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ABSTRACT. This note is devoted to a trick which yields almost trivial proofs
that certain complexes associated to topological surfaces are connected or simply
connected. Applications include new proofs that the complexes of curves, separating
curves, nonseparating curves, pants, and cut systems are all connected for genus
g À 0. We also prove that two new complexes are connected : one involves curves
which split a genus 2g surface into two genus g pieces, and the other involves curves
which are homologous to a fixed curve. The connectivity of the latter complex can be
interpreted as saying the “homology” relation on the surface is (for g ≥ 3) generated
by “embedded/disjoint homologies”. We finally prove that the complex of separating
curves is simply connected for g ≥ 4.

1. INTRODUCTION

Let Σg be a genus g surface and Mod(Σg) be the mapping class group of
Σg , that is, the group of isotopy classes of orientation-preserving homeomor-
phisms of Σg (see [11] for a survey of Mod(Σg) ). An important theme in the
study of Mod(Σg) and its subgroups is the close relationship between algebraic
properties of Mod(Σg) (e.g. cohomology, finiteness properties, automorphisms,
etc.) and the structure of 1-submanifolds of Σg . The combinatorics of these
1-submanifolds have been encoded in the structure of a number of simplicial
complexes, such as the curve complex and the pants complex. A key property
of these complexes is that they are often highly connected. In this paper, we
discuss a general trick which yields simple proofs that complexes of this sort
are connected or simply connected; in many cases this is sufficient for the
applications.

In the past, these sorts of theorems have been proven using a variety of
tools, such as curve surgery (see, e.g., [3, 6, 14, 15, 19, 21]), parametrized
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Morse theory (see, e.g., [7, 10]), and Teichmüller theory (see, e.g., [2, 4, 17]).
We instead exploit the basic combinatorial group theoretic properties of
Mod(Σg) and its subgroups, deducing that complexes are connected from the
structure of generating sets and deducing that they are simply connected from
relations. Of course, we may be accused of circular reasoning, as the standard
construction of generators and relations for Mod(Σg) involves investigating
connected and simply connected complexes upon which it acts ! The point of
this paper is that this only needs to be done once – as soon as generators
and relations for Mod(Σg) are found, one can prove that essentially any
complex upon which Mod(Σg) acts in a reasonable way is connected or
simply connected by a formal, finitely checkable (and in practice quite easy)
process.

The first complex we will examine is the complex of curves (introduced
by Harvey in [5]), together with two of its subcomplexes.

DEFINITION 1.1. The complex of curves C (Σg) is the simplicial complex
whose simplices are sets {c1, . . . , ck} of non-trivial isotopy classes of
simple closed curves on Σg which can be realized disjointly. The complex
of separating curves Csep (Σg) and the complex of nonseparating curves
Cnosep (Σg) are the full subcomplexes of C (Σg) spanned by separating and
nonseparating curves, respectively.

We will give a simple, unified proof of the following theorem, which for
C (Σg) and Cnosep (Σg) is due to Lickorish [13] (though he did not use this
language) and for Csep (Σg) is due to Farb and Ivanov [3]. Other proofs of
the connectedness of Csep (Σg) can be found in [14] and [15].

THEOREM 1.2. C (Σg) and Cnosep (Σg) are connected for g ≥ 2 , while
Csep (Σg) is connected for g ≥ 3 .

In fact, our trick allows us to achieve rather precise control over the
topology of the curves which appear in our complexes. For instance, consider
the following complex.

DEFINITION 1.3. Let Chalf (Σ2g) be the simplicial complex whose simplices
are sets {c1, . . . , ck} of isotopy classes of simple closed curves on Σ2g which
satisfy the following two conditions.

• Each ci separates Σ2g into two genus g subsurfaces.
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• For i 6= j , the geometric intersection number i(ci, cj) is minimal among such
curves. This minimality means the following : if g = 1, then i(ci, cj) = 4,
while if g ≥ 2, then i(ci, cj) = 2.

We will prove the following theorem, answering a question posed to the author
by Schleimer (who proved the theorem for g = 1 [19]).

THEOREM 1.4. Chalf (Σ2g) is connected for g ≥ 1 .

