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Abstract

We give the original proof of Rochlin’s famous theorem on signatures of
smooth spin 4-manifolds, which uses techniques from algebraic topology. We
have attempted to include enough background and details to make this proof
understandable to a geometrically minded topologist. We also include a fairly
complete discussion of spin structures on manifolds.

1 Introduction
Let M4 be a closed oriented smooth 4-manifold. All manifolds in this note (including
M4) are assumed to be connected.

Intersection form. The cup product map

H2(M4;Z) ×H2(M4;Z)Ð→ H4(M4;Z) ≅ Z

descends to an integral bilinear form ω(⋅, ⋅) on V ∶= H2(M4;Z)/torsion called the
intersection form. Poincaré duality implies that ω(⋅, ⋅) is a unimodular integral form,
that is, it induces an isomorphism between V and its dual V ∗ = Hom(V,Z). It plays
a fundamental role in the topology of 4-manifolds. For example, building on work of
Whitehead [30], Milnor [17] proved that if M4 is simply-connected, then its homotopy
type is determined by H2(M4;Z) together with ω.

Signature of forms. One of the basic invariants of ω is its signature, which is
defined as follows. Let ωQ(⋅, ⋅) be the induced form on V ⊗Q. We can diagonalize ωQ,
i.e. choose coordinates on V ⊗Q such that with respect to these coordinates, we have
ωQ(v⃗, w⃗) = v⃗tMw⃗ for a diagonal matrix M . Since ω is unimodular, all the diagonal
entries of M are nonzero. The signature of ω is then r − s, where r is the number of
positive diagonal entries of M and s is the number of negative entries. Neither r nor
s depend on the choice of diagonalization.

Signature of 4-manifolds. Define σ(M4) to be the signature of ω. As the follow-
ing example shows, σ(M4) can achieve arbitrary values.

1



Example. For r, s ≥ 0, let M4 be the connect sum of r copies of CP2 and s copies
of CP2 (here CP2 is CP2 with its orientation reversed). Then H2(M4;Z) ≅ Zr+s and
the intersection form on H2(M4;Z) is represented by a diagonal matrix with r entries
equal to 1 and s entries equal to −1. In particular, σ(M4) = r − s.

Spin structures and even forms. However, it is definitely not true that ω(⋅, ⋅)
can be an arbitrary form. Let M4 be a 4-manifold. Recall that M4 is orientable if
and only if its first Stiefel–Whitney class w1 ∈ H1(M4;Z/2) vanishes. The 4-manifold
M4 is spin if it is orientable and w2(M4) ∈ H2(M4;Z/2) also vanishes. We will say
more about this in §3 below. In particular, we will show that if M4 is spin and
closed, then its intersection form ω(⋅, ⋅) is even, i.e. ω(v⃗, v⃗) is an even integer for all
v⃗ ∈ H2(M4;Z)/torsion. The converse is almost true; for instance, it is true if M4 is
simply-connected. It is perhaps a little surprising that unimodular integral bilinear
forms can be even. Here is an important example.

Example. The E8 form is the bilinear form on Z8 defined via the formula ω(v⃗, w⃗) =
v⃗tMw⃗ with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

An easy calculation shows that det(M) = 1, so ω is unimodular. It is also not hard
to see that it is even. Moreover, ω(v⃗, v⃗) > 0 for all v⃗ ∈ Z8, so the signature of ω is 8.

Divisibility and Rochlin’s theorem. A classical theorem of van der Blij [28] says
that the signature of a unimodular even integral bilinear form is divisible by 8. See
[20] for a textbook proof of van der Blij’s theorem. The main result proved in this
note is the following theorem of Rochlin [25], which strengthens this divisibility for
the signatures of smooth closed 4-manifolds. It implies in particular that no smooth
closed simply-connected 4-manifold has E8 for its intersection form.

Rochlin’s Theorem. If M4 is a smooth spin closed 4-manifold, then

σ(M4) ≡ 0 (mod 16).

Remark. The condition that M4 is spin cannot be replaced with the condition that
the intersection form is even. A counterexample is given by the Enriques surface.
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Recall that the Hirzebruch Signature Theorem [21, Theorem 19.4] gives a formula
for the signature of a 4k-dimensional manifold in terms of the Pontryagin classes of
the manifold. For a 4-manifold M4, this formula is

σ(M4) = 1
3
p1(M4)([M4]).

Rochlin’s theorem is thus equivalent to the following theorem.

