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Abstract

Answering a question of Farb–Leininger–Margalit, we give explicit lower
bounds for the dilatations of pseudo-Anosov mapping classes lying in the kth

term of the Johnson filtration of the mapping class group.

1 Introduction

Let Mod(Σ) be the mapping class group of a closed orientable surface Σ. Thurston’s
well-known classification of surface homeomorphisms (see [6]) says that every ele-
ment of Mod(Σ) is either finite order, reducible, or pseudo-Anosov. By definition, a
pseudo-Anosov mapping class f ∈ Mod(Σ) is one that can be represented by a homeo-
morphism F : Σ → Σ such that there exist two transverse singular measured foliations
Fu and F s and some λ(f) > 1 such that F∗(Fu) = λ(f) · Fu and F∗(F s) = 1

λ(f)
· F s.

The number λ(f) only depends on f and is known as the dilatation of f . The dilata-
tion λ(f) of a pseudo-Anosov mapping class f shows up in many places; for instance,
the number ln(λ(f)) is the translation length with respect to the Teichmüller metric
of the action of f on Teichmüller space.

Minimal dilatations. The set of possible dilatations of pseudo-Anosov mapping
classes has many interesting properties. Define

Spec(Mod(Σ)) = {ln(λ(f)) | f ∈ Mod(Σ) is pseudo-Anosov} ⊂ R.

Arnoux–Yoccoz [1] and Ivanov [8] independently proved that Spec(Mod(Σ)) is closed
and discrete, so it has a minimal element L(Mod(Σ)). Penner [14] proved that there
exists some C > 1 such that if Σ has genus g, then

1

Cg
≤ L(Mod(Σ)) ≤ C

g
.

In particular, L(Mod(Σ)) → 0 as g →∞.
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Johnson filtration. The Johnson filtration is an important sequence of subgroups
of Mod(Σ). Recall that if G is a group, then the lower central series of G is the
inductively defined sequence

γ1(G) = G and γd+1(G) = [G, γd(G)] for d ≥ 1.

Letting π1 = π1(Σ), the kth term of the Johnson filtration of Mod(Σ), denoted Nk(Σ),
is the kernel of the natural representation Mod(Σ) → Out(π1/γk+1(π1)). For example,
since π1/γ2(π1) ∼= H1(Σ;Z), the group N1(Σ) is the Torelli group, that is, the kernel
of the action of Mod(Σ) on H1(Σ;Z). The groups Nk(Σ) were first defined in [10]
and have connections to number theory (see [13]) and 3-manifolds (see [7]); however,
many basic questions about them remain open.

Dilatation in the Johnson filtration. If H < Mod(Σ) is a subgroup, then define

Spec(H) = {ln(λ(f)) | f ∈ H is pseudo-Anosov} ⊂ R>0.

Possibly Spec(H) is empty; otherwise, it must have a least element which we will
denote by L(H). Farb–Leininger–Margalit [4] proved that if Σ is a closed surface
whose genus is at least 2 and k ≥ 1, then Spec(Nk(Σ)) is nonempty. They also proved
that there exist numbers nk > 0 which depend only on k such that L(Nk(Σ)) ≥ nk.
Observe that this contrasts sharply with Penner’s theorem for the whole mapping
class group. Finally, they proved that nk →∞ as k →∞.

Main theorem. Farb–Leininger–Margalit’s proof that nk → ∞ as k → ∞ relies
on a sort of compactness argument and gives no estimates for nk. They posed the
question of obtaining explicit estimates. Our main theorem answers their question.
It says that L(Nk(Σ)) is bounded below by a quantity that grows roughly like ln(k).
More precisely, we have the following.

Theorem A. Let Σ be a closed surface whose genus is at least 2. Then for all k ≥ 1
we have

L (Nk (Σ)) > max

(
0.197, c · ln

(
k + 3

2

)
− ln (2)

)
,

where c = ln(28/25)
ln(4)

.

Remark. In [4, §4], Farb–Leininger–Margalit prove that L(Nk(Σ)) is bounded above
by a function which is exponential in k (independent of the genus). Letting F be a
free group of rank 2, the key input to their construction is a sequence of nontrivial
elements wk ∈ γk(F ) whose word lengths are exponential in k. In fact, there are
nontrivial elements of γk(F ) whose word lengths are quadratic in k (see the remarks
after [12, Theorem 2]). Plugging these into their construction, one can deduce that
L(Nk(Σ)) is bounded above by a function which is quadratic in k (independent of the
genus).
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Curves on a surface. If α and β are simple closed curves on Σ, then denote by
i(α, β) the geometric intersection number of α and β, that is, the minimum size of
α′ ∩ β′ as α′ and β′ range over curves homotopic to α and β, respectively. One of
the key insights of [4] is that one can obtain estimates on λ(f) by bounding the size
of i(f(δ), δ) from below for all nonnullhomotopic simple closed curves δ. Indeed, [4,
Proposition 2.7] says that if f ∈ Mod(Σ) is pseudo-Anosov and if i(f(δ), δ) ≥ n ≥ 3
for all nonnullhomotopic simple closed curves δ, then λ(f) > n/2.

Recall that there is a bijection between free homotopy classes of oriented closed
curves on Σ and conjugacy classes in π1. If f ∈ Nk(Σ) and δ is an oriented simple
closed curve, then by definition the conjugacy classes in π1 associated to f(δ) and δ
project to the same conjugacy class in π1/γk+1(π1). The following theorem (applied
with d = k + 1) therefore provides a lower bound on i(f(δ), δ).

Theorem B. Let Σ be a closed surface whose genus is at least 2 and let α and β
be nonisotopic oriented simple closed curves on Σ. Assume that for some d ≥ 3 the
conjugacy classes in π1(Σ)/γd(π1(Σ)) associated to α and β are the same. Then

i(α, β) ≥
(
d+ 2

2

)c

,

where c = ln(28/25)
ln(4)

.

Remark. In Appendix A, we show that the conclusion of Theorem B also holds for
compact surfaces with boundary.

Deriving Theorem A from Theorem B. We now discuss how to derive Theorem
A from Theorem B. The bound in Theorem B is greater than 2 starting at d = 9623.
Therefore, Theorem B together with the aforementioned result [4, Proposition 2.7]
implies that for k ≥ 9622 we have

L (Nk (Σ)) ≥ ln

(
1

2

(
k + 3

2

)c)
= c · ln

((
k + 3

2

))
− ln (2) , (1)

where c = ln(28/25)
ln(4)

. Farb–Leininger–Margalit also proved that L(N1(Σ)) > 0.197 (see

[4, Theorem 1.1]), which clearly implies that L(Nk(Σ)) > 0.197 for all k ≥ 1. The
bound in (1) is less than 0.197 for k < 9622, so Theorem A follows.

