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Abstract. We prove that in a stable range, the rational cohomology of the moduli space
of curves with level structures is the same as that of the ordinary moduli space of curves.

1. Introduction

Let Mg,p be the moduli stack of smooth genus g algebraic curves over C equipped with p
distinct ordered marked points. The fundamental group of Mg,p is the mapping class group
Modg,p of an oriented genus g surface Σg,p with p punctures, i.e., the group of isotopy classes
of orientation-preserving diffeomorphisms of Σg,p that fix each puncture. In fact, Mg,p is a
classifying stack for Modg,p, so

H•(Mg,p;Q) ∼= H•(Modg,p;Q).

There is a rich interplay between the topology of Modg,p and the algebraic geometry ofMg,p.
In this paper, we study the cohomology of certain finite covers of Mg,p, or equivalently
finite-index subgroups of Modg,p.

1.1. Analogy. More generally, let Σb
g,p be an oriented genus g surface with p punctures

and b boundary components and let Modbg,p be its mapping class group, i.e., the group of

isotopy classes of orientation-preserving diffeomorphisms of Σb
g,p that fix each puncture and

boundary component pointwise. We will omit p or b if it vanishes. There is a fruitful analogy
between Modbg,p and arithmetic groups like SLn(Z) (see, e.g., [8]). This table lists some
parallel structures and results:

SLn(Z) Modbg,p
natural action vector in Zn curve on Σb

g,p

associated space locally symmetric space Mg,p

normal form Jordan normal form Thurston normal form (see [23])
Bieri–Eckmann duality Borel–Serre [5] Harer [30]
homological stability Charney [11], Maazen [42] Harer [29]
calculation of stable H• Borel [3] Madsen–Weiss [43]

Our main theorem gives another entry in this table. It is related to but different from
homological stability, so we discuss this first.

1.2. Homological stability. For simplicity, we restrict to surfaces without punctures. An

embedding Σb
g ↪→ Σb′

g′ induces a homomorphism Modbg → Modb
′
g′ that extends mapping

classes by the identity. Harer [29] proved that the induced map Hk(Modb
′
g′)→ Hk(Modbg) is

an isomorphism if g � k. The cohomology in this regime is known as the stable cohomology.
Madsen–Weiss [43] proved that rationally it is a polynomial algebra in classes κn ∈ H2n

called the Miller–Morita–Mumford classes. Some surveys about this include [27, 33, 67, 68].

Date: December 20, 2022.
AP was supported in part by NSF grant DMS-1811210.



2 ANDREW PUTMAN

1.3. Borel stability. Borel’s stability theorem [3] is about another kind of stability. Roughly
speaking, it says that in a stable range, the rational cohomology of a lattice Γ in a semisimple
Lie group G depends only on G, not on Γ. In particular, it is unchanged when you replace
Γ by a finite-index subgroup.

For example, Γ = SLn(Z) is a lattice in G = SLn(R). For ` ≥ 2, define SLn(Z, `) be the
level-` subgroup of SLn(Z), i.e., the kernel of the action of SLn(Z) on (Z/`)n. We thus have
a short exact sequence

(1.1) 1 −→ SLn(Z, `) −→ SLn(Z) −→ SLn(Z/`) −→ 1.

Borel’s stability theorem implies that the inclusion SLn(Z, `) ↪→ SLn(Z) induces an isomor-
phism1 Hk(SLn(Z, `);Q) ∼= Hk(SLn(Z);Q) for n� k. Note that this involves making SLn(Z)
smaller by passing to a finite-index subgroup rather than larger by increasing n. See [12]
and [57, Theorem C] for direct proofs that passing to SLn(Z, `) does not change the stable
rational homology.

1.4. Level-` subgroup. For ` ≥ 2, the level-` subgroup of Modbg,p, denoted Modbg,p(`), is

the kernel of the action of Modbg,p on H1(Σb
g,p;Z/`). This action preserves the algebraic

intersection form, which is a symplectic form if p + b ≤ 1. In that case, we have a short
exact sequence

1 −→ Modbg,p(`) −→ Modbg,p −→ Sp2g(Z/`) −→ 1

that is analogous to (1.1). For p+ b ≥ 2, we get a similar exact sequence, but with a more
complicated cokernel. For b = 0 and p ≤ 1, the associated finite cover of Mg,p is the moduli
space Mg,p[`] of smooth genus-g curves over C with p marked points equipped with a full
level-` structure, i.e., a basis for the `-torsion in their Jacobian.2

1.5. Main theorem. Since Modbg,p is not a lattice in a Lie group, the only potential analogue
of the Borel stability theorem that might possibly make sense for it would involve passing to
a finite-index subgroup like Modbg,p(`). Our main theorem is about precisely this:

Theorem A. Let g, p, b ≥ 0 and ` ≥ 2. Then the map Hk(Modbg,p(`);Q)→ Hk(Modbg,p;Q)

induced by the inclusion Modbg,p(`) ↪→ Modbg,p is an isomorphism if g ≥ 2k2 + 7k + 2.

1.6. Prior work. The cases k = 1, 2 of Theorem A were already known.3 The case k = 1
was proved by Hain [28] using work of Johnson [37] on H1 of the Torelli subgroup of Mod(Σg).
Hain’s proof gives the better stable range g ≥ 3. Little is known about the higher homology
groups of the Torelli group, so this approach does not generalize (but see §1.10 below). The
case k = 2 was proved by Putman [53]. The paper [53] also gives a better bound, namely
g ≥ 5. We will discuss the relationship between our proof and [53] below in §1.12.

1.7. Necessity of hypotheses. The hypotheses in Theorem A are necessary:

• No result like Theorem A can hold for integral homology. Indeed, Perron [48], Sato

[65], and Putman [54] identified exotic torsion elements of H1(Modbg,p(`);Z) that do

not come from H1(Modbg,p;Z). Presumably similar torsion phenomena also occur for
higher integral homology groups. A representation-theoretic form of stability for this
torsion was proved in [59, Theorem K].

1We have switched to homology since that is more natural for the subsequent discussion.
2The subgroup of Modg,p corresponding to Mg,p[`] is the kernel Modg,p[`] of the action of Modg,p on

H1(Σg;Z/`) coming from the map Modg,p → Modg that fills in the punctures. In general Modg,p[`] is larger
than Modg,p(`), but they are equal for p ≤ 1. We also prove a theorem for Modg,p[`] (see §1.8).

3Actually, the cited papers only handle the kernel Modbg,p[`] of the action of Modbg,p on H1(Σg;Z/`) coming

from the map Modbg,p → Modg that fills in the punctures and glues discs to the boundary components. We

also prove a theorem for Modbg,p[`] (see §1.8), so even for k = 1, 2 our theorem is stronger than previous work.
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• Theorem A’s conclusion is false outside a stable range. Indeed, Church–Farb–Putman
[14] and Morita–Sakasai–Suzuki [46] independently proved that H4g−5(Mod(Σg);Q) =
0, but Fullarton–Putman [24] proved that H4g−5(Mod(Σg, `);Q) is enormous. Here
4g−5 is the virtual cohomological dimension of Mod(Σg); see [30]. Brendle–Broaddus–

Putman [7] generalized [24] to Modbg,p(`); however, the cohomology of Modbg,p in its
virtual cohomology dimension is not known in general.

On the other hand, the stable range g ≥ 2k2 + 7k + 2 can likely be improved. New ideas are
probably needed to get a linear range, but we have not tried to optimize the constants.

Remark 1.1. Continuing the analogy with SLn(Z), both of the above caveats also apply to
its homology. For exotic torsion in the stable homology of its finite-index subgroups, see
[40, Theorem 1.1] and [59, Theorem H], and for nonstability outside the stable range see
[10, 15, 16, 40] for results at full level, and [40, 44, 47, 66] for results at level ` ≥ 2. �

1.8. Other finite-index subgroups, I. If G is a finite-index subgroup of Γ, the transfer
map (see, e.g., [9, §III.9]) implies that the inclusion G ↪→ Γ induces a surjection Hk(G;Q)�
Hk(Γ;Q) for all k. Therefore if we are in a regime where the map Hk(Modbg,p(`);Q) →
Hk(Modbg,p;Q) is an isomorphism, then for any intermediate subgroup

Modbg,p(`) ⊂ G ⊂ Modbg,p

the map Hk(G;Q) → Hk(Modbg,p;Q) is also an isomorphism. Theorem A thus implies a

similar theorem for subgroups of Modbg,p containing some Modbg,p(`). Here are two examples:

Example 1.2. The group Modbg,p acts on H1(Σg;Z/`) via the map Modbg,p → Modg that fills

in the punctures and glues discs to the boundary components. The kernel Modbg,p[`] of this
action satisfies

Modbg,p(`) ⊂ Modbg,p[`] ⊂ Modbg,p .

In the literature, “level-` subgroup” often means Modbg,p[`] rather than Modbg,p(`). �

Example 1.3. A spin structure on Σg is a Spin(2)-structure on its tangent bundle, where
Spin(2) is the canonical double-cover of SO(2). Let ω(−,−) be the algebraic intersection
pairing on H1(Σg;F2). Johnson [36] showed that spin structures on Σg can be identified with
quadratic forms q on H1(Σg;F2) that refine ω, i.e., functions q : H1(Σg;F2)→ F2 such that

q(x+ y) = q(x) + q(y) + ω(x, y) for all x, y ∈ H1(Σg;F2).

Such q are classified up to isomorphism by their F2-valued Arf invariant. The group Modg
acts transitively on the set of spin structures on Σg with a fixed Arf invariant. If σ is a
spin structure on Σg, then the stabilizer subgroup Modg(σ) of σ in Modg is called a spin
mapping class group4 (see, e.g., [31, 32]). We have

Modg(2) ⊂ Modg(σ) ⊂ Modg,

so our theorem implies a similar result for Modg(σ). �

1.9. Other finite-index subgroups, II. It is natural to wonder if something like Theorem
A holds for all finite-index subgroups, not just the level-` ones. For H1, this is a conjecture
of Ivanov [35] that has been the subject of a large amount of work; see, e.g., [21, 51, 60].
These papers prove this in many cases, but Ivanov’s conjecture remains open in general. For
k ≥ 2, nothing is known about the stable Hk of finite-index subgroups of the mapping class
group other than Theorem A.

4Be warned that in the literature there is another group that is often called the spin mapping class group.
This group is a Z/2-extension of Modg(σ), and does not lie in Modg. See, e.g., [25].
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1.10. Torelli group. The intersection of the Modbg,p(`) as ` ranges over integers ` ≥ 2 is

the Torelli group, i.e., the kernel Ibg,p of the action of Modbg,p on H1(Σb
g,p;Z). Little is known

about the homology of Ibg,p. Indeed, while Johnson [37] calculated5 H1(Ibg,p) and showed
that it was finitely generated for g ≥ 3, aside from a few low-complexity cases it is not
known if H2(Ibg,p) is finitely generated. It is unclear if Theorem A implies anything about

the homology of Ibg,p.
However, sufficient regularity results about the homology of Torelli would imply Theorem

A. To explain this, we restrict for simplicity to closed surfaces. Let

Sp2g(Z, `) = ker(Sp2g(Z)→ Sp2g(Z/`))

be the level-` subgroup of Sp2g(Z). The commutative diagram of short exact sequences

1 Ig Modg(`) Sp2g(Z, `) 1

1 Ig Modg Sp2g(Z) 1

=

induces a map between the corresponding Hochschild–Serre spectral sequences. To prove
Theorem A (though perhaps with a different bound), it is enough to prove that this map
between spectral sequences is an isomorphism in a range, i.e., that for g large we have

Hp(Sp2g(Z, `); Hq(Ig;Q)) ∼= Hp(Sp2g(Z); Hq(Ig;Q)) for p+ q ≤ k.

By the version of the Borel stability theorem with twisted coefficients [4], this would be true
if the following folklore conjecture holds:

Conjecture 1.4. For each k, there exists some Gk such that for g ≥ Gk, the homology
group Hk(Ig;Q) is finite-dimensional and the action of Sp2g(Z) on it extends to a rational
representation of the algebraic group Sp2g(Q).

Johnson’s aforementioned work on H1(Ig) shows that this holds for k = 1 with G1 = 3,
but it is open for all k ≥ 2. One can view Theorem A as evidence for Conjecture 1.4.

1.11. Automorphism groups of free groups. For a free group Fn, its automorphism
group Aut(Fn) shares many features with Modbg,p, so it is also natural to hope that something
like Theorem A holds for Aut(Fn). A deep theorem of Galatius [26] says that

Hk(Aut(Fn);Q) = 0 for n� k,

so the natural conjecture is that in a stable range, the rational homology of at least the
level-` subgroup of Aut(Fn) vanishes.

This is known for k = 1. Indeed, a deep theorem of Kaluba–Kielak–Nowak ([39], see
also [38]) says that Aut(Fn) has Kazhdan’s Property (T) for n ≥ 5, which implies that
H1(Γ;Q) = 0 for all finite-index subgroups Γ of Aut(Fn). Recall from §1.9 that Ivanov
conjectured something similar for the mapping class group.6 Day–Putman [17, Theorem
D] proved that the rational H2 of the level-` subgroup of Aut(Fn) is 0. We expect that the
techniques used to prove Theorem A could be useful for extending this to the higher Hk.

5Johnson’s work covers the cases where p + b ≤ 1. See [55] for how to generalize this to surfaces with
multiple punctures and boundary components (at least rationally).

6It is still not known if the mapping class group has Kazhdan’s Property (T).
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1.12. Sketch of proof. We now sketch the proof of Theorem A, focusing for simplicity on
the key case of Mod1

g(`). The starting point is the following basic fact about group homology,
which strengthens the observation at the start of §1.8 above. Let G be a finite-index normal
subgroup of a group Γ. Using the transfer map (see, e.g., [9, §III.9]), one can show that

(1.2) Hk(Γ;Q) = (Hk (G;Q))Γ ,

where Γ denotes the coinvariants of the action of Γ on Hk(G;Q) induced by the conjugation
action of Γ on G. Thus Hk(G;Q) ∼= Hk(Γ;Q) precisely when Γ acts trivially on Hk(G;Q).

Applying this to the finite-index normal subgroup Mod1
g(`) of Mod1

g, we see that the
following are equivalent:

• Hk(Mod1
g(`);Q) ∼= Hk(Mod1

g;Q).

• Mod1
g acts trivially on Hk(Mod1

g(`);Q).

We check the second condition for g � k. Since Mod1
g is generated by Dehn twists Tγ about

nonseparating simple closed curves γ, it is enough to prove that these Tγ act trivially on

Hk(Mod1
g(`);Q). Embed Σ1

g−1 into Σ1
g as follows:

γ

Σg-1
1

Since Tγ commutes with mapping classes supported on Σ1
g−1, it acts trivially on the image

of Hk(Mod1
g−1(`);Q) in Hk(Mod1

g(`);Q). We deduce that it is enough to prove the following
weaker version of Theorem A:

Theorem A′. Let g ≥ 0 and ` ≥ 2. Then the map Hk(Mod1
g−1(`);Q) → Hk(Mod1

g(`);Q)

induced by the above inclusion Σ1
g−1 ↪→ Σ1

g is a surjection if g ≥ 2k2 + 7k + 2.

This resembles a homological stability theorem (or at least the surjective half of one), and
it is natural to try to use the well-developed homological stability machine (see, e.g., [62])
to prove it. However, you immediately run into a fundamental problem: the input to this
machine is an action of Mod1

g(`) on a highly-connected simplicial complex X, and one of the

basic properties you need is that Mod1
g(`) acts transitively on the vertices. If you use one of

the simplicial complexes used to prove homological stability for Mod1
g, this fails.7

However, the machine does give a weaker conclusion: rather than saying that a single
Hk(Mod1

g−1(`);Q) surjects onto Hk(Mod1
g(`);Q), it implies that if you take the direct sum

over all embeddings of Σ1
g−1 into Σ1

g, then you do get a surjective map:8⊕
Σ1
g−1↪→Σ1

g

Hk(Mod1
g−1(`);Q)� Hk(Mod1

g(`);Q).

It is therefore enough to show that each term in this direct sum has the same image. This
requires an elaborate induction, and in particular requires proving not just Theorem A′,
but also a twisted analogue of Theorem A′ with coefficients in certain rather complicated
coefficient systems (tensor powers of the standard representation and Prym representations;
see §1.13 and §1.14 below).

7And this cannot be easily avoided since the homological stability machine naturally gives theorems about
integral homology, while Theorem A′ only holds rationally.

8In fact, you can take the direct sum over orbit representatives of the action of Mod1
g(`) on the set of such

embeddings. If we were working with Mod1
g instead of Mod1

g(`), then the “change of coordinates” principle

from [22, §1.3.2] would show that there is a single such orbit.
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Remark 1.5. The above outline resembles the proof of the case k = 2 of Theorem A proved
by the author long ago in [53]. Two new developments since then allowed us to prove the
general case:

• The author’s work on twisted homological stability in [57], which gives a flexible tool
for incorporating twisted coefficients into homological stability proofs. There is an
earlier approach to this due to Dwyer [18], but it seems hard to use it in our proof.
• The author’s work on stability properties of “partial Torelli groups” in [56], which

forms the basis for the elaborate induction discussed above as well as the simplicial
complexes used in this paper. �

1.13. Standard representation. The general twisted version of Theorem A that we will
prove is a little technical, so we close this introduction by stating two special cases of it
that we think are of independent interest. The first involves representations built from
H1(Σb

g,p;Q):

Theorem B. Let g, p, b ≥ 0 and ` ≥ 2. Then for r ≥ 0, the map

Hk

(
Modbg,p (`) ; H1(Σb

g,p;Q)⊗r
)
→ Hk

(
Modbg,p; H1(Σb

g,p;Q)⊗r
)

is an isomorphism if g ≥ 2(k + r)2 + 7k + 6r + 2.

Note that for r = 0 this reduces to Theorem A. In particular, setting r = 0 we get the
bound g ≥ 2k2 + 7k + 2 from that theorem. We will also prove a version of Theorem B with
coefficients in H1(Σg;Q)⊗r rather than H1(Σb

g,p;Q)⊗r. See Theorem E in §10.

1.14. Prym representations. The other representation we need to handle is the Prym
representation, which is defined as follows. Assume that p+ b ≥ 1. Let π : S → Σb

g,p be the
regular cover with deck group H1(Σg;Z/`) coming from the group homomorphism

π1(Σb
g,p)→ H1(Σb

g,p;Z/`)→ H1(Σg;Z/`),

where the second map glues discs to all the boundary components and fills in all the punctures.
Since Modbg,p(`) acts trivially on H1(Σg;Z/`) and p+ b ≥ 1, covering space theory allows

us to lift elements of Mod1
g(`) to mapping classes of S fixing the punctures and boundary

components pointwise.9

This gives us an action of Modbg,p(`) on Hbg,p(`;Q) := H1(S;Q). These representations are
called Prym representations. They were first studied by Looijenga [41], who (essentially)
determined their image. The map π : S → Σb

g,p induces a map Hbg,p(`;Q) → H1(Σb
g,p;Q).

Our result is as follows. Note that our bound here is the same as in the case r = 1 of
Theorem B:

Theorem C. Let g, p, b ≥ 0 and ` ≥ 2 be such that p+ b ≥ 1. Then the map

Hk

(
Modbg,p (`) ;Hbg,p (`;Q)

)
→ Hk

(
Modbg,p; H1(Σb

g,p;Q)
)

is an isomorphism if g ≥ 2(k + 1)2 + 7k + 8.

Remark 1.6. We proved the case k = 1 and (b, p) = (1, 0) of this by a brute force calculation
in [52, Theorem C], which allowed us to prove the case k = 2 of Theorem A in [53]. One of
the main insights of the present paper is that one can simultaneously prove Theorems A
and C with almost no calculations. �

9This requires p+ d ≥ 1 to ensure that our lift is well-defined; otherwise, it would only be well-defined up
to the action of the deck group.
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Remark 1.7. The result [52, Theorem B] might appear to say that Theorem C is false for
Modg,1(`). However, the Prym representation covered by [52, Theorem B] is slightly different
from the one in Theorem C since it involves the homology of the H1(Σg;Z/`)-cover S → Σg

rather than the cover S → Σg,1. �

Remark 1.8. In fact, what we need is something similar to Theorem C for tensor powers
of the Prym representations. Unfortunately, the naive analogue of Theorem C for higher
tensor powers of the Prym representations is false even for H0,10 and formulating the correct
version is a bit subtle. See Theorem D in §9 for details. �

1.15. Outline of paper. The first part of the paper (§2–4) discusses background and
establishes some basic results. We start in §2 with some group-theoretic properties of the
group Modbg,p(`). We then turn to the twisted homological stability machine from [57]. This
is contained in two sections: §3 is devoted to basic facts about simplicial complexes and
their homology, and §4 isolates the part of the machine that we need. The input to this
machine is a simplicial complex equipped with a “coefficient system”.

The next part (§5–8) discusses some tools needed to apply our machine to Modbg,p(`). In
§5, we introduce the simplicial complex we will use (the “complex of tethered H-orthogonal
tori”), and in §6 we discuss the Prym representations and show how to incorporate them
into a coefficient system on this complex. The action of Mod1

g(`) on the Prym representation
preserves a bilinear form called the Reidemeister pairing, and §7 develops its properties.

After an interlude in §8 on the author’s results from [56] about the partial Torelli groups,
the final part (§9–10) contains the proofs of our main theorems. We first handle non-closed
surfaces in §9, and we then derive our results for closed surfaces in §10.

1.16. Acknowledgments. I would like to thank Tom Church, Dan Margalit, and Xiyan
Zhong for helpful comments on previous drafts of this paper.

2. Basic properties of the level-` subgroup

We start by discussing some basic facts about the mapping class group and its subgroups.

