefficient ring. At least when R is a field,
this isomorphism would be a consequence of finite generation.

In our setting, with homology twisted by the Steinberg representation, one should instead
think of this map as “multiplication by t” where t is a generator for the exterior algebra in
one variable R[t]/t2, so that the groups Hi being 0 for n� 0 would again be a consequence
of finite generation. At least when k is a finite field of size q and R is the field of complex
numbers, this is consistent with the idea that GLn(Fq) is a q-analogue of the symmetric
group and the Steinberg representation is the q-analogue of its sign representation, which is
made more precise via their connection to symmetric functions, see [Mac, §§I.7, IV.4].

Outline. We begin in §2 with some background and notation. Next, in §3 we reduce Theo-
rem 1.1 to an appropriate homological stability theorem. We then prove a key isomorphism
in §4. We prove Theorem 1.1 in §5. This proof depends on a calculation which we perform
in §6.

Convention regarding the empty set. If X is the empty set and R is a commutative
ring, then we define H̃−1(X;R) = R. With this convention, if the semisimple k-rank of G is
0, then StG(k;R) = R with the trivial G(k)-action.

Acknowledgments. The second author would like to thank Thomas Church and Benson
Farb for many inspiring conversations concerning Conjectures 1.3 and 1.4.

2 Background and notation
This section contains some background information and notation needed in the remainder
of the paper. It consists of two subsections: §2.1 introduces some distinguished parabolic
subgroups, and §2.2 gives some background about the Steinberg representations.

Throughout this section, k is a field and Gn is either GLn, SLn, Sp2n, SOn,n, or SOn,n+1.

2.1 Parabolic and stabilizer subgroups
Our proof of Theorem 1.1 depends on a careful study of various subgroups of Gn(k). In
this section, we will introduce notation for these subgroups: a certain parabolic subgroup
PG`

n(k), its unipotent radical UG`
n(k), a Levi component LG`

n(k) of PG`
n(k), and another

subgroup FG`
n(k) that lies in PG`

n(k) and fixes certain vectors.

General and special linear groups. Assume first that Gn is either GLn or SLn. The
group Gn(k) thus acts on the vector space kn, and the k-parabolic subgroups of Gn(k) are
the stabilizers of flags of subspaces of kn. Let (~a1, . . . ,~an) be the standard basis for kn. For
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1 ≤ ` ≤ n, the group PG`
n(k) is defined to be the Gn(k)-stabilizer of the flag

0 ( 〈~a1, . . . ,~a`〉.

The group UG`
n(k) is the subgroup of PG`

n(k) consisting of all M ∈ PG`
n(k) that act as the

identity on both
〈~a1, . . . ,~a`〉 and kn/〈~a1, . . . ,~a`〉.

The group LG`
n(k) is defined to be the PG`

n(k)-stabilizer of the flag

0 ( 〈~a`+1, . . . ,~an〉.

If Gn = GLn then LG`
n(k) is the subgroup GL`(k) × GLn−`(k) of Gn, while if Gn = SLn

then LG`
n(k) is the subgroup of GL`(k)×GLn−`(k) consisting of matrices of determinant 1.

Finally, define
FG`

n(k) = {M ∈ Gn(k) | M(~aj) = ~aj for 1 ≤ j ≤ `}.

We thus have FG`
n(k) ⊂ PG`

n(k).

Symplectic groups. Now assume that Gn = Sp2n. Letting ω(·, ·) be the standard sym-
plectic form on k2n, the group Gn(k) is the subgroup of GLn(k) consisting of elements
that preserve ω(·, ·). The k-parabolic subgroups of Gn(k) are the Gn(k)-stabilizers of flags
of isotropic subspaces of k2n, that is, subspaces on which ω(·, ·) vanishes identically. Let
(~a1, . . . ,~an,~b1, . . . ,~bn) be the standard symplectic basis for k2n, so

ω(~aj,~aj′) = ω(~bj,~bj′) = 0 and ω(~aj,~bj′) = δjj′

for 1 ≤ j, j′ ≤ n, where δjj′ is the Kronecker delta function. For 1 ≤ ` ≤ n, the group PG`
n(k)

is defined to be the Gn(k)-stabilizer of the isotropic flag

0 ( 〈~a1, . . . ,~a`〉.

The group UG`
n(k) is the subgroup of PG`

n(k) consisting of all M ∈ PG`
n(k) that act as the

identity on both

〈~a1, . . . ,~a`〉 and 〈~a1, . . . ,~a`〉⊥/〈~a1, . . . ,~a`〉
= 〈~a1, . . . ,~a`,~a`+1,~b`+1, . . . ,~an,~bn〉/〈~a1, . . . ,~a`〉.

The group LG`
n(k) is defined to be the PG`

n(k)-stabilizer of the isotropic flag

0 ( 〈~b1, . . . ,~b`〉.

The group LG`
n(k) is thus isomorphic to GL`(k)×Gn−`(k). Finally, define

FG`
n(k) = {M ∈ Gn(k) | M(~aj) = ~aj for 1 ≤ j ≤ `}.

We thus have FG`
n(k) ⊂ PG`

n(k).
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Orthogonal groups. Finally, assume that Gn is either SOn,n or SOn,n+1. For an appropri-
ate m, the group Gn(k) is then the subgroup of SLm(k) consisting of elements that preserve
a quadratic form q(·) on km:
• If Gn = SOn,n, then let m = 2n and let (~a1, . . . ,~an,~b1, . . . ,~bn) be the standard basis for

km. The group Gn(k) is the SLm(k)-stabilizer of the quadratic form q(·) on km defined
via the formula

q

 n∑
j=1

(
cj~aj + dj~bj

) =
n∑
j=1

cjdj (cj, dj ∈ k).

• If Gn = SOn,n+1, then let m = 2n+ 1 and let (~a1, . . . ,~an,~b1, . . . ,~bn, ~e) be the standard
basis for km. The group Gn(k) is the SLm(k)-stabilizer of the quadratic form q(·) on
km defined via the formula

q

λ~e+
n∑
j=1

(
cj~aj + dj~bj

) = λ2 +
n∑
j=1

cjdj (cj, dj, λ ∈ k).

In both cases, the k-parabolic subgroups of Gn(k) are the Gn(k)-stabilizers of flags of isotropic
subspaces of km, that is, subspaces on which q(·) vanishes identically. For 1 ≤ ` ≤ n the
group PG`

n(k) is defined to be the Gn(k)-stabilizer of the isotropic flag

0 ( 〈~a1, . . . ,~a`〉.