We next investigate the cut system and pants graphs, which were introduced
by Hatcher and Thurston in [7].

DEFINITION 1.5. A cut system on Σg is a set {c1, . . . , cg} of isotopy
classes of simple closed curves on Σg which can be realized disjointly with
Σg \ (c1 ∪ · · · ∪ cg) connected (see Figure 1.d). Two cut systems {c1, . . . , cg}
and {c′1, . . . , c′g} differ by an elementary move if there is some 1 ≤ i ≤ k
so that i(ci, c′i) = 1 and so that cj = c′j for j 6= i . The cut system graph
CT (Σg) is the graph whose vertices are cut systems on Σg and whose edges
correspond to elementary moves between cut systems.

DEFINITION 1.6. For g ≥ 2, a pants decomposition of Σg is a maximal
simplex {c1, . . . , ck} of C (Σg) (see Figure 1.e). Observe that k = 3g−3 and
that cutting Σg along the ci results in a collection of 3-holed spheres (the
“pairs of pants”). Two pants decompositions {c1, . . . , ck} and {c′1, . . . , c′k}
differ by an elementary move if there is some 1 ≤ i ≤ k so that for j 6= i
we have cj = c′j and so that i(ci, c′i) is minimal among such curves. This
minimality means the following (see Figure 1.g) : if S is the component of
Σg cut along c1 ∪ · · · ∪ ci−1 ∪ ci+1 ∪ · · · ∪ ck containing ci , then i(ci, c′i) = 2
if S is a 4-holed sphere and i(ci, c′i) = 1 if S is a 1-holed torus. The pants
graph P (Σg) is the graph whose vertices are pants decompositions of Σg and
whose edges correspond to elementary moves between pants decompositions.

REMARK 1.7. Hatcher and Thurston in fact considered CT (Σg) and
P (Σg) with a number of 2-cells attached to render them simply connected.
We will make no use of these 2-cells.

We will give a new proof of the following theorem of Hatcher and Thurston,
which for CT (Σg) is Theorem 1.1 of [7] and for P (Σg) is contained in the
appendix of [7].
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THEOREM 1.8. CT (Σg) is connected for g ≥ 1 , while P (Σg) is
connected for g ≥ 2 .

Next, we will use the action of the Torelli subgroup of the mapping class
group (defined below) to prove the following theorem, which elucidates the
nature of the homology relation on a surface. It says that this relation is
generated by “embedded homologies” (in the statement of this theorem and
throughout this paper, when we say that two simple closed unoriented curves
are homologous, we mean that they can be oriented in such a way that they
are rendered homologous).

THEOREM 1.9. Fix g ≥ 3 , and let γ and γ′ be homologous non-trivial
simple closed curves on Σg . Then there exists a sequence

γ = γ1, γ2, . . . , γk = γ′

of non-trivial simple closed curves on Σg so that for 1 ≤ i < k the curves
γi and γi+1 are disjoint and there exists an embedded subsurface Si ↪→ Σg

with ∂Si = γi t γi+1 (in particular, γi and γi+1 are homologous).

REMARK 1.10. This theorem is false for g = 2, as there exist no
subsurfaces S of Σ2 so that ∂S consists of two simple closed curves which
are nonseparating and nonisotopic on Σ2 .

Finally, we will show that our methods can be extended to prove that various
complexes are simply connected. As an example, we prove the following.

THEOREM 1.11. For g ≥ 4 , the complex Csep (Σg) is simply connected.

REMARK 1.12. Hatcher and Vogtmann [8] have proven a much stronger
theorem which says that Csep (Σg) is b g−3

2 c -connected. Their result, however,
does not imply Theorem 1.11 for g = 4.

NOTATION 1.13. Let P1, P2 . . . , Pk be a sequence of paths in a simplicial
complex X each of which begins and ends in the 0-skeleton X(0) (we allow
degenerate paths Pi consisting of single vertices). For all 1 ≤ i < k , let qi

be the terminal point of Pi and pi+1 be the initial point of Pi+1 , and assume
that {qi, pi+1} ∈ X(1) . Thus either qi = pi+1 or {qi, pi+1} is a 1-simplex. We
then denote the path which first traverses P1 , then P2 , etc. by

P1 − P2 − . . .− Pk.
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2. CONNECTIVITY

Our trick for proving that complexes are connected is contained in the
following easy lemma.

