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Abstract

We give an efficient proof that the symplectic representation of the mapping class
group is surjective.

Let ¥4 be a closed oriented genus g surface and let Mod, be its mapping class group,
that is, the group of isotopy classes of orientation-preserving diffeomorphisms of ¥,. The
action of Mod, on Hy(Xy;Z) = Z29 preserves the algebraic intersection pairing i(-, -), which
by Poincaré duality is a symplectic form. We thus get a representation Mod, — Spy,(Z).
In this note, we prove the following theorem.

Theorem 0.1. The representation Mod, — Spo,(Z) is surjective.

Theorem 0.1 was originally proved by Burkhardt in 1890 [B, pp. 209-212], who wrote down
mapping classes that map to generators of Spy, (Z) that were previously found by Clebsch—
Gordan [CG]. The first modern proof is due to Meeks—Patrusky [MePa, Theorem 2|, and
our proof is a variant of theirs.

We first introduce some notation. A symplectic basis for Hi(X4; Z) is an ordered sequence
(a1,b1,...,a4,bg) of elements of Hy(3,;Z) that form a basis for this free abelian group and
satisfy

i(ai, bl) = 51‘]' and i(ai,aj) = Z(bl, b]) =0

for 1 <i,j < g, where §;; is the Dirac delta function. For an oriented closed curve -y on ¥,
let [v] € H1(24;Z) be the associated homology class. A geometric realization of a symplectic
basis (a1,b1,...,aq,by) is an ordered sequence (o, f1,. . ., g, Bg) of oriented simple closed
curves satisfying the following two conditions:

o [o;] =a; and [3;] = b; for 1 <i < g, and

° #]aiﬂﬂﬂ :(51‘]‘ andaiﬂaj:@-ﬁﬁj:@forl§i,j§g.
See Figure 1. The main technical result that goes into proving Theorem 0.1 is as follows.

Lemma 0.2. Every symplectic basis for Hi(X4;Z) has a geometric realization.
Before we prove Lemma 0.2, we will use it to derive Theorem 0.1.

Proof of Theorem 0.1. Consider some M € Spgg(Z). We will produce a mapping class
f € Mod, that induces M as follows. Let (a1,b1,...,aq4,by) be a symplectic basis for
H1(34;Z). The sequence (M (a1), M (b1),...,M(aq), M(bg)) is also a symplectic basis. Us-
ing Lemma 0.2, we can find geometric realizations (a1, 81, - . ., ag, B¢) and (a3, 8y, . . ., ag, ;)
of (a1,b1,...,a4,by) and (M(a1), M(b1),..., M(ay), M(bg)). Since the intersection pattern
of the «; and f; is the same as that of the o) and f, the standard “change of coordi-
nates” principle from [FMa, Chapter 1.3] implies that we can find some f € Mod, such
that f(a;) = o} and f(B;) = B. for 1 <i < g. By construction, the action of the mapping
class f on Hy(X4;7Z) has the same effect on the symplectic basis (a1, b1, ..., aq,bq) as M, so
f induces M, as desired. O



Figure 1: A geometric realization of a symplectic basis.

Proof of Lemma 0.2. The proof will be by induction on g. The base case g = 0 is trivial, so
assume that g > 1 and that the result is true for all smaller genera. Let (a1, b1, ..., ag4,by) be
a symplectic basis for Hy(2,;7Z). The heart of our proof is the construction of oriented sim-
ple closed curves o and 5 that intersect once and satisfy [«1] = a1 and [$1] = by. Assume
that we have constructed a; and ;. Let S be the complement of a regular neighborhood of
a1UpB1. Thus S is a genus g—1 subsurface of X, with one boundary component and the map
H1(S;Z) — Hi(X4;Z) is an injection; identify H;(S;Z) with its image in Hy(24;Z). The
subspace H;(S;Z) of Hi(X,;Z) is the orthogonal complement of (a1, b1) with respect to the
algebraic intersection pairing. This orthogonal complement is precisely (as, ba, ..., ag4,bg).
Let S’ = X,_1 be the result of gluing a disc D to 9S. The map Hy(S;Z) — H;(S;Z) is
an isomorphism. Let (a3, bs, ..., ay,by) be the image in Hy(S’;Z) of the symplectic basis
(a2,b2,...,a4,bg) of Hi(S;Z). Using our inductive hypothesis, we can find a geometric real-
ization (g, By, ..., ay, B;) for the symplectic basis (ay, by, . . ., ay, b)) of Hi(S';Z). Isotoping
the o and f], we can assume that they are all disjoint from D, and thus are the images
of oriented simple closed curves a; and f; in S. The sequence (aq, 1, a2, B2, ..., 0y, By) of
oriented simple closed curves on Y, is the desired geometric realization of the symplectic
basis (a1,b1,...,ag,by).

It remains to construct a; and ;. Since i(ai,b;) = 1, the element a; € Hy(3,;Z) is
primitive, that is, not equal to a nontrivial multiple of another element. Indeed, if a; = na}
for some n € Z and a} € H{(X,;Z), then 1 = i(ay,b;) = i(na}, b1) = ni(a},br), so n = £1.
A classical theorem (see [Pu] for a short proof) then says that there exists an oriented simple
closed curve «y such that [a;] = a;. We must construct 5.

The first step is to construct a closed curve 8] (not necessarily simple) that intersects
once and satisfies [$]] = b1. The whole construction is illustrated by Figure 2. Let X C X,
be a one-holed torus containing a; and let Y = ¥, \ Int(X), so Y is a genus g — 1 subsurface
with one boundary component. We have a decomposition

Hi(X4;Z) = H(X;Z) @ Hi(Y; Z)

that is orthogonal with respect to the algebraic intersection pairing. Let bx € H;(X;Z) and
by € Hi(Y';Z) be the projections of by € Hi(X4; Z) to these two factors, so by = bx+by. Let
B’ be an arbitrary oriented simple closed curve in X that intersects a; once with a positive
sign. We thus have a basis {a1, 8]} for Hi(X;Z), so we can write bx = ca; + d[f%]. In
fact,

1 =i(a1,bx) = i(a1,cay + d[B%]) = d.

Letting Sx be the result of Dehn twisting % around «; a total of ¢ times, we thus have
[Bx] = bx. The desired closed curve 3] can then be obtained by band-summing Sx with
an oriented closed curve in Y (not necessarily simple) whose homology class is by .
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Figure 2: On the left is X and Y and a1 and B%. On the top right the result Bx of twisting B
around ay enough times to ensure that [Bx] = bx. A not necessarily simple curve in'Y realizing by
s also depicted. On the bottom right is the result of band-summing the curve in Y into Bx; as is
shown here, making sure the orientations match up might require adding another self-intersection.
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Figure 3: On the left is the simple closed curve ay along with a portion of 5 that contains three
self-intersections. On the right is the result of “combing” these three self-intersections over a;.

The next step is to “comb” all the self-intersections of 8] over ay as is shown in Figure
3. The result is an oriented simple closed curve 8. Every self-intersection we comb over ay
adds a copy of +a; to [8]], so we have [3]] = b; + ea; for some e € Z. The desired oriented

simple closed curve 81 can now be obtained by Dehn twisting 1 around «aq a total of —e
times. O
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