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Abstract

We prove that every term of the lower central series and Johnson filtrations of the
Torelli subgroups of the mapping class group and the automorphism group of a free
group is finitely generated in a linear stable range. This was originally proved for the
second terms by Ershov and He.

1 Introduction

1.1 The main results

Let Σb
g be a compact oriented genus g surface with either b = 0 or b = 1 boundary compo-

nents. We will often omit b from our notation when b = 0. The mapping class group of Σb
g,

denoted Modbg, is the group of isotopy classes of orientation-preserving diffeomorphisms of

Σb
g that fix ∂Σb

g pointwise. The group Modbg acts on H1(Σb
g;Z) and preserves the algebraic

intersection form. Since b ≤ 1, the algebraic intersection form is a symplectic form, and
thus this action induces a homomorphism Modbg → Sp2g(Z) which is classically known to

be surjective. The kernel of this homomorphism is the Torelli group Ibg. We therefore have
a short exact sequence

1 −→ Ibg −→ Modbg −→ Sp2g(Z) −→ 1.

See [FMar] for a survey of the mapping class group and Torelli group.

Lower central series. For any group G, the lower central series of G is the sequence

G = γ1G ⊇ γ2G ⊇ γ3G ⊇ · · ·

of subgroups of G defined via the inductive formula

γ1G = G and γk+1G = [γkG,G] (k ≥ 1).

Equivalently, γk+1G is the smallest normal subgroup of G such that G/γk+1G is k-step
nilpotent. The lower central series of Ibg has connections to number theory (see, e.g., [Mat]),
to 3-manifolds (see, e.g., [GaL]), and to the Hodge theory of the moduli space of curves
(see, e.g., [Ha1, Ha2]). Despite these connections, the structure of the lower central series
of Ibg remains mysterious. One of the few structural results known about it is a theorem of
Hain [Ha2] giving a finite presentation for its associated Malcev Lie algebra.

Finite generation. A classical theorem of Dehn [De] from 1938 says that Modbg is finitely

generated. Since Ibg is an infinite-index normal subgroup of Modbg, there is no reason to
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expect Ibg to be finitely generated, and indeed McCullough and Miller [McCuMi] proved

that Ib2 is not finitely generated. However, a deep and surprising theorem of Johnson [J3]
says that Ibg is finitely generated for g ≥ 3.

Johnson kernel. The Johnson kernel, denoted Kbg, is the subgroup of Modbg generated by

Dehn twists about simple closed separating curves. Whether or not Kbg is finitely generated
for g ≥ 3 is a well-known question. The case b = 0 was first mentioned by McCullough and
Miller in 1986 [McCuMi], and appeared in Morita’s 1994 problem list [Mo1, Question 10]
and 1998 survey [Mo2, Problem 2.2(i)]. Johnson [J5] proved that [Ibg, Ibg] is a finite-index

subgroup of Kbg. It follows that Kbg is finitely generated if and only if [Ibg, Ibg] is finitely
generated.

Initially, various people conjectured that the answer to this finite generation question is
negative for all g ≥ 3. This expectation shifted towards a positive answer after the deep
work of Dimca and Papadima [DiPa], who proved that H1(Kg;Q) is finite dimensional for
g ≥ 4. Dimca, Hain, and Papadima [DiHaPa] later gave a description of H1(Kg;Q) as a
Ig/Kg-module for g ≥ 6, which recently was made more explicit by Morita–Sakasai–Suzuki
[MoSakSuz, Theorem 1.4].

Ershov and He [EH] recently proved that every subgroup of Ibg containing [Ibg, Ibg] (in

particular, [Ibg, Ibg] itself and Kbg) is indeed finitely generated for g ≥ 12. Our first theorem
extends this result to all g ≥ 4 via a new and simpler proof. Morita’s question is thus now
settled with the exception of the single case g = 3.

Theorem A. For g ≥ 4 and b ∈ {0, 1}, every subgroup of Ibg containing [Ibg, Ibg] is finitely

generated. In particular, [Ibg, Ibg] and Kbg are finitely generated.

Deeper in the lower central series. Another result in [EH] asserts that if k ≥ 3
and g ≥ 8k − 4, then the abelianization of any subgroup of Ibg containing γkIbg is finitely

generated. We will prove that any subgroup of Ibg containing γkIbg is actually finitely
generated (in fact, with a better range for g).

Theorem B. For k ≥ 3 and g ≥ 2k − 1 and b ∈ {0, 1}, every subgroup of Ibg containing

γkIbg is finitely generated. In particular, γkIbg is finitely generated.

Remark 1.1. Since every subgroup containing γ2Ibg also contains γ3Ibg, Theorem B implies
Theorem A except in the borderline case g = 4, where the more abstract arguments used
to prove Theorem B do not work. In addition to handling this one last case, our proof of
Theorem A is considerably simpler than our proof of Theorem B while using many of the
same ideas. It thus provides a concise introduction to our general approach.

The Johnson filtration. We want to highlight an important special case of Theorem B.
Fix some g ≥ 0 and b ∈ {0, 1}. Pick a basepoint ∗ ∈ Σb

g; if b = 1, then choose ∗ such that

it lies in ∂Σb
g. Define π = π1(Σb

g, ∗). Since Mod1
g is built from diffeomorphisms that fix ∂Σ1

g

and thus in particular fix ∗, there is a homomorphism Mod1
g → Aut(π). For closed surfaces,

there is no fixed basepoint, so we only obtain a homomorphism Modg → Out(π). In both
cases, this action preserves the lower central series of π, so we obtain homomorphisms

ψ1
g [k] : Mod1

g → Aut(π/γkπ) and ψg[k] : Modg → Out(π/γkπ).
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The kth term of the Johnson filtration of Modbg, denoted Jbg(k), is the kernel of ψbg[k + 1].
This filtration was introduced in 1981 by Johnson [J2]. Chasing the definitions, we find
that Jbg(1) = Ibg. Moreover, Johnson [J4] proved that Jbg(2) = Kbg. It is easy to see that

γkIbg ⊆ Jbg(k) for all k, but these filtrations are known not to be equal. In fact, Hain proved

that they even define inequivalent topologies on Ibg; see [Ha2, Theorem 14.6 plus §14.4].

Since γkIbg ⊆ Jbg(k), the following result is a special case of Theorem B.

Theorem C. For k ≥ 3 and g ≥ 2k−1 and b ∈ {0, 1}, the group Jbg(k) is finitely generated.

Automorphism groups of free groups. Let Fn be a free group on n generators. The
group Aut(Fn) acts on the abelianization F ab

n = Zn. The kernel of this action is the Torelli
subgroup of Aut(Fn) and is denoted IAn. A classical theorem of Magnus [Mag] from 1935
says that IAn is finitely generated for all n. Building on the aforementioned work of Dimca
and Papadima [DiPa] for the mapping class group, Papadima and Suciu [PaSu] proved that
H1([IAn, IAn];Q) is finite-dimensional for n ≥ 5.

Just like for the mapping class group, Ershov and He [EH] proved that any subgroup
of IAn containing [IAn, IAn] is finitely generated for n ≥ 4. They also proved that the
abelianization of any subgroup of IAn containing γk IAn is finitely generated for n ≥ 8k−4.
The following theorem extends these results from [EH] by both improving the range and
strengthening the conclusion; it is a direct counterpart of Theorems A and B.

Theorem D. For k ≥ 3 and n ≥ 4k − 3, or for k = 2 and n ≥ 4, every subgroup of IAn

containing γk IAn is finitely generated. In particular, γk IAn is finitely generated.

Remark 1.2. One can also consider the Torelli subgroup IOn of Out(Fn). The homomor-
phism IAn → IOn is surjective, so Theorem D also implies a similar result for γk IOn.

Johnson filtration for automorphism group of free group. Similarly to the mapping
class group, there is a natural homomorphism

ψn[k] : Aut(Fn)→ Aut(Fn/γkFn).

The kth term of the Johnson filtration for Aut(Fn), denoted JIAn(k), is the kernel of
ψn[k + 1]. This filtration was actually introduced by Andreadakis [A] in 1965, much
earlier than the Johnson filtration for the mapping class group. It is well known that
γk IAn ⊆ JIAn(k), and Bachmuth [Bac] and Andreadakis [A] independently proved that
γ2 IAn = JIAn(2). Recently Satoh [Sat2] proved that γ3 IAn = JIAn(3), improving an ear-
lier result of Pettet [Pe] saying that γ3 IAn has finite index in JIAn(3). However, recent
computer calculations of Bartholdi [Bar2] (making key use of results of Day and Putman
[DaP2]) show that these filtrations are not commensurable for n = 3. It is an open problem
whether or not these two filtrations are equal (or at least commensurable) for n ≥ 4. Since
γk IAn ⊆ JIAn(k), Theorem D in particular applies to all subgroups containing JIAn(k).
However, in this special case we are able to prove finite generation with a better range for
n.

Theorem E. For k ≥ 2 and n ≥ 2k + 3, every subgroup of IAn containing JIAn(k) is
finitely generated. In particular, JIAn(k) is finitely generated.

Remark 1.3. For k = 2 and k = 3 we have 2k + 3 ≥ 4k − 3, so in these cases Theorem E
follows from Theorem D.
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1.2 Outline of the proof

We now discuss the ideas behind the proofs of our theorems.

Initial reductions. We first point out two reductions which show that it suffices to prove
Theorem B for b = 1 and for the group γkI1

g .

• If G is a group satisfying γkIbg ⊆ G ⊆ Ibg, then letting G be the image of G in Ibg/γkIbg
we have a short exact sequence

1 −→ γkIbg −→ G −→ G −→ 1.

Since Ibg/γkIbg is a finitely generated nilpotent group, its subgroup G is also finitely

generated. To prove that G is finitely generated, it is thus enough to prove that γkIbg
is finitely generated.
• The homomorphism I1

g → Ig obtained by gluing a disc to ∂Σ1
g is surjective, and thus

its restriction γkI1
g → γkIg is also surjective. To prove that γkIg is finitely generated,

it is thus enough to prove that γkI1
g is finitely generated.

Similarly, it suffices to prove Theorem A for [I1
g , I1

g ], Theorem D for γk IAn, and Theorem E
for G = JIAn(k).

[n]-groups. All of our main theorems except Theorem A will be deduced from a gen-
eral result (Corollary 5.6 below) which deals with [n]-groups. Here [n] denotes the set
{1, 2, . . . , n} and an [n]-group is a group G equipped with a distinguished collection of sub-
groups {GI | I ⊆ [n]} such that GI ⊆ GJ whenever I ⊆ J . The groups Aut(Fn) and Mod1

n

along with their subgroups IAn and I1
n can be endowed with an [n]-group structure (see

Definitions 4.4 and 4.6); indeed, this was essentially done by Church and Putman [CP],
though the technical setup of that paper is different from ours.

Weakly commuting. The key property we shall exploit is that these [n]-group structures
are weakly commuting. By definition, an [n]-group G is weakly commuting if for all disjoint
I, J ⊆ [n], there exists some g ∈ G such that the subgroups GI and (GJ)g = g−1GJg
commute. A closely related (but different) notion of a partially commuting [n]-group played
an important role in [EH]. We also note that weakly commuting [n]-groups are unrelated
to the “weak FI-groups” that appeared in [CP], despite the similar terminology. We will
not use FI-groups or weak FI-groups in this paper.

BNS invariant. Let G be a finitely generated group. The BNS invariant is a powerful tool
for studying the finite generation of subgroups of G that contain the commutator subgroup
[G,G]. Let Hom(G,R) denote the set of additive characters of G, that is, homomorphisms
from G to (R,+). Let S(G) denote the set consisting of nonzero characters of G modulo
multiplication by positive scalars. As a topological space, this set is a sphere of dimen-
sion b1(G) − 1, where b1(G) is the first Betti number of G. Bieri, Neumann, and Strebel
[BieNeSt] introduced a certain subset Σ(G) of S(G), now called the BNS invariant of G,
that completely determines which subgroups of G containing [G,G] are finitely generated.
The larger Σ(G) is, the more such subgroups are finitely generated; in particular, all of
them (including [G,G] itself) are finitely generated if and only if Σ(G) = S(G).

Commuting elements. As we will make precise in Lemma 2.3 below, the presence of large
numbers of commuting generators for a group can force Σ(G) to be a very large subset of
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S(G). This sort of mechanism has been used to completely determine the BNS invariant
for several important classes of groups, including right-angled Artin groups [MeVW] and
pure braid groups [KoMcCaMe]. However, this mechanism is usually insufficient by itself
to show that Σ(G) = S(G) (as it must be since in the aforementioned classes of groups
the commutator subgroup [G,G] is never finitely generated except when it is trivial). The
obstacle is the existence of nonzero characters that vanish on almost all generators involved
in these commutation relations.

Computing the BNS invariant of Torelli groups. In [EH], it was proved that Σ(I1
n) =

S(I1
n) for n ≥ 12 and that Σ(IAn) = S(IAn) for n ≥ 4. The proof was based on the following

two properties of the groups G = I1
n and G = IAn:

• Similarly to right-angled Artin groups, G has a finite generating set in which many
pairs of elements commute.
• The group G also has a large group of outer automorphisms coming from conjugation

by Mod1
n and Aut(Fn), respectively.

In particular, the outer automorphism group of G contains a natural copy of SLn(Z). The
corresponding action of SLn(Z) on G/[G,G] induces an action on S(G) that is “sufficiently
mixing”, which implies in particular that every orbit on S(G) contains characters that do
not vanish on large numbers of generators. Combining this with the fact that Σ(G) is
invariant under Out(G), one deduces the equality Σ(G) = S(G).