Proof techniques for Theorem B. The heart of our proof of Theorem B is the
construction of a suitable nilpotent cover of Σ which “resolves” the intersections of α
and β. This nilpotent cover is obtained by constructing a sequence of 2-fold covers
each of which resolves at minimum some constant fraction of of the intersections. It
is easy to construct covers that resolve a single intersection at a time, but that only
leads to a logarithmic bound in Theorem B. To get our stronger bound, we need
to resolve many intersections at once. It seems difficult to explicitly construct these
2-fold covers, but we show that they exist using probabilistic arguments. Namely,
we prove that if the covers are chosen at random in an appropriate way, then the
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expected value of the number of resolved intersections is larger than some constant
fraction of the intersections, and thus that there must exist some cover that resolves
enough intersections. See the proofs of the key Lemmas 4.1–4.2 below.

Subtleties. We close this introduction by discussing some difficulties that arise in
proving Theorem B. Though in the end we will not phrase it that way, one can view
our proof as deriving a contradiction from the existence of nonisotopic simple closed
curves α and β on Σ that induce the same conjugacy classes in π1(Σ)/γd(π1(Σ)) and
that satisfy i(α, β) <

(
d+2
2

)c
. One difficulty that must be overcome is that given two

such curves α and β and a basepoint v ∈ Σ, it seems hard to find based representatives
α̂, β̂ ∈ π1(Σ, v) of α and β with the following two properties.

• α̂ and β̂ intersect i(α, β) times (perhaps up to a constant factor), and

• α̂β̂−1 ∈ γd(π1(Σ, v)).

In other words, the algebraic and topological conditions on α and β do not interact
very well.

If such α̂ and β̂ existed, then the self-intersection number of α̂β̂−1 would be at
most i(α, β) (up to a constant factor) and one could appeal to the paper [12] of the
authors, which bounds from below the self-intersection number of nontrivial elements
of γd(π1(Σ, v)). Our proof does share some ideas with [12], but substantial new ideas
were needed to overcome the difficulties just discussed.

Remark. We do not know any examples of curves α and β as above that cannot be
realized by based curves with the above properties, but we conjecture that they exist.

Acknowledgments. We want to thank Tom Church for helpful comments.

2 Initial reduction

We will prove Theorem B by constructing a certain finite cover of Σ that “resolves”
the intersections of α and β in an appropriate way. In this section, we will state the
lemma that gives this cover and then show how to derive Theorem B.

Curve-arc triples. We begin with some necessary definitions. Fix a closed surface
Σ whose genus is at least 2, and choose a hyperbolic metric on Σ. A curve-arc triple
on Σ is a tuple ((α, v), τ, (β, w)) as follows.

• The element α is a simple closed oriented geodesic on Σ which is based at v ∈ Σ.

• The element β is a simple closed oriented geodesic on Σ which is based at w ∈ Σ.

• α and β are nonisotopic.

• The element τ is a path (possibly with self-intersections) from v to w.
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If ((α, v), τ, (β, w)) is a curve-arc triple and (Σ̃, ṽ) → (Σ, v) is a (based) cover, then

we can lift the triple ((α, v), τ, (β, w)) to (Σ̃, ṽ) as follows. First, endow Σ̃ with the
hyperbolic metric that makes the covering map a local isometry. The arc τ lifts to an
arc τ̃ starting at ṽ; let w̃ be the endpoint of τ̃ . Then α lifts to a geodesic arc α̃ starting
at ṽ and β lifts to a geodesic arc β̃ starting at w̃. We will say that ((α̃, ṽ), τ̃ , (β̃, w̃))

is a closed lift of ((α, v), τ, (β,w)) if α̃ and β̃ are simple closed curves (and thus

((α̃, ṽ), τ̃ , (β̃, w̃)) is a curve-arc triple on Σ̃). We will say that ((α, v), τ, (β, w)) has

only a partially closed lift if one of α̃ and β̃ is closed and the other is not closed.
Finally, we will say that ((α, v), τ, (β, w)) has a nonclosed lift if neither α̃ nor β̃ is
closed.

Remark. The reason we require our curves to be geodesics with respect to some
hyperbolic metric is that this implies that they intersect minimally (see [5, Corollary
1.9]). Moreover, this persists when we pass to finite covers.

The key lemma. With these definitions in hand, we can state the key lemma of
this paper.

Lemma 2.1. Let Σ be a closed surface whose genus is at least 2. Fix a hyperbolic
metric on Σ and let ((α, v), τ, (β, w)) be a curve-arc triple on Σ. Set n = i(α, β).
Then for some k satisfying

k ≤
{

2 log28/25(n) + 1 if n ≥ 2

3 if 0 ≤ n ≤ 1

there exists a tower

(Σk, vk) −→ (Σk−1, vk−1) −→ · · · −→ (Σ0, v0) = (Σ, v)

of regular degree 2 based covers such that ((α, v), τ, (β,w)) has only a partially closed
lift to (Σk, vk).

Remark. It is important that the lift is partially closed – the proof below will not
work if it is either closed or nonclosed.

The proof of Lemma 2.1 is contained in §3.

The main theorem. Before deducing Theorem B from Lemma 2.1, we need the
following two known lemmas. Recall that a group G is at most k-step nilpotent if
γk+1(G) = 0.

Lemma 2.2 ([3, §6.1 Proposition 2]). Let G be a finite group of order 2k for some
k ≥ 2. Then G is at most (k − 1)-step nilpotent, and hence γk(G) = 0.

Lemma 2.3 ([12, Lemma 2.3]). Let

Γk C Γk−1 C · · ·C Γ0

be groups satisfying [Γi : Γi+1] = 2 for 0 ≤ i < k. Then there exists a subgroup Γ′CΓk

such that Γ′ C Γ0 and [Γ0 : Γ′] = 2` with ` ≤ 2k − 1.
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Proof of Theorem B. As in the statement of the theorem, let Σ be a closed surface
whose genus is at least 2 and let α and β be nonisotopic oriented simple closed curves
on Σ such that for some d ≥ 3 the conjugacy classes in π1(Σ)/γd(π1(Σ)) associated
to α and β are the same. Set n = i(α, β). Our goal is to show that

n ≥
(
d+ 2

2

)c

with c = ln(28/25)
ln(4)

.
We first claim that n ≥ 2. If n = 1, then α and β have algebraic intersection

number ±1, which is impossible since they are homologous. Assume now that n = 0,
i.e. that α and β are disjoint. We divide this into two cases.

• If α and β are nonseparating, then [11, Theorem 1.1.2] implies that TαT
−1
β ∈

Nd−1(Σ). However, TαT
−1
β /∈ N2(Σ) ⊃ Nd−1(Σ); see [9].

• If α and β are separating, then [11, Theorem 1.1.2] implies that TαT
−1
β ∈ Nd(Σ).