Rochlin’s Theorem′. If M4 is a smooth spin closed 4-manifold, then

p1(M4)([M4]) ≡ 0 (mod 48).

Comments on proofs. In this note, we will give a variant on the original proof
of Rochlin’s theorem, which uses techniques from algebraic topology. See [6] for a
French translation of the original Russian paper [25] together with quite a bit of useful
commentary. Our viewpoint is strongly inspired by the proof sketched in Kervaire–
Milnor’s paper [10]. There are many other proof of Rochlin’s theorem.

• For proofs that use techniques from 4-manifold topology, see [5, 7, 14]; textbook
references for these geometric proofs include [11, Chapter XI] and [26, p. 507].

• A novel proof using techniques from 3-manifold topology can be found in [12,
Appendix].

• A proof using the Atiyah–Singer index theorem can be found in [13, Chapter
IV.1].

Later developments. While Rochlin’s Theorem might appear to be a curiosity, it
is actually the root of many important developments.

• Freedman [4] proved that there exist closed simply-connected topological 4-
manifolds whose intersection form is any given unimodular integral bilinear
form. For instance, there exists a simply-connected topological 4-manifold M4

whose intersection form is the E8 form. By Rochlin’s Theorem this 4-manifold
cannot be given a smooth structure.

• It is almost (but not quite) known which unimodular integral bilinear forms can
be the intersection forms of a smooth simply-connected 4-manifold. The main
result here is a theorem of Donaldson [3] which says that if ω is the intersection
form of a smooth simply-connected 4-manifold and ω is definite (i.e. ω(v⃗, v⃗) is
always nonpositive or always nonnegative), then with respect to some basis ω is
represented by either the identity matrix or the negative of the identity matrix.
It is also known whether or not most indefinite forms are realized; the remaining
cases are the subject of the famous 11/8-conjecture.
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2 The proof of Rochlin’s Theorem
In this section, we will give the proof of Rochlin’s Theorem. Actually, we will prove
the equivalent Rochlin’s Theorem′, which asserts that if M4 is a smooth spin closed
4-manifold, then

p1(M4)([M4]) ≡ 0 (mod 48).

This proof will depend on two key facts which will be proved in subsequent sections.

The tangent bundle. The first ingredient is a description of the tangent bundle
of M4. Recall that a manifold X is said to be parallelizable if its tangent bundle TX is
trivial and is said to be almost parallelizable if X ∖ {p} is parallelizable for any p ∈X.
The following proposition will be proved in §4 using obstruction theory.

Proposition 2.1. Let M4 be a smooth spin closed 4-manifold. Then M4 is almost
parallelizable.

Let B4 ⊂ M4 be a submanifold which is diffeomorphic to a closed 4-dimensional
ball. The result of collapsing M4 ∖ Int(B4) to a point is homeomorphic to a 4-
dimensional sphere S4; let β ∶ M4 → S4 be the resulting quotient map. We will
call β a ball-collapse map (of course, it depends on various choices, but none of
them are important in what follows). Proposition 2.1 implies that M4 ∖ Int(B4) is
parallelizable, so there exists a 4-dimensional oriented real vector bundle E → S4 such
that TM4 = β∗(E). The induced map β∗ ∶ H4(S4;Z) → H4(M4;Z) is an isomorphism,
so

p1(M4)([M4]) = p1(E)([S4]).

The rest of the proof will focus on understanding p1(E)([S4]).

Transition to K-theory. The Pontryagin classes are stable characteristic classes,
which in our context implies that p1(E) = p1(E ⊕ ϵk) for all k ≥ 0, where ϵk is the
k-dimensional trivial bundle S4×Rk. This brings us into the realm of K-theory, whose
basic definitions we quickly recall. Let X be a compact connected CW-complex. Two
oriented real vector bundles B1 and B2 on X define the same stable oriented real
vector bundle if there exists some k1, k2 ≥ 0 such that B1⊕ ϵk1 ≅ B2⊕ ϵk2 . This defines
an equivalence relation on the set of oriented real vector bundles on X; if B is such a
bundle, then we will write [B] for its equivalence class. The reduced oriented K-theory
of X, denoted K̃O(X), is the set of stable oriented real vector bundles.

Remark. An alternate description of K̃O(X) is that it is the set of principal SL(R)-
bundles on X, where SL(R) is the union of the increasing sequence

SL1(R) ⊂ SL2(R) ⊂ SL3(R) ⊂ ⋯

of groups.
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The set K̃O(X) forms an abelian group under connected sum; the identity element
is the equivalence class of the trivial bundle. For all i ≥ 1, the ith Pontryagin class
induces a well-defined set map

pi ∶ K̃O(X)→ H4i(X;Z).