For Gn = SOn,n, the group UG`
n(k) is the subgroup of PG`

n(k) consisting of all M ∈ PG`
n(k)

that act as the identity on both

〈~a1, . . . ,~a`〉 and 〈~a1, . . . ,~a`〉⊥/〈~a1, . . . ,~a`〉
= 〈~a1, . . . ,~a`,~a`+1,~b`+1, . . . ,~an,~bn〉/〈~a1, . . . ,~a`〉,

while if Gn = SOn,n+1, then the group UG`
n(k) is the subgroup of PG`

n(k) consisting of all
M ∈ PG`

n(k) that act as the identity on both

〈~a1, . . . ,~a`〉 and 〈~a1, . . . ,~a`〉⊥/〈~a1, . . . ,~a`〉
= 〈~a1, . . . ,~a`,~a`+1,~b`+1, . . . ,~an,~bn, ~e〉/〈~a1, . . . ,~a`〉.

The group LG`
n(k) is defined to be the PG`

n(k)-stabilizer of the isotropic flag

0 ( 〈~b1, . . . ,~b`〉.

The group LG`
n(k) is thus isomorphic to GL`(k)×Gn−`(k). Finally, define

FG`
n(k) = {M ∈ Gn(k) | M(~aj) = ~aj for 1 ≤ j ≤ `}.

We thus have FG`
n(k) ⊂ PG`

n(k).
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2.2 Facts about the Steinberg representation
Let R be a commutative ring. The following theorem of Reeder [Re] will play an important
role in our proof of Theorem 1.1.

Theorem 2.1 ([Re, Proposition 1.1]). Let G be a connected reductive group defined over a
field k, let PG(k) be a k-parabolic subgroup of G(k), and let LG(k) be a Levi component of
PG(k). Then there exists an LG(k)-equivariant map

StLG(k;R) −→ ResG(k)
LG(k) StG(k;R)

such that the induced map

IndPG(k)
LG(k) StLG(k;R)→ ResG(k)

PG(k) StG(k;R)

is an isomorphism.

Remark 2.2. The map in Theorem 2.1 is not unique; for instance, it can be post-composed
with any element of the unipotent radical of PG(k). The paper [Re] contains a specific
construction of this map, and whenever we refer to the map in Theorem 2.1 we mean the one
constructed in [Re].

We wish to apply this to the distinguished parabolic subgroups PG`
n(k) that we introduced

in §2.1. To do this, we need to identify StLG`
n
(k;R).

Lemma 2.3. Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Then for all fields k and
all commutative rings R, we have

StLG`
n
(k;R) = StGL`(k;R)⊗ StGn−`(k;R)

for 1 ≤ ` ≤ n.

Proof. For Gn 6= SLn, this follows from the decomposition LG`
n(k) = GL`(k)×Gn−`(k). For

Gn = SLn, we instead have that LG`
n(k) is the subgroup of GL`(k)×GLn−`(k) consisting of

matrices of determinant 1. The lemma in this case follows from two facts:
• There is a bijection between k-parabolic subgroups of GLn−`(k) and SLn−`(k), and thus

an SLn−`(k)-equivariant isomorphism between StGLn−`(k;R) and StSLn−`(k;R).
• There is a bijection between k-parabolic subgroups of GL`(k)×GLn−`(k) and LG`

n(k),
and thus an LG`

n(k)-equivariant isomorphism between StGL`(k;R)⊗ StGLn−`(k;R) and
StLG`

n
(k;R).

Both of these bijections come from taking intersections.

These two results allow us to make the following definition.

Definition 2.4. Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Also, let k be a field
and R be a commutative ring. For 1 ≤ ` ≤ n, the Reeder product map is the map

StGL`(k;R)⊗ StGn−`(k;R) −→ StGn(k;R)

obtained by combining Lemma 2.3 and Theorem 2.1.
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Remark 2.5. Identifying StGL`(k;R)⊗ StGn−`(k;R) with its image in StGn(k;R) under the
Reeder product map, one way of viewing Theorem 2.1 is that it asserts that

StGn(k;R) =
⊕

u∈UG`
n(k)

u · (StGL`(k;R)⊗ StGn−`(k;R)).

We will also need the following lemma, which is precisely the case i = 0 of Theorem 1.1.
It generalizes [LSz, Theorem 4.1]. Recall that if G is a group and M is a G-module, then the
coinvariants MG are the largest quotient of M on which G acts trivially. The coinvariants
MG are isomorphic to H0(G;M).

Lemma 2.6. Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Then for all fields k and
all commutative rings R, we have (StGn(k;R))Gn(k;R) = 0 for n ≥ 2.

Proof. Theorem 2.1 implies that

IndPG2
n(k)

LG2
n(k) StGL2(k;R)⊗ StGn−2(k;R) ∼= ResGn(k)

PG2
n(k) StGn(k;R).

It is thus enough to prove that

(StGL2(k;R)⊗ StGn−2(k;R))LG2
n(k) = 0.

Whatever Gn is, the group LG2
n(k) contains the subgroup SL2(k)× 1. It is thus enough to

prove that
(StGL2(k;R))SL2(k) = 0.

This is an easy exercise using the fact that

StGL2(k;R) = H̃0(T2(k);R) = H̃0(P1(k);Q),

where P1(k) is the projective line over k, regarded as a discrete set of points. For details, see
[LSz, Theorem 4.1].

3 Reduction to stability
Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Let k be a field and R be a commutative
ring. In this section, we reduce Theorem 1.1 to an appropriate homological stability theorem.

Fix some i ≥ 0 and some n ≥ 2. The stabilization map for Hi(Gn−1(k); StGn−1(k;R)) is
the map

Hi(Gn−1(k); StGn−1(k;R))→ Hi(Gn(k); StGn(k;R)) (3.1)
induced by the following two maps:
• The group homomorphism Gn−1(k)→ Gn(k) obtained as follows. The group LG1

n(k)
is a subgroup of GL1(k) × Gn−1(k) that contains the subgroup 1 × Gn−1(k). In
fact, LG1

n(k) = GL1(k) × Gn−1(k) except when Gn = SLn. We can thus define a
homomorphism Gn−1(k)→ Gn(k) via the composition

Gn−1(k) = 1×Gn−1(k) ↪→ LG1
n(k) ↪→ Gn(k).
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• The map StGn−1(k;R)→ StGn(k;R) that equals the composition

StGn−1(k;R) ∼= R⊗ StGn−1(k;R) ∼= StGL1(k;R)⊗ StGn−1(k;R)→ StGn(k;R),

where the final arrow is the Reeder product map. Here we are using the convention
regarding the empty set discussed at the end of the introduction which implies that
StGL1(k;R) = R; this convention is compatible with Theorem 2.1.

