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Abstract
We give various estimates of the minimal number of self-intersections of a nontrivial ele-

ment of the kth term of the lower central series and derived series of the fundamental group of
a surface. As an application, we obtain a new topological proof of the fact that free groups and
fundamental groups of closed surfaces are residually nilpotent. Along the way, we prove that a
nontrivial element of the kth term of the lower central series of a nonabelian free group has to
have word length at least k in a free generating set.

1 Introduction

Fix an orientable surface Σ. The goal of this paper is to quantify the extent to which algebraically
complicated elements of π1(Σ) must exhibit topological complexity.

We begin with some definitions. Let c : S1 → Σ be a closed curve. We define the self-intersection
number of c, denoted i(c), to be minimum over all curves c′ which are freely homotopic to c of the
quantity

1
2
|{(x,y) | x,y ∈ S1, x ̸= y, c′(x) = c′(y)}|.

The factor 1/2 appears because each self-intersection is counted twice. Also, recall that if G is a
group, then the lower central series of G is the inductively defined sequence

γ1(G) = G and γk+1(G) = [γk(G),G].

For examples of curves in γ j(π1(Σ)) together with their self-intersection numbers, see Figure 1.
If π1(Σ) is nonabelian, then it is easy to see that for k ≥ 1, there exist x ∈ γk(π1(Σ)) with i(x)

arbitrarily large. However, a consequence of Theorems 1.1 and 1.3 below is that there do not exist
nontrivial x ∈ γk(π1(Σ)) with i(x) arbitrarily small.

To state these theorems, we define

mlcs(Σ,k) = min{i(x) | x ∈ γk(π1(Σ)), x ̸= 1}.

Our first result is the following.

Theorem 1.1. Let Σg,b be a orientable genus g surface with b ≥ 1 boundary components. Assume
that π1(Σg,b) is nonabelian. Then for all k ≥ 1 we have

mlcs(Σg,b,k)≥
k

4g+b−1
−1.
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Figure 1: a,b. z = [x,y] ∈ γ2(π1(Σ)). Also, i(z) = 0. c,d. z = [x,y] ∈ γ3(π1(Σ)) since x ∈ γ2(π1(Σ)). Also,
i(z) = 3. e,f. z = [x,y] ∈ γ4(π1(Σ)) since x,y ∈ γ2(π1(Σ)) (see Lemma 2.7). Also, i(z) = 3.

Theorem 1.1 will be proven in §2.1.
The key to our proof of Theorem 1.1 is the following result, which is proven in §4. If G is a

group and S ⊂ G, then for x ∈ ⟨S⟩ we will denote by ∥x∥S the length of the shortest word in S∪S−1

which equals x.

Theorem 1.2. Let F(S) be the free group on a set S with |S| > 1 and let k ≥ 1. Then for all non-
trivial w ∈ γk(F(S)) we have k ≤ ∥w∥S.

This improves upon work of Fox, who in [4, Lemma 4.2] proved a result that implies that ∥w∥S ≥ 1
2 k.

Remark. If we could prove an analogue of Theorem 1.2 for fundamental groups of closed surfaces,
then we could also prove an analogue of Theorem 1.1 for closed surfaces.

Remark. We conjecture that Theorem 1.2 is not sharp. Indeed, we suspect that the length of the
shortest word in the kth term of the lower central series of a nonabelian free group is quadratic in
k. As evidence, in the proofs of the upper bounds of Theorems 1.3 and 1.5 below we will construct
elements lying in the kth term of the lower central series of a rank 2 free group whose word length
is quadratic in k. If this conjecture were true, then we could replace the lower bound in Theorem
1.1 with a function which is quadratic in k.

For general surfaces (not necessarily compact or of finite type), we prove the following.

Theorem 1.3. Let Σ be an orientable surface with π1(Σ) nonabelian. Then for k ≥ 1 we have

log8(k)−1 ≤ mlcs(Σ,k)≤ 8k4.

The proof of the lower bound in Theorem 1.3 is in §2.3 and the proof of the upper bound is in §3.

Remark. Although the lower bound in Theorem 1.3 is weaker than the lower bound in Theorem 1.1
in terms of the order of k, it is uniform over all surfaces.

