Andrew Putman

Abstract

We give an efficient proof that primitive classes in the first homology group of a surface can be realized by simple closed curves.

Let Σ_g be a closed oriented genus g surface. An element $h \in H_1(\Sigma_g; \mathbb{Z})$ is primitive if it cannot be written as h = nh' for some $h' \in H_1(\Sigma_g; \mathbb{Z})$ and $n \ge 2$. In this note, we give a short proof of the following theorem. For an oriented closed curve γ on Σ_g , write $[\gamma]$ for the associated element of $H_1(\Sigma_g; \mathbb{Z})$.

Theorem 0.1. A nonzero element $h \in H_1(\Sigma_g; \mathbb{Z})$ can be written as $h = [\gamma]$ for a simple closed curve γ if and only if h is primitive.

The earliest references we are aware of for Theorem 0.1 are 1976 papers of Meyerson [Mey] and Schafer [S]. Our proof is a simplification of one due to Meeks–Patrusky [MeeP].

Proof of Theorem 0.1. First assume that $h = [\gamma]$ for an oriented simple closed curve γ . Since separating curves on Σ_g are nullhomologous and $h \neq 0$, the curve γ must be nonseparating. There thus exists an oriented closed curve δ that intersects γ once; indeed, cutting Σ_g open along γ results in a connected surface with two boundary components, and we can construct δ by connecting these two boundary components by an arc and then gluing them back together. Letting $i(\cdot, \cdot)$ be the algebraic intersection pairing, we thus have $i(h, [\delta]) =$ $i([\gamma], [\delta]) = \pm 1$. If h = nh' for some $n \in \mathbb{Z}$ and $h' \in H_1(\Sigma_q; \mathbb{Z})$, then

$$\pm 1 = i(h, [\delta]) = i(nh', [\delta]) = ni(h', [\delta]).$$

This forces $n = \pm 1$, so we conclude that h is primitive, as desired.

Assume now that $h \in H_1(\Sigma_g; \mathbb{Z})$ is a primitive homology class. We will construct an oriented simple closed curve γ such that $h = [\gamma]$ as follows. Observe first that we can find an oriented closed curve γ' (not necessarily simple) such that $h = [\gamma']$. Resolving all the self-intersections of γ' as in Figure 1 produces a collection $\gamma_1, \ldots, \gamma_n$ of disjoint oriented simple closed curves such that

$$h = [\gamma_1] + \dots + [\gamma_n]. \tag{0.1}$$

Choose a representation as in (0.1) such that n is as small as possible. We will prove that n = 1.

Consider a component S of Σ_g cut open along the γ_i . Each boundary component of S is one of the γ_i ; orient these boundary components via the orientations on the γ_i . We claim that S must have exactly two boundary components. Indeed, observe the following.

- If S only had one boundary component, then that boundary component would be nullhomologous and we could delete the resulting γ_i from (0.1), contradicting the minimality of n.
- If S had at least three boundary components, then S would lie on the same side (left or right) of two of them. Let γ_i and γ_j be these two boundary components. Since S lies on the same side of γ_i and γ_j , we must have $i \neq j$. As is shown in Figure 2, there exists a simple closed oriented curve δ in S such that $[\delta] = [\gamma_i] + [\gamma_j]$. We can thus replace γ_i and γ_j in (0.1) with δ , again contradicting the minimality of n.

Figure 1: Resolving the self-intersections of γ' results in a collection of disjoint simple closed curves in the same homology class as γ' .

Figure 2: On the left, S lies to the right of both γ_i and γ_j , and δ is an oriented simple closed curve in S satisfying $[\delta] = [\gamma_i] + [\gamma_j]$. On the right, S lies to the right of γ_i and to the left of γ_j , and $[\gamma_i] = [\gamma_j]$.

The above argument actually gives more: not only does S have two boundary components, but S lies on different sides of these components. These two boundary components are thus homologous curves (see Figure 2). Since this holds for all components of Σ_g cut open along the γ_i , we deduce that in fact all the γ_i are homologous. Letting h' be their common homology class, we have

$$h = [\gamma_1] + \dots + [\gamma_n] = nh'.$$

Since h is primitive, we conclude that n = 1, as desired.

References

- [MeeP] W. H. Meeks, III and J. Patrusky, Representing homology classes by embedded circles on a compact surface, Illinois J. Math. 22 (1978), no. 2, 262–269.
- [Mey] M. D. Meyerson, Representing homology classes of closed orientable surfaces, Proc. Amer. Math. Soc. 61 (1976), no. 1, 181–182 (1977).
- [S] J. A. Schafer, Representing homology classes on surfaces, Canad. Math. Bull. 19 (1976), no. 3, 373–374.

Andrew Putman Department of Mathematics University of Notre Dame 255 Hurley Hall Notre Dame, IN 46556 andyp@nd.edu