However, TαT
−1
β /∈ N3 ⊃ Nd(Σ); see [2, Appendix A].

Remark. As stated, [11, Theorem 1.1.2] concerns surfaces with one boundary compo-
nent. However, the desired result for closed surfaces easily follows from this via the
map on mapping class groups obtained by gluing a disc to the boundary component.

Fix a hyperbolic metric on Σ and isotope α and β such that they are geodesics. Fix
basepoints v and w for α and β, respectively, and regard them as based curves. Choose
an arc τ ′ from v to w. By assumption, α ∈ π1(Σ, v) and τ ′ · β · (τ ′)−1 ∈ π1(Σ, v) map
to conjugate elements in π1(Σ, v)/γd(π1(Σ, v)). There thus exists some τ ′′ ∈ π1(Σ, v)
such that letting τ = τ ′′ · τ ′, we have τ · β−1 · τ−1 · α ∈ γd(π1(Σ, v)). The triple
((α, v), τ, (β, w)) is a curve-arc triple.

By Lemma 2.1, for some k ≤ 2 log28/25(n) + 1, there exists a tower

(Σk, vk) −→ (Σk−1, vk−1) −→ · · · −→ (Σ0, v0) = (Σ, v)

of regular degree 2 based covers such that ((α, v), τ, (β, w)) has only a partially closed
lift to (Σk, vk). For 0 ≤ i ≤ k, let Γi ≤ π1(Σ, v) be the subgroup associated to (Σi, vi),
so we have a sequence

Γk C Γk−1 C · · ·C Γ0

of groups. Lemma 2.3 says that there exists a subgroup Γ′CΓk such that Γ′CΓ0 and
[Γ0 : Γ′] = 2` with ` ≤ 2k − 1. Since ((α, v), τ, (β, w)) has only a partially closed lift
to (Σk, vk), one element in {α, τ · β · τ−1} lies in Γk and the other does not lie in Γk.
We deduce that τ · β−1 · τ−1 · α /∈ Γk, and hence τ · β−1 · τ−1 · α /∈ Γ′.

Lemma 2.2 implies that Γ0/Γ
′ is at most (` − 1)-step nilpotent, so γ`(Γ0) ⊂ Γ′.

Since τ · β−1 · τ−1 · α /∈ Γ′ and τ · β−1 · τ−1 · α ∈ γd(Γ0), we conclude that d < `, i.e.
that

d ≤ 2k − 2 ≤ 22 log28/25(n)+1 − 2.
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A little elementary algebra then shows that

n ≥
(
d+ 2

2

)c

with c = ln(28/25)
ln(4)

, as desired.

3 Building a tower

This section is devoted to the proof of Lemma 2.1. We begin by presenting several
basic constructions used in the proof in §3.1. We then prove the lemma in §3.2.

3.1 Basic constructions

To simplify our notation, from this point onward we will write F2 instead of Z/2. For
an oriented closed curve δ in Σ, the associated element of H1(Σ;F2) is denoted by [δ].

Lemma 3.1. Let Σ be a closed surface whose genus is at least 2. Fix a hyperbolic met-
ric on Σ and let ((α, v), τ, (β, w)) be a curve-arc triple on Σ. Assume that [α] 6= [β].

Then there exists a regular degree 2 cover (Σ̃, ṽ) → (Σ, v) such that ((α, v), τ, (β, w))

has only a partially closed lift to (Σ̃, ṽ).

Proof. Pick a homomorphism φ : H1(Σ;F2) → F2 such that φ([α]) 6= φ([β]), and

let (Σ̃, ṽ) → (Σ, v) be the 2-fold regular cover associated to φ. Let the lift of

((α, v), τ, (β, w)) to (Σ̃, ṽ) be ((α̃, ṽ), τ̃ , (β̃, w̃)). Clearly α̃ is closed (resp. β̃ is closed)

if and only if φ([α̃]) = 0 (resp. φ([β̃]) = 0). Since φ([α]) 6= φ([β]), we deduce that

((α, v), τ, (β, w)) has only a partially closed lift to (Σ̃, ṽ), as desired.

Next, we need the following.

Lemma 3.2. Let Σ be a closed surface whose genus is at least 2. Fix a hyperbolic
metric on Σ and let ((α, v), τ, (β,w)) be a curve-arc triple on Σ. Assume that α and

x

x

y

y

z

z

w

w

α̃1

α̃2

β̃1

β̃2

α

β

Figure 1: In the left hand surface, the boundary components are glued in pairs to form
a closed connected surface Σ̃. This has a regular degree 2 covering map to the right hand
surface Σ; the deck group exchanges the top and bottom piece while flipping them. The
preimage of α is α̃1 t α̃2 and the preimage of β is β̃1 t β̃2.
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x

x
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y

z

z

w

w

δ̃1

δ̃2

δ

Figure 2: In the left hand surface, the boundary components are glued in pairs to form
a closed connected surface Σ̃. This has a regular degree 2 covering map to the right hand
surface Σ; the deck group exchanges the top and bottom piece while flipping them. The
preimage of δ is δ̃1 t δ̃2.

β are disjoint and that [α] = [β] 6= 0. Then there exists a regular degree 2 cover

(Σ̃, ṽ) → (Σ, v) such that ((α, v), τ, (β,w)) has a closed lift ((α̃, ṽ), τ̃ , (β̃, w̃)) to (Σ̃, ṽ)

satisfying [α̃] 6= [β̃].

Proof. The curves α and β are disjoint and homologous over F2. It is easy to see
that this implies that they are actually homologous over Z, i.e. that they bound an
embedded subsurface of Σ. As is shown in Figure 1, there exists a regular degree 2
cover (Σ̃, ṽ) → (Σ, v) with the following properties.

• The preimage of α in Σ̃ consists of two disjoint simple closed curves, and simi-
larly for β.

• If α̃ and β̃ are any components of the preimage in Σ̃ of α and β, respectively,
then [α̃] 6= [β̃].

Clearly (Σ̃, ṽ) → (Σ, v) is the desired cover.

A similar idea will yield the following.

Lemma 3.3. Let Σ be a closed surface whose genus is at least 2. Let δ be a nonnull-
homotopic oriented simple closed curve on Σ such that [δ] = 0. Then there exists a

regular degree 2 cover Σ̃ → Σ such that the preimage of δ in Σ̃ has two components
δ̃1 and δ̃2 satisfying [δ̃i] 6= 0 for i = 1, 2.

Proof. Using the fact that δ is a simple closed curve which is nullhomologous over
F2, it is easy to see that δ is actually nullhomologous over Z, i.e. that δ separates Σ.
The needed cover is as depicted in Figure 2.

Finally, the most important construction for the proof of Lemma 2.1 is the following.