Recall that a group G is residually nilpotent if ∩∞
k=1γk(G) = 1. Our proof of Theorem 1.2 is

an elaboration of a proof due to Fox [4] of a theorem of Magnus [7] that says that free groups are
residually nilpotent. Conversely, an immediate consequence of Theorem 1.3 (which does not use
Theorem 1.2) is the following theorem, which for surface groups is due independently to Baumslag
[2] and Frederick [5].
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Corollary 1.4. Free groups and fundamental groups of closed surfaces are both residually nilpotent.

Our proof of Theorem 1.3 (and hence of Corollary 1.4) shares some ideas with Hempel’s beautiful
short proof [6] of the residual finiteness of free groups and surface groups.

The final result of this paper gives an analogue of Theorem 1.3 for the derived series. Recall
that if G is a group, then the derived series of G is the inductively defined sequence

G(1) = G and G(k+1) = [G(k),G(k)].

Setting
mder(Σ,k) = min{i(x) | x ∈ (π1(Σ))(k), x ̸= 1},

our result is as follows.

Theorem 1.5. Let Σ be an orientable surface with π1(Σ) nonabelian. Then for k ≥ 3 we have

2⌈k/2⌉−2 ≤ mder(Σ,k)≤ 24k−5.

The lower bound in Theorem 1.5 is proven in §2.4 and the upper bound is proven in §3. Our proof of
the lower bound in Theorem 1.5 is inspired by an unpublished note of Reznikov [9], which outlines
an argument giving a linear lower bound on mder(Σ,k) for Σ closed. We remark that though [9]
seems to claim that it is dealing with the lower central series, both its definitions and its arguments
make it clear that the author intends to discuss the derived series.

Remark. In our definitions above, for x ∈ π1(Σ,∗) the number i(x) depends only on the free ho-
motopy class of x. If we required that our homotopies fix ∗ and ∗ ∈ Int(Σ), then i(x) would be
unchanged. If instead ∗ ∈ ∂Σ, then i(x) might differ. However, since the lower central series and
derived series are normal, requiring the homotopies to fix the basepoint would not change mlcs(Σ,k)
or mder(Σ,k).

Acknowledgments. We would like to thank Khalid Bou-rabee, Nathan Broaddus, Matthew Day,
Thomas Koberda, and Ben McReynolds for useful conversations and suggestions. We would espe-
cially like to thank Benson Farb for sharing [9] with us and asking whether bounds of the sort we
prove might hold.

2 Lower bounds

In this section, we prove the lower bounds in Theorems 1.1, 1.3, and 1.5.

2.1 Lower central series, compact surfaces with boundary

We begin with Theorem 1.1.

Proof of Theorem 1.1. Let f : S1 → Int(Σg,b) be an immersion whose singularities consist of i( f )
isolated double points (see Figure 2.a). Assume that f is freely homotopic to a nontrivial element
of γk(π1(Σg,b)). Our goal is to show that i( f )≥ k

4g+b−1 −1.
The first step is to “comb” the double points to a single point on the surface. The immersion f

factors through an embedding of a graph whose vertices correspond to the singularities of f . More
precisely, there is a 4-regular graph G with i( f ) vertices, an embedding f̃ : G → Int(Σg,b), and an
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a b c d
Figure 2: a. An immersed curve f whose singularities consist of i( f ) = 5 isolated double points. b. The
maximal tree T c. The 2-disc D d. Result of contracting D

immersion c : S1 → G with f = f̃ ◦ c such that the inverse image under c of the interior of every
edge of G is connected.

Let T be a maximal tree in G. Hence f̃ (T ) is an embedded tree in Int(Σg,b) (see Figure 2.b).
Any sufficiently small closed neighborhood D of f̃ (T ) satisfies the following two properties (see
Figure 2.c).

• D is homeomorphic to a closed 2-disc.

• For all edges e of G that do not lie in T , the set f̃ (e)∩D has exactly two connected compo-
nents.

It is easy to see that there is a map r : Σg,b → Σg,b such that r is homotopic to the identity, such
that r|Σg,b\D is injective, and such that r(D) = ∗ for some point ∗ ∈ Int(Σg,b). Let D′ = f̃−1(D). By
construction, D′ is a closed regular neighborhood of T in G. Set G′ = G/D′, so G′ is a wedge of
circles, and let c′ : S1 → G′ be the composition of c with the projection G → G/D′. There is then an
embedding f̃ ′ : G′ → Int(Σg,b) such that f̃ ′ ◦ c′ = r ◦ f (see Figure 2.d).

