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Abstract

We explain Spanier–Whitehead duality, which gives a simple geometric explanation for
the fact that the homology of a knot complement is independent of the knot (a fact
usually derived from Alexander duality).

LetK be a knot in S3, i.e. the image of a PL embedding of S1 into S3. Alexander duality
implies that H1(S3 \ K) ∼= Z; in particular, it does not depend on the knot. Similarly, if
X is a compact simplicial complex and f, g : X → Sn are two different embeddings, then
Alexander duality implies that the homology groups of Sn \ f(X) and Sn \ g(X) are the
same. Despite this isomorphism of homology groups, the spaces Sn \ f(X) and Sn \ g(X)
need not be homotopy equivalent. However, Spanier–Whitehead [SW] proved that they
become homotopy equivalent after suspending sufficiently many times:

Theorem 0.1 (Spanier–Whitehead). Let X be a compact simplicial complex. Let f, g : X →
Sn be two simplicial embeddings. Then for some M � 0 the M -fold suspensions ΣM (Sn \
f(X)) and ΣM (Sn \ g(x)) are homotopy equivalent.

Since suspending a space simply shifts its homology groups around, this provides a geometric
explanation for the equality in homology groups coming from Alexander duality.

Remark 0.2. The natural general context for Theorem 0.1 is the theory of spectra; see
[A, §III.5]. However, knowledge of stable homotopy theory is not needed to appreciate its
statement or proof.

Proof of Theorem 0.1. If n is sufficiently large relative to the dimension of X, then f and
g are isotopic, so Sn \ f(X) is homeomorphic to Sn \ g(X). Fixing an embedding X ↪→ Sn,
it is thus enough to prove that Σ(Sn \X) is homotopy equivalent to Sn+1 \X, where X is
included in Sn+1 via the usual inclusion Sn ↪→ Sn+1.

Let I = [−1, 1] and I̊ = (−1, 1). By definition, Σ(Sn \X) is the quotient of (Sn \X)× I
that collapses (Sn \X)× {−1} and (Sn \X)× {1} to points; see Figure 1.a. Since X is a
proper subset of Sn, this is the same as the quotient of (Sn × I) \ (X × I̊) that collapses
Sn×{−1} and Sn×{1} to points. In other words, Σ(Sn \X) is obtained from ΣSn = Sn+1

by removing X× I̊. We will prove that this is homotopy equivalent to the result of removing
X × {0} from ΣSn.

To do this, we will construct homotopy inverse maps between these two spaces. It is
easier to describe our maps before taking the quotients, so what we will actually give are
maps

φ : (Sn × I) \ (X × I̊)→ (Sn × I) \ (X × {0})

and
ψ : (Sn × I) \ (X × {0})→ (Sn × I) \ (X × I̊)

that restrict to the identity on Sn × {−1} and Sn × {1}.
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Figure 1: a. Constructing Σ(Sn \X) by collapsing the top and bottom of (Sn \X)× I. b. The
map φ is the inclusion of (Sn × I) \ (X × I̊) into (Sn × I) \ (X × {0}). c. The discontinuous
wrong definition of ψ. d. Fixing this with the regular neighborhood N of X. The complement
N \X is foliated by paths ending at points of X, and we show N × I̊. The map fixes the paths in
N × {0} and takes the paths in N × (0, 1) (resp. N × (−1, 0)) to paths as shown that end at at the
top (resp. bottom) of the figure.
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The two maps are shown in Figures 1.b and 1.d. The map φ is simply the inclusion. As
for ψ, what we would like to do is to define it via the formula

ψ(p, t) =


(p, 1) if p ∈ X and t > 0,
(p,−1) if p ∈ X and t < 0,
(p, t) if p /∈ X

for (p, t) ∈ (Sn × I) \ (X × {0}); see Figure 1.c. Unfortunately, this is not continuous. To
fix this, as in Figure 1.d we use a regular neighborhood N of X to continuously interpolate
between the three pieces of the above formula.
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