2.1. Birman exact sequence I: mapping class group. Let x0 be a puncture of Σb
g,p+1.

Let φ : Modbg,p+1 → Modbg,p be the map that fills in x0. Except in some degenerate cases,

the kernel of φ is the point-pushing subgroup PPx0(Σb
g,p). Elements of PPx0(Σb

g,p) push
the puncture x0 around the surface. Keeping track of the path traced out by x0 gives an
isomorphism

PPx0(Σb
g,p)
∼= π1(Σb

g,p, x0).

To keep our notation from being unmanageable, we will often omit the basepoint and just
write π1(Σb

g,p). This is all summarized in the following theorem. See [22, §4.2] for a textbook
reference.

Theorem 2.1 (Birman exact sequence [1]). Fix some g, p, b ≥ 0 such that π1(Σb
g,p) is

nonabelian, and let x0 be a puncture of Σb
g,p+1. There is then a short exact sequence

1 −→ PPx0(Σb
g,p) −→ Modbg,p+1

φ−→ Modbg,p −→ 1,

where PPx0(Σb
g,p)
∼= π1(Σb

g,p).

The following lemma describes the effect of PPx0(Σb
g,p) on H1(Σb

g,p+1):

10Recall that H0 calculates the coinvariants. The Modg,1-coinvariants of H1(Σg,1;Q)⊗2 are Q, which
is detected by the algebraic intersection pairing H1(Σg,1;Q)⊗2 → Q. The Reidemeister pairing described
below in §7 gives a Modg,1(`)-invariant surjective map Hg,1(`;Q)⊗2 → Q[H] with H = H1(Σg,1;Z/`), so the
Modg,1(`)-coinvariants of Hg,1(`;Q)⊗2 are larger than just Q. In fact, these coinvariants are exactly Q[H].
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Lemma 2.2. Fix some g, p, b ≥ 0 such that π1(Σb
g,p) is nonabelian, and let x0 be a puncture

of Σb
g,p+1. Let k be a commutative ring. Let ρ1 : H1(Σb

g,p+1;k) → H1(Σb
g,p;k) be the map

that fills in x0 and let ρ2 : PPx0(Σb
g,p)→ H1(Σb

g,p; k) be the composition

PPx0(Σb
g,p)
∼= π1(Σb

g,p) −→ H1(Σb
g,p;k).

Let ω(−,−) be the algebraic intersection pairing on H1(Σb
g,p;k) and let ζ ∈ H1(Σb

g,p;k) be
the homology class of a loop around x0, oriented such that x0 is to its right. Then for
γ ∈ PPx0(Σb

g,p) and z ∈ H1(Σb
g,p+1;k), we have

γ(z) = z + ω(ρ1(z), ρ2(γ)) · ζ.
Proof. It is enough to check this on γ ∈ PPx0(Σb

g,p)
∼= π1(Σb

g,p) and z ∈ H1(Σb
g,p+1;k) that

can be represented by simple closed curves. For these, it is immediate from the following
picture:

x0

z
γ γ

Here z ∈ H1(Σb
g,p+1; k) is represented by a cycle that intersects γ transversely. �

Next, fix a boundary component ∂ of Σb+1
g,p . Gluing a punctured disc to ∂ and extending

mapping classes over it by the identity, we get a homomorphism ψ : Modb+1
g,p → Modbg,p+1.

The following folklore result shows that except in degenerate cases the kernel of ψ is the
infinite cyclic subgroup generated by T∂ :

Proposition 2.3 ([22, Proposition 3.19]). Fix some g, p, b ≥ 0 such that π1(Σb+1
g,p ) is

nonabelian, and let ∂ be a boundary component of Σb+1
g,p . Then there is a central extension

1 −→ Z −→ Modb+1
g,p

ψ−→ Modbg,p+1 −→ 1,

where the central Z is generated by the Dehn twist T∂.

2.2. Partial level-` subgroups. Our proofs will use results about the “partial Torelli
groups” introduced by the author in [56]. To avoid technicalities, we will only discuss the
special cases of these results needed for our work.11 A subgroup H < H1(Σb

g,p;Z/`) is a
symplectic subgroup if the algebraic intersection pairing

ω : H1(Σb
g,p;Z/`)×H1(Σb

g,p;Z/`) −→ Z/`

restricts to a nondegenerate pairing12 on H. Such an H is of the form H ∼= (Z/`)2h for some
h ≥ 0 called its genus. We remark that if p+ b ≥ 2 then the algebraic intersection pairing
on H1(Σb

g,p;Z/`) is degenerate, so in that case H1(Σb
g,p;Z/`) is not a symplectic subgroup of

itself. For a symplectic subgroup H of H1(Σb
g,p;Z/`), the associated partial level-` subgroup,

denoted Modbg,p(H), is the group of all f ∈ Modbg,p such that f(x) = x for all x ∈ H.

Example 2.4. If H = 0, then Modbg,p(H) = Modbg,p. �

Example 2.5. If H is a genus-g symplectic subgroup of H1(Σb
g,p;Z/`), then Modbg,p(H) =

Modbg,p(`). The point here is that Modbg,p automatically acts trivially on the subgroup

B ∼= (Z/`)p+b−1 of H1(Σb
g,p;Z/`) generated by loops surrounding the punctures and boundary

11Unfortunately, the proofs in [56] do not simplify much if you restrict to these cases. We will later discuss
how to relate the definition we give here to the one in [56] (see the proof of Theorem 8.1).

12Here nondegenerate means that it identifies H with its dual H∨ = Hom(H,Z/`).
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components,13 and H1(Σb
g,p;Z/`) = B ⊕ H. Thus acting trivially on H1(Σb

g,p;Z/`) is
equivalent to acting trivially on its subgroup H. �

2.3. Conventions about symplectic subgroups. Let H be a symplectic subgroup of
H1(Σb

g,p;Z/`). We will often need to relate Modbg,p(H) to the partial level-` subgroup on
other surfaces. Technically, the symplectic subgroup on the other surface is different from
H; however, there is often a canonical way to identify them. In this case, we will use the
same letter H for both subgroups. Here are two examples.

Example 2.6. Let ι : Σb
g,p ↪→ Σb

g′,p′ be an embedding. The kernel of ι∗ : H1(Σb
g,p;Z/`) →

H1(Σb′
g′,p′ ;Z/`) is contained in the subgroup generated by loops surrounding boundary

components and punctures. Thus ker(ι∗) ∩ H = 0, so ι∗ maps H isomorphically to a

symplectic subgroup of H1(Σb′
g′,p′ ;Z/`) that we will also call H. As long as ι takes punctures

to either points or punctures, we have a map Modbg,p(H) → Modb
′
g′,p′(H) that extends

mapping classes by the identity. �

Example 2.7. Let ι : Σb′
g′,p′ ↪→ Σb

g,p be an embedding. Assume that that ι∗ : H1(Σb′
g′,p′ ;Z/`)→

H1(Σb
g,p;Z/`) is injective and the image of ι∗ contains H. Then using ι∗, we can identify H

with a symplectic subgroup of H1(Σb′
g′,p′ ;Z/`) that we will also call H. Again, as long as

ι takes punctures to either points or punctures we have a map Modb
′
g′,p′(H)→ Modbg,p(H)

that extends mapping classes by the identity. �

We will only use this convention when it is clear what it means.

2.4. Birman exact sequence II: partial level-` subgroups. A version of the Birman
exact sequence for the groups Modbg,p(`) was proved by Brendle, Broaddus, and the author in
[7, Theorem 3.1], building on work of the author for the Torelli group in [49]. For the partial
level-` subgroups, the appropriate theorem is as follows. The statement of this theorem uses
the conventions from §2.3.

Theorem 2.8 (Partial mod-` Birman exact sequence). Fix some g, p, b ≥ 0 such that π1(Σb
g,p)

is nonabelian, and let x0 be a puncture of Σb
g,p+1. Let ` ≥ 2 and let H be a symplectic

subgroup of H1(Σb
g,p+1;Z/`). There is then a short exact sequence

1 −→ PPx0(Σb
g,p, H) −→ Modbg,p+1(H) −→ Modbg,p(H) −→ 1,

where PPx0(Σb
g,p, H) is as follows:

• If p = b = 0, then PPx0(Σb
g,p, H) = PPx0(Σb

g,p)
∼= π1(Σb

g,p).

• If p+ b ≥ 1, then PPx0(Σb
g,p, H) is the kernel of the composition

PPx0(Σb
g,p)
∼= π1(Σb

g,p)→ H1(Σb
g,p;Z/`) = H ⊕H⊥ proj→ H.

Here H⊥ is the orthogonal complement of H with respect to the algebraic intersection
pairing.

Proof. The proof is nearly identical to that of [7, Theorem 3.1], so we will just sketch it.
Letting

PPx0(Σb
g,p, H) = PPx0(Σb

g,p) ∩Modbg,p+1(H),

it is easy to see that the Birman exact sequence

1 −→ PPx0(Σb
g,p) −→ Modbg,p+1 −→ Modbg,p −→ 1

13We have B ∼= (Z/`)p+b−1 and not (Z/`)p+b since if you orient them correctly, the sum of the homology
classes of all the loops surrounding the punctures and boundary components is zero.
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from Theorem 2.1 restricts to a short exact sequence

1 −→ PPx0(Σb
g,p, H) −→ Modbg,p+1(H) −→ Modbg,p(H) −→ 1.

The nontrivial thing is to identify PPx0(Σb
g,p, H), which follows14 from Lemma 2.2. �

Remark 2.9. If H is a genus-g symplectic subgroup of H1(Σn
g,p;Z/`) and thus Modbg,p(H) =

Modbg,p(`) (see Example 2.5), then we will write PPx0(Σb
g,p, `) for PPx0(Σb

g,p, H). Theorem
2.8 thus gives an exact sequence

1 −→ PPx0(Σb
g,p, `) −→ Modbg,p+1(`) −→ Modbg,p(`) −→ 1

with PPx0(Σb
g,p, `) the kernel of the map

PPx0(Σb
g,p)
∼= π1(Σb

g,p)→ H1(Σb
g,p;Z/`)→ H1(Σg;Z/`). �

Since Dehn twists about boundary components always lie in Modb+1
g,p (H), Proposition 2.3

immediately implies the following:

Proposition 2.10. Fix some g, p, b ≥ 0 such that π1(Σb+1
g,p ) is nonabelian, and let ∂ be a

boundary component of Σb+1
g,p . Let ` ≥ 2 and let H be a symplectic subgroup of H1(Σb+1

g,p ;Z/`).
Then there is a central extension

1 −→ Z −→ Modb+1
g,p (H) −→ Modbg,p+1(H) −→ 1,

where the central Z is generated by the Dehn twist T∂.

Remark 2.11. Again, taking H to be a genus-g symplectic subgroup we get a central extension

1 −→ Z −→ Modb+1
g,p (`) −→ Modbg,p+1(`) −→ 1. �

2.5. Generating the partial level-` subgroups. The following lemma describes the
difference between the level-` subgroup and the partial level-` subgroup. This lemma is true
for all surfaces Σb

g,p, but we will only need the case Σ1
g, for which the proof is a bit easier.

Lemma 2.12. Let g ≥ 0 and ` ≥ 2, and let H be a symplectic subgroup of H1(Σ1
g;Z/`).

Then Mod1
g(H) is generated by Mod1

g(`) along with the set of all Dehn twists Tγ such that15

[γ] ∈ H⊥. In fact, such Tγ act on H⊥, and it is enough to take any set of such Tγ that map

to a generating set for Sp(H⊥).

Proof. If H has genus h, then Sp(H⊥) ∼= Sp2(g−h)(Z/`). This group can be embedded in

Sp2g(Z) as the subgroup of symplectic automorphisms acting trivially on H. The short
exact sequence

1 −→ Mod1
g(`) −→ Mod1

g −→ Sp2g(Z/`) −→ 1

restricts to an exact sequence of the form

1 −→ Mod1
g(`) −→ Mod1

g(H) −→ Sp(H⊥).

Dehn twists Tγ such that [γ] ∈ H⊥ map to symplectic transvections in Sp(H⊥). Moreover,

for every v ∈ H⊥ that is primitive16 there exists an oriented simple closed curve γ on Σ1
g with

14The reason there is a difference between the cases p = b = 0 and p+ b ≥ 1 is that if ζ the homology
class of a loop surrounding x0, then ζ = 0 if p = b = 0, while ζ 6= 0 if p+ b ≥ 1.

15Here we are abusing notation – to define [γ] ∈ H1(Σ1
g;Z/`), we must first orient γ. Changing this

orientation replaces [γ] by −[γ], and thus does not affect whether [γ] ∈ H⊥. We will make similar abuses of
notation throughout the paper.

16That is, such that there does not exist some w ∈ H⊥ and a non-unit λ ∈ Z/` with v = λw.
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[γ] = v; see17 [22, Proposition 6.2]. Symplectic transvections about such elements generate
Sp(H⊥) ∼= Sp2(g−h)(Z/`). We conclude that the map Mod1

g(H)→ Sp(H⊥) is surjective, and

moreover that Mod1
g(H) is generated by Mod1

g(`) along with the set of all Dehn twists Tγ
such that [γ] ∈ H⊥, as desired. �

Remark 2.13. In Lemma 2.12, we can take

S = {Tα1 , . . . , Tαg−h , Tβ1 , . . . , Tβg−h , Tγ1 , . . . , Tγg−h−1
},

where the αi and βi and γi are as follows:

γ3

α4 α3 α2 α1

β4 β3 β2 β1
γ2 γ1

Here H consists of all elements of homology orthogonal to the curves about whose twists are
in S, so H is supported on the handles on the left side of the figure that have no S-curves
around them. This from the fact that Modg−h surjects onto Sp2(g−h)(Z/`) and the fact that
twists about the curves in the following figure generate Modg−h:

γ3

α4 α3 α2 α1

β4 β3 β2 β1
γ2 γ1

See [22, §4.4]. �

2.6. Subsurface stabilizers. Let j : Σ2
g ↪→ Σ1

g+1 be the following embedding:

j

There is an induced map j∗ : Mod2
g → Mod1

g+1 that extends mapping classes on Σ2
g to Σ1

g+1

by the identity. Define

M̂od
2

g(`) =
{
f ∈ Mod2

g | j∗(f) ∈ Mod1
g+1(`)

}
.

We have M̂od
2

g(`) ⊂ Mod2
g(`), but it is not the case that M̂od

2

g(`) = Mod2
g(`). For instance, if

∂ is one of the boundary components of Σ2
g then T∂ ∈ Mod2

g(`) but T∂ /∈ M̂od
2

g(`). However,
this is the only difference between these two groups:

Lemma 2.14. Let g ≥ 0 and ` ≥ 2, and let ∂ be a boundary component of Σ2
g. Then for all

f ∈ Mod2
g(`), there exists some n ∈ Z such that Tn∂ f ∈ M̂od

2

g(`).

17This reference proves that primitive elements of H1(Σ1
g) ∼= Z2g can be represented by simple closed

curves. Since primitive elements of H1(Σ1
g;Z/`) ∼= (Z/`)2g can be lifted to primitive elements of H1(Σ1

g), this

implies the corresponding fact for H1(Σ1
g;Z/`).
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Proof. Let S ∼= Σ1
g and α be as in the following figure:

S

α

∂

Identify H1(S;Z/`) with its image in H1(Σ1
g+1). Since H1(S;Z/`) injects into H1(Σ2

g;Z/`)
and f ∈ Mod2

g(`), the mapping class f acts trivially on H1(S;Z/`). Since f fixes ∂, it also

fixes [∂] ∈ H1(Σ1
g+1;Z/`). It follows that f takes [α] to an element of H1(Σ1

g+1;Z/`) that

is orthogonal to H1(S;Z/`) and has algebraic intersection number 1 with [∂]. This implies
that f([α]) = [α] + n[∂] for some n ∈ Z. We deduce that T−n∂ f fixes [α] as well as [∂] and

H1(S;Z/`). These generate H1(Σ1
g+1;Z/`), so we conclude that T−n∂ f ∈ M̂od

2

g(`). �

Corollary 2.15. Let g ≥ 1 and ` ≥ 2, and let ∂ be a boundary component of Σ2
g. Let V be

a Q-vector space equipped with an action of Mod2
g(`) such that T∂ acts trivially on V . Then

Hk(M̂od
2

g(`);V ) ∼= Hk(Mod2
g(`);V ) for all k ≥ 0.

The proof of this corollary uses the following standard lemma, which follows from the
existence of the transfer map and will be used many times in this paper.

Lemma 2.16 (Transfer map lemma, see, e.g., [9, §III.9]). Let G be a finite-index subgroup
of Γ. For a field k of characteristic 0, let V be a k-vector space equipped with an action of Γ.
Then for all k, the map Hk(G;V )→ Hk(Γ;V ) is surjective. If G is also a normal subgroup
of Γ, then Γ acts on Hk(G;V ) and Hk(Γ;V ) = Hk(G;V )Γ, where the subscript means we
are taking the Γ-coinvariants.18

Proof of Corollary 2.15. Since T∂ ∈ Mod2
g(`) is central and T `∂ is the smallest power of T∂

lying in M̂od
2

g(`), Lemma 2.14 implies that M̂od
2

g(`) is a finite-index normal subgroup of

Mod2
g(`) and that Mod2

g(`)/M̂od
2

g(`) is a cyclic group of order ` generated by the image of
T∂ . By the transfer map lemma (Lemma 2.16), we deduce that

Hk(Mod2
g(`);V ) ∼= Hk(M̂od

2

g(`);V )Mod2
g(`).

Since inner automorphisms act trivially on homology (see, e.g., [9, Proposition III.8.1]), the

group M̂od
2

g(`) acts trivially on Hk(M̂od
2

g(`);V ). Since T∂ is a central element of Mod2
g(`)

acting trivially on V , it also acts trivially on Hk(M̂od
2

g(`);V ). We conclude that Mod2
g(`)

acts trivially on Hk(M̂od
2

g(`);V ), so Hk(M̂od
2

g(`);V ) ∼= Hk(Mod2
g(`);V ). �

3. Ordered simplicial complexes and coefficient systems

This section contains some topological background material needed to describe the twisted
homological stability machine of [57] in the next section §4. We will not need to be as
general as [57], so instead of stating things in terms of semisimplicial sets we will work in
the easier category of “ordered simplicial complexes”.

18The action of Γ on Hk(G;V ) factors through Q = Γ/G, and sometimes it will be more convenient to
write this as Hk(G;V )Q.
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3.1. Ordered simplicial complexes. An ordered simplicial complex is a CW complex X
whose cells are simplices such that the following hold:

• The vertices X0 are an arbitrary discrete set.
• For p ≥ 0, the set Xp of p-simplices consists of certain ordered sequences σ =

[v0, . . . , vp], with the vi distinct vertices. The faces of σ are obtained by deleting some
of the vi, so for instance the codimension-1 faces are of the form [v0, . . . , v̂i, . . . , vp].

These differ from ordinary simplicial complexes in two ways:

• The vertices making up a simplex have an order.
• There can be up to (p+ 1)! simplices of dimension p with the same set of vertices,

corresponding to different orderings. For instance, there might be distinct edges
[v0, v1] and [v1, v0] between vertices v0 and v1.

A group G acting on X is required to respect the ordering of the vertices on a simplex, so if
σ = [v0, . . . , vp] is a p-simplex and g ∈ G, then gσ = [gv0, . . . , gvp].

3.2. Cohen–Macaulay complexes. Let X be an ordered simplicial complex. For simplices
σ = [v0, . . . , vp] and τ = [w0, . . . , wq] of X, let

σ · τ = [v0, . . . , vp, w0, . . . , wq].

This might not be a simplex. The forward link of a p-simplex σ of X, denoted
−−−→
LinkX(σ),

is the ordered simplicial complex whose q-simplices are q-simplices τ of X such that σ · τ
is a (p + q + 1)-simplex. We say that X is weakly forward Cohen–Macaulay of dimension

n if X is (n − 1)-connected and for all p-simplices σ of X, the forward link
−−−→
LinkX(σ) is

(n− p− 2)-connected.19

3.3. Coefficient systems. Let k be a commutative ring. Our next goal is to define coefficient
systems on ordered simplicial complexes X, which informally are natural associations of

k-modules to each simplex. Let Simp(X) be the poset of simplices of X and let S̃imp(X)
be the poset obtained by adjoining an initial object [ ] to Simp(X). We will call [ ] the
(−1)-simplex of X.

A coefficient system over k on an ordered simplicial complex X is a contravariant functor
F from Simp(X) to the category of k-modules. We will frequently omit the k and just talk
about coefficient systems on X. Unpacking this, F consists of the following data:

• For each simplex σ of X, a k-module F(σ).
• For each simplex σ and each face σ′ of σ, a k-module morphism F(σ)→ F(σ′).

These must satisfy the evident compatibility conditions. Similarly, an augmented coefficient

system on X is a contravariant functor F from S̃imp(X) to the category of k-modules. The
collection of coefficient systems (resp. augmented coefficient systems) over k on X forms an
abelian category whose morphisms are natural transformations.

Notation 3.1. For a simplex [v0, . . . , vp], we will denote F([v0, . . . , vp]) by F [v0, . . . , vp]. In
particular, the value of F on the (−1)-simplex [ ] will be written as F [ ]. �

Example 3.2. We can define a constant coefficient system k on X with k(σ) = k for all
simplices σ. This can be extended to an augmented coefficient system by setting k [ ] = k
for the (−1)-simplex [ ]. �

19For this, we must decide how to handle the empty set. We say that a space X is n-connected if for
all k ≤ n, all continuous maps Sk → X can be extended to Dk+1. We have S−1 = ∅ but D0 = {pt}, so for
n ≥ −1 a space that is n-connected must be nonempty. However, all spaces are n-connected for n ≤ −2.
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3.4. Homology. Let X be an ordered simplicial complex and let F be a coefficient system
on X. Define the simplicial chain complex of X with coefficients in F to be the chain complex
C•(X;F) defined as follows:

• For p ≥ 0, we have

Cp(X;F) =
⊕
σ∈Xp

F(σ).

