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Abstract

We bound the value of the Casson invariant of any integral homology 3-sphere M by
a constant times the distance-squared to the identity, measured in any word metric on
the Torelli group Z, of the element of 7 associated to any Heegaard splitting of M. We
construct examples which show this bound is asymptotically sharp.

1 Introduction

The Casson invariant A\(M) € Z is a fundamental and well-studied invariant of integral
homology 3-spheres M. Roughly speaking, A\(M) is half the algebraic number of conjugacy
classes of irreducible representations of 71 (M) into SU(2). See [1] for a thorough exposition
of the Casson invariant.

The mapping class group Mod, of a closed, orientable, genus g surface ¥, is the group of
homotopy classes of orientation-preserving homeomorphisms of ;. The subgroup of Mod,
consisting of elements acting trivially on H;(2,;Z) is called the Torelli group, and is denoted
by Z,.

Let M be an integral homology 3-sphere, and let f : ¥, — M be a Heegaard embedding.
For any ¢ € I,, denote by My the homology 3-sphere obtained by cutting M along f(%,)
and gluing back the resulting two handlebodies M ™ and M~ along their boundaries via the
homeomorphism ¢. Note that any integral homology 3-sphere can be obtained from M = 3
in this way.

In this note we give a sharp asymptotic bound on |A(My)| in terms of the word metric on
Z,4. To explain our result, we fix g > 2 and pick once and for all a finite set S of generators for
Z4; the fact that Z, is finitely generated when g > 2 is a deep result of D. Johnson (see [3]).
Denote by || - || the induced word norm on Z; i.e. ||¢[ is the length of the shortest word in
S+ which equals ¢. Different choices of finite generating sets for 7 ¢ give word norms whose
ratios are bounded by a constant. For a fixed Heegaard embedding f : ¥, — M, Morita [5]
has defined a kind of normalized Casson invariant \; : T4 — Z via

Ap(@) == A(My) — A(M).
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In particular, if M = S3 and h : g — 53 is the unique genus g Heegaard embedding then
A(S3) = 0, so the normalized Casson invariant \j, satisfies A, (¢) = )\(5’3)).

Theorem 1. Let M be an oriented integral homology 3-sphere, let g > 2, and let f : Xy — M
be a Heegaard embedding. Then there exists a constant C' > 0 so that |\¢(¢)| < C||@||* for
every ¢ € L. This bound is sharp in the sense that there exists an infinite set {¢pn} C I,
and a constant K > 0 so that |A¢(¢n)| > K| dnl? for all n.

For the case g = 2, the Torelli group Z5 is not finitely generated [4].

2 DMorita’s formula

Our proof of Theorem 1 relies in an essential way on a beautiful formula due to Morita [5] for
Af(¢), which we now explain (following §4 of [5]). This formula measures the extent to which
Ay fails to be a homomorphism. This failure is encoded as a function 7 : 74 x I, — Z defined
as follows. Let 7,1 denote the Torelli group of an oriented, genus g surface with one bound-
ary component Y, 1. In other words, Z,; is the group of homotopy classes of orientation-
preserving homeomorphisms of ¥,; which fix the boundary pointwise, modulo homotopies
which do the same and where the homeomorphisms act trivially on H := H;(2,;7Z). Gluing
a disc to 0%,1 induces a natural surjective homomorphism 7 : Z,; — Z,, and there is a
corresponding commutative diagram of Johnson homomorphisms (c.f. [2] for discussions of
these homomorphisms 7 and their remarkable properties):

Ig1 —— AH

| |

7, —— NH/H

The map f : ¥, — M induces homomorphisms H — Hy (M *+.7) whose kernels we denote
by H' and H ™, respectively. It is then easy to see that H* @ R and H~ ® R are maximal
isotropic subspaces of the symplectic vector space H ® R, and that

H=H'"®H".
Moreover, since M is an integral homology 3-sphere, there is a symplectic basis

{3717--~737973/17-~-7Z/g}

for H with z; € H* and y; € H~. Now, given any two ¢,9 € Z,, choose any lifts ¢, to
Z41. Using the obvious basis for A3H coming from our choice of basis for H, we can write
() = { Z Gk Yi NYj N yk] + other terms,

i<j<k
7(1/;) = { Z bijr T3 N i A xk} + other terms

1<j<k



for some a;j, b;jr € Z. Morita defines

Op(d) = D aijrbijk
1<j<k
and proves that d¢(¢,1) does not depend on either the choice of lifts é, 1 or the choice of
symplectic basis for H. Morita then proves, as Theorem 4.3 of [5], that the following formula
holds for all ¢,9 € Z:

Ap(@9) = Ap (@) + Ap () +205(, ). (1)

3 Proof of Theorem 1

Let {z1,...,24,Y1,...,Yq} be the standard basis for H := H;(X,; Z) discussed in the previous
section. For any vector v € A3H, we denote by ¢(v) the maximum of the absolute values of
the coefficients of v with respect to the induced basis for A3H.