Generalization to higher terms of the lower central series. To extend the finite
generation of [G,G] for G = I1

n or G = IAn to γkG with k > 2, we adopt an inductive
approach. Assuming by induction that γkG is finitely generated, the Bieri–Neumann–
Strebel criterion (see Theorem 2.2) says that to prove this for γk+1G we must show that
Σ(γkG) contains every character vanishing on γk+1G, or in other words that Σ(γkG) contains
the entire sphere S(γkG/γk+1G).

If one attempts to use the method of [EH] inductively, the following issue arises. In order
to apply this method to an [n]-group G, one needs to know that G has a finite generating
set consisting of elements of “small complexity”. Even if G possesses such a generating set,
it is impossible to deduce the same for [G,G] using the Bieri–Neumann–Strebel theorem,
as the proof of the latter is inherently ineffective. We resolve this issue with two ideas:

• The first is the notion of the commuting graph of an [n]-group (see Definition 5.2).
We will use commuting graphs to show that the following holds for n� k: if γkG is
finitely generated, then we can find a “nice” generating set for γkG which has enough
commuting elements. The latter implies that Σ(γkG) contains a large open subset of
S(γkG).
• The second provides a way to take this open subset and use it to show that Σ(γkG)

contains all of S(γkG/γk+1G). Similarly to [EH], this part of the proof uses the action
of Out(G) on S(γkG/γk+1G); however, instead of using combinatorial properties of
this action as in [EH], we will give an abstract argument involving algebraic geometry.
This aspect of our proof is reminiscent of [DiPa] and [PaSu], but unlike those two
papers we will only need very basic facts from algebraic geometry.

Outline. In the short §2 we record the properties of the BNS invariant that we will use.
Next, in §3 we will prove Theorem A. This proof foreshadows in a simplified setting many
of the ideas used in the remainder of the paper. In §4 we introduce the technical framework
we will use for the rest of the paper. We use this framework in §5 to prove a general result
that will imply our main theorems, and finally in §6 we prove those theorems.
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Conventions. Let G be a group. For g, h ∈ G, we write hg = g−1hg and [g, h] = g−1h−1gh.
Also, for a subgroup H ⊆ G and g ∈ G we write Hg = g−1Hg.

2 Preliminaries on the BNS invariant

Let G be a finitely generated group. This section contains a brief introduction to the BNS
invariant Σ(G) of G; see [Str] for a reference that proves all statements for which we do not
provide references. Recall from the introduction that Σ(G) is a subset of S(G), where

S(G) = (Hom(G,R) \ {0})/R×+

is the quotient of the set of nonzero characters Hom(G,R) \ {0} by the equivalence relation
that identifies two characters if they differ by multiplication by a positive scalar. For a
nonzero χ ∈ Hom(G,R), write [χ] for its image in S(G). There are many equivalent ways
to define Σ(G). Perhaps the easiest to state involves the connectedness of certain subgraphs
of the Cayley graph of G.

Definition 2.1. Let G be a finitely generated group with a fixed finite generating set S.
Let C(G,S) be the Cayley graph of G with respect to S. Given [χ] ∈ S(G) represented by
χ ∈ Hom(G,R), the BNS invariant Σ(G) is defined as the set of all [χ] ∈ S(G) such that
the full subgraph of C(G,S) spanned by the set {g ∈ G | χ(g) ≥ 0} is connected.

This definition does not depend on the choice of S (though this is not obvious). Thinking
of Aut(G) as acting on G on the right, we obtain an action of Aut(G) on Hom(G,R) via
the formula

(α · χ)(g) = χ(gα) (α ∈ Aut(G), χ ∈ Hom(G,R), g ∈ G).

This descends to an action of Aut(G) on S(G) which factors through Out(G). The fact
that the BNS invariant is independent of the generating set implies that Σ(G) is invariant
under this action.

If N is a normal subgroup of G, then we can identify Hom(G/N,R) with the subset of
Hom(G,R) consisting of those characters that vanish on N . This induces an identification
of S(G/N) with a subset of S(G). When N contains [G,G], the following theorem of Bieri,
Neumann and Strebel characterizes finite generation of N in terms of Σ(G).

Theorem 2.2 ([BieNeSt, Theorem B1]). Let G be a finitely generated group and N be a
subgroup of G containing [G,G]. Then N is finitely generated if and only if S(G/N) ⊆ Σ(G).

The following sufficient condition for an element of S(G) to lie in Σ(G) was established
by Ershov and He.

Lemma 2.3 ([EH, Proposition 2.4(b)]). Let G be a finitely generated group and let χ ∈
Hom(G,R) be a nonzero character. Suppose there exists a finite sequence x1, . . . , xr of
elements of G such that the following hold.

(i) G is generated by x1, . . . , xr.
(ii) χ(x1) 6= 0.

(iii) For every 2 ≤ i ≤ r, there exists j < i such that χ(xj) 6= 0 and such that the
commutator [xj , xi] lies in the subgroup generated by x1, . . . , xi−1.

Then [χ] ∈ Σ(G).
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Remark 2.4. An important special case of Lemma 2.3 is when xj and xi in (iii) are required
to commute. This special case of the lemma was known prior to [EH]. It is essentially
equivalent to [KoMcCaMe, Lemma 1.9], but the basic idea goes back further (compare
with [MeVW, Theorem 6.1] from 1995). This special case was sufficient for the purposes
of [EH] except when dealing with IA4 and IA5. To prove Theorem A and the k = 2 case
of Theorem D we only need this special case of Lemma 2.3, but for Theorems B–E we will
make essential use of the full strength of Lemma 2.3.

3 Proof of Theorem A

In this section we will prove Theorem A, which asserts that any subgroup of Ibg containing

[Ibg, Ibg] is finitely generated for g ≥ 4 and b ∈ {0, 1}. This will imply in particular that Kbg
is finitely generated. This proof follows the same outline as the proofs of our other results,
but avoids a lot of technicalities. For that reason, we suggest that the reader begin with
this section.

BP graph. We will need a certain graph constructed from elements of the Torelli group. A
genus-1 bounding pair on Σ1

g (often shortened to a genus-1 BP) is an ordered pair (x, y) of
disjoint homologous nonseparating simple closed curves on Σ1

g whose union x ∪ y separates
Σ1
g into two subsurfaces, one homeomorphic to Σ2

1 and the other to Σ3
g−2 (see Figure 1). If

(x, y) is a genus-1 BP, then the corresponding product of Dehn twists TxT
−1
y ∈ I1

g is called
a genus-1 BP map. This gives a bijection between genus-1 BP maps and isotopy classes
of genus-1 BPs. All genus-1 BPs on Σ1

g lie in the same Mod1
g-orbit (see [FMar, §1.3]), and

therefore all genus-1 BP maps are conjugate in Mod1
g.

Definition 3.1. Let BP (I1
g ) denote the genus-1 BP graph whose vertices are genus-1 BP

maps in I1
g , and where two elements are connected by an edge if they commute.

Remark 3.2. Given genus-1 BPs (x, y) and (x′, y′), if we can homotope the curves such that
x∪ y is disjoint from x′ ∪ y′ (see Figure 1), then the BP maps TxT

−1
y and Tx′T

−1
y′ commute.

The converse is also true, though we will not actually need this.

Proposition 3.3. The genus-1 BP graph BP (I1
g ) is connected for g ≥ 4.

Proposition 3.3 is likely folklore, but we do not know a reference, so we include a proof.

Proof of Proposition 3.3. We will use the main idea from [P1, Lemma 2.1]. Let ϕ = TxT
−1
y

be the vertex of BP (I1
g ) depicted in Figure 1. We must prove that there is a path in

BP (I1
g ) between ϕ and any other vertex of BP (I1

g ). The group Mod1
g acts on BP (I1

g ) by
conjugation, and this action is transitive on vertices since all genus-1 BP maps are conjugate
in Mod1

g. It is thus enough to prove that for all f ∈ Mod1
g, there is a path in BP (I1

g ) from

ϕ to ϕf .

We begin by proving a special case of this. Let

S = {T±1
αi | 1 ≤ i ≤ g} ∪ {T±1

γi | 1 ≤ i ≤ g} ∪ {T±1
βi
| 1 ≤ i ≤ g − 1} (3.1)

be the Dehn twists depicted in Figure 1. The set S generates Mod1
g; see [J3, Theorem 1].

We claim that for all s ∈ S, there exists a path ηs in BP (I1
g ) from ϕ to ϕs. Indeed, all
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α1 α2 α3 α4
β1 β2 β3

γ1 γ2 γ3 γ4

x

y

x'

y'

Figure 1: On the left are two genus-1 BP maps ϕ = TxT
−1
y and ψ = Tx′T−1y′ that are adjacent in

BP (I1g ). On the right are the Dehn twists involved in the definition of the set S. Note that x′ and

y′ on the left are disjoint from α2, so ψ = Tx′T−1y′ commutes with Tα2
.

the curves αi, γi, and βi are disjoint from x and y, with the exception of α2. Therefore for
s /∈ {T±1

α2
}, the map s commutes with ϕ, so ϕ = ϕs and the claim is trivial. If s ∈ {T±1

α2
},

then letting ψ = Tx′T
−1
y′ be the BP map depicted in Figure 1, we see that x′ and y′ are

disjoint from α2. This implies that ψ commutes with both ϕ and s, and thus also with ϕs.
We can therefore take ηs to be the length 2 path from ϕ to ψ to ϕs.

We now prove the general case. Consider f ∈ Mod1
g. Write

f = s1s2 · · · s` with si ∈ S.

For h ∈ Mod1
g and s ∈ S, the path (ηs)

h goes from ϕh to ϕsh. Letting • be the concatenation

product on paths, the desired path from ϕ to ϕf is then

ηs` • (ηs`−1
)s` • (ηs`−2

)s`−1s` • · · · • (ηs1)s2s3···s` .

Remark 3.4. The genus-1 BP graph BP (I1
g ) is not connected for g = 3. This can be seen

by noting that if TxT
−1
y is connected to Tx′T

−1
y′ in BP (I1

3 ), then the curves {x, y, x′, y′} all
share the same homology class. Therefore BP maps with different homology classes must
lie in different components of BP (I1

3 ). The connectivity of BP (I1
g ) is the only place in the

proof of Theorem A where we will use the assumption g ≥ 4.

Work of Johnson. We will need three important results of Johnson that are summarized
in the following theorem; the three parts are proved in [J1], [J3], and [J5] respectively.

Theorem 3.5 (Johnson). For g ≥ 3, the following hold:

(a) The group I1
g is generated by genus-1 BP maps.

(b) The group I1
g is finitely generated.

(c) There is a Mod1
g-equivariant isomorphism (I1

g )ab ⊗ R ∼=
∧3 H1(Σ1

g;R), where Mod1
g

acts on (I1
g )ab via its conjugation action on I1

g .

Zariski topology on the mapping class group. The final preliminary ingredient we
will need is a certain topology on the mapping class group. The conjugation action of Mod1

g

on its normal subgroup I1
g induces an action of Mod1

g on the vector space Hom(I1
g ,R). This

gives a group homomorphism

Mod1
g −→ GL(Hom(I1

g ,R)).
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Endow GL(Hom(I1
g ,R)) with the Zariski topology. Let the Hom(I1

g ,R)-Zariski topology

on Mod1
g be the topology pulled back from the Zariski topology on GL(Hom(I1

g ,R)) by
this map. The key property of this topology that we will use is as follows. Recall that a
topological space is irreducible if it cannot be written as the union of two proper closed
subspaces.

Lemma 3.6. For g ≥ 3, the group Mod1
g equipped with the Hom(I1

g ,R)-Zariski topology is
an irreducible topological space.

Proof. In our proof, we will use three basic properties of irreducible spaces:

(i) if Y is an irreducible topological space and X → Y is a set map, then the pullback to
X of the topology on Y makes X into an irreducible topological space;

(ii) if Y → Z is a continuous map between topological spaces and Y is irreducible, then
the image of Y in Z is irreducible.

(iii) a subspace Z of a topological space W is irreducible if and only if the closure of Z in
W is irreducible.

By property (i) above, it is enough to prove that the image of Mod1
g in GL(Hom(I1

g ,R)) is
an irreducible subspace. Set H = H1(Σ1

g;R) and HZ = H1(Σ1
g;Z). Theorem 3.5(c) gives a

Mod1
g-equivariant isomorphism

(I1
g )ab ⊗ R ∼=

∧3H.

Recall from the introduction that the algebraic intersection form on H turns it into a
symplectic vector space and that the image of Mod1

g in GL(H) is equal to Sp(HZ). The

action of Mod1
g on H thus factors through a representation of the symplectic group Sp(H).

Since H is a self-dual representation of Sp(H), this implies that there is a Mod1
g-equivariant

isomorphism
Hom(I1

g ,R) ∼=
∧3H

as well. Under this identification, the image of Mod1
g in GL(Hom(I1

g ,R)) is equal to the

image of Sp(HZ) under the natural mapping ι : GL(H) → GL(
∧3H). It is classical that

the Zariski closure of Sp(HZ) in GL(H) is Sp(H) ∼= Sp2g(R), which is a connected algebraic
group and hence an irreducible topological space (see, e.g., [CaSeMac, Theorem III.2.1]).
Property (iii) above thus implies that Sp(HZ) is an irreducible topological space. Since ι is
Zariski-continuous, property (ii) above implies that ι(Sp(HZ)) is irreducible, as desired. We
remark that the self-duality of

∧3H is not essential here; we could apply the exact same
argument to the natural map GL(H)→ GL((

∧3H)∗).