The pi are not necessarily homomorphisms. Instead, for [B1], [B2] ∈ K̃O(X) we have

pi([B1] + [B2]) = pi([B1]) + pi([B2]) + θ,

where θ ∈ H4i(X;Z) is a linear combination of elements of the form θ1 ∪ θ2 with

θ1, θ2 ∈
i−1
⊕
j=1

Hj(X;Z).

Calculating the Pontryagin class. We now return to the bundle E → S4 con-
structed above. Our goal is to prove that

p1(E)([S4]) ≡ 0 (mod 48). (2.1)

The Bott Periodicity theorem (see [18]) implies that K̃O(S4) ≅ Z. Since Hi(S4;Z) = 0
for 1 ≤ i ≤ 3, the first Pontryagin class actually gives a homomorphism

p1 ∶ Z ≅ K̃O(S4)→ H4(S4;Z) ≅ Z.

Claim. We have p1(n) = ν ⋅ n for some ν ∈ 2Z.

Proof of claim. Consider [B] ∈ K̃O(S4). It is enough to show that p1([B]) is even.
By definition, p1([B]) = c2([BC]), where BC is the complexification of B. The mod 2
reduction of c2([BC]) is w2([(BC)R]), where (BC)R is the real bundle underlying the
complex bundle BC. Since (BC)R ≅ B ⊕B and H1(S4;Z/2) = 0, we deduce that

w2([(BC)R]) = w2(B ⊕B) = w2(B) +w1(B) ∪w1(B) +w2(B) = 2w2(B) = 0,

which implies that p1([B]) = c2([BC]) is even.

Remark. In fact, one can show that ν = 2 in the above claim, but we will not need
this.

Endgame via the stable J-homomorphism. The desired identity (2.1) now
follows immediately from the Claim and the following proposition, which will be
proved in §5.

Proposition 2.2. Let E → S4 be an oriented real vector bundle such that there exists
a compact oriented 4-manifold M4 with TM4 = β∗(E), where β ∶ M4 → S4 is a ball-
collapse map. Then the element [E] ∈ K̃O(S4) ≅ Z is divisible by 24.
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This is the deepest part of the proof. The key is the stable J-homomorphism.
Recall that the Freudenthal suspension theorem says that for all k ≥ 0, the group
πn+k(Sn) is independent of n for n≫ 0; the stable value is the kth stable stem and is
denoted πS

k . Calculating πS
k is very difficult. The “first layer” comes from homomor-

phisms
Jk ∶ K̃O(Sk+1)→ πS

k

which were first defined by Whitehead [29] following work of Hopf [9]. We will dis-
cuss the stable J-homomorphism more in §5. The two facts about it that go into
Proposition 2.2 are as follows.

• Letting [E] ∈ K̃O(S4) be as in the proposition, we have [E] ∈ ker(J3). This
will be almost immediate from the definition.

• The image of J3 is isomorphic to Z/24. This is a deep fact, and in some sense
is the heart of the reason that Rochlin’s theorem holds.

Remark. In fact, πS
3 ≅ Z/24, though this is not necessary for our proof.

3 Spin 4-manifolds
Before we prove the propositions stated in §2, we need to spend some time discussing
general facts about spin manifolds. A good reference that influenced our exposition
is [13, §II.2]. In this section, X is an arbitrary connected CW complex.

Definition of spin structure. We begin by giving the proper definition of a spin
structure; the definition given in the introduction in terms of Stiefel–Whitney classes
will then be a theorem (see Corollary 3.2 below). For some n ≥ 2, let E → X be an
n-dimensional oriented real vector bundle and let F (E)→X be the frame bundle of
E. Thus F (E) is a principal SLn(R)-bundle. The group SLn(R) deformation retracts
onto its maximal compact subgroup SOn(R), so

π1(SLn(R)) = π1(SOn(R)) =
⎧⎪⎪⎨⎪⎪⎩

Z if n = 2,
Z/2 otherwise.