The main result of this section is then as follows.

Lemma 3.1. Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Let k be a field and let
R be a commutative ring. Assume that the stabilization map (3.1) is a surjection for n ≥ N .
Then Hi(Gn(k); StGn(k;R)) = 0 for n ≥ N + 1.

Proof. Consider n ≥ N + 1. By assumption, the map

Hi(Gn−2(k); StGn−2(k;R))→ Hi(Gn(k); StGn(k;R)) (3.2)

obtained by iterating the stabilization map twice is surjective. It is thus enough to show that
the image of this map is 0. We can factor this map as

Hi(Gn−2(k); StGn−2(k;R))→ Hi(Gn−2(k); StGL2(k;R)⊗ StGn−2(k;R))
→ Hi(Gn(k); StGn(k;R)).

Regard SL2(k) as a subgroup of Gn(k) via the composition

SL2(k) = SL2(k)× 1 ↪→ LG2
n(k) ↪→ Gn(k).

The subgroup SL2(k) of Gn(k) commutes with the image of Gn−2(k) in Gn(k) under the
map used to define (3.2). Inner automorphisms act trivially on homology, even with twisted
coefficients; see [Br2, Proposition III.8.1]. It follows that to show that the image of (3.2) is 0,
it is enough to prove that

(StGL2(k;R)⊗ StGn−2(k;R))SL2(k) = 0.

This is equivalent to
(StGL2(k;R))SL2(k) = 0,

which is one case of Lemma 2.6.

4 The stabilizer subgroups
This section constructs an isomorphism (Lemma 4.1 below) that will play a fundamental role
in our proof of Theorem 1.1.

Let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. Let k be a field and R be a
commutative ring. Fix some 1 ≤ ` ≤ n. There is a map

Hi(1×Gn−`(k); StGL`(k;R)⊗ StGn−`(k;R))→ Hi(FG`
n(k); ResGn(k)

FG`
n(k) StGn(k;R)). (4.1)

induced by the following two maps:
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• The inclusion map 1×Gn−`(k)→ FG`
n(k). Here we are regarding FG`

n(k) as a subgroup
of PG`

n(k) that contains 1×Gn−`(k) ⊂ LG`
n(k) ⊂ PG`

n(k).
• The Reeder product map StGL`(k;R)⊗ StGn−`(k;R)→ StGn(k;R).

Our main result is as follows.

Lemma 4.1. Let k be a field, let R be a commutative ring, let 1 ≤ ` ≤ n, and let i ≥ 0.
Then the map (4.1) is an isomorphism.

Proof. Shapiro’s Lemma [Br2, Proposition III.6.2] gives an isomorphism

Hi(1×Gn−`(k); StGL`(k;R)⊗ StGn−`(k;R))
∼= Hi(FG`

n(k); IndFG`
n(k)

1×Gn−`(k) StGL`(k;R)⊗ StGn−`(k;R)).

Below we will prove that there is an isomorphism

IndFG`
n(k)

1×Gn−`(k) StGL`(k;R)⊗ StGn−`(k;R) ∼= ResGn(k)
FG`

n(k) StGn(k;R). (4.2)

of FG`
n(k)-representations. Combined with the above, this will yield an isomorphism between

the left and right hand sides of (4.1) which is easily seen to be the map in (4.1).
It remains to construct the isomorphism (4.2). Since FG`

n(k) ⊂ PG`
n(k), we can restrict

the isomorphism given by Theorem 2.1 and Lemma 2.3 to obtain an isomorphism

ResPG`
n(k)

FG`
n(k) IndPG`

n(k)
LG`

n(k) StGL`(k;R)⊗ StGn−`(k;R) ∼= ResGn(k)
FG`

n(k) StGn(k;R). (4.3)

The unipotent radical of PG`
n(k) is contained in FG`

n(k). This implies that there is a
single (FG`

n(k),LG`
n(k))-double coset in PG`

n(k). Also, FG`
n(k) ∩ LG`

n(k) = Gn−`(k). The
double coset formula [Br2, Proposition III.5.6b] therefore implies that the left side of (4.3) is
canonically isomorphic to

IndFG`
n(k)

1×Gn−`(k) ResLG`
n(k)

1×Gn−`(k) StGL`(k;R)⊗StGn−`(k;R) = IndFG`
n(k)

1×Gn−`(k) StGL`(k;R)⊗StGn−`(k;R),

as desired.

The following alternate version of Lemma 4.1 will be useful.

Corollary 4.2. Let k be a field, let R be a commutative ring, let 1 ≤ ` ≤ n, and let i ≥ 0.
Then there exists an isomorphism

StGL`(k;R)⊗ Hi(Gn−`(k); StGn−`(k;R)) ∼= Hi(FG`
n(k); ResGn(k)

FG`
n(k) StGn(k;R)).

Proof. Since StGL`(k;R) is a free R-module, we have

StGL`(k;R)⊗ Hi(Gn−`(k); StGn−`(k;R)) ∼= Hi(1×Gn−`(k); StGL`(k;R)⊗ StGn−`(k;R)).

The corollary now follows from Lemma 4.1.

We will also need an explicit inverse

Hi(FG`
n(k); ResGn(k)

FG`
n(k) StGn(k;R))→ Hi(1×Gn−`(k); StGL`(k;R)⊗ StGn−`(k;R)) (4.4)

to the isomorphism (4.1). The map (4.4) will be induced by the following two maps:
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• The homomorphism FG`
n(k) → 1 × Gn−`(k) obtained by restricting the projection

PG`
n(k)→ LG`

n(k) to FG`
n(k).