Putting it all together. We now prove Theorem A.

Proof of Theorem A. Fix some g ≥ 4. As discussed in §1.2, it suffices to prove that [I1
g , I1

g ]
is finitely generated, which by Theorem 2.2 is equivalent to showing that the BNS invariant
Σ(I1

g ) is all of S(I1
g ).

Theorem 3.5(a) and (b) tell us that for g ≥ 3 there is a finite set of genus-1 BP maps
that generate I1

g ; we emphasize that we do not need to know such a finite generating set
explicitly. Proposition 3.3 says that BP (I1

g ) is connected for g ≥ 4. Combining these
two facts, we see that there exists a finite set Λ = {λ1, . . . , λr} of genus-1 BP maps that
generates I1

g such that the full subgraph of BP (I1
g ) spanned by Λ is connected (simply

begin with a generating set and add more vertices until the subgraph is connected).
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The key property of Λ is as follows:

If ρ : I1
g → R satisfies ρ(λ) 6= 0 for all λ ∈ Λ, then [ρ] ∈ Σ(I1

g ). (3.2)

Indeed, consider such a ρ. We can assume that Λ = {λ1, . . . , λr} is enumerated in increasing
order of distance from some fixed basepoint in the subgraph spanned by Λ. This guarantees
that for all 1 < i ≤ r, there exists some 1 ≤ j < i such that λi and λj are adjacent in
BP (I1

g ). In other words, the genus-1 BP maps λi and λj commute. Since ρ(λi) 6= 0 for all
1 ≤ i ≤ r, the sequence λ1, . . . , λr satisfies all three conditions of Lemma 2.3. That lemma
now implies that [ρ] ∈ Σ(I1

g ). Note that here we only used the special case of Lemma 2.3
discussed in Remark 2.4.

Now consider an arbitrary nonzero ρ : I1
g → R; we will prove that [ρ] ∈ Σ(I1

g ). For each
λ ∈ Λ, define

Zλ = {γ ∈ Mod1
g | (γ · ρ)(λ) = 0}.

For a fixed λ the condition ϕ(λ) = 0 is a Zariski-closed condition on ϕ, so each Zλ is a
closed subspace of Mod1

g in the Hom(I1
g ,R)-Zariski topology. Moreover, we claim that each

Zλ is a proper subset of Mod1
g. To see this, observe that the equality Zλ = Mod1

g would

mean that (γ ·ρ)(λ) = ρ(λγ) vanishes for all γ ∈ Mod1
g. Since λ is a genus-1 BP map and all

genus-1 BP maps are conjugate, this would mean that ρ vanishes on all genus-1 BP maps.
But by Theorem 3.5(a), I1

g is generated by genus-1 BP maps for g ≥ 3, so no nonzero

homomorphism ρ : I1
g → R can vanish on all these elements. This verifies that Zλ ( Mod1

g

as claimed.

Lemma 3.6 says that Mod1
g is an irreducible space with respect to the Hom(I1

g ,R)-Zariski
topology. Since an irreducible space cannot be written as a finite union of closed proper
subspaces, we deduce that ⋃

λ∈Λ

Zλ ( Mod1
g .

Choose some γ ∈ Mod1
g such that γ /∈ Zλ for all λ ∈ Λ. By definition, this means that

(γ · ρ)(λ) 6= 0 for all λ ∈ Λ. Applying (3.2) to γ · ρ, we deduce that [γ · ρ] ∈ Σ(I1
g ). Since

Σ(I1
g ) is invariant under automorphisms of I1

g , it follows that [ρ] ∈ Σ(I1
g ) as well. Since ρ

was arbitrary, this shows that Σ(I1
g ) is all of S(I1

g ), as desired.

We will use the same exact approach in §6.2 to prove that [IAn, IAn] is finitely generated
for n ≥ 4. For now, we record the structure of the above argument; the proof of the following
theorem follows exactly the proof of Theorem A above.

Theorem 3.7. Let G be a finitely generated group. Suppose that a group Γ acts on G by
automorphisms such that the following hold.

1. The group G is generated by a single Γ-orbit C ⊂ G.
2. The image of Γ in GL(Hom(G,R)) is irreducible in the Zariski topology.
3. The graph whose vertices are elements c ∈ C where two elements are connected by an

edge if they commute is connected.

Then [G,G] is finitely generated.
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4 Basic properties of [n]-groups

This section contains preliminary definitions and results that will be used in the technical
framework of the remainder of the paper. It has three sections: §4.1 introduces [n]-groups
and the two fundamental examples Aut(Fn) and Mod1

g, then §4.2 discusses central series
and their Lie algebras, and finally §4.3 discusses Zariski-irreducible actions.

4.1 [n]-groups

Set N = {1, 2, 3, . . .}. For n ∈ N, define [n] = {1, . . . , n}.

Definition 4.1. Let n ∈ N. An [n]-group is a group G equipped with a distinguished
collection of subgroups {GI | I ⊆ [n]} such that G[n] = G and such that GI ⊆ GJ whenever
I ⊆ J . We say that an [n]-group V is an [n]-vector space if V is a vector space and each VI
is a subspace.

Any subgroup or quotient of an [n]-group naturally inherits the structure of an [n]-group
as follows.

Definition 4.2. Let G be an [n]-group. For a subgroup H of G, define an [n]-group
structure on H by setting HI = H ∩GI for all I ⊆ [n]. For a quotient G/K of G, define an
[n]-group structure on G/K by setting (G/K)I = GIK/K for all I ⊆ [n].

In addition, any abelian [n]-group A can be tensored with R to obtain an [n]-vector
space as follows:

Definition 4.3. Let A be an abelian [n]-group. Then A ⊗ R becomes an [n]-vector space
by setting (A⊗ R)I = AI ⊗ R for all I ⊆ [n].

Key examples. Before moving on, we define the two key examples of [n]-groups that we
will use in this paper, namely Aut(Fn) and the mapping class group. The structure on
Aut(Fn) is easy to define.

Definition 4.4. Let Fn be the free group on {x1, . . . , xn} and let Γ = Aut(Fn). For I ⊆ [n],
set FI = 〈xi | i ∈ I〉, and define

ΓI = {f ∈ Γ | f(xi) ∈ FI for all i ∈ I and f(xj) = xj for all j ∈ [n] \ I}.

This endows Γ with the structure of an [n]-group.

For the mapping class group, it is a bit more subtle. The natural measure of complexity
for the mapping class group is the genus g, so these will be [g]-groups. The starting point
is the following lemma (which is implicit in [CP, §4.1]).

Lemma 4.5. Fix some g ≥ 1, and let Σ = Σ1
g be a genus g surface with 1 boundary

component. We can then choose subsurfaces ΣI for each I ⊆ [g] such that the following
hold:

(i) ΣI is homeomorphic to Σ1
|I|.

(ii) Σ[g] = Σ.
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X1 X2 X3 X4 X5 X6

δ1 δ2 δ3 δ4 δ5 δ6f([1,6])

Figure 2: On the top are the Xi and the δi and f([1, g]) for g = 6. In the middle is Σ{2,3,5}, and
on the bottom is Σ{3,4,5} isotoped to be disjoint from Σ{1,6}.

(iii) ΣI is isotopic to a subsurface of ΣJ whenever I ⊆ J .
(iv) If I, J ⊆ [g] are disjoint and I consists of consecutive integers, then ΣI is isotopic to

a subsurface disjoint from ΣJ . We remark that this need not hold if I does not consist
of consecutive integers.

Proof. As in Figure 2, choose disjoint subsurfaces X1, . . . , Xg ⊂ Σ1
g with Xi

∼= Σ1
1 for each

i. Let [1, g] ⊂ R denote the closed interval. Letting

Y = Σ1
g \

g⋃
i=1

Int(Xi),

choose an embedding f : [1, g]→ Int(Y ), and let δ1, . . . , δg be arcs in Y such that δi connects
a point on ∂Xi to f(i). Pick the δi such that they all approach f([1, g]) from the same side,
such that they are all pairwise disjoint from each other, and such that each δi only intersects
∂Y ∪ f([1, g]) at its endpoints. For I ⊆ [g] enumerated as

I = {i1 < · · · < ik},

let ΣI be a closed regular neighborhood of

f([i1, ik]) ∪

 k⋃
j=1

δij

⋃ k⋃
j=1

Xij

 .
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See Figure 2. It is clear that these subsurfaces satisfy the conclusions of the lemma. The
only nontrivial one is conclusion (iv), which is illustrated at the bottom of Figure 2.

This allows us to make the following definition:

Definition 4.6. Let Σ = Σ1
g be a genus g surface with 1 boundary component. We define

a [g]-group structure on Γ = Mod(Σ) = Mod1
g as follows. Fix once and for all a collection

of subsurfaces ΣI as in Lemma 4.5, and for each I ⊆ [g] define ΓI to be the subgroup of
Γ consisting of mapping classes supported on ΣI . Conclusions (ii) and (iii) of Lemma 4.5
imply that Γ is an [g]-group.

Remark 4.7. Since any subgroup of an [n]-group inherits an [n]-group structure, Defini-
tion 4.4 induces an [n]-group structure on IAn. Similarly, Definition 4.6 induces an [g]-group
structure on I1

g .

Fundamental properties. We now turn to some fundamental properties of [n]-groups.

Definition 4.8. Let G be an [n]-group. We say that G is generated in degree d if G is
generated by the set {GI | I ⊆ [n], |I| = d}. We write d(G) for the smallest d ≥ 0 such that
G is generated in degree d.

Remark 4.9. As we will explain in §6, the [n]-group Aut(Fn) is generated in degree 2 while
its subgroup IAn is generated in degree 3. Similarly, the [g]-group Mod1

g is generated in
degree 2 and its subgroup I1

g is generated in degree 3.

Definition 4.10. Let G be an [n]-group.

(i) We say that G is transitive if GI and GJ are conjugate in G for all I, J ⊆ [n] with
|I| = |J |.

(ii) We say that G is commuting if GI and GJ commute for all disjoint I, J ⊆ [n].
(iii) We say that G is weakly commuting if for all disjoint I, J ⊆ [n], there exists g ∈ G

such that (GI)
g = g−1GIg and GJ commute.

Remark 4.11. We can see directly from Definition 4.4 that the [n]-group Aut(Fn) is com-
muting, and thus so is its subgroup IAn. It is easy to see that Aut(Fn) is transitive by using
the automorphisms permuting the generators, but one can show that IAn is not transitive
(we omit the proof since this will not be needed). In Lemma 6.2 below, we will see that
Mod1

g is also transitive and that Mod1
g and I1

g are weakly commuting, but not commuting.

Remark 4.12. If G is an [n]-group satisfying any of the properties (i)–(iii) in Definition 4.10,
then the same is true for any quotient of G. If H is a subgroup of a commuting [n]-group
G, then the [n]-group H is also commuting. However, the properties of being transitive or
weakly commuting need not pass to subgroups since their definitions refer to conjugation by
elements of G that need not lie in the subgroup. For instance, as we mentioned in Remark
4.11 the [n]-group Aut(Fn) is transitive, but its subgroup IAn is not.

4.2 Central series and Lie algebras

We recall the following definition.
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Definition 4.13. A central series of a group G is a descending chain

G = G(1) ⊇ G(2) ⊇ G(3) ⊇ · · ·

of subgroups of G such that [G,G(k)] ⊆ G(k + 1) for all k ≥ 1. If G is a normal subgroup
of a group Γ, we will call such a central series a Γ-normal central series if G(k) is normal
in Γ for all k ≥ 1.

The most common example of a central series is the lower central series of G; this is a
Γ-normal central series if G is normal in Γ. Every central series determines a graded Lie
algebra in the following way. Note that G(k)/G(k + 1) is an abelian group.

Definition 4.14. Let G = G(1) ⊇ G(2) ⊇ · · · be a central series of G. The associated
graded real Lie algebra L is the real Lie algebra

L =

∞⊕
k=1

L(k), where L(k) = (G(k)/G(k + 1))⊗ R.

The Lie bracket on L is induced by the commutator bracket on G, which descends to a
bilinear map L(k) ⊗ L(`) → L(k + `); see [Ser, §II]. If G C Γ and G(k) is a Γ-normal
central series, the conjugation action of Γ on G induces a linear action of Γ on each L(k);
this preserves the Lie bracket and thus extends to an action of Γ on L by Lie algebra
automorphisms.

Remark 4.15. It is also common to consider the Lie ring
⊕
G(k)/G(k+1), without tensoring

with R. This object plays a key role in [EH], but in this paper we will only deal with the
real Lie algebra L.

We next discuss how this interacts with an [n]-group structure.

Definition 4.16. Let G be an [n]-group and let G = G(1) ⊇ G(2) ⊇ · · · be a central series
of G. Using Definition 4.2, the [n]-group structure on G induces an [n]-group structure on
the subquotient G(k)/G(k + 1). By Definition 4.3, the latter induces an [n]-vector space
structure on L(k) = (G(k)/G(k + 1)) ⊗ R. Unwinding the definitions to get an explicit
description, we see that the subspace L(k)I is the subspace of L(k) spanned by the image
of G(k)I = G(k) ∩GI .

Remark 4.17. For each I ⊆ [n], this gives a Lie subalgebra LI =
⊕
L(k)I of L. We warn

the reader that even if L is generated as a Lie algebra by L(1), the Lie algebra LI need not
be generated by L(1)I .

4.3 Zariski-irreducible actions

The following definition will play an important role in our proofs.