• The boundary map d : Cp(X;F)→ Cp−1(X;F) is d =
∑p

i=0(−1)idi, where the map
di : Cp(X;F)→ Cp−1(X;F) is as follows. Consider σ ∈ Xp. Write σ = [v0, . . . , vp],
and let σi = [v0, . . . , v̂i, . . . , vp]. Then on the F(σ) factor of Cn(X;F), the map di is

F(σ) −→ F(σi) ↪→
⊕

σ′∈Xp−1

F(σ′) = Cp−1(X;F).

Define
Hk(X;F) = Hk(C•(X;F)).

For an augmented coefficient system F on X, define C̃•(X;F) to be the augmented chain

complex defined just like we did above but with C̃−1(X;F) = F [ ] and define

H̃k(X;F) = Hk(C̃•(X;F)).

Example 3.3. For the constant coefficient system k, the homology groups Hk(X;k) and

H̃k(X;k) agree with the usual simplicial homology groups of X. �

Remark 3.4. With our definition, H̃−1(X;F) is a quotient of F [ ]. This quotient can
sometimes be nonzero. It vanishes precisely when the map⊕

v∈X0

F [v]→ F [ ]

is surjective. �

3.5. Equivariant coefficient systems. Let X be an ordered simplicial complex, let G be
a group acting on X, and let F be an augmented coefficient system on X. We want to equip
F with an “action” of G that is compatible with the G-action on X. For simplicity,20 we will

restrict ourselves to F such that for all σ, σ′ ∈ S̃imp(X) with σ′ ⊂ σ, the map F(σ)→ F(σ′)
is injective. We call these injective augmented coefficient systems. For such an F , the map

F(σ)→ F [ ] is injective for all σ ∈ S̃imp(X), so we can regard F(σ) as a submodule of F [ ].
A G-equivariant injective augmented coefficient system on X is an injective augmented

coefficient system F along with an action of G on F [ ] such that for all σ ∈ S̃imp(X), we
have

gF(σ) = F(g · σ) for all g ∈ G.
Here we are regarding F(σ) as a submodule of F [ ], so gF(σ) is the image of F(σ) under
the action of g on F [ ]. Letting Gσ be the stabilizer of σ, this implies that the action of G
on F [ ] restricts to an action of Gσ on F(σ).

Example 3.5. Let X be an ordered simplicial complex with vertex set V = X0. For a set S,
write k[S] for the free k-module with basis S. We can then define an injective augmented
coefficient system F on X via the formulas

F [v0, . . . , vp] = k[V \ {v0, . . . , vp}] and F [ ] = k[V ].

If a group G acts on X, then its action on V induces an action on F [ ], making F into a
G-equivariant injective augmented coefficient system. �

20This avoids the complicated definition in terms of natural transformations from [57].
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4. The stability machine

We now discuss some aspects of the homological stability machine with twisted coefficients
from [57]. There is an earlier approach to this due to Dwyer [18], but it seems hard to use it
to prove our theorems.

4.1. Motivation. What we need is not the homological stability machine itself, but a result
that encapsulates one part of how the inductive step in the machine works. Consider a
group G acting on an ordered simplicial complex X. The goal is to relate the homology of G
to the homology of stabilizers of simplices of X. The most basic thing one might want is
that Hk(G) is “carried” on the vertex stabilizers in the sense that the map

(4.1)
⊕
v∈X0

Hk(Gv) −→ Hk(G)

is surjective. For v ∈ X0 and g ∈ G, we have gGvg
−1 = Ggv, so since inner automorphisms

act trivially on homology the images of Hk(Gv) and Hk(Ggv) in Hk(G) are equal. Thus for
the sake of verifying surjectivity the above direct sum can be taken to be over representatives
of the G-orbits of X0.

In a typical homological stability proof, the group G acts transitively on the vertices of
X and there is a vertex v0 such that Gv0 is the previous group in our sequence of groups.
In that case, if (4.1) is surjective then the map Hk(Gv0)→ Hk(G) is surjective, which is a
weak form of homological stability.

4.2. Fragment of machine. In our situation, the group G will not act transitively on the
vertices of X. Moreover, we want to incorporate twisted coefficients, which we do using a
G-equivariant coefficient system on X. The result we need is as follows:

Proposition 4.1. Let G be a group acting on an ordered simplicial complex X and let M
be a G-equivariant augmented coefficient system on X. For some k ≥ 0, assume that the
following hold:

(i) We have H̃i(X;M) = 0 for −1 ≤ i ≤ k − 1.

(ii) We have H̃i(X/G) = 0 for −1 ≤ i ≤ k.
(iii) Let σ be a simplex of X. Then for i ≥ 1 the map

Hk−i(Gσ;M(σ)) −→ Hk−i(G;M [ ])

is an isomorphism if i− 1 ≤ dim(σ) ≤ i+ 1.

Then the map ⊕
v∈X0

Hk(Gv;M[v]) −→ Hk(G;M [ ])

is a surjection.

Proof. This can be proved using the spectral sequence [57, Theorem 5.6] exactly like [57,
Theorem 5.8]. �

4.3. Vanishing theorem. For Proposition 4.1 to be useful, we need a way to verify its first

hypothesis, which says that H̃i(X;M) = 0 in some range. The paper [57] gives a criterion for
this. Letting X be an ordered simplicial complex, it applies to augmented coefficient systems
F on X that are polynomial of degree d ≥ −1. This is defined inductively in d as follows:21

• A coefficient system F is polynomial of degree −1 if F(σ) = 0 for all simplices σ. In
particular, F [ ] = 0 for the (−1)-simplex [ ].

21The reference [57] defines what it means to be polynomial of degree d up to dimension e. What we
define here corresponds to e =∞.
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• A coefficient system F is polynomial of degree d ≥ 0 if it satisfies the following two
conditions:

– The coefficient system F is injective in the sense of §3.5. Recall that this means
that if σ is a simplex and σ′ is a face of σ, then the map F(σ) → F(σ′) is
injective.

– Let w be a vertex of X. Let DwF be the coefficient system on the forward link−−−→
LinkX(w) defined by the formula

DwF(σ) =
F(σ)

Im (F (w · σ)→ F (σ))
for a simplex σ of

−−−→
LinkX(w).

Then DwF must be polynomial of degree d− 1.

Example 4.2. A coefficient system F is polynomial of degree 0 if and only if it is constant. �

Example 4.3. Let X be an ordered simplicial complex with vertex set V = X0. Let F be the
augmented coefficient system on X from Example 3.5, so

F [v0, . . . , vp] = k[V \ {v0, . . . , vp}] and F [ ] = k[V ].

We claim that F is polynomial of degree 1. Since F is injective, for all w ∈ V we must prove
that DwF is polynomial of degree 0, i.e., constant. For a simplex [v0, . . . , vp] of the forward
link of w, we have

DwF [v0, . . . , vp] =
k[V \ {v0, . . . , vp}]

k[V \ {w, v0, . . . , vp}]
∼= k[{w}] ∼= k.

Thus DwF ∼= k, as desired. �

The vanishing theorem from [57] is then as follows:

Theorem 4.4 (Vanishing theorem, [57, Theorem 6.4]22). For some N ≥ −1 and d ≥ −1,
let X be an ordered simplicial complex that is weakly forward Cohen–Macaulay of dimension
N + d+ 1. Let F be an augmented coefficient system on X that is polynomial of degree d.

Then H̃i(X;F) = 0 for −1 ≤ i ≤ N .

4.4. Strong polynomiality. Let X be an ordered simplicial complex. Our next goal
(accomplished below in §4.7 after two sections of preliminaries) is to study tensor products
of polynomial augmented coefficient systems on X. What we would like to prove is that if F
and G are polynomial of degrees d ≥ 0 and e ≥ 0, then F ⊗ G is polynomial of degree d+ e.
For this to be true, we need some additional hypotheses.

An augmented coefficient system F is strongly polynomial of degree d ≥ −1 if it satisfies
the following inductive definition:

• It is strongly polynomial of degree −1 if F(σ) = 0 for all simplices σ. To simplify
handling edge cases in inductive proofs, we will also say such coefficient systems are
strongly polynomial of degree d for all d ≤ −1.
• It is strongly polynomial of degree d ≥ 0 if it satisfies the following two conditions:

– The coefficient system F is injective in the sense of §3.5.
– Let τ = [w0, . . . , wq] be a simplex of X. Set τ ′ = [w0, . . . , wq−1], interpreted as

the empty (−1)-simplex if q = 0. Let DτF be the coefficient system on the

forward link
−−−→
LinkX(τ) defined by the formula

DτF(σ) =
F(τ ′ · σ)

Im (F (τ · σ)→ F (τ ′ · σ))
for a simplex σ of

−−−→
LinkX(τ).

22The statement of [57, Theorem 6.4] requires F to be polynomial of degree d up to dimension N . As we
said when we defined polynomiality, what we defined is being polynomial of degree d up to dimension ∞, so
the “up to dimension” part of [57, Theorem 6.4] is superfluous.
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Then DτF must be strongly polynomial of degree d− 1.

Remark 4.5. If F is strongly polynomial of degree d, then it is also strongly polynomial of
degree d′ for all d′ ≥ d. In particular, if F vanishes identically then it is strongly polynomial
of degree d for all d ∈ Z. �

Remark 4.6. This is stronger than simply being polynomial, whose definition only involves
Dτ for 0-dimensional simplices τ = [w]. �

4.5. Insertion functors. Let F be an augmented coefficient system on an ordered simplicial
complex X. For a simplex τ of X, let AτF be the augmented coefficient system on the

forward link L =
−−−→
LinkX(τ) defined via the formula

AτF(σ) = F(τ · σ) for a simplex σ of L.

Write τ = [w0, . . . , wq], and let τ ′ = [w0, . . . , wq−1]. If F is injective, we have a short exact
sequence

0 −→ AτF −→ (Aτ ′F) |L −→ DτF −→ 0

of augmented coefficient systems on L. The following lemma implies that if F is strongly
polynomial of degree d, then so are AτF and (Aτ ′F)|L. This can fail if F is only polynomial.

Lemma 4.7. Let X be an ordered simplicial complex and let F be an augmented coefficient
system on X that is strongly polynomial of degree d ≥ −1. The following hold:

(i) For all subcomplexes Y of X, the coefficient system F|Y is strongly polynomial of
degree d.

(ii) Let τ be a simplex of X and let L =
−−−→
LinkX(τ). Then AτF is strongly polynomial of

degree d.

Proof. Both (i) and (ii) are trivial if d = −1, so we can assume that d ≥ 0. For (i), in [57,
Lemma 6.3] it is proved that if F is assumed merely to be polynomial of degree d, then so is
F|Y. The same proof works for strong polynomiality.

For (ii), since F is injective, so is AτF . Also, if κ is a simplex of L, then DκAτF = Dτ ·κF .
Since F is strongly polynomial of degree d, this is strongly polynomial of degree (d − 1).
Together, these two observations imply that AτF is strongly polynomial of degree d. �

4.6. Filtrations of coefficient systems. It is clear that the collection of augmented
coefficient systems that are strongly polynomial is closed under direct sums. More generally,
we have the following. To make its statement easier to parse, we only state it for strongly
polynomial coefficient systems, but it also holds for polynomial ones with a similar proof.

Lemma 4.8. Let X be an ordered simplicial complex and let F be an augmented coefficient
system on X. Assume that F has a filtration

F = Fr ⊃ Fr−1 ⊃ · · · ⊃ F0 = 0

such that Fi/Fi+1 is strongly polynomial of degree d ≥ −1 for all 1 ≤ i ≤ r. Then F is
strongly polynomial of degree d.

Proof. The proof is by induction on d. The base case d = −1 is clear, so assume that d ≥ 0
and that the lemma is true for degree d − 1. Using another induction on the length of a
filtration, we see that it is enough to prove that if

0 −→ K −→ F −→ Q −→ 0

is a short exact sequence of augmented coefficient systems such that K and Q are strongly
polynomial of degree d, then F is strongly polynomial of degree d.



18 ANDREW PUTMAN

To see that F is injective, let σ be a simplex and σ′ be a face of σ. We then have a
commutative diagram

0 K(σ) F(σ) Q(σ) 0

0 K(σ′) F(σ′) Q(σ′) 0

with exact rows. The maps K(σ)→ K(σ′) and Q(σ)→ Q(σ′) are injective by assumption,
so by the five-lemma F(σ)→ F(σ′) is also injective, as desired.

Now consider a simplex τ = [w0, . . . , wq] of X. Set τ ′ = [w0, . . . , wq−1]. We know that
DτK and DτQ are strongly polynomial of degree d− 1, and we must prove that DτF is as

well. For a simplex σ of
−−−→
LinkX(τ), we have a commutative diagram

0 0 0

0 K(τ · σ) F(τ · σ) Q(τ · σ) 0

0 K(τ ′ · σ) F(τ ′ · σ) Q(τ ′ · σ) 0

0 DτK(σ) DτF(σ) DτQ(σ) 0

0 0 0

The columns are exact since K and F and Q are injective, and the first two rows are also
exact by assumption. A quick diagram chase (or alternatively, the snake lemma) shows that
the third row is also exact. This implies that we have a short exact sequence

0 −→ DτK −→ DτF −→ DτQ −→ 0

of augmented coefficient systems. Since DτK and DτQ are strongly polynomial of degree
d− 1, our inductive hypothesis implies that DτF is as well, as desired. �

4.7. Tensor products of coefficient systems. Using Lemma 4.8, we will prove the
following. We will apply it with k a field, in which case its flatness assumptions are
automatic. When d + e < −1, the statement of this lemma uses the conventions about
strong polynomiality in negative degrees from §4.4 (c.f. Remark 4.5).

Lemma 4.9. Let X be an ordered simplicial complex and let F and G be augmented coefficient
systems on X over a commutative ring k. Assume the following hold:

• For all simplices σ of X, the k-modules F(σ) and G(σ) are flat.
• The augmented coefficient systems F and G are strongly polynomial of degrees d ≥ −1

and e ≥ −1, respectively.

Then F ⊗ G is strongly polynomial of degree d+ e.

Proof. The proof will be by induction on d and e. The base cases are when either d = −1 or
e = −1 (or both). In other words, at least one of F and G is identically 0. Therefore F ⊗ G
is also identically 0, and is thus strongly polynomial of degree −1. This implies that it is
strongly polynomial of any degree whatsoever, and in particular is strongly polynomial of
degree d+ e.

Assume now that d ≥ 0 and e ≥ 0, and that the lemma is true whenever one of them is
smaller. We first prove that F ⊗ G is an injective augmented coefficient system. Let σ be a
simplex and let σ′ be a face of σ. The map (F ⊗ G)(σ)→ (F ⊗ G)(σ′) can be factored as

(F ⊗ G)(σ) = F(σ)⊗ G(σ)→ F(σ′)⊗ G(σ)→ F(σ′)⊗ G(σ′) = (F ⊗ G)(σ′).
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The first arrow is injective since F is injective and G(σ) is flat, and the second arrow is
injective since F(σ′) is flat and G is injective. It follows that the map (F⊗G)(σ)→ (F⊗G)(σ′)
is injective, as desired.

Now consider a simplex τ = [w0, . . . , wq] of X. Set τ ′ = [w0, . . . , wq−1]. We must prove

that the augmented coefficient system Dτ (F ⊗G) on L =
−−−→
LinkX(τ) is strongly polynomial of

degree d+ e− 1. Using the notation from §4.5, we have short exact sequences of augmented
coefficient systems

0 −→ AτF −→ (Aτ ′F)|L −→ DτF −→ 0

and

0 −→ AτG −→ (Aτ ′G)|L −→ DτG −→ 0

on L. By Lemma 4.7, the augmented coefficient systems AτF and (Aτ ′F)|L (resp. AτG and
(Aτ ′G)|L) are strongly polynomial of degree d (resp. e). Using our flatness assumptions, we
have a filtration

0 ⊂ (AτF)⊗ (AτG) ⊂ (Aτ ′F)|L ⊗ (AτG) ⊂ (Aτ ′F)|L ⊗ (Aτ ′G)|L
of coefficient systems. The associated graded of this filtration consists of the following:

• (AτF)⊗ (AτG). Since AτF is strongly polynomial of degree d and AτG is strongly
polynomial of degree e, we cannot apply our inductive hypothesis to this (but we
will soon quotient it out, so this will not matter).
• (DτF) ⊗ (AτG). Since DτF is strongly polynomial of degree (d − 1) and AτG is

strongly polynomial of degree e, our inductive hypothesis says that this is strongly
polynomial of degree d+ e− 1.
• (Aτ ′F)|L ⊗ (DτG). Since (Aτ ′F)|L is strongly polynomial of degree d and DτG is

strongly polynomial of degree e−1, our inductive hypothesis says that this is strongly
polynomial of degree d+ e− 1.

From this, we see that

Dτ (F ⊗ G) = ((Aτ ′F)|L ⊗ (Aτ ′G)|L) / ((AτF)⊗ (AτG))

has a filtration whose associated graded terms are strongly polynomial of degree d+ e− 1.
By Lemma 4.8, we deduce that Dτ (F ⊗ G) is strongly polynomial of degree d+ e− 1, as
desired. �

5. The complex of tethered tori

In this section, we introduce an ordered simplicial complex upon which Mod1
g(`) acts

and study its basic properties. In the next section, we will introduce a Mod1
g(`)-equivariant

coefficient system on it and prove it is strongly polynomial.

5.1. Tori and tethered tori. Let τ(Σ1
1) be the result of gluing [0, 1] to Σ1

1 by identifying
1 ∈ [0, 1] with a point of ∂Σ1

1. The subset [0, 1] ⊂ τ(Σ1
1) will be called the tether and the

point 0 ∈ [0, 1] ⊂ τ(Σ1
1) will be called the initial point of the tether. For an open interval

I ⊂ ∂Σ1
g, an I-tethered torus in Σ1

g is an embedding ι : τ(Σ1
1)→ Σ1

g taking the initial point

of the tether to a point of I such that the restriction of ι to Σ1
1 is orientation-preserving:
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We will always consider I-tethered tori up to isotopy.23 An I-tethered torus ι : τ(Σ1
1)→ Σ1

g

is said to be orthogonal to a symplectic subgroup H ⊂ H1(Σ1
g;Z/`) if all elements of the

image of

H1(Σ1
1;Z/`)

∼=−→ H1(τ(Σ1
1);Z/`) ι∗−→ H1(Σ1

g;Z/`)
are orthogonal to H under the algebraic intersection pairing.

5.2. Complex of tethered tori. Fix a symplectic subgroup H ⊂ H1(Σ1
g;Z/`) and an open

interval I ⊂ ∂Σ1
g. The complex of I-tethered H-orthogonal tori in Σ1

g, denoted TT1
g(I,H), is

the ordered simplicial complex whose p-simplices are ordered sequences [ι0, . . . , ιp] as follows:

• Each ιi is the isotopy class of an I-tethered torus that is orthogonal to H.
• The ιi can be isotoped so as to be disjoint.
• The ιi are ordered using the order in which their tethers leave I, which is oriented

such that the surface is to its right.

For instance, a 2-simplex might look like this:

ι0ι1ι2

If H = 0, then we will sometimes omit it from our notation and simply write TT1
g(I).

The complex TT1
g(I) was introduced by Hatcher–Vogtmann [34], who proved that it was

g−3
2 -connected. The author generalized this to TT1

g(I,H) as follows:

Theorem 5.1 ([56, Theorem 3.8]). Fix g, h ≥ 0 and ` ≥ 2. Let I be an open interval
in ∂Σ1

g and let H be a genus-h symplectic subgroup of H1(Σ1
g;Z/`). Then TT1

g(I,H) is
g−(4h+3)

2h+2 -connected.

This has the following corollary:

Corollary 5.2. Fix g, h ≥ 0 and ` ≥ 2. Let I be an open interval in ∂Σ1
g and let H be

a genus-h symplectic subgroup of H1(Σ1
g;Z/`). Then TT1

g(I,H) is weakly forward Cohen–

Macaulay of dimension g−(4h+3)
2h+2 + 1.

Proof. Theorem 5.1 says that TT1
g(I,H) is g−(4h+3)

2h+2 -connected. Let σ = [ι0, . . . , ιp] be a
p-simplex and let L be the forward link of σ. As in the following figure, let S be the result
of deleting the interiors of the ιi(Σ

1
1) from Σ1

g and then cutting open the resulting surface
along the tethers:

ι0

I

ι1

J
S

We thus have S ∼= Σ1
g−p−1, and H1(S;Z/`) can be identified with a subgroup of H1(Σ1

g;Z/`)
containing H. Identify S with Σ1

g−p−1 and H with a subgroup of H1(Σ1
g−p−1;Z/`). Letting

J ⊂ ∂Σ1
g−p−1 be the interval indicated in the above figure, the forward link L is isomorphic

to TT1
g−p−1(J,H), see here:

23These are isotopies through I-tethered tori, so the initial point of the tether can move within I.
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j0j1 j0j1

It thus follows from Theorem 5.1 that L is

(g − p− 1)− (4h+ 3)

2h+ 2
=
g − (4h+ 3)

2h+ 2
− p+ 1

2h+ 2
≥ g − (4h+ 3)

2h+ 2
− p− 1

connected, as desired. �

5.3. Realizing symplectic bases. We next describe the quotient of TT1
g(I,H) by Mod1

g(`),
which requires some preliminaries. Let ω(−,−) be the algebraic intersection pairing on
H1(Σ1

g;Z/`). A symplectic basis of H1(Σ1
g;Z/`) is a set of elements {a1, b1, . . . , ag, bg} of

H1(Σ1
g;Z/`) such that

ω(ai, aj) = ω(bi, bj) = 0 and ω(ai, bj) = δij for 1 ≤ i, j ≤ g.

This implies that the set {a1, b1, . . . , ag, bg} is a basis of the free Z/`-module H1(Σ1
g;Z/`).