We want to relate A¢(¢) to the word length of ¢ in Z,, but Morita’s formula (1) is
computed using elements of Z, 1, not of Z,;. To address this point, we first recall that gluing
a disk to 0%, 1 induces an exact sequence

1] —— ﬂl(TlEg) —— T4 ul I, 1,

where T 129 is the unit tangent bundle of 3. For each generator s € S of Z, choose a single
lift 5 € 7,1, and denote by S the union of these elements. We can then choose as a generating
set for 7,1 the set S together with a finite generating set for m; (Tt Y4). With these choices
of generating sets, we note that each ¢ € Z, has some lift ¢ so that

Iolz,, =llsliz,. (2)

This equality follows by writing out ¢ as a product of elements of S, then lifting generator
by generator. Henceforth whenever we choose a lift of an element ¢ € Z,, we will always
choose a lift ¢ satisfying (2). The main point is that in computing with (1), we are allowed
to choose any lifts, since Morita proves that d¢(¢,v) does not depend on the choice of lifts.
Thus we can choose lifts which do not alter word length.

Now since S is finite, there exists C so that

U(r(3)) < Cy for all s € SFL. (3)

Since 7 is a homomorphism to the abelian group A3H, it follows from (3) that
Ur(@) < C1lgll for all § € T,1. (4)
Finally, consider ¢, v € Z, together with lifts ¢, satisfying (2). If a;jx (vesp. byz) are the

coordinates of 7(¢) (resp. 7(¢)) as in the previous section, then

5500 = | - abisk | < | 30 €r(@)etr(d)

i<j<k i<j<k (5)
< > sl vl < Callgll 1]
i<j<k



where Cy = (239) C2.
Now given any ¢ € Z,, write ¢ = s1 - - - s, where each s; is an element of S*1 and where
n = ||¢||. An iterated use of Morita’s formula (1) gives

Ar(9) = Ap(s1) + Ap(s2-+-sp) +207(s1,82+ )
= )\f(sl) + /\f(SQ) + /\f(s3 e Sp) + 2(5f(31732 cesp) + 2(5f(32753 o 8n)

n n—1
= Z)‘f(sn) + 225f(8i,8i+1 "t Sp).
i=1 i=1

Since S is finite, there exists C3 > 0 so that |Af(s)| < C3 for every s € S. For some C' > 0,
we thus have

n n—1
IAr(d)] < Z [Af(sn)l + 22 |07 (8is Sit1 " 8n)]
i=1 i—1

n—1

<Csn+2) Coh-1-(n—1i)
=1

< COn® =Cl¢)*.

The first claim of the theorem follows.

We now consider the second claim. Johnson proved (see, e.g. [2]) that the homomor-
phisms 7 are surjective. Hence there exists some v € Z, so that for some lift 7 € Z,; we
have

T(U) =21 Axa A3+ y1 Ay2 Ays,

and hence
T(0") = n(x1 Aza Axs) +n(yr Aya Ays). (7)

Note that the choice of v depends in a nontrivial way on the Heegaard embedding f : ¥, — M,
so v is not given explicitly. By equation (6), we have

n n—1
A" =Y Ap@) +2) bp(v ). (8)
=1 =1

Now let K1 = |A¢(v)|, which is a constant since v is fixed. By (7) and the definition of dy,
we have for any m > 0 that §¢(v, ™) = m. Thus by equation (8) there is some N such that
for all n > N we have

n n—1
A = | DA w) 23 (i)
=1 =1

n—1 n
Z QZ(n—i)—ZKl ZKQTLQ
=1

=1



for some Ky > 0. If ||v|| = K3, then clearly ||v"|| < K3n. Thus

K
Ap(™) > Kan? > 2 |v"|>  foralln > N.
K3
Setting K = % we get the desired infinite set {v"|n > N} C I, establishing the asymptotic
3
tightness of the upper bound.
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