Definition 4.18. Let Γ be a group acting on a finite-dimensional vector space V . The
V -Zariski topology on Γ is the pullback to Γ of the Zariski topology on GL(V ) under the
map Γ→ GL(V ). We say that the action of Γ on V is Zariski-irreducible if Γ is irreducible
in the V -Zariski topology (or, equivalently, if the image of Γ in GL(V ) is irreducible).

Remark 4.19. The topologies on Γ obtained from the action on V and on the dual vector
space V ∗ coincide.
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Remark 4.20. The notion of Zariski-irreducible action should not be confused with the
unrelated concept of an irreducible representation. For example, if V is a C-vector space
and λ ∈ C× has infinite order, then the diagonal action of Z on V defined by n · ~v = λn~v is
Zariski-irreducible, but is only irreducible as a representation if dimV = 1.

The main property of Zariski-irreducible actions we will need is the following lemma.
We note that this lemma is closely related to Lemma 3.2 of [DiPa], which was used for a
similar purpose.

Lemma 4.21. Suppose that Γ acts on a graded Lie algebra L =
⊕
L(k). If L is generated

by L(1) and the action of Γ on L(1) is Zariski-irreducible, then the action of Γ on L(k) is
Zariski-irreducible for all k ≥ 1.

Proof. We first observe that the image of Γ in GL(L(1)⊗k) under the diagonal action is
irreducible. Indeed, the map Γ→ GL(L(1)⊗k) can be factored as

Γ→ GL(L(1))→ GL(L(1)⊗k).

By assumption, the image of Γ in GL(L(1)) is irreducible. Since GL(L(1))→ GL(L(1)⊗k) is
a continuous map, this implies that the image of Γ in GL(L(1)⊗k) is irreducible, as claimed.

Now consider the linear map m : L(1)⊗k → L(k) taking the element v1 ⊗ · · · ⊗ vk to
[[[v1, v2], · · · ], vk]. Since L is generated by L(1), the map m is surjective. Let W = kerm be
its kernel. Since Γ acts on L by Lie algebra automorphisms, the map m : L(1)⊗k → L(k)
is Γ-equivariant. Therefore the image of Γ in GL(L(1)⊗k) is contained in the subgroup
GL(L(1)⊗k,W ) of elements which preserve W .

In other words, the map Γ→ GL(L(k)) can be factored as

Γ→ GL(L(1)⊗k,W )→ GL(L(k)).

Since the map GL(L(1)⊗k,W ) → GL(L(k)) is Zariski-continuous, and we proved above
that the image of Γ in GL(L(1)⊗k,W ) is irreducible, we conclude that the image of Γ in
GL(L(k)) is irreducible with respect to the Zariski topology, as desired.

5 Finite generation for central series of [n]-groups

This section contains our main tools for proving that terms of a central series of an [n]-group
are finitely generated. It is divided into three subsections. In §5.1, we state and prove the
main technical theorem of this paper. It isolates and unifies the technical structure of the
proofs of our main theorems. The bounds in this theorem depend on two technical notions
that we introduce here: the commuting graph of an [n]-group, and a new notion of “degree
of generation” for an [n]-vector space endowed with a group action. In §5.2, we show how to
guarantee that the commuting graph is connected. Finally, in §5.3 we show how to bound
the degree of generation of a central series of an [n]-group.

5.1 The structure theorem

In this subsection, we prove the main technical theorem of this paper (Theorem 5.3 below)
and its immediate consequence Corollary 5.6, which allows us to prove that certain terms of

15



a central series of an [n]-group are finitely generated. The proof of our theorem is inspired
by the proof in §3 that [I1

g , I1
g ] is finitely generated for g ≥ 4.

Small subspaces. The key objects underlying our proof that [I1
g , I1

g ] is finitely generated
were genus-1 BP maps. These generate I1

g and have two useful features: first, they are
supported on a small part of the surface, and second, they are all conjugate under the
action of Mod1

g. For an [n]-vector space V acted upon by a group Γ, we will similarly want
to regard elements of the Γ-orbit of VI with |I| = d for a fixed small value of d as being
small in some sense. This leads to the following definition.

Definition 5.1. Let V be an [n]-vector space and let Γ be a group acting on V . Define

dΓ(V ) = min{d ≥ 0 | V is generated by the Γ-orbits of its subspaces VI with |I| = d}.

Commuting graph. Another key feature of genus-1 BP maps used in §3 is that they form
the vertices of a connected graph BP (I1

g ) whose edges correspond to commuting genus-1
BP maps. The following graph will play a similar role in this section.

Definition 5.2. Let Γ be an [n]-group. Fix some m ≤ n. The m-commuting graph of Γ,
denoted Xm(Γ), is the following graph.

• The vertices of Xm(Γ) are the Γ-conjugates of the subgroups ΓI with |I| = m.
• Two vertices are joined by an edge if the associated subgroups commute elementwise.

We say that Xm(Γ) is nontrivial if it consists of more than one vertex.

Main theorem. Our main technical theorem is then as follows. It will be proven at the
end of this section.

Theorem 5.3. Let Γ be an [n]-group and let H and K be normal subgroups of Γ such that
K ⊆ H and H/K is abelian. Let V = H/K ⊗ R, so Γ acts by conjugation on V . Assume
the following conditions hold.

1. The [n]-group Γ is transitive.
2. The group H is finitely generated.
3. The action of Γ on V is Zariski-irreducible.
4. For some m ≥ dΓ(V ), the graph Xm(Γ) is connected and nontrivial.

Then the group K is finitely generated.

Remark 5.4. The number dΓ(V ) in Condition 4 is defined with respect to the [n]-vector
space structure on V given by Definitions 4.2 and 4.3.

Remark 5.5. While Theorem 5.3 does not formally require that Γ be weakly commuting,
some kind of commutativity assumption is obviously needed to ensure that the graph Xm(Γ)
is connected and nontrivial. In §5.2 below we show how to compute explicit bounds for
weakly commuting Γ guaranteeing that Xm(Γ) is connected and nontrivial.

Application to central series. Before we prove Theorem 5.3, we derive the following
corollary from it. This corollary is what we will use to prove our main results.

Corollary 5.6. Let Γ be an [n]-group and let G be a normal subgroup of Γ. Let G = G(1) ⊇
G(2) ⊇ · · · be a Γ-normal central series of G, so Γ acts by conjugation on the associated
graded real Lie algebra L. Fix N ≥ 1, and assume the following conditions hold.
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1. The [n]-group Γ is transitive.
2. The group G is finitely generated.
3. The action of Γ on L(k) is Zariski-irreducible for all k ≥ 1.
4. For some m ≥ max{dΓ(L(k)) | 1 ≤ k < N}, the graph Xm(Γ) is connected and non-

trivial.

Then the group G(k) is finitely generated for 1 ≤ k ≤ N .

Proof. Apply Theorem 5.3 a total of N − 1 times, first with H = G = G(1) and K = G(2),
then with H = G(2) and K = G(3), etc.

Remark 5.7. In §5.3 below we show how to effectively bound the numbers dΓ(L(k)).

Remark 5.8. When L is generated by L(1), Lemma 4.21 shows that to verify Condition 3
it suffices to check that the action of Γ on L(1) is Zariski-irreducible. In particular, this
applies to the lower central series G(k) = γkG since the graded Lie algebra of the lower
central series of any group is always generated in degree 1.

A key lemma. Before proving Theorem 5.3, we establish the following key lemma which
is analogous to (3.2) from the proof of Theorem A. The set Λ in the lemma below does not
correspond exactly to the set Λ appearing in (3.2) – there Λ was a generating set for the
group whose BNS invariant we were trying to understand, while in the lemma below it is
a set of things that conjugate the group whose BNS invariant we are trying to understand.
However, despite these differences the function of Λ in our proof is similar to that of Λ in
the proof of Theorem A.

Lemma 5.9. Let Γ be a transitive [n]-group and let m ≥ 1 be such that Xm(Γ) is connected
and nontrivial. Let H be a finitely generated normal subgroup of Γ. Then there exists a
finite subset Λ ⊆ Γ with the following property. Let ρ : H → R be a homomorphism such that
for all λ ∈ Λ, there exists some g ∈ (H[m])

λ = λ−1H[m]λ with ρ(g) 6= 0. Then [ρ] ∈ Σ(H).

Proof. Let T be a finite generating set for H with 1 /∈ T . Since Xm(Γ) is connected and
nontrivial, the set {(Γ[m])

t | t ∈ T ∪ {1}} of vertices of Xm(Γ) must be contained in a finite
nontrivial connected subgraph L. Let Λ ⊆ Γ be a set containing T ∪ {1} such that the
vertices of L are {(Γ[m])

λ | λ ∈ Λ}. We remark that since we insisted that T ∪ {1} ⊆ Λ, it

might be the case that (Γ[m])
λ = (Γ[m])

λ′ for distinct λ, λ′ ∈ Λ. We will prove that this set
Λ has the desired property.

Consider some ρ : H → R such that for all λ ∈ Λ, there exists some g ∈ (H[m])
λ

with ρ(g) 6= 0. We must prove that [ρ] ∈ Σ(H). To do this, we will use the criterion
in Lemma 2.3 applied to G = H. This requires producing an appropriate sequence of
elements that generate H, which we will do in several steps. We begin by enumerating Λ
as Λ = {λ1, . . . , λ`}, where the ordering is chosen such that the following hold:

• λ1 = 1.
• For all 1 < i ≤ `, there exists some 1 ≤ j < i such that the vertices (Γ[m])

λi and

(Γ[m])
λj of L are distinct and joined by an edge.

We remark that the the second condition is possible since L is connected and nontrivial
(and might not be possible if L were trivial – this is where that condition is used). Since
adjacent vertices of L correspond to commuting subgroups of Γ, the following key condition
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holds:

for all 2 ≤ i ≤ `, there exists some 1 ≤ j ≤ i− 1 with [(Γ[m])
λi , (Γ[m])

λj ] = 1. (5.1)

For 1 ≤ i ≤ `, pick elements gi ∈ (H[m])
λi in the following way. Recall that λ1 = 1 and

that Λ contains the generating set T for H; we will need to pick gi slightly more carefully
when λi ∈ T .

• If λi /∈ T , then use our assumption that ρ does not vanish on (H[m])
λi to pick some

gi ∈ (H[m])
λi with ρ(gi) 6= 0.

• If λi ∈ T , we must be more specific; in this case set gi = (g1)λi . Since λi ∈ T ⊆ H,
we still have

ρ(gi) = ρ(λ−1
i g1λi) = ρ(g1) + ρ(λi)− ρ(λi) = ρ(g1) 6= 0.

Finally, let g`+1, . . . , gr be an arbitrary enumeration of T . We emphasize for clarity that
each element t ∈ T entails two elements of this sequence: (g1)t will appear among the first
` elements, and t itself will appear among the last r − ` elements.

We claim that the sequence g1, . . . , gr of elements of H satisfies the three conditions of
Lemma 2.3. We verify these three conditions as follows.

• The first says that the gi generate H, which is true since they contain all the elements
in the generating set T .
• The second says that ρ(g1) 6= 0, which is true by construction.
• The third says that for all 2 ≤ i ≤ r, there exists some j < i such that ρ(gj) 6= 0

and such that [gj , gi] lies in the subgroup generated by g1, . . . , gi−1. There are two
cases. The first case is where 2 ≤ i ≤ `. As we noted above (see (5.1), and recall that
H[m] ⊆ Γ[m]), there exists some 1 ≤ j < i such that [gj , gi] = 1. Since ρ(gj) 6= 0 by
construction, the condition follows. The second case is where ` + 1 ≤ i ≤ r. Here
gi ∈ T . We claim in this case that j = 1 works. Indeed, since T ⊆ Λ, we have gi = λk
for some 1 ≤ k ≤ `. By construction, we have gk = (g1)λk = (g1)gi . Therefore

[g1, gi] = g−1
1 (g1)gi = g−1

1 gk ∈ 〈g1, . . . , g`〉 ⊆ 〈g1, . . . , gi−1〉,

as desired.

Lemma 2.3 now implies that [ρ] ∈ Σ(H).

Putting it all together. We finally prove Theorem 5.3, whose statement we recall for the
reader’s convenience.

Theorem 5.3. Let Γ be an [n]-group and let H and K be normal subgroups of Γ such that
K ⊆ H and H/K is abelian. Let V = H/K ⊗ R, so Γ acts by conjugation on V . Assume
the following conditions hold.

1. The [n]-group Γ is transitive.
2. The group H is finitely generated.
3. The action of Γ on V is Zariski-irreducible.
4. For some m ≥ dΓ(V ), the graph Xm(Γ) is connected and nontrivial.

Then the group K is finitely generated.
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Proof. By Theorem 2.2, proving that K is finitely generated is equivalent to showing that
S(H/K) ⊆ Σ(H). Here and throughout the proof we identify S(H/K) with the set of
equivalence classes of nonzero ρ : H → R that vanish on K. Our proof of this will follow
the same outline as that of Theorem A in §3, though the fine details will be different.

Since H is finitely generated and Xm(Γ) is connected and nontrivial, we can apply
Lemma 5.9. Let Λ ⊆ Γ be the resulting set, so for ρ : H → R the following holds:

if for all λ ∈ Λ, there exists g ∈ (H[m])
λ with ρ(g) 6= 0, then [ρ] ∈ Σ(H). (5.2)

Now consider an arbitrary nonzero ρ : H → R that vanishes on K. For each λ ∈ Λ, define

Zλ = {γ ∈ Γ | γ · ρ vanishes on (H[m])
λ}.

