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Abstract. Answering a question of Hatcher–Vogtmann, we prove that the top homology
group of the free factor complex is not the dualizing module for Aut(Fn), at least for n = 5.

1. Introduction

A group Γ is a rational duality group of dimension d if there exists a Q[Γ]-module D called
the dualizing module such that for all Q[Γ]-modules M , we have

Hd−i(G;M) ∼= Hi(G;M ⊗Q D) for all i.

The rational cohomological dimension of such a G is d, and the dualizing module D is unique:

Hd(G;Q[G]) ∼= H0(G;Q[G]⊗Q D) ∼= D.
Many geometrically important groups are rational duality groups,1 e.g., lattices in semisimple
Lie groups [2], mapping class groups [17], and outer automorphism groups of free groups [1].

1.1. Identifying the dualizing module. The dualizing module of a rational duality group
often has a simple geometric description. Here are two examples:

Example 1.1. For SLn(Z), the associated Tits building is the geometric realization Tits(Qn)
of the poset of nontrivial proper subspaces of Qn. The Solomon–Tits theorem [34] says that
Tits(Qn) is homotopy equivalent to a wedge of (n− 2)-spheres. The Steinberg representation
of SLn(Q), denoted St(Qn), is its unique nonzero reduced homology group:

St(Qn) = H̃n−2(Tits(Qn);Q).

Borel–Serre [2] proved SLn(Z) is a rational duality group with dualizing module St(Qn). �

Example 1.2. For the mapping class group Mod(Σg) of a compact oriented genus-g surface
Σg, the curve complex is the simplicial complex Cg whose k-simplices are sets {γ0, . . . , γk} of
distinct isotopy classes of nontrivial simple closed curves on Σg that can be realized disjointly.
Harer [17] proved that for g ≥ 2 the curve complex Cg is homotopy equivalent to a wedge of
(2g − 2)-spheres. The Steinberg representation of Mod(Σg), denoted St(Σg), is its unique
nonzero reduced homology group:

St(Σg) = H̃2g−2(Cg;Q).

Harer [17] proved that Mod(Σg) is a rational duality group with dualizing module St(Σg). �
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1What these references actually prove is that these groups are virtual duality groups. This is a stronger

condition: all virtual duality groups are rational duality groups, but the converse is false. For instance,

Deligne [11] constructed a central extension 1→ Z/2→ S̃p2g(Z)→ Sp2g(Z)→ 1 such that S̃p2g(Z) has no

torsion-free subgroup of finite index. This implies that S̃p2g(Z) is not a virtual duality group; however, since

Sp2g(Z) and Z/2 are rational duality groups, the group S̃p2g(Z) is as well.

1



2 ZACHARY HIMES, JEREMY MILLER, SAM NARIMAN, AND ANDREW PUTMAN

These descriptions are useful since they allow calculations of the high-dimensional rational
cohomology of these groups and their finite-index subgroups; see, e.g., [7, 8, 9, 13, 28, 29, 30].

1.2. Steinberg module for automorphism group of free group. Let Fn be a free
group of rank n. Bestvina–Feighn [1] proved2 that Aut(Fn) is a rational duality group of
dimension 2n − 2. However, their proof does not give an explicit model for its dualizing
module. Identifying the dualizing module of Aut(Fn) remains a basic open problem.

Hatcher–Vogtmann [19, 20] suggested studying the following. A free factor of Fn is a
subgroup A < Fn such that there exists another subgroup B < Fn with Fn = A ∗B. The
nontrivial proper free factors of Fn form a poset called the free factor complex. In analogy
with the ordinary Tits building, we will denote its geometric realization by Tits(Fn), though
it is not actually a building. Just like for Tits(Qn), Hatcher–Vogtmann [19, 20] proved that
Tits(Fn) is homotopy equivalent to a wedge of (n− 2)-dimensional spheres. The Steinberg
module for Aut(Fn), denoted St(Fn), is its unique nonzero reduced homology group:

St(Fn) = H̃n−2(Tits(Fn);Q).

On [19, 20, p. 1], Hatcher-Vogtmann asked the following question:

Question 1.3 (Hatcher–Vogtmann). Is St(Fn) the dualizing module for Aut(Fn)?

A consequence of our main theorem is that this question has a negative answer in general.

1.3. Main theorem. Our main theorem is as follows:

Theorem A. Hi(Aut(Fn); St(Fn)) = 0 for n ≥ 2 and i = 0 or 1.

If St(Fn) were the dualizing module for Aut(Fn), this would imply that

H2n−2(Aut(Fn);Q) ∼= H0(Aut(Fn); St(Fn)) = 0 for n ≥ 2

and
H2n−3(Aut(Fn);Q) ∼= H1(Aut(Fn); St(Fn)) = 0 for n ≥ 3.

However, Gerlits [15] used a computer3 to prove that H7(Aut(F5);Q) ∼= Q, contradicting
the second assertion. We deduce the following:

Corollary 1.4. The Steinberg module St(F5) is not the dualizing module for Aut(F5).

Remark 1.5. We do not know all the rational cohomology of Aut(Fn) for any n ≥ 6, so it
is unclear whether or not our theorem implies that St(Fn) is not the dualizing module for
Aut(Fn) for n ≥ 6. In any case, we conjecture that it is never the dualizing module except
possibly in some low-rank degenerate cases. �

Remark 1.6. In [5], Brück–Gupta study an Out(Fn)-variant of Tits(Fn). It would be
interesting to adapt our techniques to study this complex. �

1.4. Presentation. To prove Theorem A, we construct an explicit presentation for the
Q[Aut(Fn)]-module St(Fn). Our inspiration is a beautiful presentation for St(Qn) constructed
by Bykovskii [6]. Church–Putman [9] gave an alternate topological proof of Bykovskii’s
theorem, and we adapt their approach to Aut(Fn). The key is to find a highly connected
simplicial complex that forms an “integral model” for the free factor complex Tits(Fn). The
simplicial complex we use is a variant of one used by Hatcher–Vogtmann’s [19, 20] to prove
that Tits(Fn) is homotopy equivalent to a wedge of (n− 2)-spheres.

2What they actually proved is that Out(Fn) is a rational duality group. This fits into a short exact
sequence 1→ Fn → Aut(Fn)→ Out(Fn)→ 1, and since both Out(Fn) and Fn are rational duality groups it
follows that Aut(Fn) is as well.

3See [16] for the code.
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1.5. Sphere complex. To describe this simplicial complex, we need to make two definitions.

Definition 1.7. Let Mn,b be the connect sum of n copies of S2 × S1 with b disjoint open
balls removed. Our convention is that the connect sum of 0 copies of S2 × S1 is the unit S3

for the connect sum operation, so M0,b is S3 with b disjoint open balls removed. �

Definition 1.8. A 2-sphere embedded in Mn,b is essential if it is not homotopic to ∂Mn,b

or a point. A rank-k sphere system in Mn,b is a set {S0, . . . , Sk} of distinct isotopy classes
of essential 2-spheres embedded in Mn,b that can be realized disjointly. �

We will systematically conflate 2-spheres in Mn,b with their isotopy classes. We can now
define the key simplicial complex, which was originally introduced by Hatcher [18].

Definition 1.9. The sphere complex for Mn,b, denoted S(Mn,b), is the simplicial complex
whose k-simplices are rank-k sphere systems {S0, . . . , Sk} in Mn,b. �

To connect this to Aut(Fn), fix a basepoint ∗ ∈ ∂Mn,1. The mapping class group

Mod(Mn,1) = π0(Diff+(Mn,1, ∂Mn,1))

acts on π1(Mn,1, ∗) ∼= Fn, giving a homomorphism Mod(Mn,1) → Aut(Fn). Laudenbach
[26, 27] proved that this homomorphism is surjective and that its kernel is a rank-n abelian
2-group generated by “sphere twists”:

1 −→ (Z/2)n −→ Mod(Mn,1) −→ Aut(Fn) −→ 1.

See [4] for an alternate proof that shows that this exact sequence splits. Laudenbach also
proved that all elements of the kernel fix the isotopy classes of all 2-spheres in Mn,1. It
follows that the action of Mod(Mn,1) on S(Mn,1) factors through an action of Aut(Fn) on
S(Mn,1).

1.6. Hatcher–Vogtmann’s proof. The starting point of Hatcher–Vogtmann’s proof that
Tits(Fn) is homotopy equivalent to a wedge of (n− 2)-spheres is a theorem of Hatcher [18]
saying that S(Mn,1) is contractible. Hatcher–Vogtmann consider the following subcomplex:

Definition 1.10. The nonseparating sphere complex4 of Mn,b, denoted N (Mn,b), is the
subcomplex of S(Mn,b) whose k-simplices are rank-k sphere systems {S0, . . . , Sk} such that
the union of the Si does not separate Mn,b. �

Using the fact that S(Mn,1) is contractible, Hatcher–Vogtmann prove that N (Mn,1) is
homotopy equivalent to a wedge of (n−1)-spheres. For each simplex {S0, . . . , Sk} of N (Mn,1),
the fundamental group of the complement

π1(Mn,1 \
k⋃
i=0

Si, ∗)

is a proper free factor of Fn. It is a nontrivial free factor precisely when the simplex is not a
maximal simplex. This provides a bridge between N (Mn,1) and Tits(Fn), which Hatcher–
Vogtmann use to prove that Tits(Fn) is homotopy equivalent to a wedge of (n− 2)-spheres.

4This is different from the complex of nonseparating spheres, which we discuss in Definition 9.1. In the
complex of nonseparating spheres, the vertices are required to be nonseparating spheres, but there is no
condition on the higher-dimensional simplices. The nonseparating sphere complex is also sometimes called
the purely nonseparating sphere complex.
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1.7. Our approach. It turns out that the fact that N (Mn,1) is homotopy equivalent to a
wedge of (n− 1)-spheres is sufficient to construct generators for St(Fn), which are a sort of
free group version of the spherical apartments in a Tits building. Following Church–Putman
[9], to find the relations between these generators we need to add simplices to N (Mn,1)
to increase its connectivity from (n− 1) to n. The result is what we call the “augmented
nonseparating sphere complex”, and most of this paper is a detailed study of its topology.

Remark 1.11. Though he did not state it explicitly and it takes some work to extract it
from his paper, in [10] Sadofschi Costa proved results that are equivalent to our generating
set for St(Fn). �

1.8. Outline. There are three main parts to this paper. The first (§2 – §5) is several sections
of topological preliminaries. The second (§6 – §11) is a detailed study of the sphere complex
and its subcomplexes. Finally, the third (§12 – §13) contains the proof of Theorem A.

1.9. Acknowledgments. We thank Benjamin Brück and Peter Patzt for helpful conversa-
tions and Richard Wade for comments on a previous version of this paper. We also would
like to thank the referee for their careful reading of our paper.

2. Topological preliminaries

We begin with some generalities about the topology of simplicial complexes.

2.1. Connectivity conventions. For any d ∈ Z, we say that a space X is d-connected if
for k ≤ d, all maps Sk → X from the k-sphere Sk to X extend over the (k + 1)-disc Dk+1.
There are two important edge cases to this convention:

• For k ≤ −2, we have Sk = Dk+1 = ∅, so all spaces are d-connected for d ≤ −2.
• We have S−1 = ∅ and D0 = {pt}, so a space X is (−1)-connected precisely when
X 6= ∅.

2.2. Links. For a simplex σ of a simplicial complex X, the link of σ, denoted LinkX(σ), is
the subcomplex of X consisting of all simplices σ′ such that the join σ ∗ σ′ is a simplex of X.
Notice that this implies that σ′ does not share any vertices with σ. The join σ ∗ LinkX(σ) is
a subcomplex of X called the star of σ.