Lemma 3.4. Let Σ0 be a closed surface whose genus is at least 2. Fix a hyperbolic
metric on Σ0 and let ((α0, v0), τ0, (β0, w0)) be a curve-arc triple on Σ0. Set n0 =
i(α0, β0). Assume that n0 ≥ 2 and that neither [α0] nor [β0] vanishes. Then for some
q satisfying 1 ≤ q ≤ 2, there exists a tower

(Σq, vq) −→ · · · −→ (Σ0, v0)
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of regular degree 2 based covers such that one of the following holds.

• The curve-arc triple ((α0, v0), τ0, (β0, w0)) has only a partially closed lift to
(Σq, vq), or

• The curve-arc triple ((α0, v0), τ0, (β0, w0)) has a closed lift ((αq, vq), τq, (βq, wq))
to (Σq, vq) such that i(αq, βq) ≤ 25

28
n0.

The proof of Lemma 3.4 is difficult and will be postponed until §4.

3.2 The proof of Lemma 2.1

All the pieces are now in place for the proof of Lemma 2.1.

Proof of Lemma 2.1. We first recall the statement of Lemma 2.1. Let Σ be a closed
surface whose genus is at least 2. Fix a hyperbolic metric on Σ and let ((α, v), τ, (β, w))
be a curve-arc triple on Σ. Set n = i(α, β). Our goal is to show that for some k
satisfying

k ≤
{

2 log28/25(n) + 1 if n ≥ 2

3 if 0 ≤ n ≤ 1

there exists a tower

(Σk, vk) −→ (Σk−1, vk−1) −→ · · · −→ (Σ0, v0) = (Σ, v) (2)

of regular degree 2 based covers such that ((α, v), τ, (β, w)) has only a partially closed
lift to (Σk, vk). The proof is divided into two steps.

Step 1. Assume that neither [α] nor [β] vanishes. Then we can find a tower as in
(2) with

k ≤
{

2 log28/25(n) if n ≥ 2

2 if 0 ≤ n ≤ 1

The proof is by induction on n. Set (Σ0, v0) = (Σ, v) and ((α0, v0), τ0, (β0, w0)) =
((α, v), τ, (β, w)).

Base cases. Suppose n = 0 or n = 1. We divide the verification of these base cases
into three separate cases.

• n = 0 and [α0] 6= [β0]. Lemma 3.1 implies that there exists a regular degree
2 cover (Σ1, v1) → (Σ0, v0) such that ((α0, v0), τ0, (β0, w0)) has only a partially
closed lift to (Σ1, v1).

• n = 0 and [α] = [β]. We first apply Lemma 3.2 to obtain a regular de-
gree 2 cover (Σ1, v1) → (Σ0, v0) such that ((α0, v0), τ0, (β0, w0)) has a closed
lift ((α1, v1), τ1, (β1, w1)) to (Σ1, v1) satisfying [α1] 6= [β1]. Lemma 3.1 then
implies that there is a regular degree 2 cover (Σ2, v2) → (Σ1, v1) such that
((α1, v1), τ1, (β1, w1)) has only a partially closed lift to (Σ2, v2).
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• n = 1. The F2-algebraic intersection numbers of [α0] and [β0] must be 1, so in
particular we must have [α0] 6= [β0]. Lemma 3.1 then implies that there exists
a regular degree 2 cover (Σ1, v1) → (Σ0, v0) such that ((α0, v0), τ0, (β0, w0)) has
only a partially closed lift to (Σ1, v1).

Inductive step. Now assume that n ≥ 2 and that the claim is true for all smaller
values of n. Let

(Σ`, v`) −→ · · · −→ (Σ0, v0)

be the tower of regular degree 2 covers provided by Lemma 3.4, so 1 ≤ ` ≤ 2. If
((α0, v0), τ0, (β0, w0)) has only a partially closed lift to (Σ`, v`), then we are done.
Otherwise, let ((α`, v`), τ`, (β`, w`)) be the lift of ((α0, v0), τ0, (β0, w0)) to (Σ`, v`). Set
n` = i(α`, β`), so n` ≤ 25

28
n. By induction, for some k ≥ ` satisfying

k − ` ≤
{

2 log28/25(n`) if n` ≥ 2

2 if 0 ≤ n` ≤ 1

there exists a tower of regular degree 2 covers

(Σk, vk) −→ · · · −→ (Σ`, v`)

such that ((α`, v`), τ`, (β`, w`)) has only a partially closed lift to (Σk, vk).
We claim that

(Σk, vk) −→ · · · −→ (Σ0, v0)

is the desired tower of regular degree 2 covers. The only thing that needs verification
is the bound on k. There are two cases. If n` ≤ 1, then k − ` ≤ 2, and thus

k ≤ `+ 2 ≤ 2 + 2 ≤ 2 log28/25(2) ≤ 2 log28/25(n),

as desired. Otherwise, n` ≥ 2. Hence k − ` ≤ 2 log28/25(n`) and

k ≤ `+ 2 log28/25 (n`) ≤ 2 + 2 log28/25

(
25

28
n

)
= 2 log28/25 (n) ,

as desired.

Step 2. Assume that at least one of [α] and [β] vanishes. Then we can find a tower
as in (2) with

k ≤
{

2 log28/25(n) + 1 if n ≥ 2

3 if 0 ≤ n ≤ 1

We will give the details for the case where [α] = 0; the case where [β] = 0 is
similar. Lemma 3.3 implies that there exists a regular degree 2 cover (Σ1, v1) →
(Σ0, v0) such that the based lift (α1, v1) is a closed curve satisfying [a1] 6= 0. Let
((α1, v1), τ1, (β1, w1)) be the lift of ((α0, v0), τ0, (β0, w0) to (Σ1, v1). If β1 is not a
closed curve, then ((α0, v0), τ0, (β0, w0) has only a partially closed lift to (Σ1, v1) and
we are done. We can therefore assume that β1 is closed. If [β1] = 0, then we can
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apply Lemma 3.1 to obtain a regular degree 2 cover (Σ2, v2) → (Σ1, v1) such that
((α1, v1), τ1, (β1, w1)) has only a partially closed lift to (Σ2, v2), and we are done. We
can assume therefore that [β1] 6= 0. The desired tower of covers is then obtained by
applying Step 1 to ((α1, v1), τ1, (β1, w1)) and (Σ1, v1).

4 Eliminating 3/28 of the intersections

This section is devoted to the proof of Lemma 3.4. The skeleton of the proof is in
§4.1. This skeleton depends on two lemmas which are proven in §4.2 and §4.3.

