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Abstract

We give a fairly complete description of the finite-dimensional characteristic 0 represen-
tation theory of SLn(Z) for n ≥ 3, following work of Margulis and Lubotzky.

1 Introduction

Fix a field k of characteristic 0. The goal of this note is to describe the finite-dimensional
representations of SLn(Z) over k. Since SL2(Z) is very close to a free group, its representa-
tion theory is quite wild and we will have little to say about it. For n ≥ 3, however, there
is a beautiful answer whose basic idea goes back to Lubotzky’s PhD thesis [9], building on
work of Margulis.

Rational representations. There are two natural sources of representations of SLn(Z).
The first are rational representations of the algebraic group SLn(k), which can be restricted
to the subgroup SLn(Z) < SLn(k). These representations are very well-behaved: they de-
compose into direct sums of irreducible representations, and at least when k is algebraically
closed these irreducible representations are completely understood (a good starting point
for this is [7]). As we will prove later, a rational representation V of SLn(k) is irreducible if
and only if its restriction to SLn(Z) is irreducible. The key point is that SLn(Z) is Zariski
dense in SLn(k). It follows that this picture remains unchanged when the representations
are restricted to SLn(Z).

Finite groups. The second source of representations of SLn(Z) come from finite quo-
tients. If π : SLn(Z) → F is a surjective map from SLn(Z) to a finite group F and V is
a representation of F over k, then V is also a representation of SLn(Z) via π. For n ≥ 3,
these finite quotients are well-understood: the congruence subgroup property for SLn(Z)
(proved independently by Bass–Lazard–Serre [1] and Mennicke [11]) says that for every
finite quotient π : SLn(Z) → F , there is some ` ≥ 2 such that π factors through the map
SLn(Z) −→ SLn(Z/`) that reduces matrices modulo `. It is thus enough to only consider
representations of SLn(Z/`) for ` ≥ 2. These are also well-understood, at least when ` is
prime.
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Profinite completion The finite quotients of SLn(Z) form an inverse system of finite
groups, and their inverse limit

ŜLn(Z) = lim←−
KCSLn(Z)

[SLn(Z):K]<∞

SLn(Z)/K

is the profinite completion of SLn(Z). Endowing each SLn(Z)/K with the discrete topol-
ogy and ŜLn(Z) with the resulting inverse limit topology, the group ŜLn(Z) is a compact
totally disconnected topological group. It is immediate from the definitions that a finite-
dimensional representation ρ : SLn(Z)→ GL(V ) factors through a finite group if and only if
it factors through a continuous homomorphism ŜLn(Z)→ GL(V ), where GL(V ) is endowed
with the discrete topology.
Remark 1.1. Consider some ` ≥ 2. Letting

` = pk1
1 · · · p

km
m ,

be its prime factorization, the Chinese remainder theorem can be used to prove that

SLn(Z/`) ∼= SLn(Z/pk1
1 )× · · · × SLn(Z/pkm

m ).

Using this, the congruence subgroup property implies that

ŜLn(Z) ∼=
∏
p

lim←−
k

SLn(Z/pk) ∼=
∏
p

SLn(Zp).

Combining the two families The main theorem we will discuss says informally that
all representations of SLn(Z) are built from combinations of the above basic families of
representations. The natural inclusions

SLn(Z) ↪→ SLn(k) and SLn(Z) ↪→ ŜLn(Z)

combine to give an inclusion

SLn(Z) ↪→ SLn(k)× ŜLn(Z).

Define a rational representation of SLn(k) × ŜLn(Z) to be a finite-dimensional k-vector
space V equipped with a homomorphism ρ : SLn(k)× ŜLn(Z)→ GL(V ) such that ρ|SLn(k)
is rational and ρ|ŜLn(Z) is continuous. We then have the following theorem, which was
essentially proved by Lubotzky [9].

Theorem A (Extending representations). Let k be a field of characteristic 0 and let n ≥
3. Let V be a finite-dimensional vector space over k and let ρ : SLn(Z) → GL(V ) be a
representation. Then ρ can be uniquely extended to a rational representation ρ : SLn(k) ×
ŜLn(Z) → GL(V ). Moreover, if W ⊂ V is a subspace that is an SLn(Z)-subrepresentation
of V , then W is also an SLn(k)× ŜLn(Z)-subrepresentation.

Remark 1.2. Theorem A implies that SLn×ŜLn(Z) is the proalgebraic completion of SLn(Z);
see, e.g., [2].
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Consequences. Theorem A implies that the finite-dimensional representations of SLn(Z)
over k are in bijection with the rational representations of SLn(k) × ŜLn(Z). Moreover,
this bijection preserves subrepresentations, and thus restricts to a bijection between the
irreducible representations of these groups. Finally, the fact that this bijection preserves
subrepresentations implies that it takes direct sums of representations to direct sums of
representations.

Now, every rational representation of SLn(k) × ŜLn(Z) decomposes as a direct sum of
irreducible subrepresentations; indeed, such a representation ρ : SLn(k)× ŜLn(Z)→ GL(V )
factors through SLn(k)×F for some finite group F , making V into a rational representation
of the algebraic group SLn(k)×F . It is standard that such representations decompose into
direct sums of irreducibles. Combining this with Theorem A, we deduce the following.