LEMMA 2.1. Consider a group G acting upon a simplicial complex X .
Fix a basepoint v ∈ X(0) and a set S of generators for G. Assume the
following hold.
1. For all v′ ∈ X(0) , the orbit G · v intersects the connected component of X

containing v′ .
2. For all s ∈ S±1 , there is some path Ps in X from v to s · v .
Then X is connected.

Proof. Consider v′ ∈ X(0) . By Condition 1, there is some g ∈ G together
with a path P from g · v to v′ . Write g as a word s1 · · · sk in S±1 . Then

Ps1 − s1Ps2 − . . .− s1s2 · · · sk−1Psk − P

is a path from v to v′ .

We now prove Theorems 1.2, 1.4, and 1.8.

Proof of Theorems 1.2, 1.4, and 1.8. Let

S = {Tα1 , Tδ1 , . . . , Tαg , Tδg , Tβ1 , . . . , Tβg−1}
be the Dehn twists about the curves in Figure 1.a; Lickorish proved that S
generates Mod(Σg) (see [11, §4] for the definition of a Dehn twist and a
discussion of Lickorish’s theorem). For each complex in question, we will pick
a basepoint v and verify that the two conditions of Lemma 2.1 are satisfied
for the action of the mapping class group upon the complex. We emphasize
that in each proof the basepoint v and all other ancillary curves are chosen
to intersect the (already fixed) generators in simple ways. In particular, they
depend on the choice of generators.

C(Σg) , Cnosep(Σg) , and Csep(Σg) : The proofs for these three complexes
are similar ; we will discuss Csep (Σg) and leave the other two to the reader.
Our basepoint v ∈ C(0)

sep (Σg) will be the curve indicated in Figure 1.b. The
orbit Mod(Σg) · v consists of all separating curves which cut off 1-holed
tori. Indeed, let w be another separating curve which cuts off a 1-holed
torus. The classification of surfaces implies that we get homeomorphic non-
connected surfaces when we cut Σg along either v or w . Gluing together
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FIGURE 1
The various figures needed for the proof of Theorems 1.2, 1.4, and 1.8 (see that proof for more

details)
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homeomorphisms between the cut surfaces yields the desired homeomorphism
of Σg taking v to w (this trick will be used repeatedly; we will call it the
classification of surfaces trick). Since every separating curve is adjacent (in
Csep (Σg) ) to a curve which cuts off a 1-holed torus, condition 1 follows. To
check condition 2, we will need the curve v′ indicated in Figure 1.b. Consider
s ∈ S±1 . If s = T±1

βg−1
, then v − v′ − s · v is the desired path. Otherwise, we

have s ∈ S±1 but s 6= T±1
βg−1

, so s · v = v . Condition 2 follows.

Chalf(Σ2g) : Here S is the corresponding generating set for Mod(Σ2g) . Our
basepoint v ∈ C(0)

half (Σ2g) will be the curve indicated in Figure 1.c. If g ≥ 2,
we will also need the ancillary curve v′ from the same figure. Now, by the
classification of surfaces trick, Mod(Σ2g) acts transitively on C(0)

half (Σ2g) , so
condition 1 is trivial. To check condition 2, consider s ∈ S±1 . If s = T±1

βg
,

then for g = 1 the vertices v and s · v are adjacent, while for g ≥ 2, the
desired path is v− v′ − s · v . If instead s 6= T±1

βg
, then s · v = v . Condition 2

follows.

CT (Σg) : Our basepoint v ∈ CT (0) (Σg) will be the cut system indicated in
Figure 1.d. By the classification of surfaces trick, Mod(Σg) acts transitively
on CT (0) (Σg) , so condition 1 holds. Also, for s ∈ S±1 , either s · v = v or
s · v is adjacent to v , so condition 2 holds.