Let S̃Ln(R) be the unique connected 2-fold cover of SLn(R). A spin structure on E

is a principal S̃Ln(R)-bundle F̃ (E)→X that fits into a commutative diagram

S̃Ln(R)
��

// SLn(R)
��

F̃ (E)
$$II

III
I

// F (E)
zzuuu

uuu

X
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Here the map F̃ (E) → F (E) is a 2-fold covering map that restricts to the 2-fold
covering map S̃Ln(R)→ SLn(R) on each fiber. We say that E is spin if there exists a
spin structure on E. Finally, if X is an oriented smooth manifold, then we say that
X is spin if its tangent bundle is spin; when we say that X is a spin manifold, we
mean that X is oriented, smooth, and spin.

Remark. The unique 2-fold cover of SOn(R) is called the spin group, whence the
name spin for the above phenomena.

The vanishing of w2. Recalling that connected 2-fold coverings of connected CW
complexes Y are classified by nontrivial elements of H1(Y ;Z/2), we see that the data
of a spin structure is equivalent to the data of an element of H1(F (E);Z/2) that
restricts to the unique nonzero element θ of H1(SLn(R);Z/2) = Z/2 on each fiber.
The bottom left hand corner of the Leray–Serre spectral sequence of the fiber bundle
SLn(R)→ F (E)→X degenerates into an exact sequence of the form

0 // H1(X;Z/2) // H1(F (E);Z/2) // H1(SLn(R);Z/2) w // H2(X;Z/2). (3.1)

If you have not seen this piece of algebra before, see [15, Example 1.A]. It follows that
E is spin if and only if w(θ) = 0.

Lemma 3.1. With the above notation, we have w(θ) = w2(E).

Proof. Define w′2(E) = w(θ). To prove that w′2(E) = w2(E), we will prove that
w′2(E) is a characteristic class satisfying the axioms characterizing the second Stiefel–
Whitney class proved in [21]. This requires three things. In the first two items below,
X is an arbitrary CW-complex.

• Let f ∶ X ′ → X be a map of CW complexes, let E → X be an n-dimensional
oriented real vector bundle, and let E′ → X ′ be the pullback of E. Then
we must prove that w′2(E′) = f∗(w′2(E)). This follows immediately from the
commutative diagram

0 // H1(X;Z/2) //

f∗
��

H1(F (E);Z/2) //

��

H1(SLn(R);Z/2) //

=
��

H2(X;Z/2)
f∗
��

0 // H1(X ′;Z/2) // H1(F (E′);Z/2) // H1(SLn(R);Z/2) // H2(X ′;Z/2)

given by the naturality of the Leray–Serre spectral sequence.

• Let E → X be an n-dimensional oriented real vector bundle and let m ≥ 0.
Then we must prove that w′2(E ⊕Rm) = w′2(E). The standard upper left hand
corner inclusion SLn(R) ↪ SLn+m(R) induces an isomorphism on H1 with Z/2-
coefficients. The desired result now follows as before from the commutative
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diagram

0 // H1(X;Z/2) //

=
��

H1(F (E ⊕Rm);Z/2) //

��

H1(SLn+m(R);Z/2) //

≅��

H2(X;Z/2)
=
��

0 // H1(X;Z/2) / / H1(F (E);Z/2) // H1(SLn(R);Z/2) // H2(X;Z/2)

given by the naturality of the Leray–Serre spectral sequence. Here the second
vertical map comes from the map F (E) → F (E ⊕ Rm) induced by the map
E → E ⊕Rm which for x ∈ X takes the fiber Ex to Ex ⊕Rm using the obvious
inclusion.

• We must prove that there exists some 2-dimensional oriented real vector bun-
dle E → X over some base X such that w′2(E) ≠ 0. Equivalently, we must
prove that there exists some 2-dimensional oriented real vector bundle which
is not spin. Let E → S2 be the 2-dimensional real vector bundle with Euler
number 1. The associated oriented frame bundle F (E) → S2 is then fiberwise
homotopy equivalent to the Hopf fibration S3 → S2. In particular, we have
H1(F (E);Z/2) = H1(S3;Z/2) = 0, and thus there does not exist a spin struc-
ture.

Corollary 3.2. For some n ≥ 2, let E →X be an n-dimensional oriented real vector
bundle. Then E is spin if and only if w2(E) = 0. In particular, if X is an oriented
smooth manifold, then X is spin if and only if w2(X) = 0.

Remark. It follows from (3.1) that any two spin structures on E → X (represented
as elements of H1(F (E);Z/2)) differ by an element of H1(X;Z/2). Thus if a spin
structure exists, then there is a simply transitive action of H1(X;Z/2) on the set of
spin structures.