• The map
StGn(k;R)→ StGL`(k;R)⊗ StGn−`(k;R)

which equals the composition

StGn(k;R) =
⊕

u∈UG`
n(k)

u ·
(
StGL` (k;R)⊗ StGn−` (k;R)

)
→ StGL`(k;R)⊗ StGn−`(k;R),

where the first equality comes from a combination of Theorem 2.1 and Lemma 2.3
(see Remark 2.5) and the last arrow takes u · x ∈ u · (StGL`(k;R) ⊗ StGn−`(k;R)) to
x ∈ StGL`(k;R)⊗ StGn−`(k;R). We will call this map the Reeder projection map.

It is clear that these define a map of the form (4.4). The following lemma says that this is an
inverse to (4.1).

Lemma 4.3. Let k be a field, let R be a commutative ring, let 1 ≤ ` ≤ n, and let i ≥ 0.
Then the map (4.4) is an inverse to the map (4.1).

Proof. Immediate from the fact that the compositions

1×Gn−`(k)→ FG`
n(k)→ 1×Gn−`(k)

and
StGL`(k;R)⊗ StGn−`(k;R)→ StGn(k;R)→ StGL`(k;R)⊗ StGn−`(k;R)

of the maps used to define (4.1) and (4.4) equal the identity.

5 Vanishing
This section is devoted to the proof of Theorem 1.1. The actual proof is in §5.3. This is
preceded by two sections of preliminaries.

5.1 Equivariant homology
In our proof of Theorem 1.1, we will need some basic facts about equivariant homology. A
basic reference is [Br2, Chapter VII.7].

Let G be a group, let X be a semisimplicial set on which G acts, let R be a ring, and
let M be an R[G]-module. Let EG be a contractible semisimplicial set on which G acts
freely and let BG = EG/G, so BG is a classifying space for G. Denote by EG ×G X the
quotient of EG×X by the diagonal action of G. This is known as the Borel construction.
The homotopy type of EG ×G X does not depend on the choice of EG. The projection
EG ×G X → EG/G = BG induces a homomorphism π1(EG ×G X) → π1(BG) = G. Via
this homomorphism, we can regard M as a local coefficient system on EG ×G X. The
G-equivariant homology groups of X with coefficients in M , denoted HG

∗ (X;M), are the
homology groups of EG×G X with respect to the local coefficient system M .

10



Lemma 5.1. If X is `-connected, then the above map EG×G X → EG/G = BG induces
an isomorphism HG

i (X;M) ∼= Hi(G;M) for 0 ≤ i ≤ ` and a surjection HG
`+1(X;M) →

H`+1(X;M).

Proof. The group G acts freely on EG×X and EG×X is `-connected. Viewing EG×X
as a CW-complex, we can make EG×X contractible by adding cells of dimension at least
(`+ 2). We conclude that there exists a classifying space for G whose (`+ 1)-skeleton equals
the (`+ 1)-skeleton of EG×G X. The lemma follows.

Our main tool for understanding HG
∗ (X;M) is the following spectral sequence, which is

constructed in [Br2, Equation VII.7.7].

Lemma 5.2. For all p ≥ 0, let Σp be a set containing exactly one representative for each
orbit of the action of G on the p-simplices of X. For σ ∈ Σp, let Gσ be the stabilizer of σ.
Then there is a first quadrant spectral sequence

E1
p,q =

⊕
σ∈Σp

Hq(Gσ; ResGGσ M) =⇒ HG
p+q(X;M).

Remark 5.3. In [Br2, Equation VII.7.7], the action of Gσ on M is twisted by an “orien-
tation character”; however, this is unnecessary in our situation, since we are working with
semisimplicial sets rather than ordinary simplicial complexes (the point being that in the
geometric realization, the setwise stabilizer of a simplex stabilizes the simplex pointwise).

5.2 Complexes of partial bases
Let k be a field and let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. To prove Theorem
1.1, we will need to construct a highly connected space CGn(k) on which Gn(k) acts. The
definition of this complex is as follows.
• If Gn = GLn or Gn = SLn, then define CGn(k) to be the complex of partial bases for

kn, i.e. the semisimplicial complex whose `-simplices are ordered sequences [~v0, . . . , ~v`]
of linearly independent elements of kn.
• If Gn = Sp2n or Gn = SOn,n or Gn = SOn,n+1 and km is the vector space upon which

Gn(k) acts (so m is either 2n or 2n+1), then define CGn(k) to be the complex of partial
isotropic bases for km, i.e. the semisimplicial complex whose `-simplices are ordered
sequences [~v0, . . . , ~v`] of linearly independent elements of km that span an isotropic
subspace.

The following theorem summarizes the properties of CGn(k).

Theorem 5.4. Let k be a field and let Gn be either GLn, SLn, Sp2n, SOn,n, or SOn,n+1. The
following then hold.

1. The group Gn(k) acts transitively on the `-cells of CGn(k) for all 0 ≤ ` < n− 1.
2. The space CGn(k) is f(n)-connected where f(n) is given by:

(a) f(n) = n− 2 if Gn is either GLn or SLn,
(b) f(n) = n−3

2 if Gn is either Sp2n, SOn,n, or SOn,n+1.

11



Proof. The first assertion is well known (and also holds for ` = n− 1 except when Gn = SLn).
As for the second, Maazen proved in his thesis [Maa] that CGn(k) is (n− 2)-connected for
Gn = GLn and Gn = SLn. See [VdK] for a published proof of a more general result. Friedrich
proved in [Fr, Theorem 3.23] that CGn(k) is n−3

2 -connected for Gn = Sp2n and Gn = SOn,n

and Gn = SOn,n+1 (for Sp2n and SOn,n, this was proven earlier in [MiVdK, Theorem 7.3]).
To apply the cited result of Friedrich to our situation, we need the fact that the unitary
stable rank of a field is 1 (see, e.g., [MiVdK, Example 6.5]).