A geometric realization of a symplectic basis {a1, b1, . . . , ag, bg} is a collection of oriented
simple closed curves {α1, β1, . . . , αg, βg} on Σ1

g satisfying

[αi] = ai and [βi] = bi for 1 ≤ i ≤ g

such that the curves {α1, β1, . . . , αg, βg} are all pairwise disjoint except that each αi intersects
βi exactly once. See here:

α1 α2 α3

β1 β2 β3

The following lemma shows that geometric realizations always exist:

Lemma 5.3. Fix some g ≥ 0 and ` ≥ 2. Then every symplectic basis {a1, b1, . . . , ag, bg} of
H1(Σ1

g;Z/`) has a geometric realization.

Proof. A similar statement was proved in [49, Lemma A.3] for symplectic bases of H1(Σg;Z) ∼=
Z2g, and the same proof works for H1(Σ1

g;Z/`). �

5.4. Identifying the quotient. Let V be a free Z/`-module equipped with a symplectic
form ω(−,−). Define SB(V ) to be the ordered simplicial complex whose (p− 1)-simplices
are ordered tuples [(a1, b1), . . . , (ap, bp)] with ai, bj ∈ V such that

ω(ai, aj) = ω(bi, bj) = 0 and ω(ai, bj) = δij for 1 ≤ i, j ≤ p.

We then have the following.

Lemma 5.4. Fix some g ≥ 0 and ` ≥ 2. Let I be an open interval in ∂Σ1
g and let H be a

symplectic subgroup of H1(Σ1
g;Z/`). Then TT1

g(I,H)/Mod1
g(`)
∼= SB(H⊥).

Proof. Fix simple closed oriented curves A and B in Σ1
1 that intersect once with a positive

sign. For an I-tethered torus ι : τ(Σ1
1)→ Σ1

g that is orthogonal to H, we have oriented simple
closed curves ι(A) and ι(B), and the tuple ([ι(A)], [ι(B)]) of mod-` homology classes is a
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vertex of SB(H⊥). Define a map of ordered simplicial complexes Ψ: TT1
g(I,H)→ SB(H⊥)

as follows. Consider a (p− 1)-simplex [ι1, . . . , ιp] of TT1
g(I,H). We then define

Ψ[ι1, . . . , ιp] = [([ι1(A)], [ι1(B)]), . . . , ([ιp(A)], [ιp(B)])].

The map Ψ is Mod1
g(`)-invariant, and to prove that the resulting map

TT1
g(I,H)/Mod1

g(`) −→ SB(H⊥)

is an isomorphism it is enough to prove the following two facts.

Claim 1. For all simplices σ of SB(H⊥), there exists a simplex τ of TT1
g(I,H) with

Ψ(τ) = σ.

Write σ = [(a1, b1), . . . , (ap, bp)]. The set {a1, b1, . . . , ap, bp} can be extended to a symplec-
tic basis for H1(Σ1

g;Z/`), and Lemma 5.3 implies that this symplectic basis has a geometric
realization. Throwing away some of the curves in this geometric realization, we find simple
closed oriented curves {α1, β1, . . . , αp, βp} on Σ1

g satisfying

[αi] = ai and [βi] = bi for 1 ≤ i ≤ p
such that the curves {α1, β1, . . . , αp, βp} are all pairwise disjoint except that each αi intersects
βi exactly once. As in the following figure, we can then find a simplex τ = {ι1, . . . , ιp} of

TT1
g(I) such that ιi(A) = αi and ιi(B) = βi for 1 ≤ i ≤ p:

α2 α1

β2 β1

Since the ai and bi all lie in H⊥, the simplex τ lies in TT1
g(I,H), and by construction we

have Ψ(τ) = σ.

Claim 2. For all simplices τ1 and τ2 of TT1
g(I,H) such that Ψ(τ1) = Ψ(τ2), there exists

some f ∈ Mod1
g(`) such that f(τ1) = τ2.

The dimensions of τ1 and τ2 are the same, say (p− 1). For r = 1, 2 let τr = [ιr1, . . . , ι
r
p].

Write
Ψ(τ1) = Ψ(τ2) = [(a1, b1), . . . , (ap, bp)].

We can extend {a1, b1, . . . , ap, bp} to a symplectic basis {a1, b1, . . . , ag, bg} for H1(Σ1
g;Z/`).

For r = 1, 2 let Sr be the result of deleting the interiors of the ιri (Σ
1
1) from Σ1

g and then
cutting open the resulting surface along the tethers:

ιr1ιr2

Sr

We thus have Sr ∼= Σ1
g−p. Identifying Sr with a subsurface of Σ1

g in the obvious way

identifies H1(Sr;Z/`) with a subgroup of H1(Σ1
g;Z/`), and {ap+1, bp+1, . . . , ag, bg} is a sym-

plectic basis for H1(Sr;Z/`). By Lemma 5.3, we can geometrically realize this with curves
{αrp+1, β

r
p+1, . . . , α

r
g, β

r
g} lying in Sr. Using the “change of coordinates” principle from [22,

§1.3.2], we can find some f ∈ Mod1
g with the following properties:

• f(ι1i ) = ι2i for 1 ≤ i ≤ p. In particular, f fixes ai ∈ H1(Σ1
g;Z/`) and bi ∈ H1(Σ1

g;Z/`)
for 1 ≤ i ≤ p.
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• f(α1
i ) = α2

i and f(β1
i ) = β2

i for p+ 1 ≤ i ≤ g. In particular, f fixes ai ∈ H1(Σ1
g;Z/`)

and bi ∈ H1(Σ1
g;Z/`) for p+ 1 ≤ i ≤ g.

The first of these properties implies that f(τ1) = τ2. Since f fixes the symplectic basis
{a1, b1, . . . , ag, bg} for H1(Σ1

g;Z/`), it lies in Mod1
g(`). The claim follows. �

5.5. High connectivity of quotient. Building on work of Charney [13], Mirzaii–van der
Kallen [45] proved the following:

Theorem 5.5 (Mirzaii–van der Kallen [45, Lemma 7.4]). Fix some g ≥ 0 and ` ≥ 2. Let

V = H1(Σ1
g;Z/`). Then SB(V ) is g−5

2 -connected.

This has the following corollary.

Corollary 5.6. Fix some g ≥ 0 and ` ≥ 2. Let I be an open interval in ∂Σ1
g and let H be a

genus-h symplectic subgroup of H1(Σ1
g;Z/`). Then TT1

g(I,H)/Mod1
g(`) is g−h−5

2 -connected.

Proof. Lemma 5.4 says that TT1
g(I,H)/Mod1

g(`)
∼= SB(H⊥), and H⊥ ∼= H1(Σ1

g−h;Z/`).
Theorem 5.5 thus implies that TT1

g(I,H)/Mod1
g(`) is (g−h)−5

2 -connected. �

6. Prym representations

We now discuss the definition and some basic properties of the Prym representations and
show how to encode them by equivariant augmented coefficient systems on the tethered
torus complexes TT1

g(I,H). Throughout this section, k is a commutative ring. Fix some

g ≥ 1 and ` ≥ 2, and let24

D = H1(Σ1
g;Z/`) = H1(Σg;Z/`) ∼= (Z/`)2g.

6.1. Surfaces with one boundary component, definition. We start with surfaces Σ1
g

with one boundary component. In this case, the Prym representation is defined as follows.
Let SD → Σ1

g be the finite regular cover corresponding to the homomorphism25 π1(Σ1
g)→ D.

The deck group of this cover is D. By definition, the Prym representation with coefficients
in k is

H1
g(`; k) = H1(SD;k).

The level-` mapping class group Mod1
g(`) acts on H1

g(`;k) via the action on homology of lifts

of mapping classes on Σ1
g to SD that fix ∂SD pointwise.

Remark 6.1. It is important that Σ1
g has nonempty boundary. Otherwise, due to basepoint

issues there would not be a canonical way to lift elements of Mod1
g(`) to the cover SD. �

Remark 6.2. We could extend the action of Mod1
g(`) on H1

g(`;k) to Mod1
g since the cover

SD → Σ1
g is a characteristic cover.26 However, the lifts in that case would only fix a single

component of ∂SD. �

24Here D stands for “deck group”.
25Since the target of this homomorphism is abelian, there is no need to specify a basepoint of π1(Σ1

g);

however, if the reader prefers to be careful about basepoints then they should fix one on ∂Σ1
g.

26That is, it corresponds to a subgroup of π1(Σ1
g) that is preserved by all automorphisms.
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6.2. Partial Prym representation. It is unclear how to incorporate the H1
g(`;k) into aug-

mented coefficient systems on TT1
g(I), and it seems unlikely that any such coefficient system

would be polynomial. To fix this, we restrict ourselves to the partial Prym representations,27

which are defined as follows.
Let H be a symplectic subgroup of H1(Σ1

g;Z/`). Recall from §2.2 that the associated

partial level-` subgroup, denoted Mod1
g(H), is the group of all f ∈ Mod1

g such that f(x) = x

for all x ∈ H. Let SH → Σ1
g be the finite regular cover corresponding to the homomorphism

π1(Σ1
g)→ H1(Σ1

g) = H ⊕H⊥ proj−→ H.

The deck group of this cover is H. Setting H1
g(H;k) = H1(SH ;k), just like for H1

g(`;k) we

can define an action of Mod1
g(H) on H1

g(H;k) by lifting28 mapping classes to SH . We will

call H1
g(H;k) a partial Prym representation.

6.3. Coefficient system. Continue to let H be a symplectic subgroup of H1(Σ1
g;Z/`), and

let π : SH → Σ1
g be the regular cover discussed above. Fix an open interval I in ∂Σ1

g, and

consider a simplex σ = [ι0, . . . , ιk] of TT1
g(I,H). Set

Xσ = Σ1
g \Nbhd

(
∂Σ1

g ∪ Im (ι0) ∪ · · · ∪ Im (ιk)
)
,

where Nbhd(−) denotes an open regular neighborhood of the indicated subset of Σ1
g. See

here:

ι0ι1

Xσ

We thus have Xσ
∼= Σ1

g−k−1. Since σ is a simplex of TT1
g(I,H), the map π1(Σ1

g)→ H used to

define π : SH → Σ1
g restricts to a surjective map π1(Xσ)→ H. It follows that X̃σ = π−1(Xσ)

is a connected submanifold of SH and X̃σ → Xσ is a finite regular H-cover. Define an
augmented coefficient system H1

g(H; k) on TT1
g(I,H) via the formula

H1
g(H;k)(σ) = H1(X̃σ; k).

Our convention is that if σ = [ ] is the (−1)-simplex, then Xσ = Σ1
g \Nbhd

(
∂Σ1

g

)
, so

H1
g(H; k) [ ] = H1(Xσ; k) ∼= H1(SH ;k) = H1

g(H; k).

Our main result about this coefficient system is that it is strongly polynomial of degree 1
(see §4.4 for the definition of a strongly polynomial coefficient system):

Lemma 6.3. Let g ≥ 0 and ` ≥ 2. Fix a symplectic subgroup H of H1(Σ1
g;Z/`) and an

open interval I in ∂Σ1
g. Then for all commutative rings k the augmented coefficient system

H1
g(H; k) on TT1

g(I,H) is strongly polynomial of degree 1.

Proof. It is immediate from the definitions that H1
g(H; k) is injective. The other condition

in the definition of being strongly polynomial of degree 1 is as follows. Let τ = [ι0, . . . , ι`] be

27In §6.6, we will explain how to relate the partial Prym representations to the Prym representation.
28Unlike for H1

g(`; k), this action cannot be extended to Mod1
g since this is not a characteristic cover.



STABLE COHOMOLOGY OF THE MODULI SPACE OF CURVES WITH LEVEL STRUCTURES 25

a simplex of TT1
g(I,H). Set τ ′ = [ι0, . . . , ι`−1], and let DτH1

g(H;k) be the coefficient system

on the forward link L =
−−−→
LinkTT1

g(I,H)(τ) defined by the formula

DτH1
g(H; k)(σ) =

H1
g(H;k)(τ ′ · σ)

Im
(
H1
g (H; k) (τ · σ)→ H1

g (H;k) (τ ′ · σ)
) for a simplex σ of L.

We must prove that DτH1
g(H;k) is strongly polynomial of degree 0, i.e., constant. Expanding

out the above formula for DτH1
g(H;k)(σ), we see that

DτH1
g(H;k)(σ) =

H1(X̃τ ′·σ;k)

Im
(

H1

(
X̃τ ·σ; k

)
→ H1

(
X̃τ ′·σ;k

)) .
Letting π : SH → Σ1

g be the regular cover used to define H1
g(H;k), it is immediate that this

is isomorphic to

H1

(
π−1 (Im (ι`)) ;k

)
.

The subspace π−1(Im(ι`)) of SH is the disjoint union of |H| copies of a tethered torus τ(Σ1
1),

one tethered to each component of ∂SH . Its first homology group injects into H1(SH ; k).
That DτH1

g(H;k) is constant follows. �

6.4. General surfaces, definition. Our next goal is to relate H1
g(`; k) and H1

g(H; k). For
later use, we put these results in a broader context. Throughout the rest of this section, fix
some g, b, p ≥ 0 and ` ≥ 2 with b + p ≥ 1. Let SD → Σb

g,p be the regular cover with deck
group D = H1(Σg;Z/`) corresponding to the group homomorphism

π1(Σb
g,p)→ H1(Σb

g,p;Z/`)→ H1(Σg;Z/`) = D,

where the second map fills in the punctures and glues discs to the boundary components.
Define Hbg,p(`;k) = H1(SD; k). The group Modbg,p(`) acts on Hbg,p(`;k) as before.

Remark 6.4. At the level of homology, there is no difference between boundary components
and punctures, so Hbg,p(`; k) ∼= Hg,p+b(`;k). �

6.5. Decomposition. We now specialize k to the field C of complex numbers. Our goal is to
decompose Hbg,p(`;C) into subrepresentations and show that each of these subrepresentations

appears in Hbg,p(H;C) for an appropriate symplectic subgroup H of H1(Σb
g,p;Z/`).

The vector space Hbg,p(`;C) has actions of the following groups:

• The group D ∼= (Z/`)2g, which acts on SD as the group of deck transformations.

• The group Modbg,p(`), which acts via the action obtained by lifting diffeomorphisms

of Σb
g,p to diffeomorphisms of SD fixing all boundary components and punctures.29

These two actions commute, so the action of Modbg,p on Hbg,p(`;C) preserves the D-isotypic

components of Hbg,p(`;C).

Since D ∼= (Z/`)2g is a finite abelian group, its irreducible C-representations are all

1-dimensional and in bijection with characters χ : D → C×. Letting D̂ be the abelian group

of characters of D, the irreducible representation corresponding to χ ∈ D̂ is a 1-dimensional
C-vector space Cχ with the action

d · ~v = χ(d)~v for all ~v ∈ Cχ and d ∈ D.

29This is where we use the fact that p+ b ≥ 1, so there is a fixed basepoint. Otherwise, our lifts would
only be defined up to the action of the deck group.
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Let Hbg,p(χ) be the Cχ-isotypic component of Hbg,p(`;C). By definition, this is the set of all

~w ∈ Hbg,p(`;C) such that d · ~w = χ(d)~w for all d ∈ D. The action of Modbg,p(`) on Hbg,p(`;C)

preserves Hbg,p(χ), and we have a direct sum decomposition

Hbg,p(`;C) =
⊕
χ∈D̂

Hbg,p(χ)

of representations of Modbg,p(`).

6.6. Intermediate covers. Let H be a symplectic subgroup of H1(Σb
g,p;Z/`), and let

SH → Σb
g,p be the cover corresponding to the surjective homomorphism

π1(Σb
g,p)→ H1(Σb

g,p;Z/`) = H ⊕H⊥ proj−→ H.

Since the homology classes of loops surrounding boundary components and punctures lie in
H⊥, this map factors through D, so this cover lies between SD and Σb

g,p in the sense that
we have a factorization

SD −→ SH −→ Σb
g,p.

Define Hbg,p(H;C) = H1(SH ;C). The partial mod-` subgroup Modbg,p(H) acts on Hbg,p(H;C)

as before. The deck group of SH → Σb
g,p is H, so again Hbg,p(H;C) decomposes into a direct

sum of H-isotypic components, indexed by elements of the dual group Ĥ of characters.
As we said above, the map π1(Σb

g,p)→ H factors through D, giving a surjection D → H.

This induces an inclusion Ĥ ↪→ D̂, and we will identify Ĥ with its image in D̂. An element

of D̂ lying in Ĥ is said to be compatible with H. We then have the following:

Lemma 6.5. Fix g, p, b ≥ 0 and ` ≥ 2 with p+ b ≥ 1. Let H be a symplectic subgroup of

H1(Σb
g,p;Z/`). Then for all χ ∈ D̂ that are compatible with H, the Cχ-isotypic component

of Hbg,p(H;C) is naturally isomorphic30 to Hbg,p(χ), so in particular

Hbg,p(H;C) =
⊕
χ∈Ĥ

Hbg,p(χ).

Before proving Lemma 6.5, we highlight one special case of it:

Example 6.6. Fix g, p, b ≥ 0 and ` ≥ 2 with p+b ≥ 1. Let H = 0, so Hbg,p(H;C) = H1(Σb
g,p;C).

Letting 1 be the trivial character of D, we have Ĥ = {1}. Lemma 6.5 therefore implies that

H1(Σb
g,p;C) = Hbg,p(H;C) = Hbg,p(1;C). �

Proof of Lemma 6.5. Let K be the kernel of the quotient map D � H, so SH = SD/K. A
standard property of group actions (see, e.g., [6, Theorem III.2.4] or [58, Proposition 1.1])
says that if a finite group G acts smoothly on a smooth compact manifold with boundary31

X, then the G-coinvariants of the action of G on Hk(X;C) are Hk(X/G;C). Applying this
to the action of K on SD, we deduce32 that

Hbg,p(H;C) = H1(SH ;C) = H1(SD;C)K = Hbg,p(`;C)K ,

where the subscripts indicate that we are taking the K-coinvariants.

30The meaning of “natural” here is that the covering map SD → SH takes Hbg,p(χ) isomorphically to the

Cχ-isotypic component of Hbg,p(H;C). In particular, the isomorphism is Modbg,p(`)-equivariant.
31Or, more generally, a compact simplicial complex.
32Strictly speaking, this does not apply if p ≥ 1 since then Σbg,p is not compact. However, replacing each

puncture with a boundary component does not change the homology groups of the surface, so we can assume
without loss of generality that p = 0.
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Applying this to the decomposition

Hbg,p(`;C) =
⊕
χ∈D̂

Hbg,p(χ),

we deduce that
Hbg,p(H;C) =

⊕
χ∈D̂

Hbg,p(χ)K .

We claim that for χ ∈ D̂ we have

Hbg,p(χ)K =

{
Hbg,p(χ) if χ ∈ Ĥ,
0 if χ /∈ Ĥ.

For k ∈ K, the element k acts on Hbg,p(χ) as multiplication by χ(k). If this is ever not 1,

then taking the K-coinvariants of Hbg,p(χ) reduces it to 0. Otherwise, if it is always 1 then

taking the K-coinvariants of Hbg,p(χ) does not change it. Since Ĥ is precisely the subgroup

of D̂ consisting of characters that are identically 1 on K, the claim follows.
We conclude that

Hbg,p(H;C) =
⊕
χ∈Ĥ

Hbg,p(χ).

It is immediate from the above that for χ ∈ Ĥ, the action of D on Hbg,p(χ) factors through

H = D/K and that for h ∈ H and ~v ∈ Hbg,p(χ) we have h · ~v = χ(h)~v. We conclude that
this is exactly the decomposition into H-isotypic components, as desired. �

Corollary 6.7. Fix g, p, b ≥ 0 and ` ≥ 2 with p+ b ≥ 1. Let H be a symplectic subgroup

of H1(Σb
g,p;Z/`) and let χ ∈ D̂. If χ is compatible with H, then the action of Modbg,p(`) on

Hbg,p(χ) extends to an action of Modbg,p(H).

Proof. Immediate. �

6.7. Deleting punctures. The following relates Hbg,p+1(χ) and Hbg,p(χ). It uses the conven-
tion from §2.3.

Lemma 6.8. Fix g, b, p ≥ 0 and ` ≥ 2 with p+ b ≥ 1. Let H be a symplectic subgroup of

H1(Σb
g,p+1;Z/`) and let χ ∈ Ĥ. Let x0 be a puncture of Σb

g,p+1. We then have a short exact
sequence

0 −→ C −→ Hbg,p+1(χ) −→ Hbg,p(χ) −→ 0

of Modbg,p+1(H)-representations. Here C is the trivial representation and Modbg,p+1(H) acts

on Hbg,p(χ) via the homomorphism Modbg,p+1(H)→ Modbg,p(H) that deletes x0.

Proof. Let S′H and SH be the covers used to define Hbg,p+1(H;C) and Hbg,p(H;C), respectively.

Let P be the set of punctures of S′H that project to x0, so SH is obtained from S′H by
deleting all the punctures in P . Since b+ p ≥ 1, deleting all the punctures in P does not
yield a closed surface. Letting C[P ] be the set of formal C-linear combinations of elements of
P , we therefore get an injection C[P ] ↪→ H1(S′H ;C) taking p ∈ P to the homology class of a
loop surrounding p, oriented such that p is to its right. This fits into a short exact sequence

(6.1) 0 −→ C[P ] −→ H1(S′H ;C) −→ H1(SH ;C) −→ 0.

The deck group H acts simply transitively on P , so as a representation of H we have
C[P ] ∼= C[H]. It follows that the Cχ-isotypic component of C[P ] is 1-dimensional. Taking
Cχ-isotypic components in (6.1), we therefore get a short exact sequence

0 −→ C −→ Hbg,p+1(χ) −→ Hbg,p(χ) −→ 0
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of Modbg,p+1(H)-representations. That the actions of Modbg,p+1(H) on the kernel and cokernel
are as described in the lemma is immediate. �

6.8. Homological representations. Let χ = (χ1, . . . , χr) be an r-tuple of elements of D̂.

We define the associated homological representation of Modbg,p(`) to be

(6.2) Hbg,p(χ) = Hbg,p(χ1)⊗ · · · ⊗ Hbg,p(χr).