Even intersection forms. Our next goal is to show that if M4 is a spin 4-manifold,
then its intersection form is even. We first need the following lemma.

Lemma 3.3. Let M4 be a smooth 4-manifold. Then every element of H2(M4;Z) is
Poincaré dual to an embedded oriented surface in M4.

Proof. Since CP∞ is a K(Z,2), there is a natural bijection between H2(M4;Z) and
the set [M4,CP∞] of homotopy classes of maps from M4 to CP∞ (see [8, Theorem
4.57]). By simplicial approximation, every homotopy class of maps M4 → CP∞ has a
representative whose image lies in the 4-skeleton of the usual triangulation of CP∞,
which is CP2. Consider a map f ∶ M4 → CP2. Homotoping f , we can assume that
f is smooth. Then for a regular value x ∈ CP2, the preimage f−1(x) is an embedded
surface in M4 which is Poincaré dual to the cohomology class represented by f .

We now prove the following key result.
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Lemma 3.4. Let M4 be a smooth closed oriented 4-manifold. Consider an element
λ ∈ H2(M4;Z/2) which is in the image of the map H2(M4;Z) → H2(M4;Z/2). Then
λ ∪w2(M4) = λ ∪ λ in H4(M4;Z/2) ≅ Z/2.

Proof. By Lemma 3.3, we can find an embedded oriented surface Σ in M4 which is
Poincaré dual to an element of H2(M4;Z) which projects to λ. To keep our notation
straight, we will denote by [Σ] ∈ H2(Σ;Z/2) the Z/2-fundamental class in Σ and by
[Σ] ∈ H2(M4;Z/2) the Z/2-fundamental class in M4. Chasing through the definitions,
the lemma is equivalent to the assertion that w2(M4)([Σ]) ∈ Z/2 equals the algebraic
self-intersection number of Σ in M4 modulo 2. Let TM4 be the tangent bundle of M4.
Also, let TΣ and NΣ/M be the tangent and normal bundles of Σ, respectively. We thus
have TM4 ∣Σ = TΣ ⊕NΣ/M , so

w2(M4)([Σ]) = w2(TM4 ∣Σ)([Σ])
= w2(TΣ)([Σ]) +w2(NΣ/M)([Σ]) + (w1(TΣ) ∪w1(NΣ/M))([Σ]).

Since Σ is orientable, we have w1(TΣ) = 0. Also, w2(TΣ)([Σ]) and w2(NΣ/M)([Σ])
are the mod 2 reductions of the Euler numbers of TΣ and NΣ/M , respectively. The
Euler characteristic of Σ is even, so w2(TΣ)([Σ]) = 0. We conclude that w2(M4)([Σ])
equals the mod 2 reduction of the Euler number of NΣ/M .

Let θ be a section of NΣ/M with isolated simple zeros. The signed count of these
zeros is the Euler number of NΣ/M . Identifying NΣ/M with a tubular neighborhood
of Σ in M , the section θ becomes a surface Σ′ that is homotopic to Σ. The zeros of θ
are in bijection with the intersections of Σ′ and Σ, and the signs of those intersections
are the same as the signs of the zeros. The Euler number of NΣ/M is thus equal to
the signed count of the intersections of Σ and Σ′, i.e. the algebraic self-intersection
number of Σ. The lemma follows.

Corollary 3.5. Let M4 be a smooth closed oriented 4-manifold. Let ω(⋅, ⋅) be the in-
tersection form on H2(M4;Z)/torsion. If w2(M4) = 0, then ω(⋅, ⋅) is even. Conversely,
if ω(⋅, ⋅) is even and H1(M4;Z) has no 2-torsion, then w2(M4) = 0.

Proof. The first assertion of the corollary follows immediately from Lemma 3.4. For
the second assertion, the condition that H1(M4;Z) has no 2-torsion implies that the
map H2(M4;Z) → H2(M4;Z/2) is surjective. Combining this with Lemma 3.4 and
the fact that ω(⋅, ⋅) is even, we deduce that λ ∪ w2(M4) = 0 for all λ ∈ H2(M4;Z/2).
By Poincaré duality, this implies that w2(M4) = 0.

Remark. Without the assumption that H1(M4;Z) has no 2-torsion, there do exist
examples of smooth closed oriented 4-manifolds M4 whose intersection forms are even
but where w2(M4) ≠ 0. Indeed, there even exist examples which are smooth complex
projective varieties (e.g. the Enriques surface).
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4 The tangent bundles of compact spin smooth 4-
manifolds

In this section, we prove Proposition 2.1, which asserts that if M4 is a smooth spin
closed 4-manifold, then M4 is almost parallelizable. Letting p ∈ M4 be a point and
N4 =M4 ∖ {p}, this is equivalent to saying that N4 is parallelizable.