5.3 The proof of Theorem 1.1
Let us first recall the statement of the theorem. Let Gn be either GLn, SLn, Sp2n, SOn,n,
or SOn,n+1. Also, let k be a field and R be a commutative ring. Our goal is to prove that
Hi(Gn(k); StGn(k;R)) = 0 for n ≥ 2i+ 2 and that there exists a surjection

Hi(G2i(k); StG2i(k;R))→ Hi(G2i+1(k); StG2i+1(k;R)). (5.1)

Of course, this surjection will be induced by the stabilization map defined in §3.
The proof is by induction on i. We begin with the base case i = 0. Lemma 2.6 says

that H0(Gn(k); StGn(k;R)) = 0 for n ≥ 2, so we only need to show that the map (5.1) is a
surjection for i = 0. For the domain, G0(k) is the trivial group. By our convention regarding
the empty set discussed at the end of the introduction, we thus have StG0(k;R) = R, and
hence Hi(G0(k); StG0(k;R)) = R. To simplify the codomain, we have several cases.
• G1 = GL1 or G1 = SO1,1. In fact, these groups are isomorphic and are commutative,

so StG1(k;R) = R in these cases and (5.1) is an isomorphism.
• G1 = SL1. The group SL1 is the trivial group and thus StG1(k;R) = R and (5.1) is an

isomorphism.
• G1 = Sp2

∼= SL2 or G1 = SO2,1 ∼= PSL2. These groups have isomorphic Steinberg
representations and the action of SL2(k) on StSL2(k;R) factors through PSL2(k). This
case thus follows from Lemma 2.6, which says that H0(SL2(k); StSL2(k;R)) = 0.

This completes the base case.
Assume now that i > 0 and that the desired result is true for all smaller values of i. We

will prove that the stabilization map

Hi(Gn−1(k); StGn−1(k;R))→ Hi(Gn(k); StGn(k;R)) (5.2)

is surjective for n ≥ 2i+ 1. Lemma 3.1 will then imply that Hi(Gn(k); StGn(k;R)) = 0 for
n ≥ 2i+ 2, and the theorem will follow.

Fix some n ≥ 2i+ 1 and let km be the standard vector space representation of Gn(k) (so
m is either n, 2n, or 2n+ 1). Let {~a1, . . . ,~an} be the vectors in km such that

FG`
n(k) = {M ∈ Gn(k) | M(~aj) = ~aj for 1 ≤ j ≤ `}

for 1 ≤ ` ≤ n. Combining the second conclusion of Theorem 5.4 with Lemma 5.1, we have a
surjection

HGn(k)
i (CGn(k); StGn(k;R))→ Hi(Gn(k); StGn(k;R)). (5.3)

We will analyze HGn(k)
i (CGn(k); StGn(k;R)) using the spectral sequence from Lemma 5.2.

To calculate its E1-page, observe that the first conclusion of Theorem 5.4 says that Gn(k)
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acts transitively on the p-simplices of CGn(k) for 0 ≤ p < n − 1. The stabilizer of the
(p− 1)-simplex [~a1, . . . ,~ap] is FGp

n(k), so the spectral sequence in Lemma 5.2 has

E1
p,q = Hq(FGp+1

n (k); ResGn(k)
FGp+1

n (k) StGn(k;R)), (5.4)

for 0 ≤ p < n− 1.
We will prove that all of the terms on the p+ q = i line of the E∞-page of our spectral

sequence vanish except for possibly the term E∞0,i. To do this, consider p, q ≥ 0 with p+ q = i
and p ≥ 1. The case p = 1 and n = 2i + 1 is exceptional and must be treated separately.
To avoid getting bogged down here, we postpone this calculation until §6 below, where it
appears as Lemma 6.1.1

We thus can assume that either p ≥ 2 or that n ≥ 2i+ 2. Since n ≥ 2i+ 1, we certainly
have p < n− 1, so E1

p,q is in the regime where the above description of the E1-page holds.
Applying Corollary 4.2 to (5.4), we see that

E1
p,q = StGLp+1(k;R)⊗ Hq(Gn−p−1(k); StGn−p−1(k;R)).

To see that this vanishes, it is enough to show that Hq(Gn−p−1(k); StGn−p−1(k;R)) = 0. This
is a consequence of our inductive hypothesis; to see that it applies, observe that if p ≥ 2 then

n− p− 1 ≥ (2i+ 1)− p− 1 = 2(p+ q)− p = 2q + p ≥ 2q + 2,

while if p = 1 and n ≥ 2i+ 2 then

n− p− 1 ≥ (2i+ 2)− 1− 1 = 2(p+ q) = 2q + 2.

This implies that E1
p,q = 0, and thus that E∞p,q = 0.

The p+q = i line of the E∞-page of our spectral sequence thus only has a single potentially
nonzero entry, namely E∞0,i, and this is a quotient of

E1
0,i = Hi(FG1

n(k); ResGn(k)
FG1

n(k) StGn(k;R)).

This entry thus surjects onto HGn(k)
i (CGn(k); StGn(k;R)). Combining this with the surjection

(5.3), we obtain a surjection

Hi(FG1
n(k); ResGn(k)

FG1
n(k) StGn(k;R)) −→ Hi(Gn(k); StGn(k;R)). (5.5)

Examining the construction of our spectral sequence in [Br2, Chapter VII.7], it is easy to see
that this comes from the map induced by the inclusion FG1

n(k) ↪→ Gn(k). Combining (5.5)
with the isomorphism

Hi(Gn−1(k); StGn−1(k;R))
∼=−→ Hi(FG1

n(k); ResGn(k)
FG1

n(k) StGn(k;R))

given by the ` = 1 case of Corollary 4.2, we conclude that (5.2) is a surjection, as desired.
1This exceptional case could be avoided at the cost of only proving that Hi(Gn; StGn(k; R)) = 0 for

n ≥ 3i + 2 instead of for n ≥ 2i + 2.
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6 Killing the exceptional term in the spectral sequence
This section is devoted to proving the vanishing result postponed from the proof of Theorem
1.1 in §5.3. The notation in this section is thus identical to that in §5.3:
• Gn is either GLn, SLn, Sp2n, SOn,n, or SOn,n+1.
• k is a field and R is a commutative ring.
• i > 0 and n = 2i+ 1 (the only case that remained in that section).
• km is the standard vector space representation of Gn(k) (so m is either n, 2n, or 2n+1).
• {~a1, . . . ,~an} is the set of vectors in km such that

FG`
n(k) = {M ∈ Gn(k) | M(~aj) = ~aj for 1 ≤ j ≤ `}

for 1 ≤ ` ≤ n.
• Er

p,q is the spectral sequence from Lemma 5.2 converging to HGn(k)
i (CGn(k); StGn(k;R)).

What we must prove is as follows.

Lemma 6.1. Let the notation be as above, and assume that the stabilization map

Hi−1(Gn−3(k); StGn−3(k;R))→ Hi−1(Gn−2(k); StGn−2(k;R)) (6.1)

is surjective. Then the differential E1
2,i−1 → E1

1,i−1 is surjective, and thus E∞1,i−1 = 0.