The number r is the size of Hbg,p(χ). If H is a symplectic subgroup of H1(Σb
g,p;Z/`) and

each χi is compatible with H, then we say that Hbg,p(χ) is compatible with H. By Corollary

6.7, this implies that the action of Modbg,p(`) on Hbg,p(χ) extends to an action of Modbg,p(H).
This is a stronger statement if H is smaller, and the following lemma will allow us to bound
how large of an H we must take:

Lemma 6.9. Fix g, p, b ≥ 0 and ` ≥ 2 with p + b ≥ 1, and let Hbg,p(χ) be a homological

representation of Modbg,p(`) of size r that is compatible with a symplectic subgroup H of

H1(Σb
g,p;Z/`). Then there exists a symplectic subgroup H ′ of H1(Σb

g,p;Z/`) of genus at most

r with H ′ ⊂ H such that Hbg,p(χ) is compatible with H ′.

Proof. Let h be the genus of H. If h ≤ r then there is nothing to prove, so assume that
h > r. Write

Hbg,p(χ) = Hbg,p(χ1)⊗ · · · ⊗ Hbg,p(χr).

Let Ci ⊂ C× be the image of χi, so Ci is a possibly trivial finite cyclic group. Regard each
χi as a map H → Ci. Set A = C1 × · · · × Cr, so A is an abelian group of rank33 at most
r. Let µ : H → A be µ = χ1 × · · · × χr. By34 [56, Lemma 3.5], we can find a genus h − r
symplectic subgroup U of H such that µ vanishes on U . Let H ′ ⊂ H be the orthogonal
complement of U in H, so H ′ is a genus r symplectic subspace of H such that each χi factors
through the projection of H to H ′. This implies that Hbg,p(χ) is compatible with H ′. �

7. The Reidemeister pairing and the point-pushing subgroup

This section describes an important bilinear pairing on the Prym representation. It goes
back to work of Reidemeister [63, 64], and has since appeared in many places.

7.1. Reidemeister pairing. Fix some g, b, p ≥ 0 with b+ p ≥ 1. Let ` ≥ 2 and let H be a
symplectic subgroup of H1(Σb

g,p+1;Z/`). Let k be a commutative ring and let ωH(−,−) be

the algebraic intersection pairing on Hbg,p(H;k) = H1(SH ;k). The group H acts on Hbg,p(H;k)

via its action on SH by deck transformations. The Reidemeister pairing on Hbg,p(H;k) is the
map

ωR
H : Hbg,p(H;k)× Hbg,p(H; k) −→ k[H]

defined by the formula

ωR
H(x, y) =

∑
d∈H

ωH(x, dy)d for all x, y ∈ Hbg,p(H;k).

33By definition, the rank of an abelian group is the minimal cardinality of a generating set for it.
34This reference is about maps Z2h → A rather than (Z/`)2h → A, but the same proof works in our

situation. Alternatively, apply it to the composition Z2h → (Z/`)2h µ→ A and then map the resulting
symplectic subspace of Z2h to (Z/`)2h.
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7.2. Point-pushing subgroup. We now connect the Reidemeister pairing to the point-
pushing subgroup. Fix some g, p, b ≥ 0 with π1(Σb

g,p) nonabelian and p+ b ≥ 1. Let x0 be a

puncture of Σb
g,p+1. Let ` ≥ 2 and let H be a symplectic subgroup of H1(Σb

g,p+1;Z/`). Using
the conventions from §2.3, Theorem 2.8 gives a Birman exact sequence

1 −→ PPx0(Σb
g,p, H) −→ Modbg,p+1(H) −→ Modbg,p(H) −→ 1.

Here the point-pushing subgroup PPx0(Σb
g,p, H) is the kernel of the map

PPx0(Σb
g,p)
∼= π1(Σb

g,p) −→ H1(Σb
g,p) = H ⊕H⊥ proj−→ H.

Let S′H → Σb
g,p+1 and SH → Σb

g,p be the covers used to define Hbg,p+1(H; k) and Hbg,p(H;k),

respectively. Fixing a commutative ring k, we want to understand the action of PPx0(Σb
g,p, H)

on Hbg,p+1(H;k) = H1(S′H ;k). By the above, SH is the cover of Σb
g,p corresponding to the

subgroup PPx0(Σb
g,p, H) of PPx0(Σb

g,p)
∼= π1(Σb

g,p). We can thus identify PPx0(Σb
g,p, H) with

π1(SH). The following lemma shows how the action we are trying to understand is encoded
by the Reidemeister pairing on Hbg,p(H;k) = H1(SH ; k).

Lemma 7.1. Let the notation be as above. Let ρ1 : Hbg,p+1(H;k)→ Hbg,p(H;k) be the map

induced by filling in x0 and ρ2 : PPx0(Σb
g,p, H)→ Hbg,p(H; k) be the composition

PPx0(Σb
g,p, H) ∼= π1(SH) −→ Hbg,p(H;k).

Let ζ ∈ Hbg,p+1(H;k) be the homology class of a loop around the puncture of S′H that is used

as the basepoint in the identification of PPx0(Σb
g,p, H) with π1(SH), oriented such that the

puncture is to its right. Then for γ ∈ PPx0(Σb
g,p, H) and z ∈ Hbg,p+1(H;k), we have

γ(z) = z + ωR
H(ρ1(z), ρ2(γ)) · ζ.

Proof. The action of γ ∈ PPx0(Σb
g,p, H) on Hbg,p+1(H;k) = H1(S′H ;k) comes from simultane-

ously pushing all the punctures projecting to x0 around paths in SH . These punctures and
paths are all H-orbits of the basepoint puncture and the lift of γ to that basepoint puncture.
The lemma is thus immediate from Lemma 2.2. �

Remark 7.2. For χ ∈ Ĥ, the action of Modbg,p+1(H) on Hbg,p+1(H;C) preserves the subspace

Hbg,p+1(χ). It thus follows from Lemma 7.1 that for all x, y ∈ Hbg,p(H;C) with x ∈ Hbg,p(χ),

the element ωR
H(x, y) ∈ C[H] lies in the Cχ-isotypic subspace of C[H]. It is enlightening to

prove this directly. �

7.3. Point-pushing coinvariants. We next study the action of the point-pushing subgroup
PPx0(Σb

g,p, H) from Theorem 2.8 on tensor powers of Hbg,p+1(H;k). In the following lemma,
the subscript indicates that we are taking coinvariants. The statement uses the conventions
from §2.3

Lemma 7.3. Fix some g, p, b ≥ 0 such that π1(Σb
g,p) is nonabelian and p + b ≥ 1, and

let x0 be a puncture of Σb
g,p+1. Let ` ≥ 2 and let H be a genus-h symplectic subgroup of

H1(Σb
g,p+1;Z/`). Let r ≥ 0 be such that g ≥ h+ r. Then for all finite-index subgroups G of

PPx0(Σb
g,p, H) and all fields k of characteristic 0, we have(

Hbg,p+1 (H; k)⊗r
)
G

∼= Hbg,p (H; k)⊗r .

Proof. The representations (and hence the lemma) are trivial if r = 0, so we can assume
that r ≥ 1. Let ρ1 : Hbg,p+1(H;k)→ Hbg,p(H;k) be the map induced by filling in x0. The map

ρ⊗r1 : Hbg,p+1(H;k)⊗r → Hbg,p(H;k)⊗r is surjective and factors through the G-coinvariants.
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What we must show is that all elements of the kernel of ρ⊗r1 die in the G-coinvariants. We
divide the proof of this into three steps.

Step 1. We find generators for the kernel of ρ⊗r1 : Hbg,p+1(H;k)⊗r → Hbg,p(H;k)⊗r.

This requires carefully constructing the relevant covers. Let T be a subsurface of Σb
g,p+1

with the following two properties:

• T ∼= Σb+1
h,p and does not contain the puncture x0, and

• H is contained in the image of the map H1(T ;Z/`)→ H1(Σb
g,p+1;Z/`).

It follows that T ′ = Σb
g,p+1 \ Int(T ) satisfies T ′ ∼= Σ1

g−h,1. Let T ′′ be a subsurface of T ′ with

T ′′ ∼= Σ1
g−h. See the following figure, which depicts the surface Σb

g,p+1 = Σ2
8,4 with h = 5:

T
T'

T''
x0

Let π : S′H → Σb
g,p+1 be the cover used to define Hbg,p+1(H), and let T̃ = π−1(T ) and

T̃ ′ = π−1(T ′). Both T̃ → T and T̃ ′ → T ′ are finite regular covers with deck group H. The

second condition above implies that T̃ is connected and that T̃ ′ is the disjoint union of |H|
components each of which projects homeomorphically to T ′. Letting T̃ ′0 be one of these
components, we have35

T̃ ′ =
⊔
d∈H

dT̃ ′0.

Let T̃ ′′0 be the component of π−1(T ′′) lying in T̃ ′0. Both H1(T̃ ;k) and H1(T̃ ′′0 ;k) inject into
H1(S′H ; k), and

Hbg,p+1(H; k) = H1(S′H ;k) = H1(T̃ ; k)⊕
⊕
d∈H

dH1(T̃ ′′0 ; k).

It follows that the k-module Hbg,p+1(H;k)⊗r is spanned by elements of the form ~v1⊗ · · · ⊗~vr,
where each ~vi lies in either H1(T̃ ;Z) or in dH1(T̃ ′′0 ;Z) for some d ∈ H. We emphasize that
the ~vi are integral classes

Let ζ be the homology class of a loop around the puncture in T̃ ′0, oriented such that the

puncture lies to its right. Note that ζ ∈ H1(T̃ ;Z); indeed, ζ is homologous to one of the

boundary components of T̃ . More generally, for d ∈ H we have dζ ∈ H1(T̃ ;Z). To construct

the cover SH → Σb
g,p used to define Hbg,p(H;k), you delete the puncture lying in dT̃ ′0 for each

d ∈ H. Letting SH → Σb
g,p be the cover used to define Hbg,p(H), it follows that the kernel of

ρ1 : Hbg,p+1(H; k) = H1(S′H ;k)→ H1(SH ; k) = Hbg,p(H;k)

is generated by the dζ for d ∈ H. Taking the rth tensor power, we deduce that the
kernel of the map ρ⊗r1 : Hbg,p+1(H;k)⊗r → Hbg,p(H;k)⊗r is generated by elements of the form
~v1 ⊗ · · · ⊗ ~vr, where the ~vi satisfy the following:

• Each ~vi lies in either H1(T̃ ;Z) or in dH1(T̃ ′′0 ;Z) for some d ∈ H.
• At least one of the ~vi equals dζ for some d ∈ H.

To prove the lemma, we must show that such elements die in the G-coinvariants.

35Here the reader should think that the d used to denote elements of H stands for “deck group”.
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Step 2. Consider one of the generators ~v1 ⊗ · · · ⊗ ~vr ∈ Hbg,p+1(H;k)⊗r for the kernel of ρ⊗r1
identified in Step 1, so the following hold:

• Each ~vi lies in either H1(T̃ ;Z) or in dH1(T̃ ′′0 ;Z) for some d ∈ H.
• At least one of the ~vi equals dζ for some d ∈ H.

Let ωR
H(−,−) be the Reidemeister pairing on Hbg,p(H;k). We construct elements ~a,~b ∈

Hbg,p+1(H;Z) such that the following hold.

• ωR
H(ρ1(~a), ρ1(~b)) = 1.

• ωR
H(ρ1(~vi), ρ1(~b)) = 0 for 1 ≤ i ≤ r.

Let ωH(−,−) be the algebraic intersection pairing on Hbg,p+1(H;k). The conditions above

on ~a and ~b are equivalent to the following:36

• For all d ∈ H, we have

ωH(~a, d~b) =

{
1 if d = 0,

0 if d 6= 0.

• For all d ∈ H and 1 ≤ i ≤ r, we have ωH(~vi, d~b) = 0.

This is the form in which we will verify them.

Let ~w1, . . . , ~ws ∈ H1(T̃ ′′0 ;Z) and d1, . . . , ds ∈ H be such that the elements of {~v1, . . . , ~vr}
that lie in some H-translate of H1(T̃ ′′0 ;Z) are precisely {d1 ~w1, . . . , ds ~ws}. Since at least one
of the ~vi is of the form dζ for some d ∈ H and thus does not lie in some H-translate of

H1(T̃ ′′0 ;Z), we have s ≤ r − 1. Since g ≥ h+ r this implies that s < g − h. Recalling that

T̃ ′′0
∼= T ′′ ∼= Σ1

g−h, we can thus find37 a subsurface T̃ ′′′0 of T̃ ′′0 such that the following hold.

• Each ~wi lies in H1(T̃ ′′′0 ;Z).

• T̃ ′′′0
∼= Σ1

s.

Since T̃ ′′0 has genus g − h and T̃ ′′′0 has genus s and g − h > s, we can find ~a ∈ H1(T̃ ′′0 ;Z) and
~b ∈ H1(T̃ ′′0 ;Z) with the following two properties:

• ωH(~a,~b) = 1.

• For all z ∈ H1(T̃ ′′′0 ;k) we have ωH(z,~a) = ωH(z,~b) = 0. In particular, ωH(~wi,~b) = 0
for all 1 ≤ i ≤ s.

See here:

T''0

T'''0

b

a
T'0
~

~

~

T
~

Since each ~vj either lies in H1(T̃ ;Z) or is of the form di ~wi with di ∈ H, the second condition

above implies that ωH(~vi, d~b) = 0 for all d ∈ H and 1 ≤ i ≤ r, as desired.

Step 3. Consider one of the generators ~v1 ⊗ · · · ⊗ ~vr ∈ Hbg,p+1(H;k)⊗r for the kernel of ρ⊗r1
identified in Step 1, so the following hold:

• Each ~vi lies in either H1(T̃ ;Z) or in dH1(T̃ ′′0 ;Z) for some d ∈ H.
• At least one of the ~vi equals dζ for some d ∈ H.

36In this formula, the element d = 0 is the identity in H, so for this d we have d~b = ~b. In other words, do
not confuse 0 ∈ H with 0 ∈ k.

37This is standard. One source that proves something equivalent is [56, Proposition 3.4]. This is where it
is important that we are working with integral classes.
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We prove that ~v1⊗· · ·⊗~vr dies in the G-coinvariants, where we recall that G is a finite-index
subgroup of PPx0(Σb

g,p, H).

To simplify our notation, we will give the details for when ~v1 = d0ζ for some d0 ∈ H. The

other cases are handled similarly. By the previous step, we can find ~a,~b ∈ Hbg,p+1(H;Z) such
that the following hold:

• ωR
H(ρ1(~a), ρ1(~b)) = 1.

• ωR
H(ρ1(~vi), ρ1(~b)) = 0 for 1 ≤ i ≤ r.

Since ~b is an integral homology class, we can pick γ ∈ PPx0(Σb
g,p, H) that projects to ρ1(~b)

under the map

ρ2 : PPx0(Σb
g,p, H) ∼= π1(SH) −→ H1(SH ; k) = Hbg,p(H; k),

where the ∼= uses the basepoint on SH that is surrounded by the loop in whose homology
class ζ ∈ Hbg,p+1(H; k) is. Define

κ = (d0~a)⊗ ~v2 ⊗ · · · ⊗ ~vr ∈ Hbg,p+1(H;k)⊗r.

Using Lemma 7.1, we have

γ (κ) = γ (d0~a)⊗ γ (~v2)⊗ · · · ⊗ γ (~vr)

=
(
d0~a+ ωR

H (ρ1(d0~a), ρ2(γ)) ζ
)
⊗
(
~v2 + ωR

H (ρ1(~v2), ρ2(γ)) ζ
)

⊗ · · · ⊗
(
~vr + ωR

H (ρ1(~vr), ρ2(γ)) ζ
)

= (d0~a+ d0ζ)⊗ ~v2 ⊗ · · · ⊗ ~vr.
Iterating this, we see that for all m ≥ 1 we have

γm (κ) = (d0~a+md0ζ)⊗ ~v2 ⊗ · · · ⊗ ~vr,
and thus

γm (κ)− κ = m (d0ζ)⊗ ~v2 ⊗ · · · ⊗ ~vr = m~v1 ⊗ · · · ⊗ ~vr.
Since G is a finite-index subgroup of PPx0(Σb

g,p, H), we can pick m ≥ 1 such that γm ∈ G,
so m~v1⊗ · · ·⊗~vr dies in the G-coinvariants. Since k is a field of characteristic 0, the element
~v1 ⊗ · · · ⊗ ~vr also dies in the G-coinvariants, as desired. �

This has the following corollary:

Corollary 7.4. Fix some g, p, b ≥ 0 such that π1(Σb
g,p) is nonabelian and p+ b ≥ 1, and

let x0 be a puncture of Σb
g,p+1. Let ` ≥ 2 and let Hbg,p+1(χ) be a homological represen-

tation of Modbg,p+1(`) of size r that is compatible with a genus-h symplectic subgroup H

of H1(Σb
g,p+1;Z/`). Assume that g ≥ h + r. Then for all finite-index subgroups G of

PPx0(Σb
g,p, H), we have (

Hbg,p+1

(
χ
))

G

∼= Hbg,p
(
χ
)
.

Proof. Let ρ1 : Hbg,p+1(H;C)→ Hbg,p(H;C) be the map induced by filling in x0. Lemma 6.5
gives decompositions

Hbg,p+1(H;C) =
⊕
χ∈Ĥ

Hbg,p+1(χ;C) and Hbg,p(H;C) =
⊕
χ∈Ĥ

Hbg,p(χ;C),

and ρ1 respects these direct sum decompositions. It follows that Hbg,p+1(H;C)⊗r and

Hbg,p(H;C)⊗r are direct sums of the different H-compatible size-r homological representations

of Modbg,p+1(`) and Modbg,p(`), respectively, and ρ⊗r1 respects these direct sum decompositions.
This reduces the corollary to Lemma 7.3. �
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8. Stability for the partial mod-` subgroups

In [56], the author proved a homological stability theorem that applies to the partial
level-` subgroups. In this section, we explain how to generalize this to incorporate tensor
powers of the partial Prym representations. Our theorem is as follows. Its statement uses
the conventions from §2.3.

Theorem 8.1. Let ι : Σb
g → Σb′

g′ be an orientation-preserving embedding between surfaces
with nonempty boundary. For some ` ≥ 2, let H be a genus-h symplectic subgroup of
H1(Σb

g;Z/`). Fix some k, r ≥ 0, and assume that g ≥ (2h+ 2)(k + r) + (4h+ 2). Then for
all commutative rings k the induced map

Hk(Modbg(H);Hbg(H;k)⊗r)→ Hk(Modb
′
g′(H);Hb

′
g′(H;k)⊗r)

is an isomorphism.

Proof. For r = 0, this just asserts that the map

Hk(Modbg(H);k)→ Hk(Modb
′
g′(H);k)

is an isomorphism if g ≥ (2h+ 2)k+ (4h+ 2), which is a special case of [56, Theorem F]. To
connect our notation to that of [56, Theorem F], we make the following remarks:

• First, the statement of [56, Theorem F] involves partitions P and P ′ of the components

of ∂Σb
g and ∂Σb′

g′ , respectively. Our result corresponds to the partition where all
components of the boundary lie in a single partition element. With this convention,
the map (Σb

g,P) → (Σb′
g′ ,P ′) is a “PSurf-morphism”, and the fact that Σb′

g′ has
nonempty boundary implies that it is “partition bijective”. Every time we refer to
something in [56] in this proof, we implicitly use this choice of partition.
• The statement of [56, Theorem F] also refers to anA-homology marking µ : HP1 (Σb

g)→
A. With the choice of partition from the previous bullet point, we have HP1 (Σb

g) =

H1(Σb
g, ∂Σb

g). Our marking has A = H, and is the homomorphism µ : H1(Σb
g, ∂Σb

g)→
H that equals the composition

H1(Σb
g, ∂Σb

g)
∼= H1(Σb

g) −→ H1(Σb
g;Z/`) = H ⊕H⊥ proj−→ H.

Here the first map comes from Poincaré duality. With this marking, in the notation
of [56, Theorem F] we have

I(Σb
g,P, µ) = Modbg(H).

The marking µ′ on Σb′
g′ in [56, Theorem F] is defined similarly. The fact that H

is a symplectic subgroup implies that our marking is “supported on a symplectic
subsurface”.

When r ≥ 1, our theorem can be proven by following the proof of [56, Theorem F] word-
for-word, substituting the twisted homological theorem [57, Theorem 5.2] for the ordinary
homological stability theorem, which appears as [56, Theorem 3.1].

We briefly discuss some of the details of this. We remark that the proof structure here
is inspired by a beautiful approach to homological stability for the whole mapping class
group due to Hatcher–Vogtmann [34]. The proof of [56, Theorem F] has two parts. The
first appears in [56, §5.2-5.4]. These sections reduce the proof to what are called “double

boundary stabilizations”, i.e., where the map Σb
g → Σb′

g′ is as pictured here:
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This reduction does not use the homological stability machine, and no changes are needed
for the twisted version of it.

The double boundary stabilizations are handled in [56, §6.8] using the homological stability
machine. This requires a semisimplicial set38 called the “complex of order-preserving double-
tethered vanishing loops”. We refer to [56, §6] for the lengthy definition of this. The changes
that need to be made here are as follows:

• As we said, the twisted homological stability theorem [57, Theorem 5.2] should be
substituted for the ordinary homological stability theorem [56, Theorem 3.1].

• This requires constructing Modbg(H)-equivariant augmented coefficient systems

Mb
g(H;k) on the complex of order-preserving double-tethered vanishing loops with

Mb
g(H;k) [ ] = Hbg(H; k).