Let w ∈ π1(Σg,b,∗) be the based curve corresponding to f̃ ′ ◦ c′. Since f̃ ′ ◦ c′ is freely homotopic
to f , we have w ∈ γk(π1(Σg,b,∗)). Let S ⊂ π1(Σg,b,∗) be a maximal collection of elements satisfying
the following three properties.

• For each circle L in G′ with f̃ ′|L not null-homotopic, there exists some x ∈ S such that f̃ ′|L =
x±1.

• For x,y ∈ S, if x = y±1 then x = y.

• The curves in S can be realized simultaneously by simple closed curves that only intersect at
∗.

Since G is a 4-regular graph with i( f ) vertices, it has 2i( f ) edges. Also, the maximal tree T has i( f )
vertices and hence i( f )−1 edges. We conclude that G′ is a wedge of 2i( f )− (i( f )−1) = i( f )+1
circles, so ∥w∥S ≤ i( f )+1.

We will confuse the set of homotopy classes S with the corresponding set of simple closed
curves that only intersect at ∗. Via an Euler characteristic calculation, we see that cutting Σg,b along
the curves in S yields b annuli and 4g+ b− 2 triangles. By gluing the triangles together in an
appropriate manner (as in the standard combinatorial proof of the classification of surfaces; see [8,
Chapter 1]), we identify Σg,b with a (4g+ b)-sided polygon P with 4g sides identified in pairs, all
vertices identified, and annuli glued to the b unpaired sides. Each of the curves in S is identified
with either a side of P or an arc in P joining two vertices.

In particular, S contains a free generating set S′ for π1(Σg,b,∗) consisting of the following curves.

4



• A curve corresponding to one edge from each of the pairs in the 4g paired edges in P.

• A curve corresponding to all but one of the b unpaired edges in P.

Observe that every element of S can be written as a word of length at most 4g+ b− 1 in S′, so
∥w∥S′ ≤ (4g+b−1)∥w∥S. Theorem 1.2 says that k ≤ ∥w∥S′ , so we conclude that

k ≤ ∥w∥S′ ≤ (4g+b−1)∥w∥S ≤ (4g+b−1)(i( f )+1).

Rearranging this inequality gives the desired conclusion.

2.2 Some preliminary lemmas

We now prove two lemmas that are needed in the proofs of Theorems 1.3 and 1.5.

Lemma 2.1. Let Σ be a compact orientable surface with π1(Σ) non-abelian and let f : S1 → Σ be a
non-nullhomotopic closed curve. Then there exists a degree 8 normal cover Σ̃ → Σ such that one of
the following holds.

• f does not lift to a closed curve on Σ̃.

• f lifts to a closed curve f̃ : S1 → Σ̃ with i( f̃ )< i( f ).

Remark. Since the cover in the conclusion of Lemma 2.1 is normal, f lifts to a closed curve if and
only if any curve freely homotopic to f lifts to a closed curve.

Proof of Lemma 2.1. By the remark following the lemma, we may assume without loss of generality
that f is an immersion whose singularities consist of i( f ) isolated double points. There are two
cases.

Case 1. f is simple.

We must construct a degree 8 normal cover to which f does not lift to a closed curve. In other
words, choosing ∗ ∈ f (S1) and letting x ∈ π1(Σ,∗) be the based curve corresponding to f , we must
find a finite group H with |H|= 8 and a surjection ψ : π1(Σ,∗)→ H with x /∈ ker(ψ).

If f is not nullhomologous and if ϕ : π1(Σ,∗)→ H1(Σ;Z) is the abelianization map, then ϕ(x)
is a primitive vector. There is therefore a surjection ϕ ′ : H1(Σ;Z)→ Z/8Z such that ϕ ′(ϕ(x)) ̸= 0.
We conclude that we can use H = Z/8Z and ψ = ϕ ′ ◦ϕ .