The proof of Lemma 6.1 is divided into five sections:
• In §6.1, we give an explicit form for the differential E1

2,i−1 → E1
1,i−1.

• In §6.2, we translate that explicit form into one involving the stabilization map (6.1).
• In §6.3, we summarize what remains to be proved.
• In §6.4, we give some needed background information about apartments.
• In §6.5, we finish off the proof of Lemma 6.1.

6.1 Identifying the differential
The notation is as in the beginning of §6. In this section, we identify the differential
E1

2,i−1 → E1
1,i−1. Since n = 2i+ 1 and i > 0, we have 1 < n− 1, so E1

1,i−1 is as described in
(5.4), i.e.

E1
1,i−1

∼= Hi−1(FG2
n(k); ResGn(k)

FG2
n(k) StGn(k;R)).

If i = 1, then we do not have 2 < n− 1, so in this case E1
2,i−1 is not as described in (5.4). The

issue is that Gn(k) might not act transitively on the 2-simplices of CGn(k) (this is actually
only a problem for Gn = SLn). However, for all values of i it is still the case that E1

2,i−1
contains

Hi−1(FG3
n(k); ResGn(k)

FG3
n(k) StGn(k;R))

as a summand. The restriction of the differential E1
2,i−1 → E1

1,i−1 to this summand is a map

∂ : Hi−1(FG3
n(k); ResGn(k)

FG3
n(k) StGn(k;R)) −→ Hi−1(FG2

n(k); ResGn(k)
FG2

n(k) StGn(k;R)). (6.2)

To prove Lemma 6.1, it is enough to prove that ∂ is surjective.
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We can describe ∂ using the recipe described in [Br2, Chapter VII.8]. Recall that FG3
n(k)

is the Gn(k)-stabilizer of the ordered sequence of vectors σ = [~a1,~a2,~a3]. For 1 ≤ m ≤ 3, let
σm be the ordered sequence obtained by deleting ~am from σ and let (Gn(k))σm denote the
Gn(k)-stabilizer of σm. We then have ∂ = ∂1 − ∂2 + ∂3, where ∂m is the composition

Hi−1(FG3
n(k); ResGn(k)

FG3
n(k) StGn(k;R))

∂′m−→ Hi−1((Gn(k))σm ; ResGn(k)
(Gn(k))σm StGn(k;R))

∂′′m−→ Hi−1(FG2
n(k); ResGn(k)

FG2
n(k) StGn(k;R))

of the following two maps.
• ∂′m is the map induced by the inclusion FG3

n(k) ↪→ (Gn(k))σm .
• Define κm ∈ Gn(k) as follows. First, κ3 = id. For m ∈ {1, 2}, we do the following.

– If Gn = GLn or Gn = SLn, then κm ∈ SLn(k) is the map kn → kn that takes ~am
to ~a3, takes ~a3 to −~am, and fixes all the other basis vectors.

– If Gn = Sp2n or Gn = SOn,n or Gn = SOn,n+1, then κm ∈ Gn(k) is the map
km → km defined as follows. Let~b1, . . . ,~bn be the standard basis vectors for km that
pair with the ~aj (there is one additional standard basis vector if Gn = SOn,n+1).
Then κm takes ~am to ~a3, takes ~a3 to −~am, takes ~bm to ~b3, takes ~b3 to −~bm, and
fixes all the other basis vectors.

Then ∂′′m is induced by the map (Gn(k))σm → FG2
n(k) that takes g ∈ (Gn(k))σm to

κmgκ
−1
m and the map StGn(k;R) → StGn(k;R) that takes x ∈ StGn(k;R) to κm(x) ∈

StGn(k;R). We remark that easier choices of κm (without the signs) could be used for
Gn 6= SLn, but we chose the ones above to make our later formulas more uniform.

This is summarized in the following lemma.

Lemma 6.2. Let the notation be as above. Then the map ∂ in (6.2) equals ∂1 − ∂2 + ∂3,
where ∂m is induced by the map FG3

n(k)→ FG2
n(k) defined via the formula

g 7→ κmgκ
−1
m (g ∈ FG3

n(k))

and the map StGn(k;R)→ StGn(k;R) defined via the formula

x 7→ κm(x) (x ∈ StGn(k;R)).

6.2 Bringing in the stabilization map
The notation is as in the beginning of §6. Fix some 1 ≤ m ≤ 3, and let ∂m and κm be as in
Lemma 6.2. Applying the isomorphism in Corollary 4.2 to the domain and codomain of ∂m,
we obtain a homomorphism

∂̂m : StGL3(k;R)⊗ Hi−1(Gn−3(k); StGn−3(k;R))
→ StGL2(k;R)⊗ Hi−1(Gn−2(k); StGn−2(k;R)).

Our goal in this section is to prove that ∂̂m is the tensor product of the stabilization map

Hi−1(Gn−3(k); StGn−3(k;R))→ Hi−1(Gn−2(k); StGn−2(k;R)) (6.3)
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with the map ζm : StGL3(k;R) → StGL2(k;R) defined as follows. Let {~a1,~a2,~a3} be the
standard basis for k3. Let κ̂3 = id ∈ SL3(k), and for m ∈ {1, 2} let κ̂m ∈ SL3(k) be the
element that takes ~am to ~a3, takes ~a3 to −~am, and fixes all the other basis vectors. Then ζm
is the composition

StGL3(k;R) κ̂m−→ StGL3(k;R) −→ StGL2(k;R)⊗ StGL1(k;R) ∼= StGL2(k;R),

where the second arrow is the Reeder projection map (see §4) and the final isomorphism
comes from the fact that StGL1(k;R) = R.

The main result of this section is then as follows.

Lemma 6.3. Let the notation be as above. Then ∂̂m is the tensor product of ζm with the
stabilization map (6.3).