Let TN4 be the tangent bundle of N4, let F (TN4) be the oriented frame bundle
of TN4 , and let F̃ (TN4) be the fiberwise 2-fold cover of F (TN4) provided by the spin
structure, so the fibers of F̃ (TN4) are S̃L4(R). To prove that TN4 is a trivial bundle, it
is enough to show that F̃ (TN4) is a trivial bundle. We will do this using obstruction
theory; see [2, Chapter 7] and [8, p. 415] for two different expositions of this (the
point of view of [2, Chapter 7] is more elementary). Fix a triangulation of N4. The
group S̃L4(R) is 1-connected by construction. Moreover, π2(S̃L4(R)) = 0; indeed,
π2(G) = 0 for every Lie group G. This follows from [18, Theorem 21.7]; see also [23].
Of course, this can also be proved for SL4(R) and thus for S̃L4(R) by elementary
methods. We deduce that S̃L4(R) is 2-connected. The first possible obstruction to
trivializing F̃ (TN4) thus lies in

H4(N4;π3(S̃L4(R))).

Here there might be a nontrivial monodromy action of π1(N4) on the π3 of the
fiber S̃L4(R), so π3(S̃L4(R)) in this cohomology group should be regarded as a
local coefficient system. However, since N4 is a noncompact 4-manifold, we have
H4(N4;V ) = 0 for all local coefficient systems V . This follows from the appropriate
version of Poincaré-Lefschetz duality for local coefficient systems (here we must use
locally finite homology since N4 is noncompact; see the remark below for an alternate
approach). The above obstruction therefore vanishes and F̃ (TN4) can be trivialized
over the entire 4-skeleton of N4, i.e. over all of N4.

Remark. An alternate way of seeing that H4(N4;V ) = 0 in the above proof is to
show that N4 is homotopy equivalent to a 3-dimensional CW complex. This kind of
thing holds in great generality: if X is a smooth noncompact n-manifold, then X is
homotopy equivalent to an (n − 1)-dimensional CW complex (see, e.g., [22, Theorem
2.2], which proves this by constructing a proper Morse function with no local maxima).

5 The stable J-homomorphism
In this section, we prove Proposition 2.2. As we said after the statement of Proposition
2.2, the key will be the stable J-homomorphism Jk ∶ K̃O(Sk+1)→ πS

k . This will require
a preliminary discussion of classifying spaces for groups, the K-theory of spheres, and
the Pontryagin–Thom construction.
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Classifying spaces for groups. Let G be a topological group. A classifying space
for G is a topological space BG together with a principal G-bundle EG → BG such
that for all CW complexesX, there is a bijection between the set [X,BG] of homotopy
classes of maps from X to BG and the set of principal G-bundles on X. Given a map
f ∶ X → BG, the associated principal G-bundle on X is the pullback f∗(EG). The
base BG of a principal G-bundle EG→ BG forms a classifying space for G if and only
if EG is contractible (see [27, §19]. From this, one can show that if BG is a classifying
space for G, then ΩBG is homotopy equivalent to G (see [8, Proposition 4.66]; here
ΩBG denotes the based loop-space of BG). In other words, BG is a “de-looping” of
G. This implies in particular that BG is simply-connected if G is connected. Milnor
[16] proved that all topological groups have classifying spaces.

K-theory of spheres. To define Jk, we will need to understand K̃O(Sk+1). We will
give a somewhat abstract description of the necessary result; see the second remark
below for a more hands-on point of view. Recall that K̃O(Sk+1) consists of the set
of principal SL(R)-bundles. The classifying space B SL(R) is the direct limit of the
classifying spaces B SLn(R). The maps SLn(R) × SLm(R) → SLn+m(R) defined via
the formula

(A,B)↦ (A 0
0 B

) (5.1)

induce maps B SLn(R) × B SLm(R) → B SLn+m(R). Passing to the direct limit, we
get a map B SL(R) × B SL(R) → B SL(R). This turns B SL(R) into a topological
monoid. By the definition of a classifying space, we have

K̃O(Sk+1) ≅ [Sk+1,B SL(R)].

