Representation theory without character theory

Andrew Putman

Abstract

We give short, direct proofs that if G is a finite group, then the group ring C[G]
decomposes as a direct sum of dim(V') copies of every irreducible representation V' of
G and that the number of irreducible representations of G is the same as the number
of conjugacy classes of G.

Let G be a finite group. In this note, a representation of G means a finite-dimensional
complex vector space V upon which G acts linearly. The following results are two of the
early highlights of a basic treatment of representation theory:

Theorem 0.1. The group ring C[G| decomposes into a direct sum of dim(V') copies of
every irreducible representation V of G.

Theorem 0.2. The number of irreducible representations of G equals the number of con-
jugacy classes in G.

Perhaps influenced by Serre’s book [S], most treatments of the subject derive these results
from character theory. While character theory is an essential part of the subject, I find
this unsatisfying: basic theorems about the representation theory of G should be able to be
proved using actual representations! The purpose of this note is to explain short and direct
proof of the above two theorems. Though I have not seen these proofs elsewhere, I am sure
they must be known to the experts.

The only two results I will need are Maschke’s theorem and Schur’s lemma. To assure
the reader that I am not slipping anything past them, I will start with proofs of these
results.

Theorem 0.3 (Maschke’s Theorem). Fvery representation of G decomposes into a direct
sum of irreducible representations.

Proof. Let V be a representation of G and let W be a subrepresentation of V. It is enough
to find another subrepresentation W’ of V' such that V.= W @& W’'. We can find a G-
invariant Hermitian inner product on V by averaging an arbitrary one. Once we have done
this, for W’ we can simply take the orthogonal complement of W. ]

Lemma 0.4 (Schur’s Lemma). Let V' and W be irreducible representations of G. Then

0 if V is not isomorphic to W,

Homg (V, W) {C iV
Proof. The kernel of an element of Homg(V, W) is a subrepresentation of V', and thus by
irreducibility must either be 0 or V. Similarly, the cokernel of an element of Homg(V, W)
must either be 0 or W. We deduce that every nonzero element of Homg(V, W) must be
an isomorphism. This implies that Homg(V, W) = 0 if V' is not isomorphic to W. To deal
with the other case, we must prove that Homg(V, V) 2 C. Consider f € Homg(V, V). The
linear map f must have an eigenvalue A € C. Since f — A € Homg(V, V) has a nontrivial
kernel (namely, an eigenvector), it must be 0, so f = A. O



Schur’s Lemma has the following consequence.

Lemma 0.5. Let V and W be representations of G. Assume that W is irreducible and that
V=WV&- - @ Vg with each V; irreducible. Then the dimension of Homg(V, W) equals the
number of V; factors that are isomorphic to W.

Proof. An element of Homg(V, W) is determined by its restriction to each V;, and Schur’s
Lemma implies that
C itv,=2w,

0 otherwise.

Homg(V;, W) = { O

We now prove Theorem 0.1.

Proof of Theorem 0.1. Let V be an irreducible representation of G. Letting e € G be the
identity, a G-equivariant map ¢: C[G] — V is completely determined by ¢(e) € V, and
any vector in V' occurs as ¢(e) for some G-equivariant map ¢: C[G] — V. It follows that
Homg(C[G], V) is dim(V')-dimensional. The theorem now follows from Lemma 0.5. O

We now turn to counting irreducible representations of G. This requires the following
lemma. Let Maty(C) be algebra of k x k complex matrices.

Lemma 0.6. Let V be a representation of G. Write
V = Vl@kl D---D Vn®k”,

where the V; are mutually nonisomorphic irreducible representations of G. Then we have
an isomorphism

Endg (V) = Maty, (C) @ - - - & Maty, (C)
of algebras.

Proof. Schur’s lemma implies that
Endg(V) = Endg (V") @ - - - @ Endg (V)

so it is enough to prove that Endg(V;@ki) = Maty, (C) for all 1 < i < n. For this, observe
that
Endg(V,7%) 2 Maty, (Endg (V;)),

where the the isomorphism takes ¢ € Endg(Vi@k") to the matrix whose (p, ¢)-entry is the
composition

Vi o VR L vk

Here the first arrow is the inclusion of the ¢*" factor and the third arrow is the projection
onto the p'™ factor. Schur’s lemma says that Endg(V;) = C, and the lemma follows. t

Proof of Theorem 0.2. Let m be the number of conjugacy classes of G and let n be the
number of irreducible G-representations. We will prove that both m and n equal the
dimension of the center Z(C[G]):

e The center Z(C[G]) consists of linear combinations of elements of G whose coefficients
are constant on conjugacy classes of G. In particular, Z(C[G]) is m-dimensional.



e By Theorem 0.1, we can write
ClGl =V @ @ VP, (0.1)

where V7,...,V,, are all the irreducible G-representations and k; = dim(V;) for 1 <
1 < n. Using Lemma 0.6, it follows that

Endq(C[G]) = Maty, (C) x --- x Maty,, (C). (0.2)
Now define an algebra homomorphism v : C[G] — Endg(C[G]) via the formula
U(g)(z) =29"" (9 €G,2eC[G])

We must multiply z on the right so that ¥(g) is equivariant with respect to the
left G-action on C[G]. It is clear that ¥ is injective. Moreover, (0.1) implies that
C[G] is k? + - - - + k2 dimensional and (0.2) implies that Endg(C[G]) is k3 + - -+ + k2
dimensional. We conclude that ¥ is an isomorphism. Now, the center of the algebra
of k x k complex matrices is precisely the 1-dimensional set of scalar matrices. It
follows that

dim Z (C[G]) = dim (Z (Ende (C[G])))
— dim (Z (Maty, (C))) + - - - + dim (Z (Maty, (C)))
=14---+1

:’]’L’

as desired. n
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