2.3. Combinatorial triangulations. A combinatorial triangulation of an n-manifold with
boundary is defined inductively as follows. First, any 0-dimensional simplicial complex is a
combinatorial triangulation of a 0-manifold. Next, for n ≥ 1 a combinatorial triangulation
of an n-manifold with boundary is a simplicial complex Mn that is a topological n-manifold
with boundary such that for all simplices σ of Mn, the complex LinkMn(σ) is as follows:

• If σ does not lie in ∂Mn, then LinkMn(σ) is a combinatorial triangulation of an
(n− dim(σ)− 1)-sphere.
• If σ lies in ∂Mn, then LinkMn(σ) is a combinatorial triangulation of an (n−dim(σ)−

1)-disc.

Any subdivision of a combinatorial triangulation of a manifold with boundary is also a
combinatorial triangulation.

3. Locally injective maps, spheres, and discs

We now turn to some more technical aspects of simplicial complexes.
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3.1. Local injectivity. If f : Y → X is a simplicial map between simplicial complexes,
then for all simplices σ of Y we have dim(σ) ≥ dim(f(σ)). For technical reasons, it will be
important for us to make this an equality whenever possible:

Definition 3.1. A simplicial map f : Y → X between simplicial complexes is locally injective
if for all simplices σ of Y , we have dim(σ) = dim(f(σ)). �

3.2. Sphere and disc local injectivity properties. To keep our homotopies from getting
out of control, it will be helpful to represent homotopy classes in simplicial complexes by
locally injective maps. We therefore make the following two definitions.

Definition 3.2. We say that a simplicial complex X has the sphere local injectivity property
up to dimension d if the following holds for all k ≤ d. Let f : Sk → X be a continuous map.
Then f can be homotoped to a map f : Sk → X that is simplicial and locally injective for
some combinatorial triangulation of Sk. �

Definition 3.3. We say that a simplicial complex X has the disc local injectivity property
up to dimension d if the following holds for all k ≤ d. Let f : Sk → X be a map that is
simplicial and locally injective for some combinatorial triangulation of Sk. Then there exists
a combinatorial triangulation of Dk+1 that extends our given triangulation of Sk and a
locally injective simplicial map F : Dk+1 → X extending f . �

Example 3.4. All simplicial complexes have the sphere local injectivity property up to
dimension 0. A simplicial complex has the disc local injectivity property up to dimension
−1 if it is nonempty, and has the disc local injectivity property up to dimension 0 if it is
nonempty, connected, and not just a single point. �

Example 3.5. It will follow from our discussion of weakly Cohen–Macaulay complexes in §4
that if Mn is a combinatorial triangulation of an n-manifold that is (d− 1)-connected for
some d ≤ n, then Mn has the sphere local injectivity property up to dimension d and disc
local injectivity property up to dimension d− 1. See Example 4.3 and Lemma 4.4. �

Remark 3.6. By the simplicial approximation theorem, any continuous map f : Sk → X
is homotopic to a map that is simplicial with respect to a triangulation of Sk that can be
obtained by subdividing any given triangulation of Sk. Since the class of combinatorial
triangulations of a manifold is closed under subdivisions, by starting with a combinatorial
triangulation of Sk (for instance, the boundary of a (k + 1)-simplex) we can ensure that
the resulting map Sk → X is simplicial with respect to a combinatorial triangulation of Sk.
Thus the local injectivity part of the sphere local injectivity property is the key content of
that definition. A similar remark applies to the disc local injectivity property, though here
you need Zeeman’s version [36] of the relative simplicial approximation theorem.5 �

We have the following.

Lemma 3.7. Let X be a simplicial complex that has both the sphere and disc local injectivity
property up to dimension d. Then X is d-connected.

Proof. For k ≤ d, first use the sphere local injectivity property to homotope a given
f : Sk → X to a locally injective map, and then use the disc local injectivity property to
extend f over Dk+1. �

5There are subtle issues with relative simplicial approximation, and the standard version as found in e.g.
[35, Theorem 3.4.8] is not strong enough for what we are doing. See the introduction to [36] for a discussion
of this.
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3.3. Joins. The sphere and disc local injectivity properties behave well under joins. We
will need this for the disc local injectivity property, so we focus on that:

Lemma 3.8. Let X be a simplicial complex with the disc local injectivity property up to
dimension d and Y be a simplicial complex with the disc local injectivity property up to
dimension e. Then X ∗ Y has the disc local injectivity property up to dimension d+ e+ 2.

Proof. For some k ≤ d + e + 2, fix a combinatorial triangulation of Sk and let f : Sk →
X ∗ Y be a locally injective simplicial map. Our goal is to extend f to a locally injective
map F : Dk+1 → X ∗ Y for some combinatorial triangulation of Dk+1 agreeing with our
triangulation of Sk on the boundary. We divide the proof of this into three steps.

Step 1. We modify f such that dim(σ) ≤ d for all simplices σ of Sk with f(σ) ⊂ X.

Consider a simplex σ of Sk with f(σ) ⊂ X. Pick σ such that its dimension is maximal
with this property, and assume that dim(σ) ≥ d + 1. Then LinkSk(σ) is a combinatorial
triangulation of a (k − dim(σ)− 1) sphere, and by the maximality of the dimension of σ we
have f(LinkSk(σ)) ⊂ Y . Note that

k − dim(σ)− 1 ≤ (d+ e+ 2)− (d+ 1)− 1 = e.

Since Y has the disc local injectivity property up to dimension e and f is locally injective,
we can find a combinatorial triangulation of Dk−dim(σ) agreeing with that of LinkSk(σ) ∼=
Sk−dim(σ)−1 on ∂Dk−dim(σ) and a locally injective map G : Dk−dim(σ) → Y extending the
restriction of f to LinkSk(σ). We have

σ ∗ LinkSk (σ) ∼= Ddim(σ) ∗ Sk−dim(σ)−1 ∼= Dk

and
∂σ ∗ Dk−dim(σ) ∼= Sdim(σ)−1 ∗ Dk−dim(σ) ∼= Dk,

and also
∂ (σ ∗ LinkSk (σ)) = ∂σ ∗ LinkSk (σ)

and
∂
(
∂σ ∗ Dk−dim(σ)

)
= ∂σ ∗ ∂Dk−dim(σ) = ∂σ ∗ LinkSk(σ).

In all of these = means equality of simplicial complexes and ∼= means homeomorphism. It
follows that we can homotope f so as to replace

f |σ∗LinkSk (σ) : σ ∗ LinkSk(σ)→ X ∗ Y with (f |∂σ) ∗G : ∂σ ∗ Dk−dim(σ) → X ∗ Y.
This eliminates σ, and it is easy to see that it is enough to prove the lemma for this new f .
Repeating this over and over, we can ensure that dim(σ) ≤ d for all simplices σ of Sk with
f(σ) ⊂ X.

Step 2. For a topological space W , let Cone(W ) denote the cone on W . Set Z =
f−1(X) ⊂ Sk. We construct a triangulation of Cone(Z) and a locally injective simpli-
cial map F : Cone(Z)→ X extending f |Z .

Let p0 be the cone point of Cone(Z), and define F (p0) to be some arbitrary vertex of X.
By the previous step, Z has dimension at most d. We can now use the disc local injectivity
property of X up to dimension d to extend F over σ ∗ p0 for each simplex σ of Z: first over
the 0-simplices, then the 1-simplices, etc. At each step, we have already defined F on a
subdivision of

σ ∪∂σ (∂σ ∗ p0) ∼= Ddim(σ) ∪Sdim(σ)−1

(
Sdim(σ)−1 ∗ p0

)
∼= Sdim(σ),

and we use the disc local injectivity property to extend F to a locally injective map on the
interior of this simplex (after a further subdivision).
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Step 3. We extend F to the rest of Dk+1.

We have defined F on a subdivision of Cone(Z) ⊂ Cone(Sk), and F takes Cone(Z) to
X. Subdivide Cone(Sk) by subdividing exactly the same simplices subdivided to form our
subdivision of Cone(Z) on which F was defined. The simplices of this subdivision are thus
all of the form σ ∗ τ , where σ is a simplex of Cone(Z) with F (σ) ⊂ X and τ is a simplex of
Sk with f(τ) ⊂ Y . From this, we see that F can be extended over all these simplices to a
map with values in X ∗ Y , as desired. �

4. Cohen–Macaulay complexes

We now discuss an important class of simplicial complexes.

4.1. Weakly Cohen–Macaulay complexes. We start with the following definition:

Definition 4.1. Let X be a simplicial complex and let d ≥ 0. We say that X is weakly
Cohen–Macaulay of dimension d if X is (d− 1)-connected, and for all simplices σ of X the
subcomplex LinkX(σ) is (d−dim(σ)−2)-connected.6 If in addition to this X is d-dimensional
and for all simplices σ of X the subcomplex LinkX(σ) is (d− dim(σ)− 1)-dimensional, then
we say that X is Cohen–Macaulay of dimension d. �

Remark 4.2. If X is weakly Cohen–Macaulay of dimension d and σ is a simplex of X, then
LinkX(σ) is weakly Cohen–Macaulay of dimension (d − dim(σ) − 1). A similar remark
applies if X is Cohen–Macaulay of dimension d. �

Example 4.3. Let Mn be a combinatorial triangulation of an n-dimensional manifold that
is (d − 1)-connected for some d ≤ n. Then Mn is weakly Cohen–Macaulay of dimension
d. Indeed, it is (d− 1)-connected by assumption, and for a simplex σ of Mn we have that
LinkMn(σ) is a combinatorial triangulation of an (n− dim(σ)− 1)-sphere, and in particular
is

n− dim(σ)− 2 ≥ d− dim(σ)− 2

connected. �

4.2. Cohen–Macaulay and local injectivity. Weakly Cohen–Macaulay complexes pro-
vide examples of the sphere and disc local injectivity property:

Lemma 4.4.7 Let X be a simplicial complex that is weakly Cohen–Macaulay of dimension
d. Then X has the sphere local injectivity property up to dimension d and the disc local
injectivity property up to dimension (d− 1).

Proof. The proof will be by induction on d. The base case d = 0 is trivial,8 so assume that
d > 0 and that the lemma is true whenever d is smaller. We prove the two parts of the
lemma separately.

Step 1. The simplicial complex X has the sphere local injectivity property up to dimension
d.

6If we considered the empty set to be a (−1)-dimensional simplex whose link is the whole complex X, then
we could combine the two hypotheses and just say that for all simplices σ of X the subcomplex LinkX(σ) is
(d− dim(σ)− 2)-connected.

7See Galatius–Randal-Williams [14, Theorem 2.4] for a similar result.
8See Remark 3.4, and note that a simplicial complex X that is weakly Cohen–Macaulay of dimension 0 is

(−1)-connected, i.e., nonempty.
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For some k ≤ d, let f : Sk → X be a continuous map. Using simplicial approximation (see
Remark 3.6), we can assume that f is simplicial for some combinatorial triangulation of Sk.
We will prove that f can be homotoped to a locally injective simplicial map.

Assume that f is not locally injective. Consider a simplex σ of Sk with dim(f(σ)) <
dim(σ). Pick σ such that its dimension is maximal with this property. Then LinkSk(σ) is
a combinatorial triangulation of a (k − dim(σ)− 1) sphere, and by the maximality of the
dimension of σ we have f(LinkSk(σ)) ⊂ LinkX(f(σ)). This maximality also implies that the
restriction of f to LinkSk(σ) is locally injective. Note that

k − dim(σ)− 1 ≤ d− dim(f(σ))− 2.

Since X is weakly Cohen–Macaulay of dimension d, it follows that LinkX(f(σ)) is weakly
Cohen–Macaulay of dimension d− dim(f(σ))− 1. In particular, by our inductive hypothesis
it has the disc local injectivity property up to dimension d−dim(f(σ))−2. We can thus find

a combinatorial triangulation of Dk−dim(σ) agreeing with that of LinkSk(σ) ∼= Sk−dim(σ)−1 on

∂Dk−dim(σ) and a locally injective map G : Dk−dim(σ) → X extending the restriction of f to
LinkSk(σ). We have

σ ∗ LinkSk (σ) ∼= Ddim(σ) ∗ Sk−dim(σ)−1 ∼= Dk

and

∂σ ∗ Dk−dim(σ) ∼= Sdim(σ)−1 ∗ Dk−dim(σ) ∼= Dk,
and also

∂ (σ ∗ LinkSk (σ)) = ∂σ ∗ LinkSk (σ)

and

∂
(
∂σ ∗ Dk−dim(σ)

)
= ∂σ ∗ ∂Dk−dim(σ) = ∂σ ∗ LinkSk(σ).