Proof. By construction, ∂̂m equals the composition

StGL3(k;R)⊗ Hi−1(Gn−3(k); StGn−3(k;R))
∼=−→ Hi−1(1×Gn−3(k); StGL3(k;R)⊗ StGn−3(k;R))
∼=−→ Hi−1(FG3

n(k); StGn(k;R))
∂m−→ Hi−1(FG2

n(k); StGn(k;R))
∼=−→ Hi−1(1×Gn−2(k); StGL2(k;R)⊗ StGn−2(k;R))
∼=−→ StGL2(k;R)⊗ Hi−1(Gn−2(k); StGn−2(k;R))

where the various maps are as follows:
• The first and last arrows use the fact that StGL3(k;R) and StGL2(k;R) are free R-modules
(cf. the proof of Corollary 4.2).
• The second arrow is the map described in Lemma 4.1, that is, the map induced by
the inclusion 1 × Gn−3(k) ↪→ FG3

n(k) and the Reeder product map StGL3(k;R) ⊗
StGn−3(k;R)→ StGn(k;R).
• The third arrow is the map ∂m described in Lemma 6.2, that is, the map induced by
the map FG3

n(k) → FG2
n(k) given by conjugation by κm and the map StGn(k;R) →

StGn(k;R) induced by κm.
• The fourth arrow is the map described in Lemma 4.3, that is, the map induced
by the projection FG2

n(k) → 1 ×Gn−2(k) together with the Reeder projection map
StGn(k;R)→ StGL2(k;R)⊗ StGn−2(k;R).

We must show that this composition equals the indicated tensor product of maps. This will
take some work.

Define Ψ to be the composition

StGL3(k;R)⊗ StGn−3(k;R) −→ StGn(k;R)
κm−→ StGn(k;R)
−→ StGL2(k;R)⊗ StGn−2(k;R),
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where the first map is the Reeder product map and the last map is the Reeder projection
map. Also, define Φ to be the composition

StGL3(k;R)⊗ StGn−3(k;R) −→ StGL2(k;R)⊗ StGL1(k;R)⊗ StGn−3(k;R)
−→ StGL2(k;R)⊗ StGn−2(k;R),

where the maps are as follows:
• The first map is the tensor product of the Reeder projection map StGL3(k;R) →

StGL2(k;R)⊗ StGL1(k;R) and the identity map StGn−3(k;R)→ StGn−3(k;R).
• The second map is the tensor product of the identity map StGL2(k;R)→ StGL2(k;R)

and the Reeder product map StGL1(k;R)⊗ StGn−3(k;R)→ StGn−2(k;R).
By the above, it is enough to prove that Ψ = Φ ◦ (κ̂m ⊗ id).

Define Ψ′ to be the composition
StGL3(k;R)⊗ StGn−3(k;R) −→ StGn(k;R)

−→ StGL2(k;R)⊗ StGn−2(k;R),
where the first map is the Reeder product map and the second map is the Reeder projection
map. From its definition, we see that Ψ = Ψ′ ◦ (κ̂m ⊗ id). We thus see that it is enough to
prove that Ψ′ = Φ.

Define U = UGL2
3(k) to be the unipotent radical of the parabolic subgroup PGL2

3(k)
of GL3(k) (despite the bad notation, this is not the projective general linear group). Using
Theorem 2.1 as in Remark 2.5, we see that

StGL3(k;R) =
⊕
u∈U

u · (StGL2(k;R)⊗ StGL1(k;R)) .

Consider u ∈ U and x ∈ StGL2(k;R) and y ∈ StGL1(k;R) and z ∈ StGn−3(k;R). Examining
the definition of Ψ′, we see that

Ψ′ ((u · (x⊗ y))⊗ z) = x⊗ (y ⊗ z) ,
where y ⊗ z ∈ StGL1(k;R)⊗ StGn−3(k;R) is identified with an element of StGn−2(k;R) using
the Reeder product map. But this equals Φ ((u · (x⊗ y))⊗ z), as desired.

6.3 Summary of where we are
The notation is as in the beginning of §6. Recall that Lemma 6.1 asserts that the differential
E1

2,i−1 → E1
1,i−1 is surjective. Let ∂ be as in §6.1. Also, let ζm and κ̂m be as in §6.2. Define

ζ : StGL3(k;R)→ StGL2(k;R)
via the formula ζ = ζ1− ζ2 + ζ3. Combining Lemmas 6.2 and 6.3, we see that to prove Lemma
6.1, it is enough to show that the map

StGL3(k;R)⊗ Hi−1(Gn−3(k); StGn−3(k;R))→ StGL2(k;R)⊗ Hi−1(Gn−2(k); StGn−2(k;R))
obtained as the tensor product of ζ and the stabilization map

Hi−1(Gn−3(k); StGn−3(k;R))→ Hi−1(Gn−2(k); StGn−2(k;R))
is surjective. One of the assumptions in Lemma 6.1 is that this stabilization map is surjective.
To prove that lemma, it is thus enough to prove the following.
Lemma 6.4. Let the notation be as above. Then ζ is surjective.
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Figure 1: As we illustrate here in the case n = 3, the apartment classes corresponding to the Bi

can be placed on the boundary of an n-dimensional simplex such that their simplices cancel in pairs.
In the picture, the vertices labeled with the vectors ~vi are taken to the lines spanned by the ~vi while
the unlabeled vertices are taken to the 2-dimensional subspaces spanned by the vectors on their two
neighbors.

6.4 Apartments
Before we prove Lemma 6.4, we need to discuss some background material on the Steinberg
representation. Unlike the previous sections, in this section n ≥ 1 is arbitrary. Recall that
StGLn(k;R) = H̃n−2(TGLn(k);R), where TGLn(k) is the Tits building associated to GLn(k).
This building can be described as the simplicial complex whose r-simplices are flags

0 ( V0 ( · · · ( Vr ( kn

of nonzero proper subspaces of kn.
The Solomon–Tits theorem [Br1, Theorem IV.5.2] says that the R-module StGLn(k;R)

is spanned by apartment classes, which are defined as follows. Consider an n× n matrix B
with entries in kn none of whose columns are identically 0. Let (~v1, . . . , ~vn) be the columns of
B. Let Sn be the simplicial complex whose r-simplices are chains

0 ( I0 ( · · · ( Ir ( {1, . . . , n}.

The complex Sn is isomorphic to the barycentric subdivision of the boundary of an (n− 1)-
simplex; in particular, Sn is homeomorphic to an (n− 2)-sphere. There is a simplicial map
f : Sn → TGLn(k) defined via the formula

f(I) = 〈~vi | i ∈ I〉 (∅ ( I ( {1, . . . , n}).

The apartment class corresponding to B, denoted
∥∥∥B∥∥∥, is the image of the fundamental class

[Sn] ∈ H̃n−2(Sn;R) = R under the map f∗ : H̃n−2(Sn;R)→ H̃n−2(TGLn(k);R) = StGLn(k;R).