The definition of Mb
g(H) is identical to the definition of the coefficient system

H1
g(H;k) we discussed in §6.3, and the proof that it is strongly polynomial of degree

1 is essentially identical to the proof of Lemma 6.3. Using Lemma 4.9, its tensor
power Mb

g(H;k)⊗r is strongly polynomial of degree r.
• This allows you to apply Theorem 4.4 above (which is [57, Theorem 6.4]) to
Mb

g(H;k)⊗r and deduce that the homology of the complex of order-preserving

double-tethered vanishing loops with coefficients in Mb
g(H;k)⊗r vanishes in a range.

The needed Cohen–Macaulay result is [56, Theorem 6.13].
• This verifies the one condition of [57, Theorem 5.2] that is different from [56, Theorem

3.1]. The remainder of the proof in [56, §6.8] needs no changes. �

9. Proof of main theorem for non-closed surfaces

We finally turn to proving our main theorems. The following will be our main result, at
least for non-closed surfaces. We will deal with closed surfaces later in §10.

Theorem D. Let g, p, b ≥ 0 and ` ≥ 2 be such that p + b ≥ 1. Let Hbg,p(χ) be a size-r

homological representation of Modbg,p(`) and let H be a symplectic subgroup of H1(Σb
g,p(`);Z/`)

that is compatible with Hbg,p(χ). Assume that g ≥ 2(k + r)2 + 7k + 6r + 2. Then the map

Hk

(
Modbg,p (`) ;Hbg,p(χ)

)
→ Hk

(
Modbg,p(H);Hbg,p(χ)

)
induced by the inclusion Modbg,p(`) ↪→ Modbg,p(H) is an isomorphism.

This implies Theorems A and B for non-closed surfaces in the following way:

• A size-0 homological representation of Modbg,p(`) is simply the trivial representation

C. This is compatible with the symplectic subgroup H = 0, for which Modbg,p(H) =

Modbg,p. Theorem D thus says that the map

Hk

(
Modbg,p (`) ;C

)
→ Hk

(
Modbg,p;C

)
38Actually, in the language of §3 it is an ordered simplicial complex
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is an isomorphism for g ≥ 2k2 + 7k + 2. The universal coefficients theorem now
implies that this is also true with C replaced by Q, which is exactly Theorem A.
• Letting V = H1(Σb

g,p;C), the tensor power V ⊗r is a size-r homological representation
that is compatible with H = 0 (see Example 6.6). Theorem D thus says that the
map

Hk

(
Modbg,p (`) ;V ⊗r

)
→ Hk

(
Modbg,p;V

⊗r
)

is an isomorphism for g ≥ 2(k+ r)2 + 7k+ 6r+ 2. The universal coefficients theorem
now implies that this is also true with the C in V = H1(Σb

g,p;C) replaced by Q,
which is exactly Theorem B.

We remark that Theorem C will be a consequence of part of our proof, and we will point out
when this happens in a footnote (see the footnote on the paragraph right before Claim 4.2).

Proof of Theorem D. We divide the proof into five steps. Since the proof is organized around
several interlocking inductions, we had to write it in a certain order to make sure it was clear
that the reasoning was not circular. However, some of the intermediate steps might seem
unmotivated upon first reading. We thus suggest reading the steps in the following order:

• Steps 1–2 set up the induction and make some reductions. They should be read first.
• Step 5 is the main step that was sketched in §1.12. We suggest reading it next.
• Doing this will motivate Step 4, whose proof depends on a calculation in Step 3. It is

in Step 3 that it becomes essential to work with general homological representations,
even though ultimately we are most interested in the trivial one.

We remark that throughout the proof, we will constantly use the conventions regarding
symplectic subspaces from §2.3. Also, the number ` ≥ 2 will never change, but all the other
parameters (g, p, b, r, χ,H, etc) will change constantly, so we will try to be explicit about
what is allowed for them at each stage of the proof.

Step 1 (Set up induction). We show that as an inductive hypothesis we can assume the
following:

(a) r ≥ 0 and k ≥ 1.
(b) We have already proved the theorem for Hi for all i < k.
(c) For Hk, we have already proved the theorem for all homological representations of

size less than r. This is vacuous if r = 0.

Our proof is by induction39 on k ≥ 0 and r ≥ 0. To be able to assume (a)-(c) as inductive
hypotheses, we need to prove the theorem for k = 0 and general r ≥ 0. So for some g, p, b ≥ 0
with p + b ≥ 1 let Hbg,p(χ) be a size-r homological representation of Modbg,p(`) and let H

be a symplectic subgroup of H1(Σb
g,p(`);Z/`) that is compatible with Hbg,p(χ). Assume that

g ≥ 2r2 + 6r+ 2 (which is our claimed bound for k = 0). For a group G acting on an abelian
group M , the group H0(G;M) is the coinvariants MG, so what we have to prove is that(

Hbg,p(χ)
)

Modbg,p(`)

∼=
(
Hbg,p(χ)

)
Modbg,p(H)

.

Since Modbg,p(`) is a subgroup of Modbg,p(H), the right hand side is a quotient of the left hand

side. Decreasing H makes Modbg,p(H) larger, so our claim is stronger if H is smaller. By
Lemma 6.9, the symplectic subgroup H contains a symplectic subgroup that is compatible
with χ and has genus at most r, so we can shrink H and assume that it has genus at most r.

39We could start our induction with the trivial case k = −1, which would avoid having to prove any base
case at all. However, this would lead to worse bounds.
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If r = 0, then Hbg,p(χ) is the trivial representation and there is nothing to prove. We can
thus assume that r ≥ 1, in which case our bound on g implies that g ≥ max(2r, 3), which
is the bound we will actually use. Lemma 6.5 implies that Hbg,p(χ) is a direct summand of

Hbg,p(H;C)⊗r, so it is enough to prove that(
Hbg,p(H;C)⊗r

)
Modbg,p(`)

∼=
(
Hbg,p(H;C)⊗r

)
Modbg,p(H)

.

Since Hbg,p(H;C) ∼= Hg,p+b(H;C) (see Remark 6.4) and the action of Modbg,p(H) on these
representations factors through Modg,p+b(H), we can assume without loss of generality that
b = 0, so since b+ p ≥ 1 we have p ≥ 1.

Assume first that p ≥ 2, and let x0 be one of the punctures. Since g ≥ max(2r, 3), we
have in particular that g ≥ r + r. Lemma 7.3 then implies that(

Hg,p(H;C)⊗r
)

PPx0 (Σg,p−1,`)
∼= Hg,p−1(H;C)⊗r.

This implies that (
Hg,p(H;C)⊗r

)
Modg,p(`)

∼=
(
Hg,p−1(H;C)⊗r

)
Modg,p−1(`)

.

A similar identity holds for Modg,p(H). Applying this repeatedly, we reduce ourselves to
the case p = 1.

Let SH → Σg be the regular cover with deck group H corresponding to the homomorphism

(9.1) π1(Σg) −→ H1(Σg) = H ⊕H⊥ proj−→ H.

Define Hg(H;C) = H1(SH ;C). What we would like to do is apply the above argument again
and reduce ourselves to the case p = 0. However, there is a problem: the group Modg(H)
does not act on Hg(H;C) since there is not a fixed basepoint to allow us to consistently
choose a lift of a mapping class on Σg to SH . This is related to the fact that Lemma 7.3
does not apply to the case p = 0, and also to the fact that by Theorem 2.8 we have

PPx0(Σg, `) = PPx0(Σg, H) = π1(Σg).

However, let K C π1(Σg) be the kernel of the map (9.1). Regard K as a subgroup of
PPx0(Σg, `). The proof of Lemma 7.3 goes through without changes40 that(

Hg,1(H;C)⊗r
)
K
∼= Hg(H;C)⊗r.

The groups Γ(`) = Modg,1(`)/K and Γ(H) = Modg,1(H)/K thus act on Hg(H;C), and we
are reduced to proving that(

Hg(H;C)⊗r
)

Γ(`)
∼=
(
Hg(H;C)⊗r

)
Γ(H)

.

Since PPx0(Σg, `)/K ∼= H and Modg,1(`) acts trivially on H, the Birman exact sequence for
Modg,1(`) from Theorem 2.8 quotients down to a central extension

1 −→ H −→ Γ(`) −→ Modg(`) −→ 1.

The action of the central subgroup H on Hg(H;C) come from the action of H on SH as
deck transformations. There is a similar exact sequence for Γ(H).

Since g ≥ max(2r, 3), we in particular have g ≥ 3. In that case, Looijenga [41] proved
that the action of Γ(H) on Hg(H;C) comes from a representation of Γ(H) into a connected
semisimple R-algebraic group G without compact factors, and the image of Γ(H) in G(R)

40The only place in the proof where the assumption p ≥ 1 is used is in the invocation of Lemma 7.1. This
lemma works for elements of K, which are exactly the loops in the base space that lift to loops in the cover.
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is a lattice. The Borel density theorem [2] says that lattices in such Lie groups are Zariski
dense, which implies that(

Hg(H;C)⊗r
)

Γ(H)
∼=
(
Hg(H;C)⊗r

)
G(R)

.

The group Γ(`) is a finite-index subgroup of Γ(H), and thus its image in G(R) is also a
lattice and (

Hg(H;C)⊗r
)

Γ(`)
∼=
(
Hg(H;C)⊗r

)
G(R)

.

The desired result follows.

Step 2 (Initial reductions). For some k and r, make the inductive hypotheses (a)-(c) from
Step 1:

(a) r ≥ 0 and k ≥ 1.
(b) We have already proved the theorem for Hi for all i < k.
(c) For Hk, we have already proved the theorem for all homological representations of

size less than r. This is vacuous if r = 0.

We show that to prove the theorem for Hk and homological representations of size r, it is
enough to prove it under the following simplifying assumptions:

(†) The surface has no punctures.
(††) The symplectic subgroup H has genus at most r.

Throughout this step, all surfaces Σb
g,p satisfy the hypothesis p+ b ≥ 1 from the statement

of the theorem. We start by showing that we can assume (†):

Claim 2.1. Assume that for Hk and homological representations of size r, the theorem is
true for surfaces without punctures. Then for Hk and homological representations of size r
it is true in general.

Proof of claim. The proof is by induction on the number of punctures. The base case p = 0
is our assumption. For the inductive step, assume that for Hk the theorem is true for surfaces
with p punctures. We will prove it for surfaces with (p+ 1) punctures as follows.

Consider a size-r homological representation Hbg,p+1(χ) and a symplectic subgroup H of

H1(Σb
g,p+1;Z/`) that is compatible with Hbg,p+1(χ). Assume that g ≥ 2(k+ r)2 + 7k+ 6r+ 2.

Since H1(Σb
g,p+1;Z/`) = H1(Σb+1

g,p ;Z/`), we can identify H with a symplectic subgroup of

H1(Σb+1
g,p ;Z/`). Using Proposition 2.10 and Remark 2.11, we have a commutative diagram

of central extensions

(9.2)

1 Z Modb+1
g,p (`) Modbg,p+1(`) 1

1 Z Modb+1
g,p (H) Modbg,p+1(H) 1

=

whose central Z is generated by the Dehn twist about a boundary component ∂ of Σb+1
g,p .

We have Hbg,p+1(χ) ∼= Hb+1
g,p (χ) (c.f. Remark 6.4), and T∂ acts trivially on Hb+1

g,p (χ). Let

V = Hbg,p+1(χ) = Hb+1
g,p (χ). The two-row Hochschild–Serre spectral sequences associated to

the short exact sequences in (9.2) turn into long exact Gysin sequences, and we have a map
between these Gysin sequences containing the following. To save horizontal space we have
written M rather than Mod and also omitted the coefficients, which should all be V .

Hk−1(Mb
g,p+1(`)) Hk(Mb+1

g,p (`)) Hk(Mb
g,p+1(`)) Hk−2(Mb

g,p+1(`)) Hk−1(Mb+1
g,p (`))

Hk−1(Mb
g,p+1(H)) Hk(Mb+1

g,p (H)) Hk(Mb
g,p+1(H)) Hk−2(Mb

g,p+1(H)) Hk−1(Mb+1
g,p (H))

f1 f2 f3 f4 f5
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Our inductive hypothesis (b) implies that f1 and f4 and f5 are isomorphisms, and our
induction on p implies that f2 is an isomorphism. The five-lemma now implies that f3 is an
isomorphism, as desired. �

We next show that we can assume (††):

Claim 2.2. Assume that for Hk and homological representations of size r, the theorem is
true when the symplectic subgroup H has genus at most r. Then for Hk and homological
representations of size r it is true in general.

Proof of claim. Consider a size-r homological representation Hbg,p(χ) of Modbg,p(`) that is

compatible with a symplectic subgroup H of H1(Σb
g,p;Z/`). Assume that g ≥ 2(k + r)2 +

7k + 6r + 2. By Lemma 6.9, we can find a genus at most r symplectic subgroup H ′ of
H1(Σb

g,p;Z/`) with H ′ < H that is compatible with Hbg,p(χ). The group Modbg,p(H) is a

finite-index subgroup of Modbg,p(H
′), so by the transfer map lemma (Lemma 2.16) we see

that each map in

Hk(Modbg,p(`);H
b
g,p(χ))→ Hk(Modbg,p(H);Hbg,p(χ))→ Hk(Modbg,p(H

′);Hbg,p(χ))

is a surjection. Our assumption says that Hk(Modbg,p(`);H
b
g,p(χ))→ Hk(Modbg,p(H

′);Hbg,p(χ))

is an isomorphism, so we deduce that Hk(Modbg,p(`);H
b
g,p(χ))→ Hk(Modbg,p(H);Hbg,p(χ)) is

an isomorphism. The claim follows. �

Step 3 (Point-pushing coefficients). For some k and r, make the inductive hypotheses (a)-(c)
from Step 1:

(a) r ≥ 0 and k ≥ 1.
(b) We have already proved the theorem for Hi for all i < k.
(c) For Hk, we have already proved the theorem for all homological representations of

size less than r. This is vacuous if r = 0.

We study their consequences for the point-pushing subgroup.

It will take a bit of work to state the result we will derive from (a)–(c). Fix some g ≥ 0
and b ≥ 1 such that π1(Σb

g) is nonabelian, and let x0 be the puncture of Σb
g,1. Let H be a

symplectic subgroup of H1(Σb
g,1;Z/`). Theorem 2.8 gives a Birman exact sequence

1 −→ PPx0(Σb
g, H) −→ Modbg,1(H) −→ Modbg(H) −→ 1.

If U is a representation of Modbg,1(H), then the action of Modbg,1(H) on U along with

the conjugation action of Modbg,1(H) on PPx0(Σb
g, H) gives an action of Modbg,1(H) on

Û = H1(PPx0(Σb
g, H);U). Since inner automorphisms act trivially on homology (see, e.g.,

[9, Proposition III.8.1]), this descends to an action of Modbg(H) on Û . This action can be

restricted to Modbg(`). Our goal in this step is to prove that our inductive hypotheses can
be applied to show that for certain U , the map

Hi(Modbg(`); Û)→ Hi(Modbg(H); Û)

is an isomorphism once g is sufficiently large. What we prove is as follows. We state it in
terms of Hi−1 rather than Hi since that will be how we use it in the next step, and this will
make it easier to verify the genus bounds in its hypotheses. The numbers k ≥ 1 and r ≥ 0
in the statement of this claim are from the inductive hypotheses (a)-(c).

Claim 3.1. For some g ≥ 0 and b ≥ 1, let U be a homological representation of Modbg,1(`)

of size r′ ≥ 0 that is compatible with a symplectic subgroup H of H1(Σb
g,1;Z/`). Fix some

1 ≤ i ≤ k, and if i = k then assume that r′ ≤ r. Let x0 be the puncture of Σb
g,1 and let
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Û = H1(PPx0(Σb
g, H);U). Assume that g ≥ 2(i+ r′)2 + 7i+ 6r′+ 1, and also that g ≥ r′+ h

with h the genus of H. Then the map

Hi−1(Modbg(`); Û)→ Hi−1(Modbg(H); Û)

is an isomorphism.

Proof of claim. To allow an inductive proof, we will allow U to be a bit more general. Say
that a Modbg,1(`)-representation V is an extended homological representation of size r′ if

it can be written as V = V1 ⊗ · · · ⊗ Vr′ , where each Vi is either Hbg,1(χi) or Hbg(χi) for

some character χi of D = H1(Σg;Z/`). Here Modbg,1(`) acts on Hbg(χi) via the projection

Modbg,1(`)→ Modbg(`) that fills in the puncture x0.

The number s′ of tensor factors of the form Hbg,1(χi) will be called the nonextended size

of V . Thus s′ ≤ r′, with equality precisely when V is a normal homological representation.
We say that V is compatible with our symplectic subspace H of H1(Σb

g,1;Z/`) if each χi is

compatible with H. This implies that the action of Modbg,1(`) on V extends to Modbg,1(H).
We will prove the claim for an extended homological representation U . Let 0 ≤ s′ ≤ r′ be

the nonextended size of U . The proof will be by induction on r′, and for a fixed r′ will be by
induction on s′. The base case is r′ ≥ 0 arbitrary (subject to the conditions in the claim!)

and s′ = 0. In this case, the action of Modbg,1(H) on U factors through Modbg(H) and U is a

homological representation of Modbg(`) of size r′ that is compatible with H. It follows that

the action on U of the kernel PPx0(Σb
g, H) of Modbg,1(H)→ Modbg(H) is trivial, so

Û = H1(PPx0(Σb
g, H);U) ∼= H1(PPx0(Σb

g, H);C)⊗ U ∼= Hbg(H;C)⊗ U.

Here we are using the fact from Theorem 2.8 that PPx0(Σb
g, H) is the kernel of the map

PPx0(Σb
g)
∼= π1(Σb

g, x0)→ H1(Σb
g) = H ⊕H⊥ proj−→ H,

so it can be identified with the fundamental group of the cover SH of Σb
g used to define

Hbg(H;C) = H1(SH ;C). Using Lemma 6.5, the representation Hbg(H;C)⊗ U is a direct sum

of homological representations of Modbg(H) of size r′ + 1. Since i ≤ k, we have i− 1 < k, so
we can apply our inductive hypothesis (b) to deduce that the map

Hi−1(Modbg(`);H
b
g(H;C)⊗ U)→ Hi−1(Modbg(H);Hbg(H;C)⊗ U)

is an isomorphism. Here we are using the fact that our genus assumption is

g ≥ 2(i+ r′)2 + 7i+ 6r′ + 1 = 2((i− 1) + (r′ + 1))2 + 7(i− 1) + 6(r′ + 1) + 2.

We remark that this is the origin of the bound in this claim. This completes the proof of
the base case.

We can now assume that 1 ≤ s′ ≤ r′ and that the claim is true whenever either r′ or s′ is
smaller. Reordering the tensor factors of U if necessary, we can write U = U ′ ⊗ Hbg,1(χ) for

some extended homological representation U ′ of size r′ − 1 and nonextended size s′ − 1 and
some character χ that is compatible with H. Lemma 6.8 gives a short exact sequence

0 −→ C −→ Hbg,1(χ) −→ Hbg(χ) −→ 0

of Modbg,1(H)-representations. Define U ′′ = U ′ ⊗ Hbg(χ), so U ′′ is an extended homological
representation of size r′ and nonextended size s′ − 1. Tensoring our exact sequence with U ′,
we get a short exact sequence

(9.3) 0 −→ U ′ −→ U −→ U ′′ −→ 0
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of Modbg,1(H)-representations. There is an associated long exact sequence in PPx0(Σb
g, H)-

homology. Since PPx0(Σb
g, H) is a free group, this involves homology in degrees 0 and 1. As

notation, let

Û = H1(PPx0(Σb
g, H);U), Û ′ = H1(PPx0(Σb

g, H);U ′), Û ′′ = H1(PPx0(Σb
g, H);U ′′)

and

U = H0(PPx0(Σb
g, H);U), U

′
= H0(PPx0(Σb

g, H);U ′), U
′′

= H0(PPx0(Σb
g, H);U ′′).

The long exact sequence in PPx0(Σb
g, H)-homology associated to (9.3) is thus of the form

0 −→ Û ′ −→ Û −→ Û ′′ −→ U
′ −→ U −→ U

′′ −→ 0.

One of our genus assumptions is that g ≥ h+ r′ where h is the genus of H. Thus Corollary

7.4 implies41 that U ∼= U
′′
. Letting Q be the image of the map Û → Û ′′, this implies that

we have short exact sequences

(9.4) 0 −→ Û ′ −→ Û −→ Q −→ 0

and

(9.5) 0 −→ Q −→ Û ′′ −→ U
′ −→ 0.

To simplify our notation, let M(`) = Modbg(`) and M(H) = Modbg(H). Our goal is to prove
that the map

(9.6) Hi−1(M(`); Û)→ Hi−1(M(H); Û)

is an isomorphism. Both (9.4) and (9.5) induce exact sequences in the homology of M(`)
and M(H), and also a map between these long exact sequences.

For (9.5), this contains the segment

Hi(M(`); Û ′′) Hi(M(`);U
′
) Hi−1(M(`);Q) Hi−1(M(`); Û ′′) Hi−1(M(`);U

′
)

Hi(M(H); Û ′′) Hi(M(H);U
′
) Hi−1(M(H);Q) Hi−1(M(H); Û ′′) Hi−1(M(H);U

′
)

f1 f2 f3 f4 f5

We can understand the maps fi as follows:

• The transfer map lemma (Lemma 2.16) implies that f1 is a surjection.

• By construction, U ′ is an extended homological representation of Modbg,1(H) of size

r′ − 1, so just like above we can use Corollary 7.4 to see that U
′

is a homological
representation of Modbg(H) of size r′ − 1. Recall that we are assuming that i ≤ k
and that if i = k then r′ ≤ r (so r′ − 1 < r). We can therefore apply our inductive
hypotheses (b) and (c) to see that f2 and f5 are isomorphisms.
• By construction, U ′′ is an extended homological representation of size r′ and nonex-

tended size s′ − 1. By our induction on the nonextended size, we see that f4 is an
isomorphism.