In all of these = means equality of simplicial complexes and ∼= means homeomorphism. It
follows that we can homotope f so as to replace

f |σ∗LinkSk (σ) : σ ∗ LinkSk(σ)→ X

with

(f |∂σ) ∗G : ∂σ ∗ Dk−dim(σ) → f(σ) ∗ LinkX(f(σ)) ⊂ X.
This eliminates σ. Repeating this over and over, we can ensure that f is locally injective, as
desired.

Step 2. The simplicial complex X has the disc local injectivity property up to dimension
d− 1.

For some k ≤ d− 1, let f : Sk → X be a map that is locally injective with respect to some
combinatorial triangulation of Sk. Since X is weakly Cohen–Macaulay of dimension d, it is
(d− 1)-connected. It follows (see Remark 3.6) that we can extend f to a map F : Dk+1 → X
that is simplicial with respect to a combinatorial triangulation of Dk+1. Using an argument
identical to the previous step, we can modify F without changing it on the boundary to
ensure that it is locally injective, as desired. �

5. Bad simplex arguments

Let Y be a simplicial complex and let X ⊂ Y be a subcomplex. In this section, we discuss
two results that let us relate the topological properties of X and Y by studying a set of
“bad simplices” that characterize simplices that are in Y but not in X.
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5.1. Connectivity and bad simplices. The first of the two results that we will need is
due to Hatcher–Vogtmann [21]. To state it, we must first give a definition.

Definition 5.1. Let Y be a simplicial complex and let B be a set of simplices of Y . For
σ ∈ B, let L(σ,B) be the subcomplex of Y consisting of simplices τ satisfying the following
two conditions:

• τ is in LinkY (σ), so σ ∗ τ is a simplex of Y .
• If σ′ is a face of σ ∗ τ with σ′ ∈ B, then σ′ is a face of σ. �

We can now state Hatcher–Vogtmann’s theorem as follows. In it, you should regard B as
the set of “bad simplices” of Y :

Proposition 5.2 ([21, Proposition 2.1]). Let Y be a simplicial complex and let X ⊂ Y be a
subcomplex. Assume that there exists a set B of simplices of Y with the following properties
for some d ≥ 0:

(i) A simplex of Y lies in X if and only if none of its faces are in B. In particular,
since simplices are faces of themselves no simplices of B lie in X.

(ii) If σ, σ′ ∈ B are such that σ ∪ σ′ is a simplex of Y , then σ ∪ σ′ ∈ B. Note that σ and
σ′ might share vertices, so σ ∪ σ′ might not be σ ∗ σ′.

(iii) For all σ ∈ B, the subcomplex L(σ,B) is (d− dim(σ)− 1)-connected.

Then the pair (Y,X) is d-connected, i.e., we have πk(Y,X) = 0 for 0 ≤ k ≤ d.

Both to make this paper more self-contained and to motivate the second and more
technical bad simplex argument we discuss below, we include a proof.

Proof of Proposition 5.2. For some 0 ≤ k ≤ d, let f : (Dk, ∂Dk)→ (Y,X) be a map of pairs
that is simplicial with respect to some combinatorial triangulation of Dk. Our goal is to
homotope f rel boundary such that its image lies in X. So assume that the image of f does
not lie in X.

By (i), there exists a simplex σ of Dk such that f(σ) ∈ B. Pick σ such that its dimension
is maximal among all simplices with f(σ) ∈ B. Consider a simplex τ of LinkDk(σ). We
claim that f(τ) ∈ L(f(σ),B). Indeed, the maximality of dim(σ) implies that f(τ) is in
LinkY (f(σ)). If f(τ) does not lie in L(f(σ),B), then f(σ)∗f(τ) contains a face η with η ∈ B
and with η containing vertices of f(τ). But then (ii) implies that f(σ)∪ η ∈ B, contradicting
the maximality of dim(σ).

Since f takes ∂Dk to X, the simplex σ does not lie in ∂Dk. It follows that LinkDk(σ) is a
combinatorial triangulation of a (k−dim(σ)− 1) sphere, and by (iii) the complex L(f(σ),B)
is (d− dim(σ)− 1)-connected. Since

k − dim(σ)− 1 ≤ d− dim(σ)− 1,

we can find a combinatorial triangulation of Dk−dim(σ) agreeing with that of LinkDk(σ) ∼=
Sk−dim(σ)−1 on ∂Dk−dim(σ) and a simplicial map g : Dk−dim(σ) → L(f(σ),B) extending the
restriction of f to LinkDk(σ). We have

σ ∗ LinkDk (σ) ∼= Ddim(σ) ∗ Sk−dim(σ)−1 ∼= Dk

and

∂σ ∗ Dk−dim(σ) ∼= Sdim(σ)−1 ∗ Dk−dim(σ) ∼= Dk,
and also

∂ (σ ∗ LinkDk (σ)) = ∂σ ∗ LinkDk (σ)

and

∂
(
∂σ ∗ Dk−dim(σ)

)
= ∂σ ∗ ∂Dk−dim(σ) = ∂σ ∗ LinkDk(σ).
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In all of these = means equality of simplicial complexes and ∼= means homeomorphism. It
follows that we can homotope f so as to replace

f |σ∗LinkDk (σ) : σ ∗ LinkDk(σ)→ Y

with

(f |∂σ) ∗ g : ∂σ ∗ Dk−dim(σ) → f(σ) ∗ L(f(σ),B) ⊂ Y.
This eliminates σ, and by (ii) and the definition of L(f(σ),B) it does not introduce any new
simplices of dimension at least dim(σ) mapping to simplices in B. Repeating this over and
over, we can ensure that there are no simplices σ of Dk with f(σ) ∈ B, so by (i) we have
f(Dk) ⊂ X, as desired. �

5.2. Disc local-injectivity and bad simplices. We now discuss a more technical version
of Proposition 5.2 for proving the disc local injectivity property.

Proposition 5.3. Let Y be a simplicial complex with the disc local injectivity property up to
dimension d, and let X ⊂ Y be a subcomplex. Assume that there exists a set B of simplices
of Y with the following properties:

(i) A simplex of Y lies in X if and only if none of its faces are in B. In particular,
since simplices are faces of themselves no simplices of B lie in X.

(ii) If σ, σ′ ∈ B are such that σ ∪ σ′ is a simplex of Y , then σ ∪ σ′ ∈ B. Note that σ and
σ′ might share vertices, so σ ∪ σ′ might not be σ ∗ σ′.

(iii) For all σ ∈ B, there exists a subcomplex L̂(σ,B) of Y with L(σ,B) ⊂ L̂(σ,B) such
that the following holds:

a. We have ∂σ ∗ L̂(σ,B) ⊂ Y .

b. All simplices of ∂σ ∗ L̂(σ,B) that are in B lie in ∂σ.

c. The complex L̂(σ,B) has the disc local injectivity property up to dimension
(d− dim(σ)).

Then X has the disc local injectivity property up to dimension d.

Remark 5.4. We will use the disc local injectivity property to prove that spaces are highly
connected. However, it will play an essential role. Indeed, if we change the hypothesis (resp.
conclusion) of Proposition 5.3 from Y (resp. X) having the disc local injectivity property up
to dimension d to Y (resp. X) being d-connected, then the proof would not work. We will
highlight the issue in the proof below with a footnote. �

Proof of Proposition 5.3. For some k ≤ d, let f : Sk → X be a locally injective simplicial
map with respect to some combinatorial triangulation of Sk. Since Y has the disc local
injectivity property up to dimension d, there exists a combinatorial triangulation of Dk+1

agreeing with our given triangulation of Sk on the boundary and an extension of f to a
locally injective simplicial map F : Dk+1 → Y . Assume that the image of F does not lie in
X.

By (i), there exists a simplex σ of Dk+1 such that F (σ) ∈ B. Pick σ such that its dimension
is maximal among all simplices with F (σ) ∈ B. Just like in the proof of Proposition 5.2,
we can use (ii) along with the maximality of dim(σ) to deduce that F takes LinkDk+1(σ) to
L(F (σ),B).

Since F takes ∂Dk+1 to X, the simplex σ does not lie in ∂Dk+1. Thus the complex
LinkDk+1(σ) is a combinatorial triangulation of a (k − dim(σ)) sphere, and by (iii).c the

complex L̂(F (σ),B) has the disc local injectivity property up to dimension (d− dim(F (σ))).
Since F is locally injective and

k − dim(σ) ≤ d− dim(σ),
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we can find a combinatorial triangulation of Dk−dim(σ)+1 agreeing with that of LinkDk+1(σ) ∼=
Sk−dim(σ) on ∂Dk−dim(σ)+1 and a locally injective map G : Dk−dim(σ)+1 → L̂(F (σ),B) extend-
ing the restriction of F to LinkDk+1(σ).

We have

σ ∗ LinkDk+1 (σ) ∼= Ddim(σ) ∗ Sk−dim(σ) ∼= Dk+1

and

∂σ ∗ Dk−dim(σ)+1 ∼= Sdim(σ)−1 ∗ Dk−dim(σ)+1 ∼= Dk+1,

and also

∂ (σ ∗ LinkDk+1 (σ)) = ∂σ ∗ LinkDk+1 (σ)

and

∂
(
∂σ ∗ Dk−dim(σ)+1

)
= ∂σ ∗ ∂Dk−dim(σ)+1 = ∂σ ∗ LinkDk+1(σ).

In all of these = means equality of simplicial complexes and ∼= means homeomorphism. By
By (iii).a,9 we can modify10 F so as to replace

F |σ∗LinkDk+1 (σ) : σ ∗ LinkDk+1(σ)→ Y

with

(F |∂σ) ∗G : ∂σ ∗ Dk−dim(σ)+1 → ∂(F (σ)) ∗ L̂(F (σ),B) ⊂ Y.

This eliminates σ, and by (ii) and (iii).b it does not introduce any new simplices of dimension
at least dim(σ) mapping to simplices in B. Repeating this over and over, we can ensure
that there are no simplices σ of Dk+1 with F (σ) ∈ B, so by (i) we have F (Dk+1) ⊂ X, as
desired. �

6. The complex of spheres S(Mn,b, H)

We now begin our discussion of the topology of the sphere complex and its subcomplexes.

6.1. Basic definitions. We start by recalling the following two definitions from the intro-
duction.

Definition 6.1. Let Mn,b be the connect sum of n copies of S2 × S1 with b disjoint open
balls removed. Our convention is that the connect sum of 0 copies of S2 × S1 is the unit S3

for the connect sum operation, so M0,b is S3 with b disjoint open balls removed. �

Definition 6.2. A 2-sphere embedded in Mn,b is essential if it is not homotopic to ∂Mn,b

or a point. A rank-k sphere system in Mn,b is a set {S0, . . . , Sk} of distinct isotopy classes
of essential 2-spheres embedded in Mn,b that can be realized disjointly. �

Throughout this paper, we will identify isotopic essential 2-spheres and sphere systems.

9This is where local injectivity is key. If F were not locally injective, then F might not take ∂σ to ∂F (σ),
so the map (F |∂σ) ∗G might not be continuous.

10Unlike in previous such arguments, we cannot achieve this modification by a homotopy since L̂(F (σ),B)
might not lie in LinkY (F (σ)).
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6.2. Compatibility with free factors. We will need to study the relationship between
sphere systems and free factors in π1(Mn,b). We start with the following two definitions.