P(Σg) : Our basepoint v ∈ P (0) (Σg) will be the pants decomposition
indicated in Figure 1.e. We start by verifying condition 2. Consider s ∈ S±1 .
If s = T±1

δi
, then s · v = v . If s = Tβi , then Figure 1.h contains the desired

path (we only draw the portion of the pants decomposition which changes). A
similar path works if s = T−1

βi
. If s = T±1

α1
or s = T±1

αg
, then s · v is adjacent

to v . If s = Tαi but i 6= 1 and i 6= g , then Figure 1.i contains the desired
path. A similar path works if s = T−1

αi
with i 6= 1 and i 6= g . Condition 2

follows.
We now verify condition 1. It is enough to show that P (Σg)/Mod(Σg)

is connected. For each pants decomposition p = {c1, . . . , ck} of Σg , define a
graph φ(p) as follows (see Figure 1.f). The vertices of φ(p) are the connected
components of Σg cut along the ci (the “pairs of pants”). The edges are
in bijection with the curves ci ; the edge corresponding to ci connects the
vertices corresponding to the components on either side of ci . Thus φ(p) is
a trivalent graph with 2g − 2 vertices (a loop at a vertex counts as 2 edges
abutting that vertex). It is clear that each such graph comes from a pants
decomposition. Moreover, it is not hard to see that for pants decompositions
p and p′ we have φ(p) isomorphic to φ(p′) if and only if there is some
f ∈ Mod(Σg) so that p = f · p′ .
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Now consider an elementary move from p = {c1, . . . , ck} to p′ =
{c′1, . . . , c′k} . Let ci be the curve which changes in this move. If i(ci, c′i) = 1
(so ci corresponds to a loop in φ(p) ; see the left hand part of Figure 1.g),
then φ(p) = φ(p′) . If i(ci, c′i) = 2 (see the central part of Figure 1.g), then
φ(p) is transformed into φ(p′) in the following way (see the right part of
Figure 1.g) : we first collapse the edge in φ(p) corresponding to ci , yielding
a vertex of valence 4, which we then “expand” to two vertices of valence 3,
each of which abuts 2 of the edges which once abutted the vertex of valence
4. We will call this an elementary shift of the graph. It is not hard to see that
any elementary shift of φ(p) is induced by an elementary move of p .

It is enough, therefore, to prove that if G and G′ are trivalent graphs with
the same (necessarily even) number of vertices, then G may be transformed
into G′ by a sequence of elementary shifts. The proof will be by induction
on the number k of vertices. The base case k = 2 being trivial, we assume
that k > 2. Since neither G nor G′ can be a tree, each must contain a simple
closed edge-path. Transform G and G′ by elementary shifts so that these
closed edge paths are as short as possible. Observe that these minimal-length
closed edge paths must be loops – if they were not loops, then we could
shorten them by performing elementary shifts which collapse edges in them.
Let G and G

′
be the result of removing these loops, deleting the resulting

valence 1 vertices, and then finally deleting the resulting valence 2 vertices
while combining the 2 edges abutting them into a single edge (see Figure 1.j).
By induction we can convert G into G

′
by a sequence of elementary shifts.

It is easy to see that we can then “lift” this sequence of elementary shifts to
G , thus proving the theorem.

Next, we prove Theorem 1.9.

Proof of Theorem 1.9. This theorem is clearly equivalent to the connect-
edness of the following complex for g ≥ 3.

DEFINITION 2.2. Let C γ(Σg) denote the full subcomplex of C (Σg)
spanned by curves homologous to γ .

If γ is separating, then C γ(Σg) = Csep (Σg) , which is connected by
Theorem 1.2. Assume, therefore, that γ is nonseparating, and let I (Σg) ⊂
Mod(Σg) (the Torelli group) be the kernel of the action of Mod(Σg) on
H1(Σg; Z ) . We will apply Lemma 2.1 to the action of I (Σg) on C γ(Σg) .
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To apply Lemma 2.1, we need a base point and a generating set. Since
γ is nonseparating, the classification of surfaces trick implies that there is
a homeomorphism taking γ to the curve v depicted in Figure 2.a. We can
therefore assume without loss of generality that γ in fact equals the curve
v ; this will be our base point. It is well known (see, e.g., [18, Lemma 6.2])
that I (Σg) acts transitively on the 0-skeleton of C γ(Σg) , so condition 1 is
trivial.