4.1 Skeleton of the proof of Lemma 3.4

We begin with some definitions. Fix a closed surface Σ and equip Σ with a hyperbolic
metric. Let ((α, v), τ, (β,w)) be a curve-arc triple on Σ. A β-arc of α is a subarc
of α both of whose endpoints lie in β. A β-arc µ of α defines in a natural way an
element [µ]β in the relative homology group H1(Σ, β;F2); we will call µ a good β-arc
if [µ]β 6= 0 and a bad β-arc if [µ]β = 0. A set A of β-arcs of α will be called a set of
disjoint β-arcs of α if for all distinct µ, µ′ ∈ A, we have µ ∩ µ′ = ∅. If A is a set of
disjoint β-arcs of α, then define

Ag = {µ ∈ A | µ is good} and Ab = {µ ∈ A | µ is bad},
so A = Ag t Ab.

The following lemma shows that we can eliminate intersections using half of the
good β-arcs of α. The reason for our notation will become clear during the proof of
Lemma 3.4 below.

Lemma 4.1. Let Σ1 be a closed surface equipped with a hyperbolic metric and let
((α1, v1), τ1, (β1, w1)) be a curve-arc triple on Σ1. Assume that [α1] = [β1] 6= 0. Set
n1 = i(α1, β1). Let A1 be a set of disjoint β1-arcs of α1. Then there exists a regular
degree 2 cover (Σ2, v2) → (Σ1, v1) such that ((α1, v1), τ1, (β1, w1)) has a closed lift
((α2, v2), τ2, (β2, w2)) with the following property.

• Set n2 = i(α2, β2). Then n2 ≤ n1 − 1
2
|Ag

1|.
The proof of Lemma 4.1 is in §4.2. It will turn out that an appropriate “random”
cover will do the job.

Unfortunately, it is possible for most of the arcs in a set of disjoint β-arcs of α to
be bad. The following lemma shows that we can pass to a cover that makes at least
some of the arcs good (or, even better, eliminates some of the intersections). See the
remark following the lemma for an explanation of the inequalities in its conclusion.

Lemma 4.2. Let Σ0 be a closed surface equipped with a hyperbolic metric and let
((α0, v0), τ0, (β0, w0)) be a curve-arc triple on Σ0. Assume that [α0] = [β0] 6= 0. Set
n0 = i(α0, β0). Let A0 be a set of disjoint β0-arcs of α0. Then there exists a regular
degree 2 cover (Σ1, v1) → (Σ0, v0) such that ((α0, v0), τ0, (β0, w0)) has a closed lift
((α1, v1), τ1, (β1, w1)) with the following property.
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• Set n1 = i(α1, β1). Then there exists a set A1 of disjoint β1-arcs of α1 and some
r ≥ 0 such that

|Ag
1| ≥ |Ag

0|+
3

7
|Ab

0| − r and n1 ≤ n0 − r. (3)

The proof of Lemma 4.2 is in §4.3. Again, we will see that a suitable “random” cover
has the property we seek.

Remark. The meaning of the inequalities in (3) is that Ag
1 is made up of pieces

corresponding to Ag
0 (the old good arcs) and 3

7
of Ab

0 (the old bad arcs), minus some
number r of arcs that correspond to eliminated intersections.

We now show how to derive Lemma 3.4 from Lemmas 4.1–4.2.

Proof of Lemma 3.4. We begin by recalling the statement. We are given a closed
surface Σ0 whose genus is at least 2 which is equipped with a hyperbolic metric. Also,
we are given a curve-arc triple ((α0, v0), τ0, (β0, w0)) on Σ0. Setting n0 = i(α0, β0), we
are given that n0 ≥ 2 and that neither [α0] nor [β0] vanishes. Our goal is to prove
that for some ` satisfying 1 ≤ ` ≤ 2, there exists a tower

(Σ`, v`) −→ · · · −→ (Σ0, v0)

of regular degree 2 based covers such that one of the following holds.

• The curve-arc triple ((α0, v0), τ0, (β0, w0)) has only a partially closed lift to
(Σ`, v`), or

• The curve-arc triple ((α0, v0), τ0, (β0, w0)) has a closed lift ((α`, v`), τ`, (β`, w`))
to (Σ`, v`) such that i(α`, β`) ≤ 25

28
n0.

First, if [α0] 6= [β0], then Lemma 3.1 says that there exists a regular degree 2 cover
(Σ1, v1) → (Σ0, v0) such that ((α0, v0), τ0, (β0, w0)) has only a partially closed lift to
(Σ1, v1), and we are done. We can assume therefore that [α0] = [β0]. This implies
that n0 = i(α0, β0) ≥ 2 must be an even number. We can therefore find a set A0

of disjoint β0-arcs of α0 such that |A0| = n0/2. We then apply Lemma 4.2 to get a
regular degree 2 cover (Σ1, v1) → (Σ0, v0) such that ((α0, v0), τ0, (β0, w0)) has a closed
lift ((α1, v1), τ1, (β1, w1)). The lemma also gives a set A1 of disjoint β1-arcs of α1 such
that for some r ≥ 0,

|Ag
1| ≥ |Ag

0|+
3

7
|Ab

0| − r and n1 ≤ n0 − r,

where n1 = i(α1, β1).
Again, if [α1] 6= [β1], then Lemma 3.1 says that there exists a regular degree 2

cover (Σ2, v2) → (Σ1, v1) such that ((α1, v1), τ1, (β1, w1)) has only a partially closed
lift to (Σ2, v2), and we are done. We can assume therefore that [α1] = [β1]. Lemma 4.1

12



thus gives a regular degree 2 cover (Σ2, v2) → (Σ1, v1) such that ((α1, v1), τ1, (β1, w1))
has a closed lift ((α2, v2), τ2, (β2, w2)) satisfying

i (α2, β2) ≤ n1 − 1

2
|Ag

1| ≤ (n0 − r)− 1

2

(
|Ag

0|+
3

7
|Ab

0| − r

)

≤ n0 − 1

2

(
|Ag

0|+
3

7
|Ab

0|
)
≤ n0 − 1

2

(
3

7
|A0|

)

= n0 − 1

2

(
3

7

(
1

2
n0

))
=

25

28
n0,

as desired.

4.2 Resolving intersections using good arcs

To prove Lemma 4.1, we need the following lemma.

Lemma 4.3. Let ~v1, . . . , ~vm ∈ Fn
2 be nonzero vectors (not necessarily distinct). Then

there exists a linear map f : Fn
2 → F2 such that f(~vi) = 1 for at least half of the ~vi,

i.e. such that {i | 1 ≤ i ≤ m, f(~vi) = 1} has cardinality at least m/2.

Proof. Let Ω be the probability space consisting of all linear maps Fn
2 → F2, each

given equal probability. Let X : Ω → R be the random variable that takes f ∈ Ω to
the cardinality of the set {i | 1 ≤ i ≤ m, f(~vi) = 1}. We will prove that the expected
value E(X ) of X is m/2, which clearly implies that there exists some element f ∈ Ω
such that X (f) ≥ m/2.

