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1 Introduction

Let Zg , be an oriented genus g surface with b boundary components and p punctures and let
Mod(Zf;_ ») be its mapping class group, that is, the group of isotopy classes of orientation—preserving
diffeomérphisms of X , that fix the boundary components and punctures pointwise (we will omit
b or p when they are zero). A long—standing conjecture of Ivanov (see [6] for a recent discussion)
says that for g > 3, the group Mod(Zg_’ ») does not virtually surject onto Z. In other words, if I is a
finite-index subgroup of Mod(EQ »)» then Hy (I; R) = 0.

The goal of this note is to offer some evidence for this conjecture. If G is a group and g € G, then
we will denote by [g|¢ the corresponding element of H; (G;R). Also, for a simple closed curve Y on
Zgb, we will denote by 7y the corresponding right Dehn twist. Observe that if I" is any finite-index
subgroup of Mod;b, then 7} € Mod; , for some n > 1. Our first result is the following.

Theorem A (Powers of twists vanish). For some g >3, letT" < Mod(Zé7 p) Satisfy [Mod(Eg p) ] <
oo and let 'y be a simple closed curve on Zg p- Pickn > 1 such that Ty' € T'. Then [T}}']r = 0.

Remark. After this paper was written, Bridson informed us that in unpublished work, he had proven
a result about mapping class group actions on CAT(0) spaces that implies Theorem A. Bridson’s
work will appear in [3].

We use this to verify Ivanov’s conjecture for a class of examples. For a long time, the only
positive evidence for Ivanov’s conjecture was a result of Hain [5] that says that it holds for all finite—
index subgroups containing the Torelli group .¥ g »» that is, the kernel of the action of Mod(Z(‘;7 b)

on H;(X,;7Z) induced by filling in all the punctures and boundary components. The group .# g{b
contains the Johnson kernel ; »» Which is the subgroup generated by Dehn twists about separating
curves. A result of Johnson [7] says that # 5 » 18 an infinite-index subgroup of . §,b-

For a subgroup I of Mod(Zf;b), denote by K(I') the subgroup of ' %" ’gi , generated by the set

{7y | v a separating curve, n € Z, and Ty’ € I'}.

If 7 g‘b <T, then K(I') =T Nt g »» but the converse does not hold. Our second result is the
following.

Theorem B (Subgroups containing large pieces of Johnson kernel). For some g > 3, let I’ <
Mod(Zg_b) satisfy [Mod(Zgb) : T] <oo. Assume that [T N ), : K(I')] < eo. Then Hy (I;R) = 0.
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As a corollary, we obtain the following result, which was recently proven by Boggi [2] via a
difficult algebro-geometric argument under the assumption b = p = 0.

Corollary C (Subgroups containing Johnson kernel). For some g > 3, let I' < Mod(Z{’;b) satisfy
[Mod (X} ) : T] < oo. Assume that X'y, <T. Then H;(I;R) = 0.

Remark. McCarthy [11] proved that Ivanov’s conjecture fails in the case g = 2.

Acknowledgments. I wish to thank Martin Bridson, Benson Farb, Thomas Koberda, Dan Mar-
galit, and Ben Wieland for useful comments and conversations. I also wish to thank Dongping

Zhuang for showing me how to slightly weaken the hypotheses in my original version of Theorem
B.

2 Notation and basic facts about group homology

If M is a G-module, then Mg will denote the coinvariants of the action, that is, the quotient of M
by the submodule generated by the set {x — g(x) | x € M, g € G}. This appears in the 5-term exact
sequence [4, Corollary VII.6.4], which asserts the following. If

1 K G 10 1
is a short exact sequence of groups, then for any ring R, there is an exact sequence
HQ(G;R) E— HQ(Q;R) E— (H](K;R))Q E— H](G;R) E— H](Q;R) — 0.

If G, < G are groups satisfying [G] : G3] < « and R is a ring, then for all k there exists a
transfer map of the form ¢ : Hy(G1;R) — Hy(G2; R) (see, e.g., [4, Chapter II1.9]). The key property
of ¢ (see [4, Proposition I11.9.5]) is that if i : Hi(G2;R) — Hy(Gi;R) is the map induced by the
inclusion, then iot : Hy(G1;R) — Hi(G1;R) is multiplication by [G; : G2]. In particular, if R = R,
then we obtain a right inverse ———— to i. This yields the following standard lemma.