The abelian group structure on K̃O(Sk+1) is induced by the monoid structure on
B SL(R) (which while not commutative itself is commutative up to homotopy). The
key computation now is

K̃O(Sk+1) ≅ [Sk+1,B SL(R)] ≅ πk+1(B SL(R)) ≅ πk(ΩB SL(R)) ≅ πk(SL(R)).

The second isomorphism here follows from the fact that B SL(R) is simply-connected,
which itself is a consequence of the fact that SL(R) is connected.

Remark. One might worry that the isomorphism K̃O(Sk+1) ≅ πk(SL(R)) is only a
bijection of sets but does not respect the additive structure. That it does respect the
additive structure can be proved using the standard Eckmann–Hilton argument as
follows. Consider x, y ∈ πk(SL(R)) which correspond to elements X,Y ∈ K̃O(Sk+1).
There exist n,m ≥ 1 such that x ∈ πk(SLn(R)) and y ∈ πk(SLm(R)) (here we are abus-
ing notation and regarding πk(SLn(R)) and πk(SLm(R)) as subgroups of πk(SL(R))).
For a ∈ πk(SLn(R)) and b ∈ πk(SLm(R)), let a ∗ b ∈ πk(SLn+m(R)) be the loop ob-
tained by applying the map (5.1) pointwise. It is clear from the definitions that x∗ y
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represents X + Y ∈ K̃O(Sk+1). Letting ⋅ denote the product in πk(SL(R)), we then
have

x ∗ y = (x ⋅ 1) ∗ (1 ⋅ y) = (x ∗ 1) ⋅ (1 ∗ y) = x ⋅ y,

as desired.

Remark. A more pedestrian perspective on the isomorphism K̃O(Sk+1) ≅ πk(SL(R))
is as follows. Consider a principal SL(R)-bundle B on Sk+1. Letting D+ and D− be the
upper and lower hemispheres of Sk+1, the restrictions of B to D+ and D− are trivial.
Since D+∩D− = Sk, the bundle B can thus be described as (D+×R∞)⊔(D−×R∞)/ ∼,
where ∼ identifies (x, v⃗) ∈ ∂D+ × R∞ with (x, f(x)(v⃗))) ∈ ∂D− × R∞ for some map
f ∶ Sk → SL(R). The homotopy class of f is then the element of πk(SL(R)) associated
to B. It is called the clutching function for B.

The Pontryagin–Thom construction. For proofs of the results we discuss in
this paragraph, see [19, §7]. Fix n ≥ 1 and k ≥ 0. Our goal is to give a “geometric”
description of πn+k(Sn). This group depends on the choice of a basepoint. We will
regard the sphere as the one-point compactification of Euclidean space; the basepoint
will be the point at infinity. We thus want to determine

πn+k(Sn,∞) = [(Sn+k,∞), (Sn,∞)].

If X is a smooth manifold (possibly with boundary), then a framed submanifold of X
consists of the following data.

• A smooth compact properly embedded submanifold M of X. Contrary to our
assumptions elsewhere in this note, we do not assume that M is connected; in
fact, we allow M to be empty.

• A framing of the normal bundle NX/M of M in X, that is, a bundle isomorphism

f ∶M ×Rp Ð→ NX/M ,

where p is the codimension of M in X.

Define Ωframe
k (Sn+k,∞) to be the set of k-dimensional framed submanifolds Mk of Sn+k

such that ∞ ∉Mk (including the empty manifold) modulo the equivalence relation of
cobordism, which is defined as follows.

• If M0 and M1 are k-dimensional framed submanifolds of Sn+k ∖ {∞}, then M0
and M1 are cobordant if there exists a framed (k + 1)-dimensional submanifold
C of (Sn+k ∖ {∞}) × [0,1] such that for i = 0,1, we have C ∩ (Sn+k × i) =Mi × i
and the framing of C on C ∩ (Sn+k × i) agrees with the framing on Mi.

The key fact is the following theorem of Pontryagin.
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Theorem 5.1 (Pontryagin). For n ≥ 1 and k ≥ 0, we have

πn+k(Sn,∞) = Ωframe
k (Sn+k,∞).

This is an isomorphism of groups, where the group operation on Ωframe
k (Sn+k,∞) is

disjoint union.

We refer to [19, §7] for the proof, but to clarify what is going on we indicate the con-
struction of a map f ∶ (Sn+k,∞)→ (Sn,∞) from a k-dimensional framed submanifold
Mk of Sn+k such that ∞ ∉Mk (this construction is known as the Pontryagin–Thom
construction). Let U ⊂ Sn+k be a tubular neighborhood of Mk such that ∞ ∉ U . The
framing on the normal bundle of Mk then induces a homeomorphism

θ ∶ U θÐ→Mk ×Rn.