To prove the desired claim, for 1 ≤ i ≤ m let Xi : Ω → R be the random variable
that takes f ∈ Ω to 1 if f(~vi) = 1 and to 0 if f(~vi) = 0. Viewing ~vi as an element
of the double dual (Fn

2 )∗∗, the kernel of ~vi consists of exactly half of the elements of
(Fn

2 )∗. This implies E(Xi) = 1/2. Using linearity of expectation (which, recall, does
not require that the random variables be independent), we get that

E (X ) = E

(
m∑

i=1

Xi

)
=

m∑
i=1

E (Xi) =
m∑

i=1

1

2
=
m

2
,

as desired.

Remark. One can give a (somewhat more complicated) non-probabilistic proof of
Lemma 4.3; however, we do not know a non-probabilistic proof of Lemma 4.6 below,
which is needed for the proof of Lemma 4.2.

Proof of Lemma 4.1. We start by recalling the setup. We are given a closed surface Σ1

equipped with a hyperbolic metric and a curve-arc triple ((α1, v1), τ1, (β1, w1)) on Σ1

such that [α1] = [β1] 6= 0. We are also given a set A1 of disjoint β1-arcs of α1. Letting
n1 = i(α1, β1), our goal is to construct a regular degree 2 cover (Σ2, v2) → (Σ1, v1)
such that ((α1, v1), τ1, (β1, w1)) has a closed lift ((α2, v2), τ2, (β2, w2)) satisfying

i(α2, β2) ≤ n1 − 1

2
|Ag

1|.
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Lemma 4.3 implies that there exists a linear map φ : H1(Σ1, β1;F2) → F2 such that
{µ ∈ Ag

1 | φ([µ]β1) = 1} has cardinality at least 1
2
|Ag

1|. Let ψ : H1(Σ1;F2) → F2 be the
composition of φ with the natural map H1(Σ1;F2) → H1(Σ1, β1;F2) and let (Σ2, v2) →
(Σ1, v1) be the regular 2-fold cover associated to ψ. Since ψ([β1]) = 0 and [α1] =
[β1], the curve-arc triple ((α1, v1), τ1, (β1, w1)) has a closed lift ((α2, v2), τ2, (β2, w2))
to (Σ2, v2).

It remains to prove that i(α2, β2) ≤ n1 − 1
2
|Ag

1|. Regarding S1 as the unit cir-
cle in C, parametrize α1 via a continuous map f1 : (S1, 1) → (Σ1, v1). Define
I1 = {θ ∈ S1 | f1(θ) ∈ β1}. Since α1 and β1 are hyperbolic geodesics, we have
n1 = |I1|. Lift f1 to a map f2 : (S1, 1) → (Σ2, v2) whose image is α2 and define
I2 = {θ ∈ S1 | f2(θ) ∈ β2}. Again, since α2 and β2 are hyperbolic geodesics, we must
have i(α2, β2) = |I2|. Also, by construction we have I2 ⊂ I1. It is enough, therefore,
to prove that |I1 \ I2| ≥ 1

2
|Ag

1|.
To do this, it is enough to prove that

|I1 \ I2| ≥ |{µ ∈ Ag
1 | φ([µ]β1) = 1}|. (4)

Consider µ ∈ Ag
1 such that φ([µ]β1) = 1. There exist θ, θ′ ∈ I1 such that µ begins at

f1(θ) and ends at f1(θ
′). To prove (4), it is enough to prove that at most one of θ and

θ′ lie in I2. Assume otherwise, so θ, θ′ ∈ I2. Let µ̃ be the oriented arc of α2 beginning
at f2(θ) and ending at f2(θ

′) and covering µ. Also, let η̃ be one of the two oriented
arcs of β2 beginning at f2(θ

′) and ending at f2(θ). Then η̃ covers an oriented arc η
of β1 beginning at f1(θ

′) and ending at f1(θ). The closed loop µ · η on Σ1 lifts to the
closed loop µ̃ · η̃ on Σ2, so ψ([µ · η]) = 0. However, we also have

ψ([µ · η]) = φ([µ]β1) = 1,

a contradiction.

4.3 Lifting bad arcs to good arcs

We begin by clarifying the topological nature of bad arcs.

Lemma 4.4. Let Σ be a closed surface equipped with a hyperbolic metric and let
((α, v), τ, (β, w)) be a curve-arc triple on Σ. Assume that [α] = [β] 6= 0. Also, let µ
be a bad β-arc of α which goes from p1 ∈ α ∩ β to p2 ∈ α ∩ β. Then there exists an
oriented arc η of β which goes from p2 to p1 with the following properties.

• The closed curve µ · η is a separating simple closed curve which is not nullho-
motopic.

• The curve µ · η is isotopic to a curve which is disjoint from β.

Proof. There are two arcs η and η′ of β going from p2 to p1. The elements [µ·η], [µ·η′] ∈
H1(Σ;F2) both map to [µ]β ∈ H1(Σ, β;F2), which vanishes by assumption. It follows
that [µ · η] and [µ · η′] both lie in the kernel of the map H1(Σ;F2) → H1(Σ, β;F2),
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a b

Figure 3: a. On the left is a local picture of µ and β when the signs of the intersections of
α and β are the same at p1 and p2. On the right is shown an isotopy of µ · η indicating the
algebraic intersection number is 1 between µ · η and β. b. On the left is a local picture
of µ and β when the signs of the intersections of α and β are different at p1 and p2. On
the right is shown an isotopy of µ · η indicating that µ · η can be made disjoint from β.

which consists of 0 and [β]. Letting η′ be η′ traversed in the opposite direction, we
have

[µ · η]− [µ · η′] = [η · η′] = [β].

We conclude that either [µ · η] or [µ · η′] must be 0; relabeling, we can assume that
[µ · η] = 0. The curve µ · η is a simple closed curve which is nullhomologous over F2.
It is not hard to see that this implies that µ · η is in fact nullhomologous over Z, i.e.
that µ · η is a separating simple closed curve (the key point here being that µ · η is
simple). If µ · η were nullhomotopic, then it would bound a disc. This would imply
that α and β could be homotoped so as to intersect fewer times, which is impossible
since they are hyperbolic geodesics.

It remains to prove that µ · η is isotopic to a curve which is disjoint from β. The
algebraic intersection number of µ · η and β is 0 since µ · η is nullhomologous. If the
signs of the intersections of α and β at p1 and p2 were the same, then µ · η would
have algebraic intersection number 1 with β (see Figure 3.a), so those signs must be
opposite. The desired result now follows from Figure 3.b.

To “resolve” bad arcs into good arcs, we will need to lift separating curves to non-
separating curves as in the following lemma. Note that if δ is a simple closed sep-
arating curve on Σ which divides Σ into subsurfaces S and S ′, then H1(Σ;F2) =
H1(S;F2)⊕ H1(S

′;F2).