Assume now that f is nullhomologous. Letting g be the genus and b the number of boundary
components of Σ, it follows that there is a generating set S = {α1,β1, . . . ,αg,βg,x1, . . . ,xb} for
π1(Σ,∗) such that

π1(Σ,∗) = ⟨α1,β1, . . . ,αg,βg,x1, . . . ,xb | [α1,β1] · · · [αg,βg] = x1 · · ·xb⟩

and such that x = [α1,β1] · · · [αg′ ,βg′ ] for some g′ ≤ g. Let H be the dihedral group of order 8, so

H = ⟨σ ,r | σ2 = 1, r4 = 1, σrσ = r−1⟩.

We define a surjection ψ : π1(Σ,∗)→ H in the following way. If b = 0, then g′ < g and we define
ψ(α1) = ψ(αg) = σ , ψ(β1) = ψ(βg) = rσ , and ψ(s) = 1 for all s ∈ S with x /∈ {α1,β1,αg,βg}. It
is easy to check that the surface group relation is satisfied and that the resulting homomorphism ψ
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a b c
Figure 3: a. A nonsimple closed curve f like in Step 2 of the proof of Lemma 2.1. The simple closed
subcurve f ′ is in bold. b. An example of a subcurve f ′ that is nullhomotopic. c. We reduce the number
of self-intersections of f .

is a surjection. If b > 0, then π1(Σ,∗) is free on S \{xb}. We define ψ(α1) = σ , ψ(β1) = rσ , and
ψ(s) = 1 for all s ∈ S \{xb} with s /∈ {α1,β1,αg,βg}. Trivially ψ extends to a surjection. In either
case, we have ψ(x) = [σ ,rσ ] ̸= 1, as desired.

Case 2. f is not simple.

Let A be the set of nontrivial proper subarcs of S1 whose endpoints are mapped by f to the same
point of Σ. By assumption A is finite and nonempty. Partially order the elements of A by inclusion
and let α be a minimal element with endpoints a1 and a2. Since α ∈ A, the map f |α : α → Σ factors
through a map f ′ : S1 → Σ, and from the minimality of α we deduce that f ′ is a simple closed curve
(see Figure 3.a). In addition, f ′ is not nullhomotopic, since if f ′ were nullhomotopic then we could
homotope f so as to decrease its number of self-intersections (see Figures 3.b–c).

By Case 1, there is a degree 8 normal cover Σ̃ → Σ to which f ′ does not lift to a closed curve. If
f does not lift to a closed curve on Σ̃, then we are done. Assume, therefore, that f can be lifted to a
closed curve f̃ : S1 → Σ̃. Define

D( f ) = {(x,y) | x,y ∈ S1, x ̸= y, f (x) = f (y)},
D( f̃ ) = {(x,y) | x,y ∈ S1, x ̸= y, f̃ (x) = f̃ (y)}.

We clearly have D( f̃ )⊂ D( f ). Moreover, by construction (a1,a2) /∈ D( f̃ ). We conclude that f̃ has
fewer self-intersections than f , so i( f̃ )< i( f ), as desired.

We will also need the following simple lemma, which allows us to deduce results about non-
compact surfaces from results about compact surfaces.

Lemma 2.2. Let Σ be an oriented surface with π1(Σ) nonabelian. Also, let f : S1 → Σ be a non-
nullhomotopic closed curve which is freely homotopic to an element of γk(π1(Σ)) for some k ≥ 1.
Then there is a compact surface Σ′ with π1(Σ′) nonabelian and an embedding i : Σ′ ↪→ Σ satisfying
the following properties.

• There is a map f ′ : S1 → Σ′ such that f = i◦ f .

• The curve f ′ is freely homotopic to an element of γk(π1(Σ′)).

Proof. Any iterated commutator only involves a finite number of curves and any homotopy stays
within a compact subset of Σ.

6



2.3 Lower central series, general surfaces

We now prove the lower bound in Theorem 1.3. The proof will require the following lemma.

Lemma 2.3. Fix p,n,m ≥ 1 with p prime, and let G0 ◃G1 ◃ · · ·◃Gn be a subnormal sequence of
groups with [Gi−1 : Gi] = pm for 1 ≤ i ≤ n. Then there exists some group H such that H < Gn, such
that H ▹G0, and such that [G0 : H] = pN for some 1 ≤ N ≤ m pmn−1

pm−1 .

For the proof of Lemma 2.3, we will need the following.

Lemma 2.4. Fix p,r,s ≥ 1 with p prime, and let A◃B◃C be groups with [A : B] = pr and [B : C] =
ps. Then there exists a group D such that D < C, such that D▹A, and such that [A : D] = pN for
some 1 ≤ N ≤ prs+ r.