Since ρ vanishes on K and V = (H/K) ⊗ R, the map ρ factors through a unique homo-
morphism ρ : V → R. The condition in the definition of Zλ is equivalent to saying that
γ · ρ vanishes on (V[m])

λ. From this, we see that each Zλ is a closed subspace of Γ in the
V -Zariski topology.

Moreover, we claim that each Zλ is a proper subset of Γ. To see this, observe first that
since Zλ is the translate by λ ∈ Γ of Z1, it suffices to check that Z1 is a proper subset of Γ.
But to have Z1 = Γ would mean that γ · ρ vanishes on V[m] for all γ ∈ Γ, or equivalently
that ρ vanishes on the Γ-orbit of V[m]. Since dΓ(V ) ≤ m and Γ is a transitive [n]-group, the
vector space V is spanned by the Γ-orbit of V[m]. It follows that ρ = 0. This contradicts
the fact that ρ is nonzero, so we deduce that Zλ is a proper subset of Γ, as claimed.

Recall now that Γ is irreducible in the V -Zariski topology. Since an irreducible space
cannot be written as a finite union of closed proper subspaces, we deduce that⋃

λ∈Λ

Zλ ( Γ.

Choose some γ ∈ Γ such that γ /∈ Zλ for all λ ∈ Λ. By definition, this means that the
restriction of γ · ρ to (H[m])

λ is nonzero for all λ ∈ Λ. We can therefore apply (5.2) to γ · ρ
to deduce that [γ ·ρ] ∈ Σ(H). Since Σ(H) is invariant under automorphisms of H, it follows
that [ρ] ∈ Σ(H) as well. Since ρ : H → R was an arbitrary homomorphism vanishing on K,
this shows that Σ(H) contains all of S(H/K), as desired.

5.2 Connectivity of the commuting graph

In this section we give an easy-to-verify sufficient condition for Xm(Γ) to be connected.

Remark 5.10. Our results need Xm(Γ) to be not only connected, but also nontrivial. How-
ever, nontriviality is a technicality that is in practice trivial to verify – it is enough for Γ[m]

to not be a normal subgroup of Γ, which holds for all the Γ considered in this paper.

In order to state our condition, we need some additional terminology.

Definition 5.11. Let Γ be an [n]-group and let g ∈ Γ.

(a) The complexity of g, denoted comp(g), is the smallest c ≥ 0 such that g ∈ ΓI for some
I ⊆ [n] with |I| = c.

(b) The element g is good if for any I, J ⊆ [n] such that g ∈ ΓI and such that J is disjoint
from I, the element g commutes with all elements of ΓJ .
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Remark 5.12. An [n]-group Γ is generated in degree c if and only if it is generated by
elements of complexity at most c, and Γ is commuting if and only if all of its elements are
good.

Remark 5.13. It is reasonable to consider making a different definition, which would define
the complexity of g ∈ Γ instead to be the smallest c such that g lies in a conjugate of ΓI
for some I ⊆ [n] with |I| = c. However, the above definition works better in our proofs.

Our result is then as follows. Recall that the conditions of being transitive and weakly
commuting were defined in Definition 4.10.

Proposition 5.14. Let Γ be a transitive weakly commuting [n]-group and let S be a gener-
ating set for Γ. Set c = max{comp(s) | s ∈ S}, and for some m ≥ 1 assume that either of
the following two conditions hold:

(a) 2m+ c ≤ n, or
(b) 2m+ c− 1 ≤ n and every element of S is good.

Then Xm(Γ) is connected.

Proof. The proof follows the same outline as the proof of Proposition 3.3, though there are
some minor differences. Without loss of generality, we can assume that S is symmetric, i.e.
that for all s ∈ S, we also have s−1 ∈ S. We must prove that there is a path in Xm(Γ)
between Γ[m] and any other vertex. Since Γ is transitive, it acts transitively on the vertices
of Xm(Γ). It is thus enough to prove that for all g ∈ Γ, there is a path in Xm(Γ) from Γ[m]

to (Γ[m])
g.

We begin with a special case of this. Consider some s ∈ S. We claim that there exists
a path ηs in Xm(Γ) from Γ[m] to (Γ[m])

s. Since comp(s) ≤ c by assumption, we can pick
I ⊆ [n] with |I| = c such that s ∈ ΓI . Set J = [m] ∪ I. The subgroups Γ[m] and (Γ[m])

s of
Γ both lie in ΓJ and |J | ≤ m+ c. We divide the proof into two cases corresponding to the
two possible hypotheses in the proposition.

• The first is where 2m + c ≤ n. We can then find some K ⊆ [n] with |K| = m
that is disjoint from J . Since Γ is weakly commuting, there exists some f ∈ Γ such
that (ΓK)f commutes with ΓJ . Since both Γ[m] and (Γ[m])

s are contained in ΓJ , this

implies that (ΓK)f commutes with both Γ[m] and (Γ[m])
s. The vertex (ΓK)f of Xm(Γ)

is thus connected by an edge to both Γ[m] and (Γ[m])
s, and we have found a length 2

path in Xm(Γ) from Γ[m] to (Γ[m])
s, as claimed.

• The second is where S consists of good elements and 2m+c−1 ≤ n. If the intersection
[m]∩I is non-empty, then |J | ≤ m+c−1 and the argument in the previous paragraph
applies. If instead [m] and I are disjoint, then the fact that s is good implies that
(Γ[m])

s = Γ[m], and there is nothing to prove.

We now deal with the general case. Consider g ∈ Γ. Since S is symmetric, we can write

g = s1s2 · · · s` with si ∈ S.

For h ∈ Γ and s ∈ S, the path (ηs)
h goes from (Γ[m])

h to (Γ[m])
sh. Letting • be the

concatenation product on paths, the desired path from Γ[m] to (Γ[m])
g is then

ηs` • (ηs`−1
)s` • (ηs`−2

)s`−1s` • · · · • (ηs1)s2s3···s` .
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5.3 Bounding dΓ(L(k))

In this section, we show how to effectively bound the numbers dΓ(L(k)) in the statement
of Corollary 5.6. We start with the following lemma (see Definition 5.11 for the definition
of comp(v)).

Lemma 5.15. Let G be an [n]-group and let G = G(1) ⊇ G(2) ⊇ · · · be a central series.
Let L =

⊕
L(k) be the associated graded real Lie algebra, and endow each L(k) with the

[n]-vector space structure induced by the [n]-group structure on G (see Definition 4.16).
Given v ∈ L(k) and v′ ∈ L(k′), consider [v, v′] ∈ L(k + k′). The following then hold.

(i) We have comp([v, v′]) ≤ comp(v) + comp(v′).
(ii) If G is weakly commuting, then comp([v, v′]) ≤ max{comp(v) + comp(v′)− 1, 0}.

Proof. Given g ∈ G(m), let

πm(g) ∈ L(m) = (G(m)/G(m+ 1))⊗ R

denote its projection to L(m), that is, πm(g) = gG(m+ 1)⊗ 1. Note that

πm+m′([g, g
′]) = [πm(g), πm′(g

′)]

for all g ∈ G(m) and g′ ∈ G(m′), by the definition of the bracket on L.

Choose I ⊆ [n] such that v ∈ L(k)I and |I| = comp(v), and similarly choose I ′ ⊆ [n] such
that v′ ∈ L(k′)I′ and |I ′| = comp(v′). By the definition of the [n]-vector space structures
on the L(m), we can write

v =
r∑
i=1

λiπk(gi) and v′ =
r′∑
j=1

λ′jπk′(g
′
j),

where λi, λ
′
j ∈ R and gi ∈ G(k)I and g′j ∈ G(k′)I′ . We then have

[v, v′] =
∑
i,j

λiλ
′
j [πk(gi), πk′(g

′
j)] =

∑
i,j

λiλ
′
jπk+k′([gi, g

′
j ]).

Since [gi, g
′
j ] ∈ G(k+k′)∩GI∪I′ = G(k+k′)I∪I′ , it follows that πk+k′([gi, g

′
j ]) ∈ L(k+k′)I∪I′ .

We deduce that [v, v′] ∈ L(k+ k′)I∪I′ . Since |I ∪ I ′| ≤ |I|+ |I ′| = comp(v) + comp(v′), this
proves (i).

Suppose now that G is weakly commuting. If I ∩ I ′ 6= ∅, then |I ∪ I ′| ≤ |I| + |I ′| − 1,
and (ii) follows. If instead I ∩ I ′ = ∅, then there exists x ∈ G such that (GI)

x and GI′

commute. Since
g−1
i (gi)

x = [gi, x] ∈ G(k + 1),

we have πk(gi) = πk((gi)
x) ∈ L(k), so

πk+k′([gi, g
′
j ]) = πk+k′([(gi)

x, g′j ]) ∈ L(k + k′).

But since (gi)
x and g′j commute for all i and j, we have πk+k′([(gi)

x, g′j ]) = πk+k′(1) = 0. It
follows that [v, v′] = 0, and in particular that comp([v, v′]) = 0, proving (ii).

We can now prove our main proposition. Recall that the quantity dΓ(V ) is defined for
an arbitrary [n]-vector space V endowed with an action of a group Γ (see Definition 5.1).
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Proposition 5.16. Let Γ be an [n]-group, let G be a normal subgroup of Γ, and let G =
G(1) ⊇ G(2) ⊇ · · · be a Γ-normal central series. Let L =

⊕
L(k) be the associated

graded real Lie algebra, and assume that L is generated by L(1). Set d = d(L(1)). If G
is weakly commuting, set e = d − 1; otherwise, set e = d. Then for all k ≥ 2, we have
dΓ(L(k)) ≤ dΓ(L(k − 1)) + e. In particular, by induction we have

dΓ(L(k)) ≤ dΓ(L(1)) + (k − 1)e ≤ d+ (k − 1)e.

Remark 5.17. We emphasize that the definition of e in Proposition 5.16 depends on whether
or not the normal subgroup G is weakly commuting as an [n]-group. This is a stronger
condition than the hypothesis in Proposition 5.14, which only asserts that Γ is weakly
commuting.

Proof of Proposition 5.16. Fix k ≥ 2. Our goal is to show that

dΓ(L(k)) ≤ dΓ(L(k − 1)) + e.

In other words, we must show that any v ∈ L(k) can be written as a finite sum of
Γ-conjugates of elements of complexity at most dΓ(L(k − 1)) + e. Since the Lie algebra
L is generated by L(1), we can write v as a finite sum of elements of the form [w, s] with
w ∈ L(k− 1) and s ∈ L(1). Since the desired conclusion is closed under addition, it suffices
to handle the case of a single term, i.e. the case where v = [w, s] with w ∈ L(k − 1) and
s ∈ L(1).

By the definition of dΓ(L(k−1)), we can write w as a finite sum of elements of the form
uγ with γ ∈ Γ and u ∈ L(k − 1) satisfying comp(u) ≤ dΓ(L(k − 1)). Since the Lie bracket
on L is bilinear and our desired conclusion is closed under addition, it again suffices to
handle the case of a single term, i.e. the case where v = [uγ , s] with γ ∈ Γ and u ∈ L(k− 1)
satisfying comp(u) ≤ dΓ(L(k − 1)).

Since Γ acts on L by Lie algebra automorphisms, we have [uγ , s] = [u, sγ
−1

]γ . By the
definition of d(L(1)), we can write

sγ
−1

=
r∑
i=1

si with si ∈ L(1) satisfying comp(si) ≤ d.

It follows that

v = [uγ , s] = [u, sγ
−1

]γ =

r∑
i=1

[u, si]
γ . (5.3)

Letting ε = 1 if G is weakly commuting and ε = 0 otherwise, Lemma 5.15 implies that for
each i we have

comp([u, si]) ≤ comp(u) + comp(si)− ε ≤ dΓ(L(k − 1)) + d− ε = dΓ(L(k − 1)) + e,

as desired.

6 Proofs of Theorems B, D, and E

In this section, we prove Theorems B, D, and E. The bounds in our theorems are stronger
than what can be obtained from a completely general framework, so we will need to use
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some rather special properties of the groups in question. There are three sections. First,
in §6.1 we prove Theorem B on the lower central series of I1

g . Theorem C on the Johnson
filtration of I1

g is a special case of Theorem B, so there is no need to prove it separately.
Next, in §6.2 we prove Theorem D on the lower central series of IAn. Finally, in §6.3 we
prove Theorem E on the Johnson filtration of IAn.

Remark 6.1. The proof of Theorem D in §6.2 has the fewest technicalities, so we suggest
reading it first. It can be understood independently without first reading §6.1.

6.1 The lower central series of I1
g

The goal in this subsection is to prove Theorem B concerning the lower central series of I1
g .

Notation. The following notation will be in place for the remainder of this subsection. Fix
some g ≥ 3. Let Γ = Mod1

g, let G = I1
g , and let G(k) = γkI1

g . Finally, let L =
⊕
L(k) be the

graded real Lie algebra associated to G(k). Endow Γ with the [g]-group structure described
in Definition 4.6. Recall that the subgroups G and G(k) inherit a [g]-group structure, and
the vector spaces L(k) inherit a [g]-vector space structure.

Basic properties. Our goal is to apply Corollary 5.6 to the filtration G(k) of Γ. That
corollary has several conditions. The following lemma verifies the first of them. Recall that
we defined what it means for a [g]-group structure to be transitive and weakly commuting
in Definition 4.10.

Lemma 6.2. The [g]-group Γ is transitive and the [g]-groups Γ and G are weakly commut-
ing, but not commuting.