For the generating set, recall that Johnson [12] proved that I (Σg) is
finitely generated (for g ≥ 3 ; this is false for g = 2 as demonstrated by
McCullough–Miller [16]). Our generating set S will be the generating set
for I (Σg) constructed in [12]. We will need two facts about S . First, S
consists of bounding pair maps, that is, mapping classes Tγ1 T−1

γ2
where the

γi are disjoint nonseparating curves so that γ1 ∪ γ2 separates Σg . Second,
for Tγ1 T−1

γ2
∈ S , either γ1 ∩ v = γ2 ∩ v = ∅ or γ1 ∪ γ2 ∪ v is homeomorphic

to the curves pictured on the left hand side of Figure 2.b. These facts imply
that for s ∈ S±1 , either s · v = v or (as demonstrated by Figure 2.b) s · v is
disjoint from v . Condition 2 follows.

3. SIMPLE CONNECTIVITY

We conclude this paper by proving Theorem 1.11.

Proof of Theorem 1.11. Let

S = {Tα1 , Tδ1 , . . . , Tαg , Tδg , Tβ1 , . . . , Tβg−1 , h}
be the collection of twists about the curves in Figure 1.a together with the
hyperelliptic involution h (see [11, page 52] for the definition of h ; the need
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for h will become clear shortly). Also, let v and v′ be the curves in Figure
1.b. There is a natural map Mod(Σg) → Csep (Σg) taking g to g(v) . Closely
examining the proofs of Lemma 2.1 and Theorem 1.2, we see that they say
that this map extends to a Mod(Σg)-equivariant map

φ : Cay(Mod(Σg), S) −→ Csep (Σg).

Here Cay(Mod(Σg), S) is the Cayley graph of Mod(Σg) , that is, the graph
whose vertices are elements of Mod(Σg) and where g2 is connected by an
edge to g1 if g2 = g1s for some s ∈ S . We will prove that the induced map
φ∗ : π1(Cay(Mod(Σg), S), 1) → π1(Csep (Σg), v) is the zero map by examining
the images of the loops associated to a set of relations for Mod(Σg) . We
will then show that φ∗ is surjective; this will allow us to conclude that
π1(Csep (Σg), v) = 0, as desired.

CLAIM 1. φ∗ : π1(Cay(Mod(Σg), S), 1) → π1(Csep (Σg), v) is the zero map.

Proof of claim. It is well known that we can construct a simply connected
complex X from Cay(Mod(Σg), S) by attaching discs to the Mod(Σg)-orbits
of the loops associated to any complete set of relations for Mod(Σg) . We will
show that the images in Csep (Σg) of the loops associated to these relations are
contractible. This will imply that we can extend φ to X . Since X is simply
connected, we will be able to conclude that φ∗ is the zero map, as desired.

Now, the loop in Cay(Mod(Σg), S) associated to a relation s1 · · · sk = 1
with si ∈ S±1 is 1− s1 − s1s2 − . . .− s1s2 · · · sk . Since the only elements of
S±1 which act non-trivially on v are T±1

βg−1
, the function φ maps the edge

s1 · · · si−1− s1 · · · si to a fixed vertex unless si = T±1
βg−1

, in which case it maps
it to the path s1 · · · si−1(v)− s1 · · · si−1(v′)− s1 · · · si(v) . Observe that the only
elements of S±1 which act non-trivially on v′ are T±1

β1
. If none of the si

equal T±1
β1

, then for all i we would have s1 · · · si−1(v′) = v′ , so φ would
take the loop associated to the relation s1 · · · sk = 1 to a loop of the form
v1− v2− . . .− v2l+1 with v2i = v′ for 1 ≤ i ≤ l . This loop can be contracted
to v′ .

We therefore only need to worry about relations which involve both T±1
β1

and T±1
βg−1

. By Theorem A.1 from the appendix, we can find a presentation
for Mod(Σg) whose generators are S and whose only relations involving both
T±1

β1
and T±1

βg−1
are

(3.1) T−1
β1

T−1
βg−1

Tβ1 Tβg−1 = 1

and
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(3.2) Tαg Tβg−1 Tαg−1 · · · Tβ1 Tα1 T2
δ1

Tα1 Tβ1 · · · Tβg−1 Tαg h−1 = 1.