Proof. Define D =
∩

a∈A a−1Ca. Clearly we have D < C and D▹A, so we must only prove the
indicated result about [A : D]. Let T = {a1, . . . ,apr} be a complete set of coset representatives for B
in A with a1 = 1. Hence we have D =

∩pr

j=1 a−1
j Ca j. For 1 ≤ i ≤ pr, define Ci =

∩i
j=1 a−1

j Ca j. We
thus have

A◃B◃C =C1 ◃C2 ◃ · · ·◃Cpr = D.

We claim that for 1 < i ≤ pr we have [Ci−1 : Ci] = pki for some 0 ≤ ki ≤ s. Indeed, we have

Ci−1/Ci =Ci−1/(a−1
i Cai ∩Ci−1)∼= (Ci−1 · (a−1

i Cai))/a−1
i Cai < B/a−1

i Cai.

Since [B : a−1
i Cai] = [B : C] = ps, the claim follows. We conclude that

[A : D] = [A : B][B : C][C1 : C2] · · · [Cpr−1 : Cpr ] = pr ps pk2 · · · pkpr ≤ pr(ps)pr
,

as desired.

Proof of Lemma 2.3. The proof will be by induction on n. The base case n = 1 is trivial. Now
assume that n > 1 and that the lemma is true for all smaller n. Applying the inductive hypothesis to
the sequence G1 ◃ · · ·◃Gn, we obtain a group H ′ such that H ′ < Gn, such that H ′▹G1, and such
that [G1 : H ′] = pN′

with N′ ≤ m pm(n−1)−1
pm−1 . We can therefore apply Lemma 2.4 to the sequence

G0 ◃ G1 ◃ H ′ and obtain a group H such that H < H ′ < Gn, such that H ▹ G0, and such that
[G0 : H] = pN for some N that satisfies

N ≤ pmN′+m ≤ pmm
pm(n−1)−1

pm −1
+m = m

pmn − pm

pm −1
+m = m

pmn −1
pm −1

,

as desired.

We will also need the following standard property of p-groups. Recall that a group G is at most
n-step nilpotent if γn(G) = 1.

Lemma 2.5 ([10, Theorem 5.33]). Let p be a prime and let G be a group with |G| = pn for some
n ∈ N. Then G is at most n-step nilpotent.

We can now prove the lower bound in Theorem 1.3.
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Proof of Theorem 1.3, lower bound. Let f : S1 → Σ be an immersion whose singularities consist of
i( f ) isolated double points. Assume that f is freely homotopic to a nontrivial element of γk(π1(Σ)).
Our goal is to show that i( f )≥ log8(k)−1; i.e. that k ≤ 8i( f )+1.

By Lemma 2.2, we may assume that Σ is compact. Choose a basepoint ∗ ∈ f (S1) and let
x ∈ π1(Σ,∗) be the based curve corresponding to f . Applying Lemma 2.1 repeatedly, we obtain a
subnormal sequence

π1(Σ,∗) = G0 ◃G1 ◃ · · ·◃Gn

with n ≤ i( f )+ 1 such that x /∈ Gn and such that [Gi−1 : Gi] = 23 for 1 ≤ i ≤ n. Applying Lemma
2.3, we obtain a group H such that H < Gn, such that H▹π1(Σ,∗), and such that [π1(Σ,∗) : H] = 2N

for some

N ≤ 3
23n −1
23 −1

≤ 8n ≤ 8i( f )+1.

By Lemma 2.5, we deduce that π1(Σ,∗)/H is at most 8i( f )+1-step nilpotent. In other words,

γ8i( f )+1(π1(Σ,∗))< H.

Since H is a normal subgroup of π1(Σ,∗) and f is freely homotopic to x /∈ H, it follows that f is not
freely homotopic to any element of H. We conclude that k ≤ 8i( f )+1, as desired.

2.4 Derived series

We now prove the lower bound in Theorem 1.5. The proof will require the following lemma.

Lemma 2.6. Let Σ be an orientable surface (not necessarily compact) with π1(Σ) nonabelian. Also,
let f : S1 → Σ be a non-nullhomotopic simple closed curve. Then f is not freely homotopic to any
element of γ3(π1(Σ)).