Definition 6.3. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b. Consider a sphere
system σ = {S0, . . . , Sk} in Mn,b. Let N be an open regular neighborhood of S0 ∪ · · · ∪ Sk.
The components of the complement of σ are the connected components of Mn,b \N . The
component X of the complement with ∗ ∈ ∂X is the basepoint-containing component of the
complement. �

Letting the notation be as in the previous definition, if X is the basepoint-containing
component of the complement of σ, then the map π1(X, ∗)→ π1(Mn,b, ∗) is injective and
its image is a free factor of π1(Mn,b, ∗) ∼= Fn. We will identify π1(X, ∗) with its image in
π1(Mn,b, ∗). This allows the following definition.

Definition 6.4. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. A sphere system σ in Mn,b is H-compatible if the following
holds. Let X be the basepoint-containing component of the complement of σ. We then
require that H ⊂ π1(X, ∗). �

6.3. Complex of compatible spheres. This finally brings us to the following key definition.

Definition 6.5. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. The complex of H-compatible spheres in Mn,b, denoted
S(Mn,b, H), is the simplicial complex whose k-simplices are isotopy classes of H-compatible
rank-k sphere systems in Mn,b. If H = 1, then we will sometimes omit it from our notation
and just write S(Mn,b). �

This complex was introduced by Hatcher–Vogtmann [19, 20], who proved the following
theorem:

Theorem 6.6 (Hatcher–Vogtmann, [20]). For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and
let H < π1(Mn,b, ∗) ∼= Fn be a free factor. Assume that rk(H) ≤ n− 1. Then S(Mn,b, H) is
contractible.

Remark 6.7. For H = 1, this was originally proved by Hatcher [18]. �

Remark 6.8. In the published version [19] of their paper, Hatcher–Vogtmann only prove the
case b = 1 of Theorem 6.6. In 2022, they posted the revised version [20] to the arXiv. This
version fixes an error (see Remark 7.3 below), and contains the general case of Theorem
6.6. This is done in two steps: [20, Theorem 2.1] proves the case b = 1, and [20, Lemma 2.3]
proves that S(Mn,b+1, H) deformation retracts to a complex isomorphic to S(Mn,b, H) for
b ≥ 1, proving the case b ≥ 2. �

Remark 6.9. Theorem 6.6 fails for n = 0. Since π1(M0,b, ∗) = 1, the free factor H is irrelevant
here and we will omit it. The complex S(M0,b) is (b− 4)-dimensional, and it turns out that
it is homotopy equivalent to a wedge of (b− 4)-dimensional spheres, i.e., is (b− 5)-connected.
See11 [22, proof of Theorem 3.1]. �

6.4. Low complexity cases. When dim(H) = n− 1 and b = 1, the complex S(Mn,b, H)
has a particularly simple description:

Lemma 6.10. For some n ≥ 1, fix a basepoint ∗ ∈ ∂Mn,1 and let H < π1(Mn,1, ∗) ∼= Fn be
a free factor with rk(H) = n− 1. The following then hold:

11This corresponds to the case k = 0 and C = ∅ of part (1) of the proof of [22, Theorem 3.1]. This theorem
concerns a complex of discs and spheres, but since C = ∅ we are not allowing any discs and it reduces to our
complex.
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• If n = 1 (so H = 1), then S(M1,1) consists of a single vertex corresponding to a
nonseparating sphere in M1,1.
• If n ≥ 2, then S(Mn,1, H) consists of two vertices joined by an edge, one vertex

corresponding to a nonseparating sphere and the other to a separating sphere.

Proof. We start by proving that S(M1,1) consists of a single vertex corresponding to a
nonseparating sphere in M1,1. First note that by basic 3-manifold topology (in particular,
the uniqueness of the connect sum decomposition, see [31] or [24, §3]), we have the following:

• Any separating 2-sphere in M1,1 is parallel to ∂M1,1, and is thus not essential. It
follows that the vertices of S(M1,1) correspond to nonseparating 2-spheres.
• Cutting M1,1 open along a nonseparating 2-sphere yields M0,3. From this, we see

that the mapping class group group of M1,1 acts transitively on the set of isotopy
classes of nonseparating 2-spheres in M1,1. For more details, see the discussion of
the “change of coordinates” principle from [12, §1.3], which concerns the related case
of mapping class groups of surfaces.

Combining these two facts, it is enough to prove that there is a single mapping class group
orbit of nonseparating 2-sphere in M1,1. As we discussed in the introduction, Laudenbach
[26, 27] proved that the action of the mapping class group of M1,1 on the set of isotopy
classes of 2-spheres factors through Aut(F1). We have Aut(F1) = Z/2, generated by the
automorphism of F1 = Z that takes 1 to −1. This clearly fixes the “core” sphere of

M1,1 = S2 × S1 \ ball,

so this is the unique nonseparating 2-sphere up to isotopy, as desired.
We now turn to the case n ≥ 2. Theorem 6.6 says that S(Mn,1, H) is connected, so to

prove the lemma it is enough to prove that each vertex S of S(Mn,1, H) is contained in a
unique edge. The vertex S is an essential H-compatible 2-sphere in Mn,1. If S is a separating
2-sphere, then since rk(H) = n− 1 we must have that S separates Mn,1 into components
X and Y with X ∼= M1,1 and Y ∼= Mn−1,2. The component Y is the basepoint-containing
component and satisfies π1(Y ) = H. An edge in S(Mn,1, H) must connect S to an essential
2-sphere contained in X, and by the previous paragraph there is a unique such essential
2-sphere. It follows that S is contained in a unique edge, as desired.

If instead S is a nonseparating 2-sphere, then there is a single component Z of the
complement of S. We have Z ∼= Mn−1,3, and π1(Z, ∗) = H. An edge in S(Mn,1, H) must
connect S to an H-compatible separating 2-sphere T in Z. Letting S′ and S′′ be the
boundary components of Z that are parallel to S in Mn,1, such a T must be the boundary
of a regular neighborhood of S′ ∪ S′′ ∪ α, where α is an arc connecting S′ to S′′. By the
lightbulb trick (see, e.g., [33, Exercise 9.F.4]), there is a unique such arc up to isotopy, so
there is unique such T , as desired. �

6.5. Dual graph to vertex. The following notion will be very useful.

Definition 6.11. Let σ be a sphere system in Mn,b. The dual graph of σ, denoted Γ(σ), is
following graph:

• The vertices of Γ(σ) are the components of the complement of σ.
• The edges of Γ(σ) are in bijection with the spheres in σ, and the edge corresponding

to S ∈ σ connects the vertices corresponding to the components on either side of
S. �

These satisfy the following lemma:
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Lemma 6.12. Let σ be a sphere system in Mn,b. Let X1, . . . , Xr be the components of the
complement of σ. Write Xi

∼= Mni,bi. Then

n = rk(π1(Γ(σ))) +
r∑
i=1

ni.

Proof. Immediate. �

6.6. Cohen–Macaulay. Using Theorem 6.6, we can prove the following.

Theorem 6.13. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn
be a free factor. Assume that (n, b) 6= (1, 1) and that rk(H) ≤ n − 1. Then S(Mn,b, H) is
weakly Cohen–Macaulay of dimension n− rk(H).

Remark 6.14. The conditions that (n, b) 6= (1, 1) and rk(H) ≤ n− 1 are necessary. Indeed,
if rk(H) = n then S(Mn,1, H) is the empty set, and thus is not weakly Cohen–Macaulay of
dimension 0. Similarly, by Lemma 6.10 the complex S(M1,1) is a single point. Thus while it
is contractible (and hence connected), it is not weakly Cohen–Macaulay of dimension 1. �

Proof of Theorem 6.13. Given our assumptions, Theorem 6.6 implies that S(Mn,b, H) is
contractible, and thus is certainly (n− 1− rk(H))-connected. Letting σ = {S0, . . . , Sk} be a
k-simplex of S(Mn,b, H), we must prove that LinkS(Mn,b,H)(σ) is (n−2−k−rk(H))-connected.
What we will prove is that either

• LinkS(Mn,b,H)(σ) is contractible, or

• n = k + 1 + rk(H) and LinkS(Mn,b,H)(σ) is nonempty, or

• n ≤ k + rk(H).

This will imply that LinkS(Mn,b,H)(σ) is always (n− 2− k − rk(H))-connected.
Let the components of the complement of σ be X1, . . . , Xr with X1 the basepoint-

containing component. We then have that

LinkS(Mn,b,H)(σ) = S(X1, H) ∗ S(X2) ∗ · · · ∗ S(Xr).

Write Xi = Mni,bi . If rk(H) ≤ n1−1, then Theorem 6.6 implies that S(X1, H) is contractible,
so LinkS(Mn,b,H)(σ) is contractible. Similarly, if ni ≥ 1 for any 2 ≤ i ≤ r, then Theorem

6.6 implies that S(Xi) is contractible, so LinkS(Mn,b,H)(σ) is contractible. We can therefore

assume without loss of generality that n1 = rk(H) and that ni = 0 for 2 ≤ i ≤ r. Our
goal then reduces to proving that n ≤ k + 1 + rk(H), and that if n = k + 1 + rk(H) then
LinkS(Mn,b,H)(σ) is nonempty.

Letting Γ(σ) be the dual graph of σ, Lemma 6.12 implies that

n = rk(π1(Γ(σ))) +

r∑
i=1

ni = rk(π1(Γ(σ))) + rk(H).

Since σ contains (k + 1) spheres, the graph Γ(σ) has (k + 1) edges. It follows that
rk(π1(Γ(σ))) ≤ k + 1, so

n ≤ k + 1 + rk(H).

This is half of what we are trying to prove. What remains is to show that if this inequality
is an equality, then LinkS(Mn,b,H)(σ) is nonempty.

For our inequality to be an equality, we must have rk(π1(Γ(σ))) = k + 1. Since Γ(σ)
has (k + 1) edges, this can only happen if Γ(σ) has a single vertex and all the edges are
self-loops. In other words, there is only one component of the complement of σ, namely the
basepoint-containing component X1. We thus have

X1
∼= Mn−k−1,b+2k+2 and H = π1(X1).
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If either b ≥ 2 or k ≥ 1, then X1 has at least 4 boundary components, so X1 has an
H-compatible separating12 sphere that cuts off two boundary spheres and thus

LinkS(Mn,b,H)(σ) ∼= S(X1, H) 6= ∅.

If instead b = 1 and k = 0, then X1
∼= Mn−1,3. This is where we finally invoke our

assumption that (n, b) 6= (1, 1), which implies that X1 is not just a 3-holed sphere, so X1

has an H-compatible separating sphere that cuts off two boundary spheres and

LinkS(Mn,b,H)(σ) ∼= S(X1, H) 6= ∅. �

7. The nonseparating complex of spheres N (Mn,b, H)

The next step is to consider several subcomplexes of S(Mn,b, H).

7.1. Nonseparating simplices. We start with the following.

Definition 7.1. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. The nonseparating complex of H-compatible spheres
in Mn,b, denoted N (Mn,b, H), is the subcomplex of S(Mn,b, H) whose k-simplices are H-
compatible rank-k sphere systems {S0, . . . , Sk} in Mn,b such that S0 ∪ · · · ∪ Sk does not
separate Mn,b. �

7.2. High connectivity. The following theorem of Hatcher–Vogtmann [19, 20] says that
these complexes are highly connected:

Theorem 7.2 (Hatcher–Vogtmann [20]). For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and
let H < π1(Mn,b, ∗) ∼= Fn be a free factor. Then, N (Mn,b, H) is (n− rk(H)− 2)-connected.

Remark 7.3. Hatcher–Vogtmann’s published proof of Theorem 7.2 in [19] has a mistake: [19,
Lemma 2.3] claims that N (Mn,b+1, H) deformation retracts to N (Mn,b, H), which is false
(e.g., N (M1,1) is a single point, but N (M1,2) is an infinite discrete set). The issue is that
their deformation retraction uses simplices that do not lie in N (Mn,b+1, H). In 2022, they
posted a revised version [20] of their paper to the arXiv correcting this mistake. Theorem
7.2 is [20, Theorem 2.5]. �

7.3. Cohen–Macaulay. Using Theorem 7.2, we can prove the following.

Theorem 7.4. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn
be a free factor. Then N (Mn,b, H) is weakly Cohen–Macaulay of dimension n− rk(H)− 1.