[GliGz]

Lemma 2.1. Let G, < G| be groups satisfying [Gy : Gy < 0. For all k, the map Hy(G2;R) —
Hi(G1;R) is surjective.

3 Proof of Theorem A

Let n > 1 be the smallest integer such that 7, € I".

We first claim that there exists a subsurface S — Zﬁ. , Whose genus is at least 2 with the following
property. Let i : Mod(S) — Mod(Z{;’b) be the induced map (“extend by the identity”’). Then there
exists some boundary component 3 of S such that i(7g ) = Ty. There are two cases. If y is nonsep-
arating, then let S be the complement of a regular neighborhood of y. Observe that § = 22,’717 bi2s
so the genus of S is at least 2. If instead ¥ is separating, then let S be the component of Zgb cut
along Y whose genus is maximal. Since g > 3, this subsurface must have genus at least 2. The claim
follows.



Define I" = i~!(T"). We have Ty € I, and it is enough to show that [TB"]p =0. Let S be the

result of gluing a punctured disc to B and let T be the image of I in Mod(S). There is a diagram
of central extensions

=1

1 Z r —— T — 1
P |
1 Z Mod(S) —— Mod(S) —— 1

with Z < Mod(S) and Z < I'" generated by Ty and Tg', respectively. The last 4 terms of the corre-
sponding diagram of 5-term exact sequences are

H,(T';R) LR H(;R) —— HTGR) —— 0
[ 2 | |
H>(Mod(S);R) —2 R H; (Mod(S);R) —— H;(Mod(S);R) — 0

We remark that there are no nontrivial coinvariants in these sequences since our extensions are
central. We must show that f; is a surjection. Since S has genus at least 2, we have H; (Mod(S);R) =
0 (see, e.g., [10]), so f3 is a surjection. Since [Mod(S) : T'] < oo, Lemma 2.1 implies that f; is a
surjection, so fj is a surjection, as desired.

4 Proof of Theorem B

4.1 Two facts about Sp,,(Z)

We will need two standard facts about finite-index subgroups I" of Sp,,(Z), both of which follow
from the fact that I is a lattice in Sp,,(R).

For the first, since Sp,,(R) is a connected simple Lie group with finite center and real rank g,
the group I'" has Kazhdan’s property (T) when g > 2 (see, e.g., [13, Theorem 7.1.4]). One standard
property of groups with property (T) is that they have no nontrivial homomorphisms to R (see, e.g.,
[13, Theorem 7.1.7]). Combining these facts, we obtain the following theorem.

Theorem 4.1. For some g > 2, let I' < Sp,,(Z) satisfy [Spy(Z) : I'] < eo. Then H; (I;R) = 0.

For the second, since szg(R) is a connected noncompact simple real algebraic group, we can
apply the Borel density theorem (see, e.g., [13, Theorem 3.2.5]) to deduce that I" is Zariski dense
in Spy, (R). This implies that any finite dimensional nontrivial irreducible Sp,,(R)-representation
V must also be an irreducible I'-representation; indeed, if V/ was a nontrivial proper I'-submodule
of V, then the subgroup of Sp,,(R) preserving V' would be a proper subvariety of Sp,,(R) con-
taining I'. Recall that the ring of coinvariants Vr of V under I is the quotient V /K, where K =
(x—g(x) |xeV,geT). Since K # 0, we can apply Schur’s lemma to deduce that K =V, i.e. that
Vr = 0. We record this fact as the following theorem.

Theorem 4.2. For some g > 1, let I' < Spy,(Z) satisfy [Spyg(Z) : T] < oo and let V be a nontrivial
irreducible Sp,,(IR)-representation. Then Vi = 0.
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Figure 1: a—f. Curves needed for proof of Lemma 4.3

4.2 Two preliminary lemmas

We will need two lemmas. The first is the following, which slightly generalizes a theorem of
Johnson [8].

Lemma 4.3. For g > 3, we have fgb/l/gb >~ (AH)/H @ H*™P, where H = H,(%4; 7).