Lemma 4.5. Let Σ be a closed surface and let δ be a simple closed separating curve
on Σ which divides Σ into subsurfaces S and S ′. Let φ : H1(Σ;F2) → F2 be a linear

map such that φ|H1(S;F2) 6= 0 and φ|H1(S′;F2) 6= 0. Let Σ̃ → Σ be the regular 2-fold

cover associated to φ. Finally, let δ̃ be a component of the preimage of δ in Σ̃. Then
[δ̃] 6= 0.

Proof. Let S̃ and S̃ ′ be the preimages in Σ̃ of S and S ′, respectively. The maps S̃ → S
and S̃ ′ → S ′ are 2-fold covering maps. Moreover (and this is the key observation),

the assumption that φ|H1(S;F2) 6= 0 and φ|H1(S′;F2) 6= 0 implies that both S̃ and S̃ ′ are
connected. Since δ is a separating curve, we have [δ] = 0 and thus φ([δ]) = 0, which

implies that the preimage of δ in Σ̃ has two components. These two components are
the boundary components of S̃ and S̃ ′, so we deduce that both S̃ and S̃ ′ have two
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boundary components. The surface Σ̃ is obtained by gluing the boundary components
of S̃ to the boundary components of S̃ ′. Consequently, δ̃ (which is one of those

boundary components) does not separate Σ̃, so [δ̃] 6= 0.

We thus need to construct linear maps H1(Σ;F2) → F2 which are nontrivial on a large
number of splittings of H1(Σ;F2). We will do this with the following lemma, which
plays the same role in the proof of Lemma 4.2 that Lemma 4.3 played in the proof of
Lemma 4.1.

Lemma 4.6. Fix some n ≥ 3. For 1 ≤ i ≤ m, let Vi,Wi ⊂ Fn
2 be nontrivial

subspaces such that Fn
2 = Vi ⊕Wi. Then there exists a linear map f : Fn

2 → F2 such
that {i | 1 ≤ i ≤ m, f |Vi

6= 0, f |Wi
6= 0} has cardinality at least 3

7
m.

Proof. Let Ω be the probability space consisting of all nonzero linear maps Fn
2 → F2,

each given equal probability. Let X : Ω → R be the random variable that takes f ∈ Ω
to the cardinality of the set {i | 1 ≤ i ≤ m, f |Vi

6= 0, f |Wi
6= 0}. We will prove that

the expected value E(X ) of X is at least 3
7
m, which clearly implies that there exists

some element f ∈ Ω such that X (f) ≥ 3
7
m.

To prove the desired claim, for 1 ≤ i ≤ m let Xi : Ω → R be the random variable
that takes f ∈ Ω to 1 if f |Vi

, f |Wi
6= 0 and to 0 if f |Vi

= 0 or f |Wi
= 0. Using linearity

of expectation, we have

E (X ) = E

(
m∑

i=1

Xi

)
=

m∑
i=1

E (Xi) .

Fixing some 1 ≤ i ≤ m, it is therefore enough to prove that E(Xi) ≥ 3/7, i.e. to
show that the probability that a random nonzero linear map f : Fn

2 → F2 satisfies
f |Vi

, f |Wi
6= 0 is at least 3/7.

Set a = dim(Vi), so 1 ≤ a ≤ n− 1 and dim(Wi) = n− a. There are 2a − 1 (resp.
2n−a − 1) nonzero linear maps Vi → F2 (resp. Wi → F2). This implies that there are
(2a − 1)(2n−a − 1) linear maps f : Fn

2 → F2 such that f |Vi
, f |Wi

6= 0. Since there are
2n − 1 nonzero linear maps Fn

2 → F2, we deduce that the probability that a random

nonzero linear map f : Fn
2 → F2 satisfies f |Vi

, f |Wi
6= 0 is (2a−1)(2n−a−1)

2n−1
. Lemma 4.7

below says that this is at least 3/7, as desired.

Lemma 4.7. Set D = {(a, n) | n ≥ 3 and 1 ≤ a ≤ n− 1}, and define ζ : D → R via

the formula ζ(a, n) = (2a−1)(2n−a−1)
2n−1

. Then ζ is bounded below by ζ(1, 3) = 3/7.

Proof. For a fixed n0 ≥ 3, it is easy to see that the function a 7→ ζ(a, n0) defined on
the domain 1 ≤ a ≤ n0 − 1 attains its global minima at the boundary points a = 1
and a = n0 − 1. Moreover, ζ(1, n0) = ζ(n0 − 1, n0). Finally, the function n 7→ ζ(1, n)
defined on the domain n ≥ 3 achieves its global minimum at the point n = 3. The
lemma follows.

We are finally in a position to prove Lemma 4.2.
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Proof of Lemma 4.2. We begin by recalling the setup. We are given a closed surface
Σ0 equipped with a hyperbolic metric and a curve-arc triple ((α0, v0), τ0, (β0, w0))
on Σ0 such that [α0] = [β0] 6= 0. We are also given a set A0 of disjoint β0-arcs of
α0. Our goal is to construct a regular degree 2 cover (Σ1, v1) → (Σ0, v0) such that
((α0, v0), τ0, (β0, w0)) has a closed lift ((α1, v1), τ1, (β1, w1)) and there exists a set A1

of disjoint β1-arcs of α1 and some r ≥ 0 satisfying

|Ag
1| ≥ |Ag

0|+
3

7
|Ab

0| − r and n1 ≤ n0 − r,

where n1 = i(α1, β1).
WriteAb

0 = {µ1, . . . , µ|Ab
0 |}. Using Lemma 4.4, we obtain oriented arcs η1, . . . , η|Ab

0 |
of β0 such that the following hold for 1 ≤ i ≤ |Ab

0|.
• The arc ηi begins at the endpoint of µi and ends at the beginning point of µi.

• The curve µi · ηi is a simple closed separating curve isotopic to a curve disjoint
from β0.

For 1 ≤ i ≤ |Ab
0|, let Si and S ′i be the two subsurfaces into which Σ0 is divided by

µi · ηi, ordered so that β0 is isotopic into S ′i. We thus have H1(Σ0;F2) = H1(Si;F2)⊕
H1(S

′
i;F2) and [β0] ∈ H1(S

′
i;F2). Let X be the quotient of H1(Σ0;F2) by the span of

[β0], so X ∼= H1(Σ0, β;F2). Also, let Vi and Wi be the projections to X of H1(Si;F2)
and H1(S

′
i;F2), respectively. Thus X = Vi⊕Wi. Lemma 4.6 implies that there exists

a linear map φ : X → F2 such that the set {i | 1 ≤ i ≤ |Ab
0|, φ|Vi

6= 0, φ|Wi
6= 0} has

cardinality at least 3
7
|Ab

0|.
Let ψ : H1(Σ0;F2) → F2 be the composition of φ with the projection H1(Σ0;F2) →

X and let (Σ1, v1) → (Σ0, v0) be the regular 2-fold cover associated to ψ. Since
ψ([β0]) = 0 and [α0] = [β0], the curve-arc triple ((α0, v0), τ0, (β0, w0)) has a closed lift
((α1, v1), τ1, (β1, w1)) to (Σ1, v1). Define n1 = i(α1, β1). Each arc in A0 lifts to an arc
of α1; let B1 be the set of these arcs. Not all of the elements of B1 are β1-arcs. Let
A1 = {µ ∈ B1 | µ is a β1-arc}. Finally, define r = |B1 \ A1|.