We conclude that we must only check that the φ -image of the loops associated
to these two relations are contractible. For the relation given in (3.1), it is
clear that we can find a separating curve disjoint from every vertex of the
associated Csep (Σg) -loop (for instance, v′′ in Figure 1.b is such a curve), so
this loop is contractible. For the relation given in (3.2), the associated loop is
the following, where we suppress the (trivial) edges w(v)−ws(v) associated
to generators s ∈ S±1 not equal to T±1

βg−1
:

v − Tαg
(v′)− Tαg

Tβg−1 (v)

− Tαg Tβg−1 Tαg−1 · · · Tβ1 Tα1 T2
δ1

Tα1 Tβ1 · · · Tαg−1 (v′)− v

=v − v′ − Tαg
Tβg−1 (v)− v′ − v.

This is clearly contractible, so the claim follows.

CLAIM 2. φ∗ : π1(Cay(Mod(Σg), S), 1) → π1(Csep (Σg), v) is surjective.

Proof of claim. We first find a sufficient condition for a loop to lie in
the image of φ∗ . Consider any loop ` = v1 − v2 − . . . − v2n+1 in Csep (Σg)
with v1 = v2n+1 = v . Assume that each vi is a separating curve which cuts
off a 1-holed torus and that for 0 ≤ i < n there exists a simple closed
nonseparating curve εi and some ei = ±1 so that v2i+3 = Tei

εi
(v2i+1) , so

that i(εi, v2i+1) = 2, and so that i(εi, v2i+2) = 0 (for instance, we could have
v2i+1 = v , v2i+2 = v′ , and εi = βg−1 ). We claim that ` is in the image of
φ∗ .

To begin with, it is enough to find some word w in S±1 (not necessarily
a relation) so that ` is the image under φ∗ of the path in Cay(Mod(Σg), S)
associated to w . Indeed, we then would have w(v) = v . Since S \ {Tβg−1}
generates the stabilizer in Mod(Σg) of v , we can find some word w′ in
(S \ {Tβg−1})±1 so that ww′ = 1 ; this is the desired relation.

We will prove the existence of w by induction on n (in this part of the
proof, we do not assume that ` is a loop). The case n = 0 being trivial, we
assume that n > 0. Using the induction hypothesis, we can find a word wn−1

so that φ∗ takes the path associated to wn−1 to v1 − . . . − v2n−1 . Observe
that

i(w−1
n−1(v2n), w−1

n−1(εn)) = i(v2n, εn) = 0,

i(w−1
n−1(v2n), v) = i(v2n, wn−1(v)) = i(v2n, v2n−1) = 0,

i(w−1
n−1(εn), v) = i(εn, wn−1(v)) = i(εn, v2n−1) = 2.
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This implies that there must exist some f ∈ Mod(Σg) so that f (v′) =
w−1

n−1(v2n) , so that f (βg−1) = w−1
n−1(εn) , and so that f (v) = v . Since the

stabilizer in Mod(Σg) of v is generated by S \ {Tβg−1} , we can find some
word w′′ in (S\{Tβg−1})±1 so that w′′ = f . We claim that w = wn−1w

′′Ten
βg−1

works. Indeed, since wn−1f (v′) = v2n , the path associated to w consists of
v1 − . . .− v2n−1 followed by the path

wn−1f (v′)− wn−1fTen
βg−1

(v) = v2n − wn−1(fTen
βg−1

f−1)(v)

= v2n − wn−1Ten
f (βg−1)(v)

= v2n − wn−1Ten

w−1
n−1(εn)

(v)

= v2n − wn−1w
−1
n−1Ten

εn
wn−1(v)

= v2n − Ten
εn

(v2n−1).