Proof. Since ;b contains all twists about boundary curves, we can assume that b = 0.
Building on work of Johnson [9], Hain [5] proved that

H,(#7:R) = (\’Hg) /Hg ® HE,

where Hr = H;(Z4;R). Also, Johnson [9, Lemma 2] proved that for x € % P, we have [x] o= 0
(Johnson only considered the case where p = 0, but his argument works in general). It follows that

Hy (52 / 2" R) = (N Hp) /Hy & HY. (1)

We will prove the lemma by induction on p. The base case p = 0 is a theorem of Johnson [8].
Assume now that p > 0 and that the lemma is true for all smaller p. Fixing a puncture * of X%, work
of Birman [1] and Johnson [9] gives an exact sequence

1 —— m(Z5 %) I I,

where the map .¥§ — .¥ g_l comes from “forgetting the puncture *”. Quotienting out by .22, we
obtain an exact sequence

I —— mE ) /(@ )N HD) —— I D —— P 1

By induction, we have
_ 1 ~ 3 _
I b = (NH)/JHOHP ™

Set A =m; (X0 %)/ (m (2L, %) N#F). We will prove that A is a quotient of H. We will then be
able to conclude that .%/ §_1 | H §_1 acts trivially on A, so #8 /! is the abelian group

(NH)/HeHP '@ A.

Using (1), a simple dimension count will then imply that A cannot be a proper quotient of H, and
the lemma will follow.

The element of .#% corresponding to & € T (Zi,’*l ,%) “drags” * around &. As shown in Figures
1.a-b, a simple closed curve y € m(ZQ’*l,*) corresponds to 7y, TY;1 € /%, where v and v, are
the boundary components of a regular neighborhood of y. In particular, if ¥ is a simple closed

separating curve, then as shown in Figures 1.c—d, the corresponding element of .# g is a product of
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separating twists. Since [T (Zg,’_] , *),nl(Eg_l ,*)] is generated by simple closed separating curves
(see, e.g., [12, Lemma A.1]), we deduce that [nl(ZIg’*l,*),nl(ngl,*)] C Jtl():g*l,*) N}, Thus
A=m (") /(my(Z071 %) N.2'7) is a quotient of H; (267! Z). Finally, as shown in Figures 1.e—
f, all simple closed curves that are homotopic into punctures are also contained in 7, (X5 - k)N g ,
so we conclude that A is a quotient of H = H; (X,;7Z), as desired. O

For the second lemma, define 07 , = Mody , /%7 ,.
Lemma 4.4. For some g > 3, let Q' < Qf;’b satisfy | f)’?b : Q'] <eo. Then Hi(Q';R) =0.

Proof. Restricting the short exact sequence

e s v Spyg(Z) —— 1
to Q', we obtain a short exact sequence

1 B (04 [ 1,

where B and @l are finite index subgroups of .# g’ ol (’; » and Sp2g(Z), respectively. The last 3 terms
of the associated 5-term exact sequence are

(Hi(B;R))y —— Hi(Q;R) —— Hy(QsR) —— 0.

By Theorem 4.1, we have H; (Q/;R) =0. Letting H = H; (X,;Z), Lemma 4.3 says that

I A= (AH)/H @ H"'P.

p

b We get that B is itself abelian and

Since B is a finite-index subgroup of .% 5 ol K
Hi(B;R) 2 BoR= (57, /A" ) @R = (N Hg)/Hp & Hy 7,

where Hg = H|(X4;R). Both (A*Hg)/Hg and Hy are nontrivial finite-dimensional irreducible rep-
resentations of Sp,,(R), so Theorem 4.2 implies that (H; (B;]R))@/ =0, and we are done. O

4.3 The proof of Theorem B

The last 3 terms of the 5-term exact sequence associated to the short exact sequence

I —— I'nx7y, r r/rnxy,) — 1
are
(H1(Fﬁ%?b;R))r/(m%gb) —— H|(T:R) —— Hl(r/(rm%gb);R) — 0.

By assumption, [Fﬂ%?b : K(T')] < oo, so Lemma 2.1 implies that the map H; (K(I');R) — H;(I'n
H g »; R) is surjective. Since K(I') is generated by powers of twists, Theorem A allows us to deduce
that i = 0. Also, I'/(I'N¢" ;b) is a finite-index subgroup of Q;b, so Lemma 4.4 implies that
H(T/(TNA7;,);R) = 0, and we are done.
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