Let ν ∶ U → Rn be the composition of θ with the projection Mk ×Rn → Rn. Then f
is the map defined via the formula

f(x) =
⎧⎪⎪⎨⎪⎪⎩

ν(x) if x ∈ U,
∞ otherwise.

Observe that f(∞) = ∞. The construction of f depends on various choices, but
varying these choices results in homotopic f .

The stable J-homomorphism. We finally come to the construction of the stable
J-homomorphism

Jk ∶ K̃O(Sk+1)Ð→ πS
k .

Consider [B] ∈ K̃O(Sk+1). As discussed above, [B] corresponds to an element of
πk(SL(R)). Represent this element via a map ψ ∶ Sk → SLn(R) for some n≫ 0. The
image Jk([B]) ∈ πS

k will be the image in πS
k of the element of πn+k(Sn) represented

by the following framed submanifold of Sn+k ∖ {∞} ≅ Rn+k.

• The manifold will be image in Rn+k of the unit k-sphere in Rk+1. Denote this
by S.

• For the framing, let {e⃗1, . . . , e⃗n+k} be the standard basis for Rn+k and let n ∶ S →
Rk+1 ⊂ Rn+k be the outward facing unit normal vector. We thus get a framing
f0 ∶ S ×Rn → NRn+k/S defined via the formula

f0(p, c1, . . . , cn) = (p, c1(p) +
n

∑
i=2
cie⃗k+i).

This is not the framing we are looking for; indeed, S with this framing represents
the trivial element of Ωframe

k (Sn+k,∞) (easy check!). Instead, the framing we
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want is the result of “twisting” this trivial framing via ψ ∶ Sk → SLn(R). More
precisely, the framing we want is the framing f ∶ S × Rn → NRn+k/S defined via
the formula

f(p, v⃗) = f0(p,ψ(p)(v⃗)).

It is an easy exercise to see that this is a well-defined group homomorphism.
The stable J-homomorphism was first introduced by Whitehead [29] following

work of Hopf [9]. Determining its image is quite nontrivial. In complete generality,
this was accomplished by Adams [1] assuming the truth of the Adams conjecture,
which was later proved by Quillen [24]. We will not need the general statement, but
only the following special case which was proved by Rochlin [25].

Theorem 5.2 (Rochlin). The image of J3 ∶ K̃O(S4)→ πS
3 is isomorphic to Z/24.

Endgame. All the pieces are now in place for the proof of Proposition 2.2. Let us
first recall its statement. Let E → S4 be an oriented real vector bundle such that
there exists a compact oriented 4-manifold M4 with TM4 = β∗(E), where β ∶M4 → S4

is a ball-collapse map. We must prove that the element [E] ∈ K̃O(S4) ≅ Z is divisible
by 24. By Theorem 5.2, this is equivalent to proving that [E] ∈ ker(J3). As we will
see, this is almost formal.

Let B ⊂ M4 be the 3-dimensional ball used to construct the ball-collapse map β
and let M̂4 =M4 ∖ Int(B). For some large n≫ 0, let S ⊂ Rn be the 3-sphere used to
construct J3. By choosing n large enough, we can ensure that the following hold.

• There is a proper embedding i ∶ M̂4 → Rn×[0,1] such that i(∂M̂4) = S×0 ⊂ Rn×0.
This follows from Whitney’s embedding theorem.

• Let N be the normal bundle of M̂4 in Rn × [0,1]. Then N is a trivial bundle.
Indeed, we have TM̂4 ⊕N ≅ M̂4 × Rn+1, so [TM̂4] + [N] = 0 in K̃O(M̂4). But
we already know that TM̂4 is a trivial bundle, so [N] = 0. Increasing n more if
necessarily, we can ensure that N is actually a trivial bundle.

Choose a framing of N . The restriction of this framing to ∂M̂4 = S can be obtained
by twisting the trivial framing of S (as in the construction of the J-homomorphism)
via an element of π3(SLn−3(R)) which represents −[E] ∈ K̃O(S4) (the negative sign
is here since have switched from the tangent bundle to the normal bundle). We have
exhibited an explicit cobordism from our framing of S to the empty manifold, so we
conclude that J3(−[E]) = 0 and hence J3([E]) = 0.
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