Proof. By Lemma 2.2, we may assume that Σ is compact. Assume that f is freely homotopic to
x ∈ π1(Σ). Since f is simple, Lemma 2.1 implies that there is a finite group H with |H|= 23 and a
surjection ψ : π1(Σ)→ H such that ψ(x) ̸= 1. Lemma 2.5 says that H is at most 3-step nilpotent, so
γ3(π1(Σ))⊂ ker(ψ). We conclude that x /∈ γ3(π1(Σ)), as desired.

We will also need the following standard lemma.

Lemma 2.7 ([10, Exercise 5.50]). If G is a group, then for all k ≥ 1 we have G(k) < γ2k−1(G).

We can now prove the lower bound in Theorem 1.5.

Proof of Theorem 1.5, lower bound. We will prove that 2⌈k/2⌉−2 ≤ mder(Σ,k) for k ≥ 3 by induction
on k. The base cases k = 3 and k = 4 follow from Lemma 2.6 combined with Lemma 2.7. Now
assume that k > 4 and that the result is true for all smaller k. It is enough to prove that

mder(Σ,k)≥ 2 ·mder(Σ,k−2).

Consider an immersion f : S1 → Σ whose singularities consist of i( f ) isolated double points. As-
sume that i( f )< 2 ·mder(Σ,k−2). Our goal is to show that f is not freely homotopic to any element
of (π1(Σ))(k).
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Let π : Σ̃ → Σ be the normal covering corresponding to the subgroup (π1(Σ))(k−2). If f does not
lift to a closed curve in Σ̃, then f is not freely homotopic to any element of (π1(Σ))(k−2), and thus
is certainly not freely homotopic to any element of (π1(Σ))(k). Assume, therefore, that there is a lift
f̃ : S1 → Σ̃ of f . We claim that f̃ is a simple closed curve. Indeed, define

D( f ) = {(x,y) | x,y ∈ S1, x ̸= y, f (x) = f (y)},
D( f̃ ) = {(x,y) | x,y ∈ S1, x ̸= y, f̃ (x) = f̃ (y)}.

Clearly D( f̃ )⊂ D( f ), and we want to prove that D( f̃ ) = /0. Consider any (x,y) ∈ D( f ). The points
x and y divide S1 into two arcs α and α ′, and the restrictions of f to both α and α ′ are closed curves.
The number of self-intersections of one of f |α and f |α ′ (say f |α ) is less than half of the number
of self-intersections of f . Hence the closed curve defined by f |α has fewer than than mder(Σ,k−2)
self-intersections, so it is not freely homotopic to any element of (π1(Σ))(k−2). We conclude that
f̃ |α is not a closed curve, so (x,y) /∈ D( f̃ ), as desired.

Observe now that by Lemmas 2.6 and 2.7, the curve f̃ is not freely homotopic to any element
of (π1(Σ̃))(3). Since

(π1(Σ̃))(3) = ((π1(Σ))(k−2))(3) = (π1(Σ))(k),

we conclude that f is not freely homotopic to any element of (π1(Σ))(k), as desired.

3 Upper bounds

We now prove the upper bounds in Theorems 1.3 and 1.5. We will need two lemmas.

Lemma 3.1. Let (Σ,∗) be a based surface and let S ⊂ π1(Σ,∗) be a set consisting of elements
that can be realized simultaneously by simple closed curves that only intersect at ∗. Then for all
x ∈ ⟨S⟩ ⊂ π1(Σ,∗), we have i(x)≤

(∥x∥S
2

)
.

Proof. We can assume that ∗ ∈ Int(Σ). Set n = ∥x∥S and write x = s1 · · ·sn with si ∈ S∪ S−1 for
1 ≤ i ≤ n. For 1 ≤ i ≤ n, we can choose embeddings fi : S1 → Σ such that fi represents si. Moreover,
we can choose the fi such that fi(S1)∩ f j(S1) = {∗} for 1 ≤ i < j ≤ n. Let D ⊂ Σ be a closed
embedded 2-disc with ∗ ∈ D such that fi(S1)∩D is a connected arc for all 1 ≤ i ≤ n. Parametrize D
such that D is the unit disc in R2 and ∗= (0,0). For 1 ≤ i ≤ n, let f ′i : [0,1]→ Σ be a parametrization
of the oriented arc fi(S1)\ Int(D). Observe that for 1 ≤ i < j ≤ n we have f ′i ([0,1])∩ f ′j([0,1]) = /0.