Since Ten
εn

(v2n−1) = v2n+1 , this is the desired path.
Now consider an arbitrary `′ ∈ π1(Csep (Σg), v) . We claim that we can

homotope `′ so that it satisfies the above condition. In fact, we will prove
more generally that if `′ is any (not necessarily closed) path starting at v

whose final endpoint corresponds to a curve cutting off a 1-holed torus, then
we can homotope it (fixing the endpoints) so that it satisfies all of the above
conditions except for the closedness of the path.

We can assume without loss of generality that `′ is a simplicial path in
the 1-skeleton. It is an easy exercise to see that we can homotope `′ so that
all of its vertices cut off 1-holed tori, and in addition we can arrange for
`′ to contain an odd number of vertices and for no two adjacent vertices of
`′ to be identical. Enumerate the vertices of of `′ as v1 − . . . − v2m+1 . By
induction on m , we can assume that v1 − . . . − v2m−1 satisfies the desired
condition. Now, using standard properties of Mod(Σg) we can find a sequence
of simple closed curves η1, . . . , ηk and numbers f1, . . . , fk = ±1 so that
T f1

η1
· · · T fk

ηk
(v2m−1) = v2m+1 and so that for 1 ≤ i ≤ k we have i(ηi, v2m−1) = 2

and i(ηi, v2m) = 0. We can then homotope `′ (adding “whiskers”) so that the
path v2m−1 − v2m − v2m+1 is replaced by

v2m−1 − v2m − T f1
η1

(v2m−1)− v2m − T f1
η1

T f2
η2

(v2m−1)

− v2m − . . .− T f1
η1
· · · T fk

ηk
(v2m−1) = v2m+1,

thus proving the claim.

This completes the proof of Theorem 1.11.
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A. APPENDIX : A VARIANT ON THE WAJNRYB PRESENTATION

THEOREM A.1. For g ≥ 4 , the group Mod(Σg) has a presentation 〈S|R〉
satisfying the following conditions.

• S is the set of Dehn twists {Tα1 , Tδ1 , . . . , Tαg
, Tδg

, Tβ1 , . . . , Tβg−1} depicted
in Figure 1.a together with the hyperelliptic involution h.

• The only relations r ∈ R which involve both T±1
β1

and T±1
βg−1

are

T−1
β1

T−1
βg−1

Tβ1 Tβg−1 = 1

and

Tαg
Tβg−1 Tαg−1 · · · Tβ1 Tα1 T2

δ1
Tα1 Tβ1 · · · Tβg−1 Tαg

h−1 = 1.

Proof. The presentation described in this theorem is a variant of the
standard Wajnryb presentation ([20]; see [1] for errata). The generating set
for the Wajnryb presentation is

S′ = {Tα1 , . . . , Tαg , Tβ1 , . . . , Tβg−1 , Tδ1 , Tδ2}.

There are four families of relations. In the notation of [20], the first three
are labeled A, B, and C. The relation T−1

β1
T−1

βg−1
Tβ1 Tβg−1 = 1 is the only

relation from family A (the “braid relations”) involving both T±1
β1

and T±1
βg−1

.
Families B (the “two-holed torus relation”) and C (the “lantern relation”) do
not involve both T±1

β1
and T±1

βg−1
. The final relation D (as corrected by [1])

says that the hyperelliptic involution h commutes with Tδg ; both h and Tδg

are expressed using rather complicated formulas involving the generators S′ .
Our relation

Tαg Tβg−1 Tαg−1 · · · Tβ1 Tα1 T2
δ1

Tα1 Tβ1 · · · Tβg−1 Tαg h−1 = 1

expands out Wajnryb’s formula for h . As was observed in [1, Remark 1.a],
the expression for Tδg in terms of S′ used by Wajnryb is unimportant ; any
correct expression will work. Now, using an argument of Humphries [9], for
1 ≤ i ≤ g − 2 we can express Tδi+2 as a complicated product of elements in

{Tαi , Tαi+1 , Tαi+2 , Tβi , Tβi+1 , Tδi , Tδi+1}±1.

This allows us eliminate Tδi from S for i ≥ 3 by adding relations which do
not involve both T±1

β1
and T±1

βg−1
. Our final relation is [h, Tδg ] = 1 ; since this

does not involve either Tβ1 or Tβg−1 , we are done.
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