Proof. Immediate from Theorem 7.2 along with the fact that if σ = {S0, . . . , Sk} is a
k-simplex of N (Mn,b, H), then

LinkN (Mn,b,H)(σ) ∼= N (Mn−k−1,b+2k+2, H).

The point here is that the only connected component of the complement of σ is homeomorphic
to Mn−k−1,b+2k+2. �

8. The augmented nonseparating complex of spheres AN (Mn,b, H) I: sphere
local injectivity

We now add some simplices to the nonseparating complex of spheres N (Mn,b, H) to
increase its connectivity by one.

12For later use, note that if k ≥ 1 then we can choose the H-compatible separating sphere in X1 such
that it becomes nonseparating in the larger 3-manifold Mn,b.
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8.1. Separating core. This requires the following definition.

Definition 8.1. Let σ be a sphere system on Mn,b with dual graph Γ(σ). The separating
core of σ is the face σ′ of σ consisting of all S ∈ σ such that the edge of Γ(σ) corresponding
to S is not a loop. The nonseparating periphery of σ is the face of σ consisting of all S ∈ σ
such that the edge of Γ(σ) corresponding to S is a loop. �

Another way to think about this is as follows. Let σ be a sphere system on Mn,b with
separating core σ′ and nonseparating periphery σ′′. As simplices of S(Mn,b), we have
σ = σ′ ∗ σ′′. The following hold:

• Any proper face of σ′ has strictly fewer components in its complement than σ′.
• Let X1, . . . , Xr be the components of the complement of σ′. The link of σ′ in S(Mn,b)

is thus
S(X1) ∗ · · · ∗ S(Xr).

Then σ′′ lies in the subcomplex

N (X1) ∗ · · · ∗ N (Xr) ⊂ S(X1) ∗ · · · ∗ S(Xr).

8.2. Augmented complex. The definition of our complex is as follows.

Definition 8.2. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. The augmented nonseparating complex of H-compatible
spheres in Mn,b, denoted AN (Mn,b, H), is the subcomplex of S(Mn,b, H) whose k-simplices
are H-compatible rank-k sphere systems σ = {S0, . . . , Sk} in Mn,b with the following
properties:

• Each Si is a nonseparating sphere.
• Let σ′ be the separating core of σ. Then either σ′ is empty (so σ does not separate
Mn,b), or σ′ has two components X and Y in its complement. Moreover, in the latter
case if X is the basepoint-containing component then π1(Y ) = 1. �

8.3. Connectivity theorem. Recall that Theorem 7.2 says that N (Mn,b, H) is (n− 2−
rk(H))-connected. Our main theorem about the augmented complexes is as follows:

Theorem 8.3. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn be
a free factor. Assume that rk(H) ≤ n− 1. Then AN (Mn,b, H) is (n− 1− rk(H))-connected.

8.4. A stronger result. Some degenerate cases of Theorem 8.3 are immediate:

• If b = 1 and rk(H) = n− 1, then by Lemma 6.10 the complex AN (Mn,b, H) consists
of a single vertex corresponding to a nonseparating curve. It is thus contractible,
and in particular is (n− 1− rk(H)) = 0 connected.

We thus can exclude these cases. In the remaining ones, we will actually prove the following
stronger result.

Theorem 8.4. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn
be a free factor. Assume that rk(H) ≤ n − 1 and that if rk(H) = n − 1, then b ≥ 2.
Then AN (Mn,b, H) has the sphere and disc local injectivity properties up to dimension
(n− 1− rk(H)).

By Lemma 3.7, this will imply that AN (Mn,b, H) is (n− 1− rk(H))-connected.

Remark 8.5. Theorem 8.4 is weaker than saying that these complexes are weakly Cohen–
Macaulay. We do not know if this strong condition holds. �

We divide the proof of Theorem 8.4 into two parts: in the rest of this section, we prove
sphere local injectivity (see Lemma 8.6), and in §10 – §11 we prove disc local injectivity (see
Lemma 11.3).
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8.5. Sphere local injectivity. The following result takes care of the sphere local injectivity
part of Theorem 8.4. We note that the hypothesis that b ≥ 2 if rk(H) = n− 1 is not needed
here, but will be needed for the disc local injectivity property.

Lemma 8.6. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn be
a free factor. Assume that rk(H) ≤ n−1. Then AN (Mn,b, H) has the sphere local injectivity
property up to dimension (n− 1− rk(H)).

Proof. Theorem 7.4 says that N (Mn,b, H) is weakly Cohen–Macaulay of dimension (n −
1− rk(H)), so by Lemma 4.4 it has the sphere local injectivity property up to dimension
(n − 1 − rk(H)). It follows that it is enough to prove that for k ≤ n − 1 − rk(H), every
map Sk → AN (Mn,b, H) is homotopic to one whose image lies in N (Mn,b, H). Letting
d = n− 1− rk(H), this is equivalent to proving that the inclusion

N (Mn,b, H) ↪→ AN (Mn,b, H)

is d-connected. This will follow from Proposition 5.2 once we verify its hypotheses. The
input to Proposition 5.2 is a set B of “bad simplices”, which for us will be as follows:

• The set B consist of all simplices σ = {S0, . . . , Sk} of AN (Mn,b, H) such that the
union of the Si separates Mn,b, but no proper subset of σ separates Mn,b. In other
words, σ is its own separating core.

We now verify each hypothesis of Proposition 5.2 in turn.
Condition (i) says that a simplex of AN (Mn,b, H) lies in N (Mn,b, H) if and only if none

of its faces are in B, which is immediate from the definitions.
Condition (ii) says that if σ, σ′ ∈ B are such that σ ∪ σ′ is a simplex of AN (Mn,b, H),

then σ ∪ σ′ ∈ B. In fact, since a simplex of AN (Mn,b, H) can separate Mn,b into at most 2
components, the only way that σ ∪ σ′ can be a simplex of AN (Mn,b, H) is for σ = σ′, so
this condition is trivial.

Condition (iii) says that for all σ ∈ B, the complex L(σ,B) defined in Definition 5.1 is

d− dim(σ)− 1 = (n− 1− rk(H))− dim(σ)− 1 = n− 2− rk(H)− dim(σ)

connected. For our B, the complex L(σ,B) has the following concrete description. Let X and
Y be the components of the complement of σ, with X the basepoint-containing component.
Since π1(Y ) = 1, all 2-spheres in Y separate Y . We thus have

(8.1) L(σ,B) = N (Y ) ∗ N (X,H) = N (X,H).

Write X ∼= Mn′,b′ . Theorem 7.2 says that L(σ,B) = N (X,H) is (n′ − 2− rk(H))-connected,
so to prove that it is (n−2− rk(H)−dim(σ))-connected we must prove that n = n′+dim(σ).

The dual graph Γ(σ) has two vertices corresponding to X and Y and dim(σ) + 1 edges, so

π1(Γ(σ)) ∼= Fdim(σ).

Lemma 6.12 now says that

n = rk(π1(Γ)) + rk(π1(X)) + rk(π1(Y )) = dim(σ) + n′ + 0,

as desired. �

9. The complex of nonseparating spheres Sns(Mn,b, H)

Before we can prove disc local injectivity for the augmented nonseparating sphere complex,
we must study the subcomplex of the sphere complex where vertices are nonseparating, but
where higher-dimensional simplices can separate.
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9.1. Nonseparating spheres, absolute version. The definition is as follows.

Definition 9.1. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. The complex of H-compatible nonseparating spheres in
Mn,b, denoted Sns(Mn,b, H), is the full subcomplex of S(Mn,b, H) whose vertices are the
isotopy classes of H-compatible essential nonseparating spheres in Mn,b. If H = 1, then we
will sometimes omit it from our notation and just write Sns(Mn,b). �

9.2. Relative version. Our main theorem about Sns(Mn,b, H) is that it is weakly Cohen–
Macaulay of dimension n − rk(H), just like S(Mn,b, H) (c.f. Theorem 6.13). A technical
issue that will arise when studying links in Sns(Mn,b, H) is that a sphere can separate a
submanifold of a 3-manifold without separating the whole manifold. We thus make the
following definition:

Definition 9.2. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. Let M be another connected 3-manifold with boundary
such that Mn,b is a submanifold of M . The complex of H-compatible M -nonseparating spheres
in Mn,b, denoted Sns(Mn,b,M,H), is the full subcomplex of S(Mn,b, H) whose vertices are
the isotopy classes of H-compatible essential spheres in Mn,b that do not separate M . If
H = 1, then we will sometimes omit it from our notation and just write Sns(Mn,b,M). �

9.3. Contractibility. The following is the analogue for Sns(Mn,b,M,H) of Theorem 6.6
for S(Mn,b, H):

Theorem 9.3. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn
be a free factor. Assume that rk(H) ≤ n− 1, and let M be another connected 3-manifold
with boundary such that Mn,b is a submanifold of M . Then Sns(Mn,b,M,H) is contractible.

Proof. The proof will be by induction on the pair (n, b), ordered lexicographically. For the
base case (n, b) = (1, 1), our assumption on H means that H = 1. By Lemma 6.10, the
complex

Sns(M1,1,M) = S(M1,1)

is a single vertex represented by a nonseparating sphere, and is thus contractible.
Assume, therefore, that (n, b) 6= (1, 1) and that the theorem is true whenever (n, b) is

smaller. Theorem 6.6 says that S(Mn,b, H) is contractible, so it is enough to prove that the
inclusion

Sns(Mn,b,M,H) ⊂ S(Mn,b, H)

is d-connected for all d ≥ 0. This will follow from Proposition 5.2 once we verify its
hypotheses. The input to Proposition 5.2 is a set B of “bad simplices”, which for us will be
as follows:

• Let B be the set of all simplices σ of S(Mn,b, H) such that each vertex of σ separates
the ambient manifold M (and thus is not a vertex of Sns(Mn,b,M,H)).

We now verify each hypothesis of Proposition 5.2 in turn.
Condition (i) says that a simplex of S(Mn,b, H) lies in Sns(Mn,b,M,H) if and only if none

of its faces are in B, which is immediate from the definitions.
Condition (ii) says that if σ, σ′ ∈ B are such that σ ∪ σ′ is a simplex of S(Mn,b, H), then

σ ∪ σ′ ∈ B. Again, this is immediate from the definitions.
Condition (iii) says that for all σ ∈ B, the complex L(σ,B) defined in Definition 5.1 is

(d− dim(σ)− 1)-connected for all d ≥ 0, i.e., is contractible. For our B, the complex L(σ,B)
has the following concrete description. Let X1, . . . , Xr be the components of the complement
of σ in Mn,b, with X1 the basepoint-containing component. We then have

(9.1) L(σ,B) = Sns(X1,M,H) ∗ Sns(X2,M) ∗ · · · ∗ Sns(Xr,M).
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To prove that L(σ,B) is contractible, it is enough to prove that at least one term in this
join is contractible.

WriteXi
∼= Mni,bi . Recall that we are inducting on the pair (n, b), ordered lexicographically.

Since Xi is a submanifold of Mn,b, we must have ni ≤ n. Moreover, if ni = n then since at

least one component of ∂Xi is an essential separating13 2-sphere in Mn,b and none of the
components of ∂Xi bound balls in Mn,b, it follows that we must have bi < b. In other words,
(ni, bi) is strictly less than (n, b) in the lexicographic ordering.

This might lead the reader to think that our inductive hypothesis applies to each Xi, and
thus that all the terms in (9.1) are contractible. However, there is an issue: this only works
if the corresponding complex satisfies the hypotheses of our theorem, and this might not
hold. Since we only need one term in (9.1) to be contractible, it is enough to prove that one
of the following two things hold:

(†) For some 2 ≤ i ≤ r, we have ni ≥ 1. Then the term

Sns(Xi,M) ∼= Sns(Mni,bi ,M)

of (9.1) satisfies the the hypothesis of our theorem, so by our inductive hypothesis is
contractible.