We have constructed all of the objects claimed by the lemma. It remains to verify
the inequalities from its conclusion. Regarding S1 as the unit circle in C, parametrize
α0 via a continuous map f0 : (S1, 1) → (Σ0, v0). Define I0 = {θ ∈ S1 | f0(θ) ∈ β0}.
Since α0 and β0 are hyperbolic geodesics, we have n0 = |I0|. Lift f0 to a map
f1 : (S1, 1) → (Σ1, v1) whose image is α1 and define I1 = {θ ∈ S1 | f1(θ) ∈ β1}.
Again, since α1 and β1 are hyperbolic geodesics, we must have n1 = |I1|. Also, by
construction we have I1 ⊂ I0. The desired inequality n1 ≤ n0 − r is thus equivalent
to the assertion that |I0 \ I1| ≥ r. This follows immediately from the fact that the
elements of B1 \A1 are exactly the arcs of B1 at least one of whose endpoints is f1(θ)
for some θ ∈ I0 \ I1.

All that is left to do is to prove that

|Ag
1| ≥ |Ag

0|+
3

7
|Ab

0| − r. (5)
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We first define Bg
1 and Bb

1 to be the subsets of B1 that are lifts of elements of Ag
0 and

Ab
0, respectively. Next, define rg = |Bg

1 \ A1| and rb = |Bb
1 \ A1|, so r = rg + rb. We

have
|Ag

1| = |Bg
1 ∩ Ag

1|+ |Bb
1 ∩ Ag

1|. (6)

Moreover, it is clear from the definitions that Bg
1 ∩ Ag

1 = Bg
1 ∩ A1, so

|Bg
1 ∩ Ag

1| = |Bg
1 ∩ A1| = |Ag

0| − rg. (7)

Combining (6) and (7), we see that (5) is equivalent to the assertion that

|Bb
1 ∩ Ag

1| ≥
3

7
|Ab

0| − rb, (8)

which we will now prove.
Recall that we have enumerated Ab

0 as {µ1, . . . , µ|Ab
0 |}. For 1 ≤ i ≤ |Ab

0|, let the

lift of µi to α1 be µ̃i ∈ Bb
1 . We know that exactly rb elements of {µ̃1, . . . , µ̃|Ab

0 |} do

not lie in A1. Also, we know that the set {i | 1 ≤ i ≤ |Ab
0|, φ|Vi

6= 0, φ|Wi
6= 0} has

cardinality at least 3
7
|Ab

0|. We conclude that the set

C := {µ̃i | 1 ≤ i ≤ |Ab
0|, φ|Vi

6= 0, φ|Wi
6= 0, µ̃i ∈ A1} ⊂ Bb

1

has cardinality at least 3
7
|Ab

0| − rb. To prove (8), therefore, it is enough to prove that
C ⊂ Ag

1.
Consider some µ̃i ∈ C. The endpoints of µ̃i lie in β1 by construction. Let η̃i be

the lift of ηi to β1 where ηi is the curve constructed in the second paragraph. Lemma
4.5 implies that [µ̃i · η̃i] 6= 0. Also, we know that [µ̃i · η̃i] projects to [µi · ηi] = 0 in
H1(Σ0;F2), and [β1] projects to [β0] 6= 0. We deduce that [µ̃i · η̃i] 6= [β1]. Since [µ̃i]β1

is the projection of [µ̃i · η̃i] to H1(Σ1, β1;F2), we conclude that [µ̃i]β1 6= 0, i.e. that µ̃i

is a good β1-arc of α1 and thus an element of Ag
1, as desired.

A Appendix : Surfaces with boundary

In this appendix, we prove the following theorem. It generalizes Theorem B to surfaces
with boundary.

Theorem C. Let Σ be a compact orientable surface of genus g with b ≥ 1 bound-
ary components. Assume that 2g + b ≥ 3. Let α and β be nonisotopic oriented
simple closed curves on Σ. Assume that for some d ≥ 7 the conjugacy classes in
π1(Σ)/γd(π1(Σ)) associated to α and β are the same. Then

i(α, β) ≥
(
d+ 2

2

)c

,

where c = ln(28/25)
ln(4)

.

Remark. In the exceptional cases where 2g + b < 3, the theorem would be vacuous.
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We begin with an elementary lemma.

Lemma A.1. Let Σ be an orientable compact surface of genus g ≥ 0 with b ≥ 1
boundary components. Assume that 2g + b ≥ 3. Let α and β be nonisotopic simple
closed curves on Σ. Then there is a closed surface Σ′ of genus at least 2 and an
embedding f : Σ ↪→ Σ′ such that f(α) and f(β) are nonisotopic on Σ′.

Proof. Let Σ′ be the double of Σ, i.e. let Σ′ = (Σ × {0} ∪ Σ × {1})/ ∼, where we
identify (x, 0) ∼ (x, 1) for all x ∈ ∂Σ. Then Σ′ is a closed orientable surface of genus
at least 2. Moreover, there is a retraction r : Σ′ → Σ defined by r((x, i)) = x.

Suppose for the sake of contradiction that f(α) and f(β) were isotopic curves
on Σ′. Then α = r(f(α)) is homotopic to β = r(f(β)) on Σ. Since homotopic
simple closed curves on a surface are isotopic (see, e.g., [5, Proposition 1.10]), this is
a contradiction.

Proof of Theorem C. Let Σ′ and f be as in Lemma A.1 and let f∗ be the induced
homomorphism on π1. Then f∗(γd(π1(Σ))) ⊆ γd(π1(Σ

′)), and so there is an induced
map π1(Σ)/γd(π1(Σ)) → π1(Σ

′)/γd(π1(Σ
′)). This implies that f(α) and f(β) have

the same conjugacy class in π1(Σ
′)/γd(π1(Σ

′)). Moreover, it is clear that i(α, β) ≥
i(f(α), f(β)), and from the lemma f(α) and f(β) are nonisotopic. By Theorem B,

i(α, β) ≥ i(f(α), f(β)) ≥
(
d+ 2

2

)c

.
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