Remark 6.5. We have
∥∥∥B∥∥∥ = 0 if the ~vi do not form a basis for kn, i.e. if B is not

invertible.

Permuting the columns of B changes
∥∥∥B∥∥∥ by the sign of the permutation, and multiplying

a column of B by a nonzero scalar does not change
∥∥∥B∥∥∥. The apartment classes also satisfy

the following more interesting relation.
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Lemma 6.6. Let k be a field, let R be a commutative ring, and let n ≥ 2. Let B be an
n× (n+ 1)-matrix with entries in k. Assume that none of the columns of B are identically 0.
Ordering the columns of B from 0 to n, for 0 ≤ m ≤ n let Bm be the result of deleting the
mth column from B. Then

∥∥∥B0
∥∥∥− ∥∥∥B1

∥∥∥+
∥∥∥B2

∥∥∥− · · ·+ (−1)n
∥∥∥Bn

∥∥∥ = 0.

Proof. The simplices forming the apartment classes
∥∥∥Bi

∥∥∥ cancel in pairs; see Figure 1.

The Solomon–Tits theorem [Br1, Theorem IV.5.2] gives the following basis for StGLn(k;R).

Theorem 6.7 (Solomon–Tits). Let k be a field, let R be a commutative ring, and let n ≥ 1.
Then StGLn(k;R) is a free R-module on the basis consisting of all

∥∥∥B∥∥∥ such that B is an
upper unitriangular matrix in GLn(k).

6.5 The proof of Lemma 6.4
We finally prove Lemma 6.4, which as discussed in §6.3 suffices to prove Lemma 6.1. First,
we recall its statement. For 1 ≤ m ≤ 3, let ζm and κ̂m be as in §6.2. Define

ζ : StGL3(k;R)→ StGL2(k;R)

via the formula ζ = ζ1 − ζ2 + ζ3. Our goal is to prove that ζ is surjective.
Before we do that, we introduce some formulas. Let π : StGL3(k;R)→ StGL2(k;R) be the

composition

StGL3(k;R) −→ StGL2(k;R)⊗ StGL1(k;R)
∼=−→ StGL2(k;R),

where the first arrow is the Reeder projection map and the second arrow comes from the fact
that StGL1(k;R) = R. From its definition, we see that

π(

∥∥∥∥∥∥∥
1 x y
0 1 z
0 0 1

∥∥∥∥∥∥∥) =
∥∥∥∥∥1 x
0 1

∥∥∥∥∥
for all x, y, z ∈ k. What is more, for all 3×3 matrices B none of whose columns are identically
0 we have

ζ(
∥∥∥B∥∥∥) = π(κ̂1(B))− π(κ̂2(B)) + π(κ̂3(B)).

Here the κ̂m act on B via matrix multiplication.
We now turn to proving that ζ is surjective. Consider a ∈ k, and set

Aa =
∥∥∥∥∥1 a
0 1

∥∥∥∥∥ .
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By Theorem 6.7, it is enough to prove that Aa ∈ Im(ζ). We have

ζ(

∥∥∥∥∥∥∥
1 a 0
0 1 0
0 0 1

∥∥∥∥∥∥∥) = π(

∥∥∥∥∥∥∥
0 0 −1
0 1 0
1 a 0

∥∥∥∥∥∥∥)− π(

∥∥∥∥∥∥∥
1 a 0
0 0 −1
0 1 0

∥∥∥∥∥∥∥) + π(

∥∥∥∥∥∥∥
1 a 0
0 1 0
0 0 1

∥∥∥∥∥∥∥)

= π(−

∥∥∥∥∥∥∥
−1 0 0
0 1 0
0 a 1

∥∥∥∥∥∥∥)− π(−

∥∥∥∥∥∥∥
1 0 a
0 −1 0
0 0 1

∥∥∥∥∥∥∥) + π(

∥∥∥∥∥∥∥
1 a 0
0 1 0
0 0 1

∥∥∥∥∥∥∥)

= π(−

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 a 1

∥∥∥∥∥∥∥)− π(−

∥∥∥∥∥∥∥
1 0 a
0 1 0
0 0 1

∥∥∥∥∥∥∥) + π(

∥∥∥∥∥∥∥
1 a 0
0 1 0
0 0 1

∥∥∥∥∥∥∥)

= −π(

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 a 1

∥∥∥∥∥∥∥) +
∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 a
0 1

∥∥∥∥∥ ,

(6.4)

where the second equality uses the fact that permuting the columns of a matrix changes the
associated apartment by the sign of the permutation and the third equality uses the fact that
multiplying a column by a nonzero scalar does not change the associated apartment.

If a = 0, then the right hand side of (6.4) simplifies to

−
∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 0
0 1

∥∥∥∥∥ =
∥∥∥∥∥1 0
0 1

∥∥∥∥∥ = A0,

so A0 ∈ Im(ζ). Assume now that a 6= 0. Plugging the matrix1 0 0 0
0 1 1 0
0 0 a 1


into Lemma 6.6, we get the relation

0 =

∥∥∥∥∥∥∥
0 0 0
1 1 0
0 a 1

∥∥∥∥∥∥∥−
∥∥∥∥∥∥∥
1 0 0
0 1 0
0 a 1

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥∥−
∥∥∥∥∥∥∥
1 0 0
0 1 1
0 0 a

∥∥∥∥∥∥∥
= 0−

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 a 1

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥∥−
∥∥∥∥∥∥∥
1 0 0
0 1 a−1

0 0 1

∥∥∥∥∥∥∥ ,
where the equality uses the fact that the columns of the first matrix are not linearly independent
and the fact that multiplying a column of a matrix by a nonzero scalar does not change the
associated apartment. Plugging this relation into (6.4), we see that the right hand side of
(6.4) equals

−

π(

∥∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥∥)− π(

∥∥∥∥∥∥∥
1 0 0
0 1 a−1

0 0 1

∥∥∥∥∥∥∥)
+

∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 a
0 1

∥∥∥∥∥
=−

∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 0
0 1

∥∥∥∥∥+
∥∥∥∥∥1 a
0 1

∥∥∥∥∥
=A0 + Aa.
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Since we have already seen that A0 ∈ Im(ζ), we deduce that Aa ∈ Im(ζ), as desired.
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