(††) We have n1 ≥ 1 and rk(H) ≤ n1 − 1. Then the term

Sns(X1,M,H) ∼= Sns(Mn1,b1 ,M,H)

of (9.1) satisfies the the hypothesis of our theorem, so by our inductive hypothesis is
contractible.

Assume that (†) does not hold, so ni = 0 for 2 ≤ i ≤ r. We will prove that (††) then holds.
Since each sphere in σ separates the manifold M , it also separates Mn,b. The dual graph
Γ(σ) is thus a tree. Lemma 6.12 therefore says that

n = rk(π1(Γ(σ))) +

r∑
i=1

ni = 0 + n1 +

r∑
i=2

0 = n1.

We thus have n1 = n, so n1 ≥ 1 and rk(H) ≤ n1 − 1 by assumption and (††) holds, as
desired. �

9.4. Cohen–Macaulay. Using Theorem 9.3, we can prove the following.

Theorem 9.4. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn
be a free factor. Assume that rk(H) ≤ n− 1, and if rk(H) = n− 1 then assume that b ≥ 2.
Then Sns(Mn,b, H) is weakly Cohen–Macaulay of dimension n− rk(H).

Remark 9.5. The conditions that rk(H) ≤ n− 1 and that if rk(H) = n− 1 then b ≥ 2 are
necessary. Indeed, if rk(H) = n then Sns(Mn,1, H) is the empty set, and thus is not weakly
Cohen–Macaulay of dimension 0. Similarly, if rk(H) = n− 1 then Lemma 6.10 implies that
the complex Sns(Mn,1) is a single point. Thus while it is contractible (and hence connected),
it is not weakly Cohen–Macaulay of dimension 1. �

Proof of Theorem 9.4. The proof is almost identical to that of Theorem 6.13, so we just
indicate the necessary changes:

• Use Theorem 9.3 in place of Theorem 6.6.
• The “relative” version of our complex arises as follows. Consider a simplex σ of
Sns(Mn,b, H). We wish to understand the link of σ. Let the components of the

13In fact, it has to separate the ambient manifold M , which is even stronger.
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complement of σ be X1, . . . , Xr with X1 the basepoint-containing component. We
then have

LinkSns(Mn,b,H)(σ) = Sns(X1,Mn,b, H) ∗ S(X2,Mn,b) ∗ · · · ∗ S(Xr,Mn,b)

since vertices of the link must not separate Mn,b (though they can separate the Xi).
• Finally, the last paragraph of the proof must be adjusted to ensure that the sphere

that arises does not separate Mn,b. The key point here is that the final sentence
(where b = 1 and k = 0) is not needed due to our assumption that b ≥ 2 if
rk(H) = n− 1. �

10. The augmented nonseparating complex of spheres AN (Mn,b, H) II:
expanded disc local injectivity

We now begin studying disc local injectivity for the augmented nonseparating complex of
spheres. The first step is to establish this for a slightly larger complex.

10.1. Basic definition. The definition of our complex is as follows.

Definition 10.1. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. The expanded augmented nonseparating complex of
H-compatible spheres in Mn,b, denoted AN ex(Mn,b, H), is the subcomplex of S(Mn,b, H)
whose k-simplices are H-compatible rank-k sphere systems {S0, . . . , Sk} in Mn,b with the
following properties:

• Each Si is a nonseparating sphere.
• The union S0 ∪ · · · ∪ Sk either does not separate Mn,b, or separates it into exactly

two components. �

We thus have AN (Mn,b, H) ⊂ AN ex(Mn,b, H).

10.2. Disc local injectivity property. Lemma 8.6 says that AN (Mn,b, H) has the sphere
local injectivity property up to dimension (n− 1− rk(H)) as long as rk(H) ≤ n− 1. The
same is true for AN ex(Mn,b, H), with a very similar proof. We will not need this, but we
will need the disc local injectivity property:

Lemma 10.2. For some n, b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H < π1(Mn,b, ∗) ∼= Fn
be a free factor. Assume that rk(H) ≤ n− 1 and that if rk(H) = n− 1, then b ≥ 2. Then
AN ex(Mn,b, H) has the disc local injectivity property up to dimension (n− 1− rk(H)).

Proof. Theorem 9.4 says that Sns(Mn,b, H) is weakly Cohen–Macaulay of dimension (n−
rk(H)), so by Lemma 4.4 it has the disc local injectivity property up to dimension d =
(n− 1− rk(H)). To prove the same for AN ex(Mn,b, H), it is enough to verify the conditions
of Proposition 5.3 for the inclusion

AN ex(Mn,b, H) ↪→ Sns(Mn,b, H).

The input to Proposition 5.3 is a set B of “bad simplices”, which for us will be as follows:

• The set B consist of all simplices σ = {S0, . . . , Sk} of Sns(Mn,b, H) such that the
union of the Si separates Mn,b into c ≥ 3 components, and all proper subsets of σ
separate Mn,b into fewer than c components. In particular, σ is its own separating
core.

Another way of describing this condition is that the dual graph Γ(σ) has at least 3 vertices
and none of its edges are loops. We now verify each hypothesis of Proposition 5.3 in turn.

Condition (i) says that a simplex of Sns(Mn,b, H) lies in AN ex(Mn,b, H) if and only if
none of its faces are in B, which is immediate from the definitions.
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Condition (ii) says that if σ, σ′ ∈ B are such that σ ∪σ′ is a simplex of Sns(Mn,b, H), then
σ ∪ σ′ ∈ B. This is also immediate from the definitions.

Condition (iii) says that for all σ ∈ B, there exists a subcomplex L̂(σ,B) of Sns(Mn,b, H)

with L(σ,B) ⊂ L̂(σ,B) that satisfies conditions (iii).a–(iii).c. Here L(σ,B) is the complex

defined in Definition 5.1. Fixing some σ ∈ B, we will take L̂(σ,B) = L(σ,B). The complex
L(σ,B) has the following concrete description. Let X1, . . . , Xr be the components of the
complement of σ, with X1 the basepoint-containing component. Then

L̂(σ,B) = L(σ,B) = N (X1, H) ∗ N (X2) ∗ · · · ∗ N (Xr).

We verify (iii).a–(iii).c for this as follows.

Condition (iii).a says that ∂σ ∗ L̂(σ,B) ⊂ Sns(Mn,b, H). In fact, L̂(σ,B) is contained in

the link of σ, so σ ∗ L̂(σ,B) ⊂ Sns(Mn,b, H).

Condition (iii).b says that all simplices of ∂σ ∗ L̂(σ,B) that are in B lie in ∂σ. Again,

even more is true: all simplices of σ ∗ L̂(σ,B) that are in B lie in σ.

Finally, Condition (iii).c says that L̂(σ,B) has the disc local injectivity property up to
dimension

d− dim(σ) = (n− 1− rk(H))− dim(σ).

Let Xi
∼= Mni,bi . Theorem 7.4 says that N (X1, H) is weakly Cohen–Macaulay of dimension

n1 − 1− rk(H), so by Lemma 4.4 it has the disc local injectivity property up to dimension
n1 − 2 − rk(H). Similarly, for 2 ≤ i ≤ r the complex N (Xi) has the disc local injectivity
property up to dimension ni − 2. Applying Lemma 3.8, we see that

L̂(σ,B) = L(σ,B) = N (X1, H) ∗ N (X2) ∗ · · · ∗ N (Xr)

has the disc local injectivity property up to dimension

(n1 − 2− rk(H)) + (n2 − 2) + · · ·+ (nr − 2) + 2(r − 1) = (n1 + · · ·+ nr)− 2− rk(H).

We must prove that this is at least n− 1− rk(H)− dim(σ), i.e., that

n ≤ n1 + · · ·+ nr − 1 + dim(σ).

Letting Γ(σ) be the dual graph of σ, Lemma 6.12 says that

n = rk(π1(Γ(σ))) + n1 + · · ·+ nr.

Thus reduces us to proving that

rk(π1(Γ(σ))) ≤ dim(σ)− 1.

The graph Γ(σ) has r vertices and dim(σ) + 1 edges. It follows that

1− rk(π1(Γ)) = r − dim(σ)− 1 and hence rk(π1(Γ)) = 2 + dim(σ)− r.

This reduces our desired inequality to

2 + dim(σ)− r ≤ dim(σ)− 1,

i.e., r ≥ 3. This is exactly the defining criterion for simplices in B: they must have at least
3 components in their complement. The lemma follows. �

11. The augmented nonseparating complex of spheres AN (Mn,b, H) III: disc
local injectivity

We now prove disc local injectivity for the augmented nonseparating complex of spheres
AN (Mn,b, H).
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11.1. Filtration. Our goal is to deduce this from disc local injectivity of the expanded
complex AN ex(Mn,b, H). To do this, we consider a sequence of complexes that interpolate
between AN ex(Mn,b, H) and AN (Mn,b, H):

Definition 11.1. For some n ≥ 0 and b ≥ 1 and m ≥ 0, fix a basepoint ∗ ∈ ∂Mn,b and
let H < π1(Mn,b, ∗) ∼= Fn be a free factor. The rank-m expanded augmented nonseparating
complex of H-compatible spheres in Mn,b, denoted ANm

ex(Mn,b, H), is the subcomplex of
S(Mn,b, H) whose k-simplices are H-compatible rank-k sphere systems σ = {S0, . . . , Sk} in
Mn,b with the following properties:

• Each Si is a nonseparating sphere.
• Let σ′ be the separating core of σ. Then either σ′ is empty (so σ does not separate
Mn,b), or σ′ has two components X and Y in its complement. Moreover, in the latter
case if X is the basepoint-containing component then rk(π1(Y )) ≤ m. �

We have the following:

Lemma 11.2. For some n ≥ 0 and b ≥ 1, fix a basepoint ∗ ∈ ∂Mn,b and let H <
π1(Mn,b, ∗) ∼= Fn be a free factor. Then for all simplices σ of AN ex(Mn,b, H) and all compo-

nents Z of the complement of σ, we have rk(π1(Z)) ≤ n−1. In particular, AN n−1
ex (Mn,b, H) =

AN ex(Mn,b, H).

Proof. Since all vertices of σ are nonseparating spheres, removing the edge of the dual graph
Γ(σ) corresponding to any one of them does not separate Γ(σ). This implies that Γ(σ) has
a nontrivial fundamental group. The lemma now follows from Lemma 6.12. �

It follows from this that we have

AN (Mn,b, H) = AN 0
ex(Mn,b, H) ⊂ AN 1

ex(Mn,b, H)

⊂ · · · ⊂ AN n−1
ex (Mn,b, H) = AN ex(Mn,b, H).

11.2. Disc local injectivity. Our result is as follows. The case m = 0 of it completes the
proof of Theorem 8.4.

Lemma 11.3. For some n, b ≥ 1 and 0 ≤ m ≤ n − 1, fix a basepoint ∗ ∈ ∂Mn,b and let
H < π1(Mn,b, ∗) ∼= Fn be a free factor. Assume that rk(H) ≤ n−1 and that if rk(H) = n−1,
then b ≥ 2. Then ANm

ex(Mn,b, H) has the disc local injectivity property up to dimension
(n− 1− rk(H)).

Proof. The proof is by reverse induction on m. Lemma 11.2 says that AN n−1
ex (Mn,b, H) =

AN ex(Mn,b, H), so the base case m = n− 1 is provided by Lemma 10.2. Assume, therefore,

that 0 ≤ m < n− 1 and that ANm+1
ex (Mn,b, H) has the disc local injectivity property up to

dimension d = n− 1− rk(H). To prove the same for ANm
ex(Mn,b, H), it is enough to verify

the conditions of Proposition 5.3 for the inclusion

ANm
ex(Mn,b, H) ↪→ ANm+1

ex (Mn,b, H).

The input to Proposition 5.3 is a set B of “bad simplices” of ANm+1
ex (Mn,b, H), which for us

will be the set of simplices σ satisfying the following:

• σ separates Mn,b into two components X and Y , and
• σ equals its own separating core, and
• if X is the basepoint-containing component of the complement, then rk(π1(Y )) =
m+ 1.