41To apply this to extended homological representations, we factor out the extended part. For instance, if
U = Hbg(χ1)⊗ Hbg(χ2)⊗ Hbg,1(χ3)⊗ Hbg,1(χ4), then Corollary 7.4 implies that U = UPPx0 (Σb

g,H) equals

Hbg(χ1)⊗ Hbg(χ2)⊗
(
Hbg,1(χ3)⊗ Hbg,1(χ4)

)
PPx0

(Σb
g,H)

= Hbg(χ1)⊗ Hbg(χ2)⊗ Hbg(χ3)⊗ Hbg(χ4).

Here we are using the fact that PPx0(Σbg, H) acts trivially on the first two factors.
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Applying the five-lemma, we deduce that f3 is an isomorphism.
We now turn to the long exact sequences in M(`) and M(H) homology induced by (9.4).

These contain

Hi(M(`);Q) Hi−1(M(`); Û ′) Hi−1(M(`); Û) Hi−1(M(`);Q) Hi−2(M(`); Û ′)

Hi(M(H);Q) Hi−1(M(H); Û ′) Hi−1(M(H); Û) Hi−1(M(H);Q) Hi−2(M(H); Û ′)

f6 f7 f8 f3 f9

Note that the map f3 here is the same as the one from the previous diagram. We can
understand these new maps fi as follows:

• The transfer map lemma (Lemma 2.16) implies that f6 is a surjection.

• By construction, U ′ is an extended homological representation of Modbg,1(H) of size
r′ − 1, so by our induction on r′ we see that the maps f7 and f9 are isomorphisms.
• We proved above that f3 is an isomorphism.

Applying the five-lemma, we deduce that f8 is an isomorphism. This is exactly the map (9.6)
we were supposed to prove is an isomorphism, so this completes the proof of the claim. �

Step 4 (Capping the boundary). For some k and r, make the inductive hypotheses (a)-(c)
from Step 1:

(a) r ≥ 0 and k ≥ 1.
(b) We have already proved the theorem for Hi for all i < k.
(c) For Hk, we have already proved the theorem for all homological representations of

size less than r. This is vacuous if r = 0.

Let g ≥ 0 and b ≥ 1. Let Hb+1
g (χ) be a size-r homological representation of Modb+1

g (`) and

let H be a symplectic subgroup of H1(Σb+1
g (`);Z/`) that is compatible with Hb+1

g (χ) and has

genus at most r. Assume42 that g ≥ 2(k + r)2 + 7k + 6r + 1. Then we prove that the map

(9.7) Hk

(
Modb+1

g (`) ;Hb+1
g (χ)

)
→ Hk

(
Modbg (`) ;Hbg(χ)

)
induced by gluing a disc to a boundary component ∂ of Σb+1

g is an isomorphism.

We will need some of our initial calculations in this step to hold more generally when H
has genus at most r + 1, so for the moment we only impose this weaker condition. At the
very end we will re-impose the condition that the genus of H is at most r.

To simplify our notation, let V = Hb+1
g (χ) and W = Hbg(χ). The map (9.7) fits into a

commutative diagram

(9.8)

Hk

(
Modb+1

g (`) ;V
)

Hk

(
Modbg (`) ;W

)
Hk

(
Modb+1

g (H) ;V )
)

Hk

(
Modbg (H) ;W

)
.

By Lemma 6.5, the representations V = Hb+1
g (χ) and W = Hbg(χ) are direct summands of

Hb+1
g (H;C)⊗r and Hbg(H;C)⊗r, respectively. Since H has genus at most r + 1, Theorem 8.1

implies that the bottom horizontal map in (9.8) is an isomorphism if g ≥ (2r + 4)(k + r) +
(4r+ 6). We will derive that the top horizontal map is an isomorphism from this, which first
requires verifying that our genus assumption g ≥ 2(k+ r)2 + 7k+ 6r+ 1 implies that we are

42Note that this is 1 less than the bound we are trying to prove for Hk.
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in the stable range g ≥ (2r + 4)(k + r) + (4r + 6) from Theorem 8.1:

2(k + r)2 + 7k + 6r + 1 = 2(k + r + 1)(k + r) + 5k + 4r + 1

≥ 2(r + 2)(k + r) + 4r + (5k + 1)

≥ (2r + 4)(k + r) + 4r + 6.

Here both inequalities use the fact that k ≥ 1, which is our inductive hypothesis (a).

Since b ≥ 1, the maps Modb+1
g (`) → Modbg(`) and Modb+1

g (H) → Modbg(H) induced by

gluing a disc to ∂ split via maps induced by an embedding Σb
g ↪→ Σb+1

g as follows:

Σg
b

∂

A similar map gives a splitting of the map V → W induced by gluing a disc to ∂. These
give compatible splitting of the top and bottom rows of (9.8), which in particular imply
that they are surjections (as we already know for the bottom row). We thus must prove
that the top row of (9.8) is an injection.

We can factor the horizontal maps in (9.8) as follows:

Hk

(
Modb+1

g (`) ;V
)

Hk

(
Modbg,1 (`) ;V

)
Hk

(
Modbg (`) ;W

)
Hk

(
Modb+1

g (H) ;V )
)

Hk

(
Modbg,1 (H) ;V

)
Hk

(
Modbg (H) ;W

)
.

φ ψ

φ ψ

Here we are using the fact that V = Hb+1
g (χ) = Hbg,1(χ) (see Remark 6.4). To prove that

the top horizontal map in (9.8) is an injection, it is enough to prove that ker(φ) = 0 and
ker(ψ)∩ Im(φ) = 0. We will derive this from the fact that ψ ◦φ is an isomorphism (Theorem
8.1, as noted above), which implies in particular that ker(φ) = 0 and that ker(ψ)∩ Im(φ) = 0.
We start by showing that ker(φ) = 0:

Claim 4.1. ker(φ) = 0.

Proof of claim. Proposition 2.10 and Remark 2.11 give a commutative diagram of central
extensions

(9.9)

1 Z Modb+1
g (`) Modbg,1(`) 1

1 Z Modb+1
g (H) Modbg,1(H) 1

=

where the central Z is generated by the Dehn twist T∂ . Consider the two associated
Hochschild–Serre spectral sequences with coefficients in V associated to the central extensions
in (9.9). These spectral sequences have two potentially nonzero rows, so they encode long
exact Gysin sequences. There is a map between these Gysin sequences, which contains the
following:

Hk+1(Modbg,1(`);V ) Hk−1(Modbg,1(`);V ) Hk(Modb+1
g (`);V ) Hk(Modbg,1(`);V )

Hk+1(Modbg,1(H);V ) Hk−1(Modbg,1(H);V ) Hk(Modb+1
g (H);V ) Hk(Modbg,1(H);V ).

φ′

f1 f2

φ

φ
′

φ

To prove that ker(φ) = 0, it is enough to prove that φ′ is a surjection. We know that

ker(φ) = 0, so φ
′

is a surjection. Our inductive hypothesis (b) implies that f2 is an
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isomorphism, and using the transfer map lemma (Lemma 2.16) we see that f1 is a surjection.
It follows that φ′ is a surjection, as desired. �

The proof that ker(ψ) ∩ Im(φ) = 0 is a little more complicated. A proof identical to the
one in the above claim shows that the maps

Hi(Modb+1
g (`);V )→ Hi(Modbg,1(`);V ) and Hi(Modb+1

g (H);V )→ Hi(Modbg,1(H);V )

are injections for 0 ≤ i ≤ k. It follows that up to degree k, the Gysin sequences discussed in
the proof of the above claim break up into short exact sequences. In particular, we have the
following commutative diagram with exact rows:

(9.10)

0 Hk(Modb+1
g (`);V ) Hk(Modbg,1(`);V ) Hk−2(Modbg,1(`);V ) 0

0 Hk(Modb+1
g (H);V ) Hk(Modbg,1(H);V ) Hk−2(Modbg,1(H);V ) 0

φ µ

∼=
φ µ

The isomorphism on the right-most vertical arrow comes from our inductive hypothesis (b).
We know that ψ ◦ φ is an isomorphism, so

Hk(Modbg,1(H);V ) = Im(φ)⊕ ker(ψ).

Combining this with the bottom exact sequence in (9.10), we see that the map

(9.11) µ|kerψ : ker(ψ) −→ Hk−2(Modbg,1(H);V )

is an isomorphism. To prove that ker(ψ)∩Im(φ) = 0, it is enough to prove that the restriction
of µ to ker(ψ) is also an isomorphism. To do that, since the right-hand vertical arrow in (9.10)

is an isomorphism it is enough to prove that the map Hk(Modbg,1(`);V )→ Hk(Modbg,1(H);V )

restricts to an isomorphism from ker(ψ) to ker(ψ).
To do this, we must identify ker(ψ) and ker(ψ). Let x0 be the puncture of Σb

g,1. In light
of Remark 2.9, Theorem 2.8 gives a commutative diagram of Birman exact sequences

(9.12)

1 PPx0(Σb
g, `) Modbg,1(`) Modbg(`) 1

1 PPx0(Σb
g, H) Modbg,1(H) Modbg(H) 1

Since b ≥ 1, the maps Modbg,1(`)→ Modbg(`) and Modbg,1(H)→ Modbg(H) induced by filling

in x0 split via maps induced by an embedding Σb
g ↪→ Σb

g,1 as follows:

Σg
b x0

It follows that all differentials coming out of the bottom rows of the Hochschild–Serre
spectral sequences with coefficients in V associated to the rows of (9.12) must vanish. Since
PPx0(Σb

g, `) and PPx0(Σb
g, H) are subgroups of the free group π1(Σb

g, x0), these spectral

sequence only have two potentially nonzero rows, so they degenerate at the E2 page. They
thus break up into a bunch of short exact sequences.

To identify these short exact sequences, we must identify the E2-pages of our spectral
sequences. For Modbg,1(`), the two potentially nonzero rows of our spectral sequence are as
follows:
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• E2
p0 = Hp(Modbg(`); H0(PPx0(Σb

g, `);V )). Recall that at the beginning of this step
we imposed the condition that H has genus at most r + 1. Our genus assumptions
imply that g ≥ (r + 1) + r, so Corollary 7.4 implies that

H0(PPx0(Σb
g, `);V ) = Hbg,1(χ)PPx0 (Σbg ,`)

∼= Hbg(χ) = W.

We conclude that E2
p0 = Hp(Modbg(`);W ).

• E2
p1 = Hp(Modbg(`); H1(PPx0(Σb

g, `);V )).

The short exact sequence encoded by the p+ q = k diagonal of this spectral sequence is thus
of the form

0 Hk−1(Modbg(`); H1(PPx0(Σb
g, `);V )) Hk(Modbg,1(`);V ) Hk(Modbg(`);W ) 0.

ψ

A similar analysis holds for Modbg,1(H), yielding an analogous short exact sequence. There
is a map between these short exact sequences of the form

(9.13)
0 Hk−1(Modbg(`); H1(PPx0(Σbg, `);V )) Hk(Modbg,1(`);V ) Hk(Modbg(`);W ) 0

0 Hk−1(Modbg(H); H1(PPx0(Σbg, H);V )) Hk(Modbg,1(H);V ) Hk(Modbg(H);W ) 0.

ψ

ψ

It follows that to prove that the map ker(ψ)→ ker(ψ) is an isomorphism, we must prove
that the map

Hk−1(Modbg(`); H1(PPx0(Σb
g, `);V ))→ Hk−1(Modbg(H); H1(PPx0(Σb

g, H);V ))

is an isomorphism.43 This map factors as the composition of the maps

(9.14) Hk−1(Modbg(`); H1(PPx0(Σb
g, `);V ))→ Hk−1(Modbg(`); H1(PPx0(Σb

g, H);V ))

and

(9.15) Hk−1(Modbg(`); H1(PPx0(Σb
g, H);V ))→ Hk−1(Modbg(H); H1(PPx0(Σb

g, H);V )).

Claim 3.1 says that (9.15) is an isomorphism. This claim includes the assumption that g is
at least the genus of H plus r, which follows from the condition that the genus of H is at
most r + 1 that we imposed at the beginning of this step.

It therefore remains to prove that (9.14) is an isomorphism. At this point in the proof, we
re-impose the assumption that the genus of H is at most r. As we noted at the beginning, it
is enough to verify this step in that case; however, we will use some of the above calculations
for other symplectic subspaces of genus r + 1.

Claim 4.2. The map (9.14) is an isomorphism.

Proof of claim. Let D = H1(Σg;Z/`). By Remark 2.9, we have a short exact sequence

(9.16) 1 −→ PPx0(Σb
g, `) −→ PPx0(Σb

g) −→ D −→ 1.

Regard H as a subspace of D via the map H1(Σb
g;Z/`)→ H1(Σg;Z/`), and let C ⊂ D be its

orthogonal complement with respect to the algebraic intersection pairing on D. By Theorem
2.8, the group PPx0(Σb

g, H) is the kernel of the map

PPx0(Σb
g) −→ D = H ⊕ C proj−→ H.

43This will imply Theorem C. Indeed, consider the case where V ∼= C is the trivial representation of
size r = 0 and H = 0. We then have H1(PPx0(Σb

g, `);V ) ∼= Hbg(`;C) and H1(PPx0(Σb
g, H);V ) = Hbg(C).

The fact that this map is an isomorphism thus becomes the fact that the map Hk−1(Modbg(`);H
b
g(`;C))→

Hk−1(Modbg;H
b
g(C)) is an isomorphism. The universal coefficients theorem says this is also true with the C

replaced with a Q, which is exactly Theorem C in the special case that the surface has no punctures. The
case where the surface has punctures can be derived from this exactly like in Claim 2.1.
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Combining this with (9.16), we get a short exact sequence

1 −→ PPx0(Σb
g, `) −→ PPx0(Σb

g, H) −→ C −→ 1.

The group PPx0(Σb
g, H) acts by conjugation on PPx0(Σb

g, `) and on V since V is compatible
with H. Since inner automorphisms act trivially on homology (see, e.g., [9, Proposition
III.8.1]), this induces an action of the finite abelian group C on H1(PPx0(Σb

g, `);V ). Using
the transfer map lemma (Lemma 2.16), we deduce that

(9.17) H1(PPx0(Σb
g, `);V )C = H1(PPx0(Σb

g, H);V ).

The group Modbg(`) also acts on H1(PPx0(Σb
g, `);V ). Since Modbg(`) acts trivially on D, the

actions of Modbg(`) and C on H1(PPx0(Σb
g, `);V ) commute. It follows that Modbg(`) preserves

the decomposition of H1(PPx0(Σb
g, `);V ) into C-isotypic components.

Just like we talked about for the Prym representation in §6.5, the irreducible representa-

tions of the finite abelian group C are in bijection with characters χ ∈ Ĉ. For χ ∈ Ĉ, let Uχ
denote the corresponding isotypic component of H1(PPx0(Σb

g, `);V ). We thus have

(9.18) Hk−1(Modbg(`); H1(PPx0(Σb
g, `);V )) =

⊕
χ∈Ĉ

Hk−1(Modbg(`);Uχ).

We now return to (9.17). Taking the C-coinvariants like in (9.17) kills exactly the Uχ such

that χ is nontrivial (c.f. the proof of Lemma 6.5). Letting 1 ∈ Ĉ denote the trivial character,
we thus see from (9.17) and (9.18) that

Hk−1(Modbg(`); H1(PPx0(Σb
g, H);V )) = Hk−1(Modbg(`);U1).

The map

Hk−1(Modbg(`); H1(PPx0(Σb
g, `);V ))→ Hk−1(Modbg(`); H1(PPx0(Σb

g, H);V ))

we are trying to prove is an isomorphism can therefore be identified with the projection⊕
χ∈Ĉ

Hk−1(Modbg(`);Uχ)→ Hk−1(Modbg(`);U1).

Fixing some nontrivial χ0 ∈ Ĉ, we deduce that to prove the claim, it suffices to prove that
Hk−1(Modbg(`);Uχ0) = 0.

Recall that the genus of H ⊂ H1(Σb
g,1;Z/`) is at most r. Let H ′ be a symplectic subspace

of H1(Σb
g,1;Z/`) of genus at most r + 1 with the following two properties:

• H ⊂ H ′. Regarding H ′ as a subgroup of D and letting C ′ be its orthogonal
complement, we thus have C ′ ⊂ C.
• The character χ0 : C → C∗ vanishes on C ′.

Since the image of χ0 is a finite cyclic group, such an H ′ can be constructed using an
argument similar to [56, Lemma 3.5]. We have PPx0(Σb

g, H
′) ⊂ PPx0(Σb

g, H), and arguments
identical to the ones we gave above show that

H1(PPx0(Σb
g, `);V )C′ = H1(PPx0(Σb

g, H
′);V ).

Continuing just like above, since Ĉ ′ is the set of χ ∈ Ĉ with χ|C′ = 1 we deduce that

Hk−1(Modbg(`); H1(PPx0(Σb
g, H

′);V )) =
⊕
χ∈Ĉ
χ|C′=1

Hk−1(Modbg(`);Uχ).

The map

(9.19) Hk−1(Modbg(`); H1(PPx0(Σb
g, H

′);V ))→ Hk−1(Modbg(`); H1(PPx0(Σb
g, H);V ))
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can thus be identified with the projection⊕
χ∈Ĉ
χ|C′=1

Hk−1(Modbg(`);Uχ)→ Hk−1(Modbg(`);U1).

The summand Hk−1(Modbg(`);Uχ0) we are trying to prove is 0 therefore appears in the kernel
of (9.19).

To prove the claim, we are therefore reduced to proving that (9.19) is injective. In fact,
we will show that it is an isomorphism. Our earlier work allows us to simplify its domain
and codomain. We start with the codomain. By (9.11), we have an isomorphism

Hk−1(Modbg(`); H1(PPx0(Σb
g, H);V ))

∼=→ Hk−1(Modbg(H); H1(PPx0(Σb
g, H);V )).

By (9.13), the right hand side fits into a short exact sequence

0 Hk−1(Modb
g(H); H1(PPx0(Σb

g, H);V )) Hk(Modb
g,1(H);V ) Hk(Modb

g(H);W ) 0.
ψ

Finally, (9.11) gives an isomorphism

µ|kerψ : ker(ψ)
∼=−→ Hk−2(Modbg,1(H);V ).

Combining the previous three facts, we get an isomorphism

(9.20) Hk−1(Modbg(`); H1(PPx0(Σb
g, H);V )) ∼= Hk−2(Modbg,1(H);V ).

This identifies the codomain of (9.19).
As for the domain, we can also run the above argument with H ′ instead of H since we

were careful at the beginning of this step to allow the genus to be at most r + 1 instead of
just r, and we see that

(9.21) Hk−1(Modbg(`); H1(PPx0(Σb
g, H

′);V )) ∼= Hk−2(Modbg,1(H ′);V ).

Using the isomorphisms (9.20) and (9.21), we can identify identify the map (9.19) we are
trying to prove is an isomorphism with the map

Hk−2(Modbg,1(H ′);V )→ Hk−2(Modbg,1(H);V ).

But this is an isomorphism; indeed, using our inductive hypothesis (b) we see that both the
first map and the composition in

Hk−2(Modbg,1(`);V )→ Hk−2(Modbg,1(H ′);V )→ Hk−2(Modbg,1(H);V )

are isomorphisms. This completes the proof of the claim. �

Step 5 (Completing the induction). For some k and r, make the inductive hypotheses
(a)-(c) from Step 1:

(a) r ≥ 0 and k ≥ 1.
(b) We have already proved the theorem for Hi for all i < k.
(c) For Hk, we have already proved the theorem for all homological representations of

size less than r. This is vacuous if r = 0.

Let g ≥ 0 and b ≥ 1. Let Hbg(χ) be a size-r homological representation of Modbg(`) and let H

be a symplectic subgroup of H1(Σb
g(`);Z/`) that is compatible with Hbg(χ) and has genus at

most r. Assume that g ≥ 2(k + r)2 + 7k + 6r + 2. Then we prove that the map

Hk

(
Modbg (`) ;Hbg(χ)

)
→ Hk

(
Modbg (H) ;Hbg(χ)

)
is an isomorphism. In light of Step 2, this proves the theorem for Hk and homological
representations of size r in general, completing our induction.
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By Lemma 6.5, the Modbg(H)-representation Hbg(χ) is a direct summand of Hbg(H;C)⊗r.
It follows that it is enough to prove that the map

(9.22) Hk

(
Modbg (`) ;Hbg(H;C)⊗r

)
→ Hk

(
Modbg (H) ;Hbg(H;C)⊗r

)
is an isomorphism. Step 4 implies that

Hk

(
Modbg (`) ;Hbg(H;C)

)
∼= Hk

(
Mod1

g (`) ;H1
g(H;C)

)
.

Also, as we noted at the beginning of the proof of Step 4 our genus assumptions allow us to
use Theorem 8.1 to deduce that

Hk

(
Modbg (H) ;Hbg(H;C)

)
∼= Hk

(
Mod1

g (H) ;H1
g(H;C)

)
.

We conclude that it is enough to prove that (9.22) is an isomorphism when b = 1.
The transfer map lemma (Lemma 2.16) implies that

Hk

(
Mod1

g (H) ;H1
g(H;C)⊗r

)
=
(
Hk

(
Mod1

g (`) ;H1
g(H;C)⊗r

))
Mod1

g(H)
,

This reduces us to showing that Mod1
g(H) acts trivially on Hk(Mod1

g(`);H
1
g(H;C)⊗r). Lemma

2.12 says that Mod1
g(H) is generated by Mod1

g(`) along with the set of all Dehn twists Tγ
such that [γ] ∈ H⊥. Since inner automorphisms act trivially on homology (see, e.g., [9,
Proposition III.8.1]), this reduces us to showing that such Tγ act trivially.