We can now construct a curve f : S1 → Σ that is freely homotopic to x in the following way.
The curve f first traverses f ′1, then goes along a straight line in D from f ′1(1) to f ′2(0), then traverses
f ′2, then goes along a straight line in D from f ′2(1) to f ′3(0), then traverses f ′3, etc. The curve f
ends with a straight line in D from f ′n(1) to f ′1(0). Clearly f is freely homotopic to x. Moreover,
all self-intersections of f must occur in D. Since f (S1)∩D consists of n straight lines and any two
of these lines can intersect at most once, we conclude that f has at most

(n
2

)
self-intersections, as

desired.

Lemma 3.2. Let S = {a1,a2} and let FS be the free group on S. Then for all k ≥ 1 there exists some
w ∈ FS with w ̸= 1 such that ∥w∥S ≤ 4k−1 and w ∈ F(k)

S .
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Proof. Define elements xk and yk inductively as follows.

x1 = a1 and y1 = a2,

xk = [xk−1,yk−1] and yk = [xk−1,y−1
k−1].

Clearly ∥xk∥S ≤ 4k−1 and xk ∈ F(k)
S for k ≥ 1. We must therefore only prove that xk ̸= 1 for k ≥ 1.

In fact, we will prove by induction on k that xk and yk generate a rank 2 free subgroup of FS for
k ≥ 1. The base case k = 1 is trivial. Now assume that k > 1 and that xk−1 and yk−1 generate a rank
2 free subgroup. Since neither xk nor yk is trivial, they must generate either a rank 2 or rank 1 free
subgroup. But since xk−1 and yk−1 generate a rank 2 free subgroup, we have

[xk,yk] = [[xk−1,yk−1], [xk−1,y−1
k−1]] ̸= 1,

so we conclude that xk and yk cannot generate a rank 1 subgroup.

We can now prove the upper bounds in Theorems 1.3 and 1.5.

Proof of Theorem 1.5, upper bound. We wish to prove that mder(Σ,k) ≤ 24k−5 for k ≥ 3. In fact,
this inequality holds for k ≥ 1 (the assumption that k ≥ 3 is necessary only in the lower bound), so
fix k ≥ 1. We claim that there exists some a1,a2 ∈ π1(Σ,∗) that generate a rank 2 free subgroup of
π1(Σ,∗) and can be realized simultaneously by simple closed curves that only intersect at ∗. If Σ
is compact, then this is trivial. Otherwise, π1(Σ,∗) must be a nonabelian free group (see, e.g., [1,
§44A]), so we can find a′1,a

′
2 ∈ π1(Σ,∗) that generate a rank 2 free subgroup. Like in the proof of

the Theorem 1.1, we can “comb” the intersections and self-intersections of a′1 and a′2 to ∗ and find a
set S′ ⊂ π1(Σ,∗) of elements that can be realized simultaneously by simple closed curves that only
intersect at ∗ such that both a′1 and a′2 can be expressed as products of elements of S′∪(S′)−1. There
must then exist a1,a2 ∈ S′ that generate a rank 2 free subgroup, as desired.

Set S = {a1,a2}. By Lemma 3.2, there is some w ∈ ⟨S⟩ such that ∥w∥S ≤ 4k−1 and w ∈
(π1(Σ))(k). By Lemma 3.1, we deduce that

i(w)≤
(
∥x∥S

2

)
≤ 4k−1(4k−1 −1)

2
≤ 1

2
42k−2 = 24k−5,

so mder(Σ,k)≤ 24k−5, as desired.

Proof of Theorem 1.3, upper bound. Fix k ≥ 1. We can then find an integer l such that log2(k) ≤
l−1 ≤ log2(k)+1. The upper bound of Theorem 1.5 (which as we observed above holds for k ≥ 1)
implies that we can find x ∈ (π1(Σ))(l) such that

i(x)≤ 24l−5 ≤ 24(log2(k)+2)−5 = 8k4.

By Lemma 2.7, we have x ∈ γk(π1(Σ)), so we conclude that mlcs(Σ,k)≤ 8k4, as desired.
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4 Word length in the lower central series

In this section, we will prove Theorem 1.2. As was indicated in the introduction, this proof is
inspired by an argument of Fox [4, Lemma 4.2]. Our main tool will be the Fox free differential
calculus, so we begin by recalling a number of basic facts about this calculus. A good reference is
[4].