We now verify each hypothesis of Proposition 5.3 in turn.
Condition (i) says that a simplex σ of ANm+1

ex (Mn,b, H) lies in ANm
ex(Mn,b, H) if and

only if none of its faces are in B. Since no simplices of B lie in ANm
ex(Mn,b, H), if a face of σ
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lies in B then σ does not lie in ANm
ex(Mn,b, H). Conversely, assume that no face of σ lies in

B. We will prove that σ lies in ANm
ex(Mn,b, H). If σ does not separate Mn,b, then it trivially

lies in ANm
ex(Mn,b, H). If σ does separate, then let σ′ be its separating core. Let X and Y

be the components of the complement of σ′, with X the basepoint-containing component.
Since σ is a simplex of ANm+1

ex (Mn,b, H), we have rk(π1(Y )) ≤ m+ 1. Moreover, since σ′

does not lie in B this must be a strict inequality, i.e., rk(π1(Y )) ≤ m. It follows that σ lies
in ANm

ex(Mn,b, H), as desired.

Condition (ii) says that if σ, σ′ ∈ B are such that σ ∪ σ′ is a simplex of ANm+1
ex (Mn,b, H),

then σ ∪ σ′ ∈ B. In fact, since simplices of ANm+1
ex (Mn,b, H) can separate Mn,b into at most

2 components, this can only happen if σ = σ′, so there is nothing to prove.

Condition (iii) says that for all σ ∈ B, there is a subcomplex L̂(σ,B) of ANm+1
ex (Mn,b, H)

with L(σ,B) ⊂ L̂(σ,B) that satisfies conditions (iii).a–(iii).c. Here L(σ,B) is the complex

defined in Definition 5.1. Fixing some σ ∈ B, before we can define L̂(σ,B) we must give
a concrete description of L(σ,B). Let X and Y be the components of the complement of
σ, with X the basepoint-containing component. The group π1(Y ) thus has rank m+ 1. It
follows from the definitions that

L(σ,B) = LinkANm+1
ex (Mn,b,H)(σ) = N (X,H) ∗ N (Y ).

We then define

L̂(σ,B) = N (X,H) ∗ AN ex(Y ) = N (X,H) ∗ ANm
ex(Y ),

where the final equality follows from Lemma 11.2. We verify (iii).a–(iii).c for this as follows.

Condition (iii).a says that ∂σ ∗ L̂(σ,B) ⊂ ANm+1
ex (Mn,b, H). This follows immediately

from the fact that proper faces of σ do not separate Mn,b.

Condition (iii).b says that all simplices of ∂σ ∗ L̂(σ,B) that are in B lie in ∂σ. Even more

is true: since proper faces of σ do not separate Mn,b, no simplices of ∂σ ∗ L̂(σ,B) lie in B.

Finally, Condition (iii).c says that L̂(σ,B) has the disc local injectivity property up to
dimension

d− dim(σ) = (n− 1− rk(H))− dim(σ).

Let X ∼= Mn′,b′ and Y ∼= Mn′′,b′′ , so by definition n′′ = m+ 1. It follows from Lemma 10.2
that

ANm
ex(Y ) = AN ex(Y )

has the disc local injectivity property up to dimension n′′ − 1. Also, Theorem 7.4 says that
N (X,H) is weakly Cohen–Macaulay of dimension n′ − 1− rk(H), so by Lemma 4.4 it has
the disc local injectivity property up to dimension n′ − 2− rk(H). Applying Lemma 3.8, we
see that

L̂(σ,B) = N (X,H) ∗ ANm
ex(Y )

has the disc local injectivity property up to dimension

(n′ − 2− rk(H)) + (n′′ − 1) + 2 = (n′ + n′′)− 1− rk(H).

We must prove that this is at least n− 1− rk(H)− dim(σ), i.e., that

n′ + n′′ ≥ n− dim(σ).

In fact this is an equality. To see this note that the dual graph Γ(σ) has two vertices
corresponding to X and Y and dim(σ) + 1 edges. It follows that rk(π1(Γ(σ))) = dim(σ).
Applying Lemma 6.12, we see that

n = rk(π1(Γ(σ))) + n′ + n′′ = dim(σ) + n′ + n′′.

The lemma follows. �
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12. A presentation of the Steinberg module for Aut(Fn)

In this section, we use our high connectivity results for the augmented nonseparating
sphere complex to construct a presentation for the Steinberg module St(Fn), whose definition
we will recall below.

12.1. Generalities about posets. Let A be a poset. Let Aop be the opposite poset of A.
Recall that the geometric realization |A| is the simplicial complex whose k-simplices are
chains a0 < · · · < ak in A. The simplicial complexes |A| and |Aop| are isomorphic. A key
example is as follows:

Definition 12.1. Let X be a simplicial complex. The poset of simplices of X, denoted
P(X), is the poset whose elements are simplices of X ordered by inclusion. �

For a simplicial complex X, the geometric realization | P(X)| is the first barycentric
subdivision of X. We will also need the following two notions:

Definition 12.2. Let A be a poset and a ∈ A. The height of a, denoted ht(a), is the
maximal k ≥ 0 such that there exists a chain a0 < a1 < · · · < ak = a. �

Example 12.3. If X is a simplicial complex and σ ∈ P(X), then ht(σ) = dim(σ). �

Definition 12.4. Let φ : A→ B be a map of posets and b ∈ B. The poset fiber of φ over b,
denoted φ≤b, is the subposet of A consisting of all a ∈ A such that φ(a) ≤ b. �

The following is the case m = 1 of Church–Putman [9, Proposition 2.3], which builds on
work of Quillen [32]. Recall from Definition 4.1 that a simplicial complex is Cohen–Macaulay
of dimension d if it is d-dimensional and weakly Cohen–Macaulay of dimension d.

Proposition 12.5 (Church–Putman [9, Proposition 2.3]). Fix an abelian group R. Let
φ : A→ B be a map of posets. Assume that |B| is Cohen–Macaulay of dimension d ≥ 0 and
that for all b ∈ B, the geometric realization of the poset fiber |φ≤b| is ht(b)-connected. Then

φ∗ : H̃i(|A|;R)→ H̃i(|B|;R) is an isomorphism for i ≤ d.

12.2. Relating the free factor complex to the sphere complex. Recall from the
introduction that the free factor complex Tits(Fn) is the geometric realization of the
following poset:

Definition 12.6. Let Tits(Fn) be the poset of proper nontrivial free factors of Fn, ordered
by inclusion. �

Hatcher–Vogtmann [19, 20] proved that Tits(Fn) = |Tits(Fn)| is homotopy equivalent to
a wedge of (n− 2)-dimensional spheres, and by definition

St(Fn) = H̃n−2(Tits(Fn);Q) = H̃n−2(|Tits(Fn)|;Q).

We will relate this to the sphere complex S(Mn,1) and its subcomplexes. Fix ∗ ∈ ∂Mn,1.
Recall from the introduction that the action of Diff+(Mn,1, ∂Mn,1) on S(Mn,1) factors
through

Aut(π1(Mn,1, ∗)) ∼= Aut(Fn).

We thus get an action of Aut(Fn) on S(Mn,1). The group Aut(Fn) also acts on St(Fn), and
while relating St(Fn) to S(Mn,1) and its subcomplexes we will keep track of these group
actions.

We introduce the following subcomplex of the augmented nonseparating sphere complex
AN (Mn,1).
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Definition 12.7. For n ≥ 0, let AN ′(Mn,1) be the subcomplex of AN (Mn,1) consisting of
simplices σ such that the basepoint-containing component of the complement of σ has a
nontrivial fundamental group. �

Having done this, we can now make the following key definition:

Definition 12.8. For some n ≥ 0, fix a basepoint ∗ ∈ ∂Mn,1. Identify π1(Mn,1, ∗) with
Fn. The complement map is the map of posets Υ: P(AN ′(Mn,1))→ Tits(Fn)op defined as
follows. Consider σ ∈ P(AN ′(Mn,1)), and let X be the basepoint-containing component of
the complement of σ. Then

Υ(σ) = π1(X, ∗) ⊂ π1(Mn,1, ∗) = Fn. �

Remark 12.9. This definition makes sense since σ is a simplex of AN ′(Mn,1), so the basepoint-
containing component X of the complement of σ is not simply connected and Υ(σ) = π1(X, ∗)
is not trivial. The map Υ cannot be defined on the whole complex AN (Mn,1). �

Remark 12.10. The target of the complement map is the opposite poset Tits(Fn)op because
if σ and σ′ are simplices of AN ′(Mn,1) with σ ⊂ σ′, then the basepoint-containing component
X of the complement of σ contains the basepoint-containing component X ′ of the complement
of σ′, so

Υ(σ) = π1(X, ∗) ⊃ π1(X ′, ∗) = Υ(σ′). �.

Remark 12.11. The action of Aut(Fn) on S(Mn,1) preserves the subcomplexes AN (Mn,1)
and AN ′(Mn,1), and the map Υ: P(AN ′(Mn,1))→ Tits(Fn)op is Aut(Fn)-equivariant. �

Identify

H̃n−2(AN ′(Mn,1);Q) with H̃n−2(| P(AN ′(Mn,1))|;Q)

and

St(Fn) = H̃n−2(Tits(Fn);Q) with H̃n−2(|Tits(Fn)|;Q) = H̃n−2(|Tits(Fn)op|;Q).

We then have the following:

Lemma 12.12. For some n ≥ 2, fix a basepoint ∗ ∈ ∂Mn,1. Identify π1(Mn,1, ∗) with Fn.
Then the complement map Υ: P(AN ′(Mn,1))→ Tits(Fn)op induces an Aut(Fn)-equivariant
isomorphism

Υ∗ : H̃n−2(AN ′(Mn,1);Q)
∼=−→ St(Fn).

Proof. Since Υ is Aut(Fn)-equivariant (see Remark 12.11), the map Υ∗ is Aut(Fn)-equivariant.
To prove that it is an isomorphism, it is enough to show that the complement map

Υ: P(AN ′(Mn,1))→ Tits(Fn)op

satisfies the conditions of Proposition 12.5 with d = n− 2. The first of these hypotheses is
that |Tits(Fn)op| is Cohen–Macaulay of dimension (n− 2), which was proved14 by Hatcher–
Vogtmann [19, 20, §4]. The second hypothesis is that for all H ∈ Tits(Fn)op, the poset
fiber Υ≤H is ht(H)-connected. This poset fiber is the poset of simplices σ of AN ′(Mn,1)
such that the fundamental group of the basepoint-containing component of the complement
contains H. By definition, this is precisely the poset of simplices of AN (Mn,1, H) – note
that there is no ′ in this since H 6= 1, so simplices of AN (Mn,1, H) automatically have a
non-simply-connected basepoint-containing component of their complement. Theorem 8.3
says that AN (Mn,1, H) and hence its poset of simplices P(AN (Mn,1, H)) is (n− 1− rk(H))
connected. Since we are regarding H as an element of the opposite poset Tits(Fn)op, we
have ht(H) = n− 1− rk(H), so the lemma follows. �

14They actually proved that |Tits(Fn)| is Cohen–Macaulay of dimension (n − 2), but the geometric
realization of a poset is isomorphic to the geometric realization of its opposite poset.
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12.3. Relative homology. We now study the topology of AN ′(Mn,1). The starting point
is the following:

Lemma 12.13. For n ≥ 2, we have an Aut(Fn)-equivariant isomorphism

Hn−1(AN (Mn,1),AN ′(Mn,1);Q) ∼= H̃n−2(AN ′(Mn,1);Q).

Proof. In this proof, all homology has Q-coefficients, though we remark that Q can be
replaced by any abelian group. The long exact sequence of the pair (AN (Mn,1),AN ′(Mn,1))
contains the segment

H̃n−1(AN (Mn,1))→ Hn−1(AN (Mn,1),AN ′(Mn,1))

∂→ H̃n−2(AN ′(Mn,1))→ H̃n−2(AN (Mn,1)).