Proof. That Γ is transitive is a direct consequence of [CP, Lemma 4.1(i)], which says that
for all 1 ≤ k ≤ g the group Mod1

g acts transitively on isotopy classes of subsurfaces of
Σ1
g which are homeomorphic to Σ1

k. We thus must only prove that Γ and G are weakly
commuting. Let I, J ⊆ [g] be disjoint. Recall that in Definition 4.6, we defined ΓI and
ΓJ to consist of mapping classes supported on the genus |I| and |J | subsurfaces ΣI and
ΣJ constructed by Lemma 4.5 and illustrated in Figure 2. As discussed in conclusion (iv)
of Lemma 4.5, the surfaces ΣI and ΣJ need not be homotopic to disjoint subsurfaces, so
ΓI and ΓJ need not commute and thus Γ and G are not commuting. However, we can
always find a subsurface Σ′J which is homeomorphic to ΣJ , disjoint from ΣI , and satisfies
H1(ΣJ) = H1(Σ′J) as subspaces of H1(Σ). By [CP, Lemma 4.2(ii)] this implies that there
exists ϕ ∈ G such that ϕ(Σ′J) = ΣJ , so the subgroup (ΓJ)ϕ = ϕ−1ΓJϕ consists of mapping
classes supported on Σ′J . It follows that (ΓJ)ϕ commutes with ΓI . Since ϕ ∈ G, this shows
that both G and Γ are weakly commuting.

Generating G(1). The second condition in Corollary 5.6 is that G(1) = I1
g is finitely

generated. This was proved by Johnson [J3], and stated above as Theorem 3.5(b).

Zariski-irreducibility. The third condition in Corollary 5.6 is that the action of Γ = Mod1
g

on each L(k) is Zariski-irreducible, which is the content of the following.

Lemma 6.3. For all k ≥ 1, the action of Γ on L(k) is Zariski-irreducible.
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α1 α2 α3 α4

β1 β2 β3

γ1 γ2 γ3 γ4

=

Figure 3: On the top are the generators for Γ = Mod1
g, drawn in such a way that it is clear how

they interact with the subsurfaces ΣI . On the bottom we illustrate why βj lies in a surface isotopic
to Σj,j+1, and thus why the Dehn twist Tβj lies in Γj,j+1.

Proof. Since G(k) = γkG is the lower central series of G, by Remark 5.8 it suffices to prove
that the action on L(1) = (I1

g )ab⊗R is Zariski-irreducible. But this has already been proved
for the dual representation L(1)∗ = Hom(I1

g ,R) in Lemma 3.6 which suffices according to
Remark 4.19.

Connectivity bounds. The fourth condition in Corollary 5.6 asserts that the graph
Xm(Γ) must be connected and nontrivial for some m ≥ max{dΓ(L(k)) | 1 ≤ k < N}. The
following lemmas will allow us to verify this.

Lemma 6.4. For all m ≥ 1 such that 2m + 1 ≤ g, the graph Xm(Γ) is connected and
nontrivial.

For the proof of Lemma 6.4, we need the following fact about generators for Γ = Mod1
g.

Recall that we defined what it means for an element of a [g]-group to be good in Defini-
tion 5.11.

Lemma 6.5. The [g]-group Γ is generated by good elements of complexity at most 2.

Proof. The key point here is that Γ is generated by the union of the subgroups Γ{i,i+1} for
1 ≤ i ≤ g − 1. To see this, observe that in Figure 3 we have redrawn Johnson’s generating
set for Γ = Mod1

g from [J3, Theorem 1] (we previously used this generating set in the proof
of Proposition 3.3, where it is depicted in Figure 1). This generating set consists of Dehn
twists Tαi and Tβj and Tγk with 1 ≤ i, k ≤ g and 1 ≤ j ≤ g − 1. Letting ΣI be the surfaces
given by Lemma 4.5 and used to define the [g]-group structure on Γ in Definition 4.6, it is
clear from this picture that Tαi ∈ Γ{i} and Tβj ∈ Γ{j,j+1} and Tγk ∈ Γ{k} (this is slightly
nontrivial for Tβj , for which we refer the reader to the bottom of this figure). We remark
that an alternate algebraic proof that Γ is generated by the union of the subgroups Γ{i,i+1}
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is in [McCo]. Conclusion (iv) from Lemma 4.5 implies that any element of Γ{i,i+1} is good.
Since these elements have complexity at most 2, this verifies the lemma.

Proof of Lemma 6.4. We will use Proposition 5.14. Let S ⊂ Mod1
g be the generating set

given by Lemma 6.5. Set c = max{comp(s) | s ∈ S}, so c = 2. Every element of S is good.
Proposition 5.14 thus says that Xm(Γ) is connected whenever 2m+c−1 = 2m+1 ≤ g. As for
the nontriviality of Xm(Γ), it follows immediately from the fact that Mod1

m is never normal
in Mod1

g except when m = 0 (when Mod1
m = 1) and when m = g (when Mod1

m = Mod1
g);

see Remark 5.10.

Remarks 6.6.

1. The commuting graph Xm(Γ) = Xm(Mod1
g) has a more geometric description. The

conjugates of subgroups (Mod1
g)I with |I| = m are in bijection with isotopy classes

of subsurfaces of Σ homeomorphic to Σ1
m; such a subsurface is sometimes called an

m-handle. Two such subgroups commute if and only if the corresponding m-handles
are disjoint. Accordingly the graph Xm(Mod1

g) forms the 1-skeleton of the “m-handle
complex”, whose vertices are m-handles and whose simplices consist of disjoint m-
handles. For m = 1, this first appeared in [PSam], where it was proved to be (g −
3)/2-connected (this was deduced from a similar connectivity result for a slightly
different complex by Hatcher–Vogtmann [HatV]). The fact that the m-handle complex
is connected for g ≥ 2m + 1 must be well known, although we are not aware of an
explicit reference in the literature. We remark that after a first version of this paper
was circulated, the third author proved that the m-handle complex is actually

g − (2m+ 1)

m+ 1
− connected;

see [P3, Theorem D].
2. We also see that the bound g ≥ 2m + 1 is sharp. For g < 2m there are no edges in
Xm(Mod1

g), since there cannot be two disjoint m-handles. For g = 2m, an m-handle
determines a splitting of H1(Σ1

g) into two rank-m symplectic subspaces; disjoint m-
handles determine the same splitting, so this invariant is constant on components of
Xm(Mod1

g).
3. Finally, we remark that the genus-1 BP graph appearing in §3 can be thought of as the

“1.5-handle complex”, and note that we proved there that this is connected whenever
4 = 2(1.5) + 1 ≤ g, matching Lemma 6.4.

Generation for L(k). Recall that a general upper bound on the quantities dΓ(L(k)) was
obtained in Proposition 5.16. We will now use this proposition to obtain more specific
bounds in the case Γ = Mod1

g and G = I1
g :

Proposition 6.7. We have dΓ(L(1)) = 2 and dΓ(L(k)) ≤ k for k ≥ 2.

Proof. Set VZ = H1(Σ1
g;Z) and V = H1(Σ1

g;R). For each 1 ≤ i ≤ g, let {ai, bi} be a
symplectic basic for H1(Σ{i};Z), so B = {ai, bi}gi=1 is a symplectic basis for VZ. For each
I ⊆ [n] let

VI,Z =
⊕
i∈I

(Zai ⊕ Zbi) and VI = VI,Z ⊗ R =
⊕
i∈I

(Rai ⊕ Rbi).
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Theorem 3.5(c) states that L(1) = Gab ⊗ R ∼=
∧3V . Moreover, it follows from Johnson’s

work in [J5] that the image of GI in Gab ⊗ R is equal to
∧3VI,Z (even if |I| ≤ 3), so

L(1)I =
∧3VI . In particular, this shows that d(L(1)) ≤ 3 since each basis element of∧3V involves three elements of {a1, b1, . . . , ag, bg}, and thus lies in

∧3VI for some I with
|I| ≤ 3. It is easy to see that elements of complexity at most 2 cannot span

∧3V , so in fact
d(L(1)) = 3. We now tackle dΓ(L(k)) for different k in turn.

k = 1: Consider the element a1 ∧ a2 ∧ b2 ∈ L(1), which has complexity 2 since it
belongs to L(1){1,2}. The Sp2g(Z)-orbit of this element spans

∧3V . This can be seen

either algebraically, since
∧3V contains only two irreducible Sp2g(Z)-representations and

this element is not contained in either, or via Theorem 3.5(a) (this is the image of a genus-
1 BP map, and Theorem 3.5(a) states that I1

g is generated by the Γ-orbit of such an
element). Since L(1) is spanned by the Γ-orbit of this complexity-2 element, we conclude
that dΓ(L(1)) = 2 (we cannot have dΓ(L(1)) ≤ 1 since L(1)I = 0 if |I| = 1).

k = 2: Next, we prove that dΓ(L(2)) ≤ 2 using a rather different argument, resting on
two important results of Johnson that we have not used thus far. Johnson [J1, Theorem 1]
proved that for g ≥ 3 the Johnson kernel K1

g is generated by the set S of separating twists
of genus 1 and 2, that is, Dehn twists about separating curves that cut off subsurfaces
homeomorphic to either Σ1

1 or Σ1
2. Any separating curve of genus 1 or 2 is in the Mod1

g-orbit

of the boundary of Σ{1} or Σ{1,2} respectively. Therefore, K1
g is generated by the Mod1

g-
conjugates of K1

g ∩ Γ{1,2}. Johnson [J5] also proved that γ2G is a finite index subgroup of
K1
g and that K1

g/γ2G ∼= (Z/2)r for some r ≥ 1. Let S′ = {s2 | s ∈ S} be the set of squares
of separating twists of genus 1 and 2 and let H ⊆ γ2G be the subgroup generated by S′.
The group H is normal in Γ since S (and hence S′) is closed under conjugation in Γ. Note
that H need not have finite index in K1

g, but the quotient K1
g/H is generated by torsion

elements (namely the order-2 elements that are the image of S).

Now consider the image of H ⊆ γ2G ⊆ K1
g under the natural projection ρ : K1

g →
K1
g/γ3G. Since G/γ3G is finitely generated nilpotent, the same is true of its subgroup

ρ(K1
g). Therefore its quotient ρ(K1

g)/ρ(H) is finitely generated, nilpotent, and generated
by torsion elements, and thus is finite. This means that ρ(H) is finite index in ρ(K1

g),
and therefore in the intermediate subgroup ρ(γ2G) = γ2G/γ3G. Tensoring with R, we
conclude that the image of H spans all of (γ2G/γ3G)⊗R = L(2). Since H is generated by
Γ-conjugates of elements of G{1,2}, we conclude that dΓ(L(2)) ≤ 2.

k ≥ 3: To conclude the proof, we will modify the proof of Proposition 5.16 to show
that

dΓ(L(k)) ≤ dΓ(L(k − 1)) + 1 (6.1)

for k ≥ 3; the bound dΓ(L(k)) ≤ k then follows by induction. Fix k ≥ 3. Recall from above
that d(L(1)) = 3. Since G is weakly commuting, the proof of Proposition 5.16 (specifically
equation (5.3)) shows that L(k) is generated by the Γ-orbits of elements of the form [v, s]
where v ∈ L(k − 1)I and s ∈ L(1)J for some I, J ⊆ [g] with |I| ≤ dΓ(L(k − 1)) and |J | ≤ 3
and I ∩ J 6= ∅. We may assume that s is a standard basis element of L(1) ∼=

∧3V and that
I and J are as small as possible.

Note that
comp([v, s]) ≤ |I ∪ J | ≤ dΓ(L(k − 1)) + 1

unless |J | = 3 and |I ∩ J | = 1, so assume that the latter is the case. Let r be the unique
element of I ∩ J and t and u the other two elements of J . Since comp(s) = 3 we must have
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s = x∧y∧z where x = ar or br, y = at or bt, and z = au or bu. Set w = [v, x∧at∧bt]. Since
x∧ at ∧ bt ∈ L(1){r,t} we have w ∈ L(k)I∪{r,t} = L(k)I∪{t}, so comp(w) ≤ dΓ(L(k− 1)) + 1.
Using the action of Sp2g(Z) we will show that the Γ-orbit of w contains [v, x ∧ at ∧ au] and
[v, x ∧ at ∧ bu] and [v, x ∧ bt ∧ au] and [v, x ∧ bt ∧ bu]. Since [v, s] must be equal to one of
these, this will finish the proof of (6.1).

Consider the symplectic automorphisms σi for i ∈ [g] and τij for i 6= j ∈ [g] of VZ defined
as follows (all basis elements whose image is not specified are fixed):

σi :

{
ai 7→ bi

bi 7→ −ai
τij :

{
bi 7→ bi + aj

bj 7→ bj + ai
.

Note that

τtu(at ∧ bt) = at ∧ (bt + au) = at ∧ bt + at ∧ au
σt(at ∧ au) = bt ∧ au
σu(at ∧ au) = at ∧ bu
σt(at ∧ bu) = bt ∧ bu.

This shows that the span of the orbit of at ∧ bt ∈ V ∧ V under the subgroup generated by
{σt, σu, τtu} contains at ∧ au and bt ∧ au and au ∧ bt and au ∧ bu. By construction σt and σu
and τtu fix VI ; this implies that they fix v ∈ L(k−1)I , since we may lift these automorphisms
to elements of Γ that fix every element of ΓI . They also fix x ∈ V . Therefore applying the
computations above to w = [v, x∧ at ∧ bt] shows that the Γ-orbit of w contains the claimed
elements; for example, τtu(w)− w = [v, x ∧ at ∧ au], and so on.

Putting it all together. All the pieces are now in place to prove Theorem B.

Proof of Theorem B. The notation is as above. As was established in §1.2, we must prove
that G(k) is finitely generated for k ≥ 3 and g ≥ 2k− 1, or equivalently when 3 ≤ k ≤ g+1

2 .