Fix such a γ. Say that an embedding Σ1
g−1 ↪→ Σ1

g is H-compatible if H is contained in the

image of the induced map H1(Σ1
g−1;Z/`)→ H1(Σ1

g;Z/`). Fix an H-compatible embedding

j : Σ1
g−1 ↪→ Σ1

g such that γ is contained in the complement of the image of j:

γ

j(Σg-1
1 )

Since Tγ commutes with mapping classes supported on Σ1
g−1, it acts trivially on the image

of Hk(Mod1
g−1(`);H1

g−1(H;C)⊗r) in Hk(Mod1
g(`);H

1
g(H;C)⊗r. It follows that it is enough to

prove that the map

j∗ : Hk(Mod1
g−1(`);H1

g−1(H;C)⊗r) −→ Hk(Mod1
g(`);H

1
g(H;C)⊗r)

is surjective. For this, it is enough to prove the following two facts:

• The map⊕
Σ1
g−1↪→Σ1

g

H-compatible

Hk(Mod1
g−1(`);H1

g−1(H;C)⊗r) −→ Hk(Mod1
g(`);H

1
g(H;C)⊗r)

is surjective.
• Let j0 : Σ1

g−1 ↪→ Σ1
g and j1 : Σ1

g−1 ↪→ Σ1
g be two H-compatible embeddings. Let

(ji)∗ : Hk(Mod1
g−1(`);H1

g−1(H)⊗r) −→ Hk(Mod1
g(`);H

1
g(H)⊗r)

be the induced map. Then the images of (j0)∗ and (j1)∗ are the same.

These two facts are the subject of the following two claims:

Claim 5.1. The map⊕
Σ1
g−1↪→Σ1

g

H-compatible

Hk(Mod1
g−1(`);H1

g−1(H;C)⊗r) −→ Hk(Mod1
g(`);H

1
g(H;C)⊗r)
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is surjective.

Proof of claim. Let I be an open interval in ∂Σ1
g, and consider the complex TT1

g(I,H)

of I-tethered H-orthogonal tori in Σ1
g that we introduced in §5.2. Given a p-simplex

σ = [ι0, . . . , ιp], let Xσ be the subsurface of Σ1
g defined in §6.3:

Xσ = Σ1
g \Nbhd

(
∂Σ1

g ∪ Im (ι0) ∪ · · · ∪ Im (ιp)
)
.

See here:

ι0ι1

Xσ

Thus Xσ
∼= Σ1

g−p−1, and the inclusion Xσ ↪→ Σ1
g is H-compatible. The Mod1

g(`)-stabilizer of

σ consists of all elements of Mod1
g(`) supported on Xσ, so Mod1

g(`)σ
∼= Mod1

g−p−1(`).

We now recall the definition of the augmented coefficient system H1
g(H;C) on T1

g(I,H)

we defined in §6.3. Let π : SH → Σ1
g be the cover used to define H1

g(H;C), and for a simplex

σ of T1
g(I,H) let X̃σ = π−1(Xσ). For a p-simplex σ of T1

g(I,H), we then have

H1
g(H;C)(σ) = H1(X̃σ;C) ∼= H1

g−p−1(H;C).

In particular, for the empty simplex [ ] we have

H1
g(H;C) [ ] = H1

g(H;C).

It follows that to prove the claim, it is enough to prove that the map⊕
v∈T1

g(I,H)(0)

Hk(Mod1
g(`)v;H1

g(H;C)⊗r(v)) −→ Hk(Mod1
g(`);H1

g(H;C)⊗r [ ])

is surjective. This will follow from Proposition 4.1 once we verify its three hypotheses. This
requires manipulating our bound on g, so we introduce the notation

b(k, r) = 2(k + r)2 + 7k + 6r + 2.

Thus our assumption is that g ≥ b(k, r).

Hypothesis (i) is that H̃i(TT1
g(I,H);H1

g(H;C)⊗r) = 0 for −1 ≤ i ≤ k−1. Lemma 6.3 says

that H1
g(H;C) is strongly polynomial of degree 1, so Lemma 4.9 implies that H1

g(H;C)⊗r

is strongly polynomial of degree r. We have assumed that the genus of H is at most r,
so Corollary 5.2 implies that TT1

g(I,H) is weakly forward Cohen–Macaulay of dimension
g−(4r+3)

2r+2 + 1. Applying Theorem 4.4, we deduce that H̃i(TT1
g(I,H);H1

g(H;C)⊗r) = 0 for

−1 ≤ i ≤ g−(4r+3)
2r+2 − r. We must prove that this is at least k − 1. Manipulating

g − (4r + 3)

2r + 2
− r ≥ k − 1,

we see that it is equivalent to

g ≥ (2r + 2)(k + r − 1) + (4r + 3) = 2(r + 1)(k + r) + 2r + 1.

We thus must prove that b(k, r) ≥ 2(r + 1)(k + r) + 2r + 1. But at the beginning of Step 4
we proved44 that b(k, r) ≥ 2(k + r)(r + 2) + (4r + 7), which is even stronger.

Hypotheses (ii) is that H̃i(TT1
g(I,H)/Mod1

g(`)) = 0 for −1 ≤ i ≤ k. We assumed that

the genus of H is at most r, so Corollary 5.6 implies that TT1
g(I,H)/Mod1

g(`) is at least

44Actually, what we proved was b(k, r)− 1 ≥ 2(k + r)(r + 2) + (4r + 6).
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g−r−5
2 -connected. We want to prove that this is at least k. Manipulating this, we see that it

is equivalent to

g ≥ 2k + r + 5.

We thus must prove that b(k, r) ≥ 2k + r + 5. For this, we calculate:

b(k, r) = 2(k + r)2 + 7k + 6r + 2 = 2k + r + (2(k + r)2 + 5k + 5r + 2)

≥ 2k + r + (2 + 5 + 0 + 2) ≥ 2k + r + 5,

as desired. Here we are using our inductive hypothesis (a), which says that k ≥ 1 and r ≥ 0.
Hypothesis (iii) is that if σ is a simplex of TT1

g(I,H) and i ≥ 1, then the map

Hk−i(Mod1
g(`)σ;H1

g(H;C)⊗r(σ)) −→ Hk−i(Mod1
g(`);H1

g(H;C)⊗r [ ])

is an isomorphism if i− 1 ≤ dim(σ) ≤ i+ 1. By our description of the simplex stabilizers
and the values of H1

g(H;C), this is equivalent to proving that for i ≥ 1, the map

Hk−i(Mod1
g−h(`);H1

g−h(H;C)⊗r) −→ Hk−i(Mod1
g(`);H

1
g(H;C)⊗r)

is an isomorphism if i ≤ h ≤ i + 2. In fact, we will prove that it is an isomorphism for
1 ≤ h ≤ i+ 2. The above map fits into a commutative diagram

Hk−i(Mod1
g−h(`);H1

g−h(H;C)⊗r) Hk−i(Mod1
g(`);H

1
g(H;C)⊗r)

Hk−i(Mod1
g−h(H);H1

g−h(H;C)⊗r) Hk−i(Mod1
g(H);H1

g(H;C)⊗r).

What we will do is use our inductive hypothesis (b) to show that both vertical arrows are
isomorphisms and Theorem 8.1 to prove that the bottom horizontal arrow is an isomorphism.

We start by using our inductive hypothesis to show that both vertical arrows are isomor-
phisms. To show this, since g ≥ b(k, r) it is enough to prove that

(9.23) b(k, r) ≥ b(k − i, r) + (i+ 2) for 1 ≤ i ≤ k.

In fact, we will prove something stronger, namely that for all j, r ≥ 0 we have have

(9.24) b(j + 1, r) ≥ b(j, r) + 7.

Iterating this gives an even better bound than (9.23), namely that b(k, r) ≥ b(k − i, r) + 7i.
To see (9.24), we calculate as follows:

b(j + 1, r) = 2(j + r + 1)2 + 7(j + 1) + 6r + 2 ≥ 2(j + r)2 + 7(j + 1) + 6r + 2 = b(j, r) + 7.

We next use Theorem 8.1 to prove that the bottom horizontal arrow is an isomorphism. The
bound in that theorem for Hj is b′(j, r) = 2(j + r)(r + 1) + (4r + 2), so since g ≥ b(k, r)
what we have to show is that

b(k, r) ≥ b′(k − i, r) + (i+ 2) for 1 ≤ i ≤ k.

To see this, it is enough to prove that b(k, r) ≥ b′(k, r)+7 and that b′(j+1, r) ≥ b′(j, r)+2
for all j, r ≥ 0. For b(k, r) ≥ b′(k, r) + 7, we calculate as follows:

b(k, r) = 2(k + r)2 + 7k + 6r + 2 ≥ 2(k + r)(r + 1) + 7k + 6r + 2

≥ 2(k + r)(r + 1) + 4r + (7k + 2)

≥ 2(k + r)(r + 1) + 4r + 9 = b′(k, r) + 7.

For b′(j + 1, r) ≥ b′(j, r) + 2, we calculate as follows:

b′(j+1, r) = 2(j+r+1)(r+1)+(4r+2) = 2(j+r)(r+1)+(4r+2)+(2r+2) ≥ b′(j, r)+2. �
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Claim 5.2. Let j0 : Σ1
g−1 ↪→ Σ1

g and j1 : Σ1
g−1 ↪→ Σ1

g be two H-compatible embeddings. Let

(ji)∗ : Hk(Mod1
g−1(`);H1

g−1(H)⊗r) −→ Hk(Mod1
g(`);H

1
g(H)⊗r)

be the induced map. Then the images of (j0)∗ and (j1)∗ are the same.

Proof of claim. The group Mod1
g(H) acts transitively45 on the set of H-compatible embed-

dings Σ1
g−1 ↪→ Σ1

g. We can thus find some φ ∈ Mod1
g(H) such that j1 = φ ◦ j0.

Let h be the genus of H, so by our assumptions h ≤ r. Lemma 2.12 says that Mod1
g(H) is

generated by Mod1
g(`) along with any set S of Dehn twists about simple closed nonseparating

curves γ with [γ] ∈ H⊥ such that S maps to a generating set for Sp(H⊥) ∼= Sp2(g−h)(Z/`).
In fact, as Remark 2.13 points out, we can take

S = {Tα1 , . . . , Tαg−h , Tβ1 , . . . , Tβg−h , Tγ1 , . . . , Tγg−h−1
},

where the αi and βi and γi are as follows:

j0
γ3

α4 α3 α2 α1

β4 β3 β2 β1
γ2 γ1

The image of j0 is the shaded region and H consists of all elements of homology orthogonal
to the curves about whose twists are in S, so H is supported on the handles on the left side
of the figure that have no S-curves around them.

The element φ ∈ Mod1
g(H) with j1 = φ ◦ j0 from the first paragraph can thus be written

as φ = φ1 · · ·φn with each φi either in Mod1
g(`) or S±1. We can therefore “connect” j0 and

j1 by the sequence of H-compatible embeddings

j0, φ1 ◦ j0, φ1φ2 ◦ j0, . . . , φ1 · · ·φn ◦ j0 = j1.

It is enough to prove that the maps on homology induced by consecutive embeddings
φ1 · · ·φi ◦j0 and φ1 · · ·φiφi+1 ◦j0 in this sequence have the same image. Multiplying these on
the left by (φ1 · · ·φi)−1, we see that in fact it is enough to prove that the maps on homology
induced by j0 and φi ◦ j0 have the same image. We remark that this type of argument was
systematized in [50], which has many examples of it.

This is trivial if φi ∈ Mod1
g(`) since the images differ by an inner automorphism of Mod1

g(`)
and inner automorphisms act trivially on homology (see, e.g., [9, Proposition III.8.1]). It is
also trivial if φi is an element of S±1 that fixes the subsurface j0(Σ1

g−1). The remaining case

is where φi = T±1
γ1

. It is enough to deal with the case where the sign is positive; indeed, if
the maps on homology induced by j0 and Tγ1 ◦ j0 have the same image, then we can multiply
both by T−1

γ1
and deduce that the same is true for T−1

γ1
◦ j0 and j0.

In summary, we have reduced ourselves to handling the case where j1 = Tγ1 ◦ j0 as in the
following:

j0 j1
γ1

45This can be proved directly along the same lines as Lemma 5.4. Alternatively, since all H-compatible
embeddings come from vertices of TT1

g(I,H), it follows from the fact that Mod1
g(H) acts transitively on such

vertices. See [56, Lemma 3.9] for a proof of this in a much more general context.
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We can find an embedding ι : Σ2
g−1 ↪→ Σ1

g whose image contains the images of j0 and j1:

j0
γ1

ι

Using the notation from §2.6, the embedding ι induces a homomorphism M̂od
2

g−1(`) →
Modg(`), and each ji factors as

Mod1
g−1(`)

j′i−→ M̂od
2

g−1(`) −→ Modg(`).

To prove that the images of (j0)∗ and (j1)∗ are the same, it is enough to prove that the maps

(j′i)∗ : Hk(Mod1
g−1(`);H1

g−1(H)⊗r) −→ Hk(M̂od
2

g−1(`);H2
g−1(H)⊗r)

are surjective. In fact, we will prove they are isomorphisms. Consider the composition

(9.25) Mod1
g−1(`)

j′i−→ M̂od
2

g−1(`)
f
↪→ Mod2

g−1(`)
f ′−→ Mod1

g−1(`),

where the final map glues a disc to one of the components of ∂Σ1
g−1. This comes from a

map Σ1
g−1 → Σ1

g−1 that is homotopic to the identity:

def
retract

Letting W = H1
g−1(H)⊗r and V = H2

g−1(H)⊗r, it follows that the following composition is

the identity (and in particular, is an isomorphism):

Hk(Mod1
g−1(`);W )

(j′i)∗→ Hk(M̂od
2

g−1(`);V )
f∗→ Hk(Mod2

g−1(`);V )
(f ′)∗→ Hk(Mod1

g−1(`);W ).

Here for the final map we are using the map V → W induced by the map that fills in a
boundary component. Corollary 2.15 says that f∗ is an isomorphism, and Step 4 says that
(f ′)∗ is an isomorphism.46 We conclude that (j′i)∗ is an isomorphism, as desired. �

This completes the proof of Theorem D. �

10. Closed surfaces

We close by showing how to derive Theorems A and B for closed surfaces.

10.1. Alternate standard representation. This first requires the following variant on
Theorem B for non-closed surfaces. Let Modbg,p act on H1(Σg) via the homomorphism

Modbg,p → Modg that fills in the punctures and glues discs to the boundary components.

Also, recall that Modbg,p[`] is the kernel of the action of Modbg,p on H1(Σg;Z/`).

Theorem E. Let g, p, b ≥ 0 and ` ≥ 2 be such that p+ b ≥ 1. Then for r ≥ 0, the maps

(10.1) Hk

(
Modbg,p (`) ; H1 (Σg;Q)⊗r

)
→ Hk

(
Modbg,p; H1 (Σg;Q)⊗r

)
and

Hk

(
Modbg,p [`] ; H1 (Σg;Q)⊗r

)
→ Hk

(
Modbg,p; H1 (Σg;Q)⊗r

)
46This is why we needed the bound in Step 4 to be one better than the bound we are proving for Hk.
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are isomorphisms if g ≥ 2(k + r)2 + 7k + 6r + 2.

Proof. The transfer map lemma (Lemma 2.16) implies that both maps in the composition

Hk

(
Modb

g,p (`) ; H1 (Σg;Q)
⊗r
)

Hk

(
Modb

g,p [`] ; H1 (Σg;Q)
⊗r
)

Hk

(
Modb

g,p; H1 (Σg;Q)
⊗r
)

are surjections. It is thus enough to prove that (10.1) is an isomorphism. If p+ b = 1, then
H1(Σb

g,p;Q) ∼= H1(Σg;Q) and this reduces to Theorem B. We can thus assume that p+ b ≥ 2.

Choose some arbitrary ordering on the punctures and boundary components of Σb
g,p,

and for 0 ≤ p′ ≤ p and 0 ≤ b′ ≤ b let Modbg,p act on H1(Σb′
g,p′ ;Q) by filling in the first

p− p′ punctures and gluing discs to the first b− b′ boundary components. For sequences
p = (p1, . . . , pr) with 0 ≤ pi ≤ p and b = (b1, . . . , br) with 0 ≤ bi ≤ b, define

U(p, b) = H1(Σb1
g,p1

;Q)⊗ · · · ⊗H1(Σbr
g,pr ;Q).

We will prove more generally that the map

Hk

(
Modbg,p (`) ;U(p, b)

)
→ Hk

(
Modbg,p;U(p, b)

)
is an isomorphism if g ≥ 2(k + r)2 + 7k + 6r + 2.

If r = 0, then our representation is the trivial representation and the theorem reduces to
Theorem B. Assume, therefore, that r > 0. For p and b as above, define

d(p, b) =
r∑
i=1

(p− pi) +
r∑
i=1

(b− bi) ≥ 0.

The proof will be by induction on d(p, b). The base case is when d(p, b) = 0, in which case

U(p, b) = H1(Σb
g,p;Q)⊗r and the theorem follows from Theorem B. Assume, therefore, that

d(p, b) > 0 and that the theorem is true whenever this is smaller.
If for some i we have pi = bi = 0, then increasing either pi or bi by 1 does not change

U(p, b), so the theorem follows by induction. We can therefore assume that for all i we have
either pi > 0 or bi > 0. Since d(p, b) > 0, there is some i such that either pi < p or bi < b
(or both). We will give the details for when bi < b. The case where pi < p is similar.

Reordering the indices, we can assume that br < b. Let

b′ = (b1, . . . , br−1) and b′′ = (b1, . . . , br−1, br + 1).

Since we do not have br = pr = 0, we have a short exact sequence

0 −→ Q −→ H1(Σbr+1
g,pr ;Q) −→ H1(Σbr

g,pr ;Q) −→ 0

of representations of Modbg,p. Tensoring this with U(p, b′), we get a short exact sequence

0 −→ U(p, b′) −→ U(p, b′′) −→ U(p, b) −→ 0

of Modbg,p-representations. This induces long exact sequences in both Modbg,p(`) and

Modbg,p(H) homology, and a map between these long exact sequences. As notation, let

U = U(p, b) and U ′ = U(p, b′) and U ′′ = U(p, b′′)

and let M(`) = Modbg,p(`) and M(H) = Modbg,p(H). This map between long exact sequences
contains the segment

Hk(M(`);U ′) Hk(M(`);U ′′) Hk(M(`);U) Hk−1(M(`);U ′) Hk−2(M(`);U ′′)

Hk(M(H);U ′) Hk(M(H);U ′′) Hk(M(H);U) Hk−1(M(H);U ′) Hk−2(M(H);U ′′)

f1 f2 f3 f4 f5
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If g ≥ 2(k + r)2 + 7k + 6r + 2, then our inductive hypothesis implies that f1 and f2 and f4

and f5 are isomorphisms, so by the five-lemma f3 is an isomorphism, as desired. �

10.2. Closed surfaces. The following theorem subsumes Theorems A and B for closed
surfaces. Theorem A, which concerns the trivial representation, is the case r = 0.

Theorem 10.1. Let g ≥ 0 and ` ≥ 2. Then for r ≥ 0, the map

Hk

(
Modg (`) ; H1 (Σg;Q)⊗r

)
→ Hk

(
Modg; H1 (Σg;Q)⊗r

)
is an isomorphism if g ≥ 2(k + r)2 + 7k + 6r + 2.

Proof. To simplify our notation, let V = H1(Σg;Q)⊗r. We will adapt to our situation a
beautiful argument of Randal-Williams [61] for proving homological stability for mapping
class groups of closed surfaces. For g ≥ 3 and b ≥ 0, let Db

g = Diff+(Σb
g, ∂Σb

g) and let Db
g[`]

be the kernel of the action of Db
g on H1(Σg;Z/`) obtained by gluing discs to all the boundary

components. We thus have

Modbg = π0(Db
g) and Modbg[`] = π0(Db

g[`]).

Since g ≥ 3, theorems of Earle–Eells [19] and Earle–Schatz [20] say that the components of
Db
g are all contractible. This implies that

Hk(Modbg;V ) ∼= Hk(BDb
g;V ) and Hk(Modbg[`];V ) ∼= Hk(BDb

g[`];V ).

By Theorem E, for b ≥ 1 the map

Hk(Modbg[`];V )→ Hk(Modbg;V )

is an isomorphism if g ≥ 2(k + r)2 + 7k + 6r + 2. It follows that the map

(10.2) Hk(BDb
g[`];V )→ Hk(BDb

g;V )

is also an isomorphism if g ≥ 2(k + r)2 + 7k + 6r + 2. Our goal is to prove that the map

Hk(BDg[`];V )→ Hk(BDg;V )

is an isomorphism in that same range.
Assume that g ≥ 2(k + r)2 + 7k + 6r + 2. Randal-Williams ([61]; see [67, §5] for an

expository reference) introduced a semisimplicial space of discs embedded in Σg and proved
its geometric realization was contractible. He then showed that this leads to a spectral
sequence converging to the homology of Dg. Though he worked with trivial coefficients,
his exact same argument also works with the coefficient system V , for which the spectral
sequence in question has the form

E1
pq = Hq(BDp+1

g ;V )⇒ Hp+q(BDg;V ).

The key fact that underlies the identification of this spectral sequence is the fact that for all
p, the group Dg acts transitively on the set of orientation-preserving embeddings

(10.3) tpi=0 D
2 → Σg

and the stabilizer of one of these embeddings is isomorphic to Dp+1
g . The same thing is true

for Dg[`]; indeed, even the identity component of Dg acts transitively on embeddings (10.3).
We thus also get a spectral sequence with

(E′)1
pq = Hq(BDp+1

g [`];V )⇒ Hp+q(BDg[`];V ).

We remark that Dp+1
g [`] appears here rather than Dp+1

g (`) since the stabilizer only fixes

H1(Σg;Z/`), not H1(Σp+1
g ;Z/`). There is a map E′ → E between these spectral sequences,

and by our discussion of (10.2) above the map (E′)1
pq → E1

pq is an isomorphism for q ≤ k
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and all p. It is also a surjection for all p and q by the transfer map lemma (Lemma 2.16).
By the spectral sequence comparison theorem, we deduce that the map

Hk(BDg[`];V )→ Hk(BDg;V )

is an isomorphism, as desired. �
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