Since n ≥ 2, Theorem 8.3 implies that

H̃n−1(AN (Mn,1)) = H̃n−2(AN (Mn,1)) = 0.

The lemma follows. �

To understand this relative homology group, the key result is as follows. Recall that
AN (Mn,1) is n-dimensional.

Lemma 12.14. Fix some n ≥ 2. The following then hold:

• AN ′(Mn,1) is (n− 1)-dimensional.
• The (n− 2)-skeletons of AN ′(Mn,1) and AN (Mn,1) are equal.
• The only (n − 1)-simplices of AN (Mn,1) that do not lie in AN ′(Mn,1) are the

(n− 1)-simplices of N (Mn,1).

Proof. Since AN ′(Mn,1) is a subcomplex of AN (Mn,1), it is enough to characterize which
simplices of AN (Mn,1) lie in AN ′(Mn,1). Let σ be a k-simplex of AN (Mn,1). Write
σ = {S0, . . . , Sk}. Assume first that the union of the Si does not separate Mn,1, so σ is a
simplex of N (Mn,1). We thus have k ≤ n− 1, and the only component of the complement of
σ is homeomorphic to Mn−(k+1),1+2(k+1). This is simply-connected if and only if k = n− 1,

so we see that σ lies in AN ′(Mn,1) if and only if k ≤ n− 2, as claimed.
Assume next that the union of the Si does separate Mn,1. Since σ is a simplex of

AN (Mn,1), there are two components X and Y of the complement of σ. Moreover, letting
X be the basepoint-containing component we have π1(Y ) = 1. The dual graph Γ(σ) has
two vertices and (k + 1) edges, so its fundamental group is Fk. Letting m be such that
π1(X, ∗) ∼= Fm, Lemma 6.12 says that

n = π1(Γ(σ)) +m+ 0 = k +m.

The simplex σ lies in AN ′(Mn,1) if and only if m ≥ 1, and the above equality shows that
this holds if and only if k ≤ n− 1. The lemma follows. �

This has the following consequence:

Lemma 12.15. For n ≥ 2 and k ≥ 0, we have Aut(Fn)-equivariant isomorphisms

Ck(AN (Mn,1),AN ′(Mn,1);Q) =


Cn−1(N (Mn,1);Q) if k = n− 1,

Cn(AN (Mn,1);Q) if i = n,

0 otherwise.

Proof. Since AN (Mn,1) is n-dimensional, we have

Ck(AN (Mn,1),AN ′(Mn,1);Q) = 0 if k ≥ n+ 1.

The remainder of the lemma follows from Lemma 12.14. �
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Combining these results we obtain the following presentation of St(Fn).

Theorem 12.16. For n ≥ 2, we have an exact sequence of Aut(Fn)-modules

Cn(AN (Mn,1);Q)→ Cn−1(N (Mn,1);Q)→ St(Fn)→ 0.

Proof. In this proof, all homology has Q-coefficients. Combining Lemmas 12.12 and 12.13,
we get an Aut(Fn)-equivariant isomorphism

Hn−1(AN (Mn,1),AN ′(Mn,1)) ∼= St(Fn).

To compute this relative homology group, consider the relevant terms in the simplicial chain
complex:

Cn(AN (Mn,1),AN ′(Mn,1)) −→Cn−1(AN (Mn,1),AN ′(Mn,1))

−→ Cn−2(AN (Mn,1),AN ′(Mn,1)).

Lemma 12.15 shows that these terms are equal to

Cn(AN (Mn,1))→ Cn−1(N (Mn,1))→ 0.

The theorem follows. �

12.4. Flatness. The following lemma shows that this presentation can be used to compute
the low-dimensional rational homology of Aut(Fn) with coefficients in St(Fn):

Lemma 12.17. Fix some n ≥ 2. Then Cn(AN (Mn,1);Q) and Cn−1(N (Mn,1);Q) are flat
Z[Aut(Fn)]-modules.

Proof. It is enough to prove that if σ is either an n-simplex of AN (Mn,1) or an (n−1)-simplex
of N (Mn,1), then the Aut(Fn)-stabilizer of σ is finite. See, e.g., [7, Lemma 3.2].15 Since the
action of the mapping class group Mod(Mn,1) on these simplicial complexes factors through
Aut(Fn), this will follow if we can prove that the Mod(Mn,1)-stabilizer Gσ of σ is finite.

Since every n-simplex of AN (Mn,1) contains an (n− 1)-simplex of N (Mn,1), it is enough
to deal with the case where σ is an (n− 1)-simplex of N (Mn,1). Write σ = {S0, . . . , Sn−1}.
Define G′σ to be the subgroup of Mod(Mn,1) consisting of mapping classes f satisfying the
following condition:

• For each 0 ≤ i ≤ n− 1, the mapping class f can be realized by a diffeomorphism of
Mn,1 that fixes a tubular neighborhood of Si.

The group G′σ is a finite-index subgroup16 of Gσ, so it is enough to prove that G′σ is finite.
Cutting Mn,1 open along the Si yields M0,2n+1. Reversing this, there is a homomorphism
ψ : Mod(M0,2n+1) → Mod(Mn,1) induced by the map taking diffeomorphisms of M0,2n+1

that are the identity on ∂M0,2n+1 and gluing boundary components together in pairs. The
image of ψ is G′σ, so we are reduced to proving that Mod(M0,2n+1) is a finite group.

In fact, Laudenbach ([26, 27]; see [25] for an alternate approach using a “Birman exact
sequence”) proved that Mod(M0,2n+1) ∼= (Z/2)2n, generated by sphere twists about 2n of
the boundary components. There is no need to take the sphere twist about the remaining
boundary component since the product of sphere twists about all the boundary components
of M0,2n+1 is trivial; see [23, p. 214–215] for a simple proof of this. The lemma follows. �

15The key ingredients in the proof are Shapiro’s Lemma and the fact that finite groups have trivial
homology in positive degrees with respect to coefficients that are vector spaces over fields of characteristic 0.

16This uses the fact that homotopy implies ambient isotopy for collections of pairwise non-homotopic
disjoint spheres in Mn,1, which was proved by Laudenbach [26, 27]. The differences between Gσ and G′σ
are that elements of Gσ can permute the Si and also “flip them around”, i.e., reverse the directions of arcs
transverse to them.



28 ZACHARY HIMES, JEREMY MILLER, SAM NARIMAN, AND ANDREW PUTMAN

13. Proof of main theorem

We close the paper by finally proving Theorem A which asserts that Hk(Aut(Fn); St(Fn)) =
0 for k ∈ {0, 1} and n ≥ 2.

Proof of Theorem A. Let n ≥ 2, and consider the presentation of St(Fn) from Theorem
12.16:

Cn(AN (Mn,1);Q)→ Cn−1(N (Mn,1);Q)→ St(Fn)→ 0.

By Lemma 12.17, both Cn(AN (Mn,1);Q) and Cn−1(N (Mn,1);Q) are flat Z[Aut(Fn)]-
modules. Complete this to a flat resolution of St(Fn):

· · · → F2 → Cn(AN (Mn,1);Q)→ Cn−1(N (Mn,1);Q)→ St(Fn)→ 0.

For a group G and a Z[G]-module M , write MG for the G-coinvariants of M . We can use our
flat resolution to compute H•(Aut(Fn); St(Fn)), which is the homology of the chain complex

· · · → (F2)Aut(Fn) → (Cn(AN (Mn,1);Q))Aut(Fn) → (Cn−1(N (Mn,1);Q)Aut(Fn) → 0.

To prove the theorem, it suffices to prove that

(Cn(AN (Mn,1);Q))Aut(Fn) = (Cn−1(N (Mn,1);Q)Aut(Fn) = 0.

The vector space Cn(AN (Mn,1);Q) (resp. Cn−1(N (Mn,1);Q)) is spanned by oriented n-
simplices of AN (Mn,1) (resp. (n− 1)-simplices of N (Mn,1)). For such an oriented simplex σ,
we will prove below in Lemma 13.1 that there exists some f ∈ Aut(Fn) such that f(σ) equals
σ, but with the opposite orientation. This will imply that the images of σ and −σ in the
Aut(Fn)-coinvariants are equal, and thus that the image of 2σ in the Aut(Fn)-coinvariants is
0. Since we are working over Q, this implies that the image of σ in the Aut(Fn)-coinvariants
is 0, so these coinvariants are 0, as desired. �

Lemma 13.1. Fix some n ≥ 2. Let σ be either an oriented n-simplex of AN (Mn,1) or an
oriented (n− 1)-simplex of N (Mn,1). Then there exists some f ∈ Aut(Fn) such that f(σ)
equals σ, but with the opposite orientation.

Proof. For k ≥ 2, we will prove that this holds more generally for all oriented (k − 1)-
simplices σ of the complex AN (Mn,1). The action of the mapping class group Mod(Mn,1)
on AN (Mn,1) factors through Aut(Fn), so it is enough to find some φ ∈ Mod(Mn,1) such
that φ(σ) equals σ, but with the opposite orientation. Let σ = {S1, . . . , Sk}, ordered in a
way compatible with the orientation of σ.

There are either one or two components in the complement of σ. Assume first that there
is one component in the complement, which we call X. We then have that X ∼= Mn−k,2k+1.
Enumerate the components of ∂X as {∂, β1, β′1, . . . , βk, β′k}, where ∂ is the component of
∂Mn,1 and βi and β′i are the two components that glue together to form Si. We can then
find an orientation-preserving diffeomorphism ψ : X → X such that

ψ(β1) = β2 and ψ(β2) = β1 and ψ(β′1) = β′2 and ψ(β′2) = β′1

and such that
ψ|∂ = ψ|βi = ψ|β′i = id for 3 ≤ i ≤ k.

Isotoping ψ if necessary to make sure its behavior on β1 ∪ β′1 matches up with its behavior
on β2 ∪ β′2, we can glue the boundary components of X back together and get from ψ an
induced diffeomorphism φ : Mn,1 →Mn,1 that swaps S1 and S2 while fixing Si for 3 ≤ i ≤ k.
It follows that φ takes σ to σ but with the opposite orientation, as desired.

Assume now that there are two components X and Y in the complement of σ, with X
the basepoint-containing component. For some r ≥ 3 and h ≥ 0 with r + h = k, we have

Y ∼= M0,r and X ∼= Mn−k+1,1+r+2h.
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The condition r ≥ 3 holds since all the Si are nonseparating and pairwise non-isotopic.
Enumerate the components of ∂X and ∂Y as

{∂, β1, . . . , βr, δ1, δ′1, . . . , δh, δ′h} and {β′1, . . . , β′r},
respectively, where the enumeration is chosen such that the following hold when X and Y
are glued together to form Mn,1:

• ∂ is the component of ∂Mn,1.
• βi ⊂ ∂X and β′i ⊂ ∂Y are glued together to form a sphere in {S1, . . . , Sk}.
• δj ⊂ ∂X and δ′j ⊂ ∂X are glued together to form a sphere in {S1, . . . , Sk}.

Let Sa (resp. Sb) be the sphere in {S1, . . . , Sk} that is formed when β1 is glued to β′1 (resp.
β2 is glued to β′2). We can then find orientation-preserving diffeomorphisms ψ1 : X → X
and ψ2 : Y → Y such that

ψ1(β1) = β2 and ψ1(β2) = β1 and ψ2(β
′
1) = β′2 and ψ2(β

′
2) = β′1

and such that

ψ1|∂ = ψ1|βi = ψ1|δj = ψ1|δ′j = ψ2|β′i = id for 3 ≤ i ≤ r and 1 ≤ j ≤ h.

Isotoping ψ1 and ψ2 if necessary to make sure their behavior on the boundaries match up,
we can glue the boundary components of X and Y back up and get from ψ1 and ψ2 an
induced diffeomorphism φ : Mn,1 →Mn,1 that swaps Sa and Sb while fixing Si for 1 ≤ i ≤ k
with i 6= a, b. It follows that φ takes σ to σ but with the opposite orientation, as desired. �
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