Let F be the free group on a set S and let ε : ZF → Z be the augmentation map; i.e. the unique
linear map with ε(g) = 1 for all g ∈ F(S).

Definition 4.1. A free derivative is a linear map D :ZF →ZF such that D(xy)= (D(x))ε(y)+xD(y)
for all x,y ∈ ZF .

An easy induction establishes that if D is a free derivative, then for v1, . . . ,vk ∈ ZF we have

D(v1 · · ·vk) =
k

∑
i=1

(v1 · · ·vi−1)(D(vi))ε(vi+1) · · ·ε(vk). (1)

A consequence of (1) is that for g ∈ F , we have

D(g−1) =−g−1D(g). (2)

The basic existence result for free derivatives is the following.

Lemma 4.2 ([4, §2]). For every s ∈ S, there is a unique free derivative Ds satisfying Ds(s) = 1 and
Ds(s′) = 0 for s′ ∈ S with s′ ̸= s.

By (1) and (2), we have
ε(Ds(sk)) = k (3)

for all s ∈ S and k ∈ Z.
For k ≥ 1 and s1, . . . ,sk ∈ S, we will call the product Ds1 · · ·Dsk a free derivative of order k.

The basic fact connecting the Fox free differential calculus to the lower central series of F is the
following easy lemma.

Lemma 4.3 ([3, 3.1]). For k ≥ 2 and g ∈ γk(F), we have ε(D(g)) = 0 for all free derivatives D of
order less than or equal to k−1.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Consider w ∈ γk(F(S)) with w ̸= 1. Our goal is to show that k ≤ ∥w∥S. We
will produce a free derivative D whose order is at most ∥w∥S such that ε(D(w)) ̸= 0. By Lemma
4.3, it will follow that

w /∈ γ1+∥w∥S(F(S)),

and hence that k ≤ ∥w∥S.
Write w = u1 · · ·un with ui = smi

i for some si ∈ S and mi ∈ Z \ {0} for 1 ≤ i ≤ n. Choose this
expression such that si ̸= si+1 for 1 ≤ i < n. We thus have n ≤ ∥w∥S. Define D = Ds1 · · ·Dsn . We
must show that ε(D(w)) ̸= 0. In fact, we will show that for all 1 ≤ j ≤ n we have

Ds j Ds j+1 · · ·Dsn(w) (4)

= ∑
1≤i j<i j+1<···<in≤n

(u1 · · ·ui j−1)(Ds j(ui j))ε(Ds j+1(ui j+1)) · · ·ε(Dsn(uin)).
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In particular, the case j = 1 will yield

D(w) = Ds1(u1)ε(Ds2(u2)) · · ·ε(Dsn(un)).

Using (3), we will then be able to deduce that

ε(D(w)) = ε(Ds1(u1)) · · ·ε(Dsn(un)) = m1 · · ·mn ̸= 0,

as desired.
The proof of (4) will be by induction on n− j. The base case n− j = 0 follows from (1) and the

fact that ε(ui) = 1 for all 1 ≤ i ≤ n. Now assume that n− j > 0 and that (4) holds for all smaller
n− j. Since si ̸= si+1 for 1 ≤ i < n, we must have Ds j Ds j+1(u j+1) = 0. Using this together with (1),
our inductive hypothesis, and the fact that ε(ui) = 1 for all 1 ≤ i ≤ n, we obtain

Ds j Ds j+1 · · ·Dsn(w)

= Ds j( ∑
1≤i j+1<···<in≤n

(u1 · · ·ui j+1−1)(Ds j+1(ui j+1))ε(Ds j+2(ui j+2)) · · ·ε(Dsn(uin))

= ∑
1≤i j+1<···<in≤n

(
i j+1−1

∑
i=1

(u1 · · ·ui−1)(Ds j(ui))ε(Ds j+1(ui j+1)) · · ·ε(Dsn(uin)))

= ∑
1≤i j<i j+1<···<in≤n

(u1 · · ·ui j−1)(Ds j(ui j))ε(Ds j+1(ui j+1)) · · ·ε(Dsn(uin)),

and we are done.
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