We will apply Corollary 5.6 with N = bg+1
2 cand m = N − 1 = bg−1

2 c. This theorem has
four hypotheses:

• The [g]-group Γ must be transitive, which is one of the conclusions of Lemma 6.2.
• The group G must be finitely generated, which is Theorem 3.5(b).
• The action of Γ on each L(k) must be Zariski-irreducible, which is Lemma 6.3.
• The graph Xm(Γ) must be connected and nontrivial, and we must have

m ≥ max{dΓ(L(k)) | 1 ≤ k < N}. (6.2)

To see that Xm(Γ) is connected and nontrivial, it is enough to verify the two hy-
potheses of Lemma 6.4. The first is that m ≥ 1; indeed, since g ≥ 2k − 1 ≥ 5, we
have

m = bg − 1

2
c ≥ 2 ≥ 1.

The second is that 2m+ 1 ≤ g; indeed,

2m+ 1 = 2
⌊g−1

2

⌋
+ 1 ≤ 2 · g−1

2 + 1 = g.
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As for (6.2), Proposition 6.7 says that dΓ(L(1)) = 2 and that dΓ(L(k)) ≤ k for k ≥ 2,
so since N − 1 ≥ 2 we have

max{dΓ(L(k)) | k ≤ N − 1} ≤ N − 1 = m,

as desired.

Applying Corollary 5.6, we conclude that G(k) is finitely generated for 1 ≤ k ≤ N .

6.2 The lower central series of Aut(Fn)

The goal in this section is to prove Theorem D concerning the lower central series of IAn.

Setup. Recall that in Definition 4.4 we defined an [n]-group structure on Aut(Fn). There
is a minor technical problem that will prevent us from working with Aut(Fn) directly. To
explain this, consider the map Aut(Fn) → GLn(Z) arising from the action of Aut(Fn) on
F ab
n = Zn. This map is surjective, and the Zariski closure of GLn(Z) in GLn(R) is the group

SL±n (R) of matrices whose determinant is ±1. The group SL±n (R) is not connected, so the
pullback of the Zariski topology on GLn(Z) to Aut(Fn) does not make Aut(Fn) into an
irreducible space. To correct this, we will instead work with the group SAut(Fn) consisting
of elements of Aut(Fn) that act on F ab

n with determinant 1. Since SAut(Fn) is a subgroup
of Aut(Fn), it inherits an [n]-group structure.

Notation. The following notation will be in place for the remainder of this section. Fix
some n ≥ 2. Let Γ = SAut(Fn), let G = IAn, and let G(k) = γk IAn. Finally, let
L =

⊕
L(k) be the graded real Lie algebra associated to G(k). The groups Γ and G

and G(k) are endowed with the [n]-group structure coming from the [n]-group structure on
Aut(Fn), and the vector spaces L(k) is endowed with the induced [n]-vector space structure.

Basic properties. Our goal is to apply Corollary 5.6 to the filtration G(k) of Γ. That
corollary has several conditions. The following lemma verifies the first of them. Recall
that the we defined what it means for an [n]-group to be commuting and transitive in
Definition 4.10.

Lemma 6.8. The [n]-group Γ = SAut(Fn) is commuting and transitive.

Proof. We have already noted in Remark 4.11 that the [n]-group Aut(Fn) is commuting,
so the same is true of its subgroup SAut(Fn). To see that it is transitive, consider the
subgroup of Aut(Fn) preserving the set {x1, x

−1
1 , . . . , xn, x

−1
n }, which we identify with the

signed permutation group S±n . If σ̃ ∈ S±n projects to σ ∈ Sn, then from the definition
of Aut(Fn)I we see that that σ̃ conjugates Aut(Fn)σ(I) to Aut(Fn)I and hence conjugates
SAut(Fn)σ(I) to SAut(Fn)I . Since the index-2 subgroup S±n ∩SAut(Fn) of S±n surjects onto
Sn, it follows that SAut(Fn) is a transitive [n]-group.

Generating G(1). The second condition in Corollary 5.6 is that G(1) = IAn is finitely
generated. This was proved by Magnus. For later use, we will actually give an explicit
generating set. Let {x1, . . . , xn} be the standard basis for Fn. For distinct 1 ≤ i, j ≤ n,
define Cij ∈ IAn via the formula

Cij(x`) =

{
x−1
j x`xj if ` = i,

x` if ` 6= i.
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Also, for distinct 1 ≤ i, j, k ≤ n define Mijk ∈ IAn via the formula

Mijk(x`) =

{
x`[xj , xk] if ` = i,

x` if ` 6= i.

Magnus ([Mag]; see [BBM] and [DaP1] for modern accounts) proved the following.

Theorem 6.9. For n ≥ 2, the group IAn is SAut(Fn)-normally generated by C12 and is
generated by the finite set of all Cij and Mijk.

Zariski-irreducibility. The third condition in Corollary 5.6 is that the action of Γ =
SAut(Fn) on each L(k) is Zariski-irreducible, which is the content of the following.

Lemma 6.10. For all k ≥ 1, the action of Γ on L(k) is Zariski-irreducible.

For the proof of Lemma 6.10, we need the following classical computation of IAab
n . Let

VZ = F ab
n
∼= Zn, and recall that the natural action of Aut(Fn) on VZ factors through

GLn(Z). The following description holds for all n ≥ 0.

Theorem 6.11. There is an Aut(Fn)-equivariant isomorphism IAab
n
∼= Hom(VZ,

∧2VZ).

As an abelian group, the description of IAab
n in Theorem 6.11 was established by Bach-

muth [Bac] in 1966 and implicitly (and independently) by Andreadakis [A] in 1965. The
description as an Aut(Fn)-module must have been folklore for some time; the earliest proof
in the literature that we are aware of is due to Formanek [Fo].

Proof of Lemma 6.10. Since G(k) = γkG is the lower central series of G, by Remark 5.8 it
suffices to prove the lemma for L(1) = IAab

n ⊗R. By Theorem 6.11, the action of SAut(Fn)
on IAab

n ⊗R factors through the surjection SAut(Fn) � SLn(Z). Since SLn(Z) is Zariski
dense in SLn(R), arguing as in the proof of Lemma 6.3 in §6.1, we deduce that the image
of SAut(Fn) in GL(IAab

n ⊗R) is irreducible.

Connectivity bounds. The fourth condition in Corollary 5.6 asserts that the graphXm(Γ)
must be connected for some m ≥ max{dΓ(L(k)) | 1 ≤ k < N}. This requires showing that
Xm(Γ) is connected if m is not too large (relative to n), and then estimating dΓ(L(k)). We
start with the first of these.

Lemma 6.12. For all m ≥ 2 such that 2m + 1 ≤ n, the graph Xm(Γ) is connected and
nontrivial.

For the proof of Lemma 6.12, we will need a generating set for SAut(Fn). Let {x1, . . . , xn}
be the standard basis for Fn. For distinct 1 ≤ i, j ≤ n, define Lij ∈ SAut(Fn) and
Rij ∈ SAut(Fn) via the formulas

Lij(x`) =

{
xjx` if ` = i,

x` if ` 6= i.
Rij(x`) =

{
x`xj if ` = i,

x` if ` 6= i.

Nielsen ([Ni]; see [Ge] for a modern account) proved the following.

Theorem 6.13. For n ≥ 2, the group SAut(Fn) is generated by the set of all Lij and Rij.
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Proof of Lemma 6.12. We will use Proposition 5.14. Let S ⊂ SAut(Fn) be the set of all
Lij and Rij . Setting c = max{comp(s) | s ∈ S}, the fact that comp(Lij) = comp(Rij) = 2
implies that c = 2. Lemma 6.8 says that SAut(Fn) is transitive and commuting. In
particular, every element of S is good. We can thus apply Proposition 5.14 and deduce that
Xm(Γ) is connected whenever 2m+ c− 1 = 2m+ 1 ≤ n. As for the nontriviality of Xm(Γ),
it follows immediately from the fact that SAut(Fm) is never normal in SAut(Fn) except
with m = 0, 1 (when SAut(Fm) = 1) and when m = n (when SAut(Fm) = SAut(Fn)); see
Remark 5.10.

We now estimate dΓ(L(k)).

Lemma 6.14. For all k ≥ 1 we have dΓ(L(k)) ≤ 2k.

Proof. We will use Proposition 5.16. This proposition requires that L is generated by L(1),
which holds since the filtration G(k) is the lower central series. We now calculate the
quantities that go into its bound:

• Theorem 6.9 says that IAn is SAut(Fn)-normally generated by the element C12. Since
comp(C12) = 2, we have dΓ(L(1)) ≤ 2. We cannot have dΓ(L(1)) ≤ 1 (since G{i} = 1
and thus L(1){i} = 0) so in fact dΓ(L(1)) = 2.
• Set d = d(L(1)). Theorem 6.9 says that IAn is generated by the set of all Cij and
Mijk. Since comp(Cij) = 2 and comp(Mijk) = 3, we deduce that d ≤ 3 (and one can
check that in fact d = 3).
• Lemma 6.8 says that SAut(Fn) is commuting, so as in Proposition 5.16 we set e =
d− 1 = 2.

Proposition 5.16 now says that for k ≥ 1 we have

dΓ(L(k)) ≤ dΓ(L(1)) + (k − 1)e = 2 + (k − 1)2 = 2k.

Putting it all together. All the pieces are now in place to prove Theorem D. This theorem
has two parts that we prove separately.

Proof of Theorem D for k ≥ 3. The notation is as above. As was established in §1.2, we
must prove that G(k) is finitely generated for k ≥ 3 and n ≥ 4k − 3, or equivalently when
k ≤ n+3

4 . We will apply Corollary 5.6 with N = bn+3
4 c and m = 2(N − 1) = 2 · bn−1

4 c. This
theorem has four hypotheses:

• The [n]-group Γ must be transitive, which is one of the conclusions of Lemma 6.8.
• The group G must be finitely generated, which is Theorem 6.9.
• The action of Γ on each L(k) must be Zariski-irreducible, which is Lemma 6.10.
• The graph Xm(Γ) must be connected and nontrivial, and we must have

m ≥ max{dΓ(L(k)) | 1 ≤ k < N}. (6.3)

To see that Xm(Γ) is connected and nontrivial, it is enough to verify the two hy-
potheses of Lemma 6.12. The first is that m ≥ 2; indeed, since n ≥ 4k − 3 ≥ 9, we
have

m = 2 · bn− 1

4
c ≥ 4 ≥ 2.
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The second is that 2m+ 1 ≤ n; indeed,

2m+ 1 = 4 · bn− 1

4
c+ 1 ≤ 4 · n− 1

4
+ 1 = n.

As for (6.3), Lemma 6.14 says that dΓ(L(k)) ≤ 2k, so

max{dΓ(L(k)) | 1 ≤ k < N} ≤ 2(N − 1) = m,

as desired.

Applying Corollary 5.6, we conclude that G(k) is finitely generated for 1 ≤ k ≤ N .

Proof of Theorem D for k = 2. We must prove that [IAn, IAn] is finitely generated for n ≥
4. To do this, we will apply Theorem 3.7 to G = IAn and Γ = SAut(Fn) acting by conjuga-
tion. Our Γ-orbit C will be the Γ-conjugates of the Magnus generator C12; Theorem 6.9 tells
us that G is generated by C and finitely generated. We have already checked in Lemma 6.10
that the action of Γ on L(1) ∼= Hom(G;R) is Zariski-irreducible. Therefore we need only
verify the remaining hypothesis of Theorem 3.7: denoting by Conj(IAn) the graph whose
vertices are SAut(Fn)-conjugates of C12 with edges connecting commuting elements, we
must show that Conj(IAn) is connected when n ≥ 4.

Let S = {L±ij , R
±
ij} be the generating set for SAut(Fn) from Theorem 6.13. Just as in

the proofs of Proposition 3.3 or Proposition 5.14, to prove that Conj(IAn) is connected, it
suffices to prove the following: for all s ∈ S, there exists a path ηs in Conj(IAn) from C12 to
C12

s. We will repeatedly rely on the observation that for fixed b ∈ [n], the 2n− 2 elements
{Lib, Rib | i 6= b} commute; indeed, they generate a subgroup of SAut(Fn) isomorphic to
Z2n−2, which contains Cib = RibL

−1
ib for all i 6= b.

Fix distinct a and b in [n] and consider s ∈ {Lab, L−1
ab , Rab, R

−1
ab }.

• If {a, b} ∩ {1, 2} = ∅, then s commutes with C12; thus (C12)s = C12 and there is
nothing to prove.
• If {a, b} = {1, 2}, then C34 commutes with both C12 and s, and thus with (C12)s.

Therefore for ηs we may take the length 2 path from C12 to C34 to (C12)s.
• If a ∈ {1, 2} and b /∈ {1, 2}, we can choose some c ∈ [n] \ {1, 2, b} since n ≥ 4. Then
Ccb commutes with C12 (since {1, 2} ∩ {c, b} = ∅). At the same time, Ccb commutes
with s (since both lie in the abelian subgroup generated by Lib and Rib), and thus
with (C12)s. Therefore for ηs we may take the length 2 path from C12 to Ccb to (C12)s.
• It remains to handle the case b ∈ {1, 2} and a /∈ {1, 2}.

– If b = 2, then s commutes with C12, so (C12)s = C12 and there is nothing to
prove.

– Finally, if b = 1 and a /∈ {1, 2}, we can choose some d ∈ [n]\{1, 2, a} since n ≥ 4.
Then Cd2 commutes with C12 (since both lie in the abelian subgroup generated by
Li2 and Ri2). At the same time, Cd2 commutes with s (since {a, b}∩{d, 2} = ∅),
and thus with (C12)s. Therefore for ηs we may take the length 2 path from C12

to Cd2 to (C12)s.

This concludes the proof that Conj(IAn) is connected for n ≥ 4. Theorem 3.7 now shows
that [IAn, IAn] = γ2(IAn) is finitely generated for n ≥ 4.
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6.3 The Johnson filtration of Aut(Fn)

We close by describing how to modify the proof of Theorem D from §6.2 to prove Theorem E,
which as we discussed in §1.2 is equivalent to the assertion that for k ≥ 2 the term JIAn(k)
of the Johnson filtration of IAn is finitely generated for n ≥ 2k + 3. This is stronger than
the bound from Theorem D, which only gives this for n ≥ 4k − 3.

Notation. The following notation will be in place for the remainder of this subsection. Fix
some n ≥ 2. Let Γ = SAut(Fn), let G = IAn, and let G(k) = JIAn(k). Let JL =

⊕
JL(k)

be the graded real Lie algebra associated to G(k). Maintaining the same notation from
the previous subsection, let L =

⊕
L(k) be the graded real Lie algebra associated to the

lower central series of IAn. The groups Γ and G and G(k) are endowed with the [n]-group
structure coming from the [n]-group structure on Aut(Fn), and the vector spaces JL(k)
and L(k) are endowed with the induced [n]-vector space structures.

What must be done. The structure of the proof of Theorem E is exactly the same as
that of Theorem D; the only change needed is to use the following two results in place of
Lemmas 6.10 and 6.14, respectively.

Lemma 6.15. For all k ≥ 1 the action of Γ on JL(k) is Zariski-irreducible.

Proposition 6.16. For all k ≥ 1 we have dΓ(JL(k)) ≤ k + 2.

The improved bound in Proposition 6.16 (compared with the bound dΓ(L(k)) ≤ 2k in
Lemma 6.14) is the source of our improved range of finite generation for JIAn(k). We will
prove these two results below, but first we illustrate how they imply Theorem E.

Proof of Theorem E. We must prove that G(k) = JIAn(k) is finitely generated for n ≥
2k+ 3, or equivalently when k ≤ n−3

2 . With notation as above, we will apply Corollary 5.6
with N = bn−3

2 c and m = N + 1 = bn−1
2 c. The first two hypotheses, dealing with Γ and

G(1) = IAn, are unchanged from before, so we must verify the remaining two hypotheses.

• The action of Γ on each JL(k) must be Zariski-irreducible, which is Lemma 6.15.
• The graph Xm(Γ) must be connected and nontrivial, and we must have

m ≥ max{dΓ(JL(k)) | 1 ≤ k < N}. (6.4)

To see that Xm(Γ) is connected and nontrivial, it is enough to verify the two hy-
potheses of Lemma 6.12. The first is that m ≥ 2; indeed, since n ≥ 2k + 3 ≥ 5, we
have

m = bn− 1

2
c ≥ 2.

The second is that 2m+ 1 ≤ n; indeed,

2m+ 1 = 2 · bn− 1

2
c+ 1 ≤ 2 · n− 1

2
+ 1 = n.

As for (6.4), Proposition 6.16 says that dΓ(JL(k)) ≤ k + 2, so

max{dΓ(L(k)) | 1 ≤ k < N} ≤ (N − 1) + 2 = m,

as desired.
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Applying Corollary 5.6, we conclude that G(k) is finitely generated for 1 ≤ k ≤ N .

We now proceed to prove Lemma 6.15 and Proposition 6.16. The following key fact
will be used in the proofs of both. Let VZ = F ab

n
∼= Zn and V = VZ ⊗ R ∼= Rn. Let

Lie(VZ) =
⊕

Liem(VZ) be the free Lie algebra on VZ, and let Lie(V ) =
⊕

Liem(V ) be the
free R-Lie algebra on V , so that Liem(V ) ∼= Liem(VZ) ⊗ R. The action of Γ on VZ and V ,
which factors through SL(VZ) ∼= SLn(Z), extends to an action on Lie(VZ) and Lie(V ) by
Lie algebra automorphisms. There is a canonical Γ-equivariant embedding

ι : JIAn[k]/ JIAn[k + 1] ↪→ V ∗Z ⊗ Liek+1(VZ),

described concretely as follows. Given ϕ ∈ Aut(Fn), to say that ϕ ∈ JL(k) means by
definition that the map x 7→ x−1ϕ(x) defines a function Fn → γk+1Fn. This descends to a
homomorphism from F ab

n = VZ to γk+1Fn/γk+2Fn ∼= Liek+1(VZ). The resulting assignment
JIAn[k]→ V ∗Z ⊗ Liek+1(VZ) is a homomorphism, and by definition its kernel is JIAn[k+ 1].
Tensoring with R, we obtain a Γ-equivariant embedding of JL(k) into M(k) := V ∗ ⊗
Liek+1(V ). In particular, this equivariance implies that the action of Γ on JL(k) factors
through SL(VZ).

Proof of Lemma 6.15. The action of SL(VZ) on M(k) extends to a polynomial representa-
tion of SL(V ) ∼= SLn(R). The Γ-equivariance of the embedding JL(k)→M(k) implies that
the subspace JL(k) is SL(VZ)-invariant. Since SL(VZ) is Zariski-dense in SL(V ) and the
map GL(V ) → GL(M(k)) is Zariski-continuous, the subspace JL(k) must also be SL(V )-
invariant. Moreover, this implies that the Zariski closure of the image of Γ in GL(JL(k))
coincides with the image of SL(V ); it is therefore a quotient of SL(V ) ∼= SLn(R), and thus
is irreducible.

Proof of Proposition 6.16. This proposition is a fairly easy consequence of Bartholdi’s work
[Bar1], but in order to make our argument precise it will be more convenient to refer to
other sources.

Note that when n ≤ k + 2, the proposition is vacuous; we may therefore assume that
k < n−2. We will actually only assume k ≤ n−2 since this suffices for the argument below.
Throughout this section, we will write [v1, v2, . . . , vk] for the left-normed commutator:

[v1, v2, . . . , vk] := [[[v1, v2], · · · ], vk].

For k = 1, since JIAn(2) = γ2(IAn) we have already obtained the stronger bound

dΓ(JL(1)) = dΓ(L(1)) ≤ 2

in Lemma 6.14. So fix 2 ≤ k ≤ n− 2, and consider the following finite families of automor-
phisms:

(1) Let i ∈ [n] and ω = ω1ω2 . . . ωk+1 be a sequence of length k + 1 with i /∈ ω (that
is, ωj ∈ [n] \ {i} for each j). Let Ti,ω be the element of Aut(Fn) which sends xi to
xi[xω1 , xω2 , . . . , xωk+1

] and fixes xj for all j 6= i.
(2) Let µ = µ1µ2 . . . µk be a sequence of length k with µj ∈ [n] for each j. For each µ,

choose once and for all two distinct elements i, j ∈ [n] with i /∈ µ and j /∈ µ (this is
possible precisely because k ≤ n− 2). Define Sµ to be the left-normed commutator

Sµ = [Mijµ1 , Ciµ2 , Ciµ3 , . . . , Ciµk−1
,Mjiµk ],
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where Cij and Mijl are the Magnus generators defined before Theorem 6.9. Note that
the definition of Sµ depends on the choice of i and j, but this dependence will not be
important for our purposes.

By construction, the elements Ti,ω and Sµ have complexity at most k + 2 and lie in
G(k). Let ti,ω and sµ be their images in JL(k). Denote by A (resp. B) the subspace of
JL(k) generated by the Γ-orbits of the elements ti,ω (resp. by the Γ-orbits of the elements
sµ). Since ti,ω and sµ have complexity at most k + 2, to prove that dΓ(JL(k)) ≤ k + 2 it
suffices to show that JL(k) = A+B.

Define the map Φ: V ∗ ⊗ V ⊗k+1 → V ⊗k by

Φ(v∗ ⊗ v0 ⊗ · · · ⊗ vk) = v∗(v0)v1 ⊗ · · · ⊗ vk.

Realizing Liek+1(V ) as a subspace of V ⊗k+1 in the standard way, we obtain a composite
Γ-equivariant map

τ : JL(k) ↪→M(k) = V ∗ ⊗ Liek+1(V ) ↪→ V ∗ ⊗ V ⊗k+1 Φ−→ V ⊗k.

Let 〈γ〉 be a cyclic group of order k acting on V ⊗k by cyclically permuting the factors, that
is, γ(v1⊗· · ·⊗vk−1⊗vk) = v2⊗· · ·⊗vk⊗v1. Let W be the subspace of γ-invariant elements
in V ⊗k. We claim that

(i) A = ker(τ)
(ii) τ(JL(k)) ⊆W

(iii) τ(B) ⊇W
Claims (ii) and (iii) together imply that τ(B) = W = τ(JL(k)), so with (i) this implies
that JL(k) = A+B as desired.

For i ∈ [n] let ei ∈ V = F ab
n ⊗R be the image of xi, and let e∗1, . . . , e

∗
n be the dual basis

of V ∗. For any sequence δ = iω = iω1ω2 . . . ωk+1 of length k + 2, define

eδ = e∗i ⊗ eω = e∗i ⊗ [eω1 , eω2 , . . . , eωk+1
].

Note that these elements span V ∗ ⊗ Liek+1(V ).

The assertion (ii) is merely a restatement of [MasSak, Prop 5.3]. For (iii), an easy direct
computation shows that for any sequence µ = µ1 · · ·µk of length k we have

τ(sµ) = eµ1 ⊗ · · · ⊗ eµk−1
⊗ eµk − eµ2 ⊗ · · · ⊗ eµk ⊗ eµ1

Since elements of this form span W , inclusion (iii) follows.

It remains to prove (i). Since ker(τ) is Γ-invariant, to verify the inclusion A ⊆ ker(τ)
we only need to check that τ(ti,ω) = 0. But since i /∈ ω, as an element of V ∗ ⊗ Liek+1(V )
we have

ti,ω = eiω = e∗i ⊗ [eω1 , eω2 , . . . , eωk+1
].

Since ω does not contain i, the term [eω1 , eω2 , . . . , eωk+1
] belongs to Liek+1(ker e∗i ), so ti,ω

belongs to ker(Φ). This shows that τ(ti,ω) = 0 as claimed, so A ⊆ ker(τ). The opposite
inclusion ker(τ) ⊆ A (which is what we ultimately need) is implicitly proved in [Bar1,
Lemma 5.4] and also in [Sat1, Prop 3.2], but for clarity we will give a short direct proof.

Given any sequence δ = iω = iω1ω2 . . . ωk+1 of length k+ 2, let c(δ) denote the number
of times i (the first element of δ) appears in the tail ω1 . . . ωk+1. We already observed that
eδ ∈ A when c(δ) = 0 since then eδ = ti,ω.
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We next claim that if c(δ) ≥ 2, then we can write eδ = x + y where x ∈ A and y is a
linear combination of elements eγ with c(γ) < c(δ). Indeed, choose any index j ∈ [n] with
j /∈ δ, which is possible since the number of distinct elements of δ is at most k+ 2− c(δ) ≤
n− c(δ) ≤ n− 2. Let ω′ be the sequence obtained from ω by replacing all appearances of i
by j and let δ′ = iω′. Note that c(δ′) = 0 so eδ′ ∈ A.

Let Eij ∈ Γ be any element projecting to the elementary matrix Eij ∈ SLn(Z). For
simplicity, we will write the action of Γ on the left. Set z = E2

ijeδ′ − 2Eijeδ′ , so z ∈ A. The
action of Epij on eδ′ will replace e∗i by e∗i − pe∗j and each occurrence of ej by ej + pei, and

a simple computation shows that z = (2c(δ) − 2)eδ + u where c(γ) < c(δ) for each eγ that
appears in u. Since c(δ) > 1, we have eδ = 1

2c(δ)−2
(z − u), as desired.

Applying this claim inductively shows that any element of V ∗⊗Liek+1(V ) can be written
z = a + b, where a ∈ A and b =

∑
λδeδ with c(δ) = 1 for each δ. Moreover, using the Lie

algebra axioms, we can assume that each δ in the above sum has the form δ = iiε where ε
is a sequence of length k with i /∈ ε.

Note that Φ(eiiε) = Φ(e∗i ⊗ eiε) is equal to eε1 ⊗ eε2 ⊗ · · · ⊗ eεk when i /∈ ε. To see
this, note that when the left-normed commutator eω = [[[eω1 , eω2 ], · · · ], eω` ] ∈ Liek+1(V ) is
considered as an element of V ⊗k+1, it is equal to eω1 ⊗ eω2 ⊗ · · · ⊗ eωk+1

plus permutations
of the form eω` ⊗ · · · for ` 6= 1.

Now take an arbitrary z ∈ ker(τ) and write it as a sum z = a + b as above. Since
A ⊆ ker(τ), this implies that τ(b) = 0. Since Φ(eiiε) = eε1 ⊗ eε2 ⊗ · · · ⊗ eεk for i /∈ ε and
all such simple tensors coming from different ε are linearly independent, to have τ(b) = 0
means that for each ε we have

∑
i 6∈ε λeiiε = 0. It follows that b must be a linear combination

of elements of the form eiiε − ejjε with i 6= j and i, j 6∈ ε. However, these elements too
belong to A:

eiiε − ejjε = Eijeijε − eijε + ejiε = Eijti,jε − ti,jε + tj,iε ∈ A

We conclude that b ∈ A and hence z ∈ A, as desired.
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