Corollary B (Semisimplicity). Let k be a field of characteristic 0 and let n ≥ 3. Then
every finite-dimensional representation of SLn(Z) over k decomposes as a direct sum of
irreducible representations.

Irreducible representations. If k is algebraically closed, then the irreducible rational
representations of SLn(k)× ŜLn(Z) have a simple description. Recall that if G and H are
finite groups and k is an algebraically closed field of characteristic 0, then the irreducible
representations of G×H over k are precisely the representations of the form V ⊗W , where
V is an irreducible representation of G and W is an irreducible representation of H. The
following theorem says that the same thing holds for SLn(k)× ŜLn(Z).

Theorem C (Irreducible representations). Let k be an algebraically closed field of charac-
teristic 0 and let n ≥ 2. Then the irreducible rational representations of SLn(k) × ŜLn(Z)
are precisely those of the form V ⊗W , where V and W are as follows:

• V is an irreducible finite-dimensional rational representation of SLn(k).
• W is an irreducible finite-dimensional continuous representation of ŜLn(Z) over k.

Theorem A implies for n ≥ 3 that the restrictions of these to SLn(Z) are precisely the
irreducible finite-dimensional representations of SLn(Z) over k.

Super-rigidity. The main tool for proving Theorem A is super-rigidity for SLn(Z), one
version of which is as follows. The use of this theorem is the key place where the assumption
that n ≥ 3 is used.

Theorem D (Super-rigidity). Let k be a field of characteristic 0 and let n ≥ 3. Let V be a
finite-dimensional k-vector space and ρ : SLn(Z)→ GL(V ) be a representation. Then there
exists a rational representation f : SLn(k) → GL(V ) of the algebraic group SLn(k) and a
finite-index subgroup K of SLn(Z) such that f |K = ρ|K .

The history of Theorem D is a little complicated. For k = Q, it was originally proved
by Bass–Milnor–Serre [3] using the congruence subgroup property. This proof was later
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extended to general k by Ragunathan [14]. Shortly before this, however, Margulis proved
his famous super-rigidity theorem for higher-rank lattices [10]. One special case of this
result is as follows (see [13, Theorem 16.1.1]):

• For some n ≥ 3, let Γ be a non-uniform lattice in SLn(R) and let ρ : Γ→ GLm(R) be
any homomorphism. Then there exists a continuous homomorphism f : SLn(R) →
GLm(R) and a finite-index subgroup K < Γ such that f |K = ρ|K .

On the one hand, this is much more general than Theorem D since it applies to all non-
uniform lattices, not just SLn(Z). On the other hand, it appears to just work for k = R and
to only give a continuous extension of ρ. However, it is not hard to derive the general case
of Theorem D from the above statement. We will not prove Theorem D, but in Appendix
A we will show how to derive it from the above version of Margulis’s result.
Remark 1.3. In [17, Theorem 6], Steinberg sketches a remarkably elementary proof of The-
orem D. Like Bass–Milnor–Serre and Ragunathan’s proofs, it uses the congruence subgroup
property, but otherwise just relies on elementary facts about linear algebra and algebraic
groups. In fact, he states it in a somewhat different way, but he proves a stronger result
that is essentially equivalent to Theorem A.

Outline. We begin in §2 by proving a density result that will be needed for the uniqueness
part of Theorem A. Next, in §3 we will prove Theorem A. In §4 we will prove Theorem C,
and then finally in our Appendix §A we will show how to derive Theorem D from Margulis’s
work.

Acknowledgments. I want to thank Nate Harman, who introduced me to this circle of
ideas, which plays an important role in his beautiful paper [6].

2 Density

This section is devoted to proving the following lemma, which will play an important role
in the proof of Theorem A.

Theorem 2.1 (Density). Let k be a field of characteristic 0 and let n ≥ 2. Endow SLn(k)
with the Zariski topology and ŜLn(Z) with its usual profinite topology. Then SLn(Z) is dense
in SLn(k)× ŜLn(Z).

For the proof of Theorem 2.1, we will need the following.

Lemma 2.2. Let k be a field of characteristic 0 and let n ≥ 2. Let K be a finite-index
subgroup of SLn(Z). Then K is Zariski dense in SLn(k).

Proof. Let G < SLn(k) be the Zariski closure of K. We must prove that G = SLn(k).
For distinct 1 ≤ i, j ≤ n, let Rij(k) be the root subgroup of SLn(k) consisting of matrices
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obtained from the identity by inserting a single nonzero entry at position (i, j). We thus have
Rij(k) ∼= k as additive groups. Similarly, define the root subgroup Rij(Z) ∼= Z of SLn(Z).
The intersection Rij(k)∩K is a finite-index subgroup of Rij(Z), and in particular is infinite.
Since a one-variable polynomial can only have finitely many zeros, the Zariski closure of
Rij(k) ∩K must be Rij(k). We deduce that Rij(k) ⊂ G for all distinct 1 ≤ i, j ≤ n. Since
SLn(k) is generated by these root subgroups, we conclude that G = SLn(k), as desired.

Proof of Theorem 2.1. Let G < SLn(k)× ŜLn(Z) be the closure of SLn(Z). We must prove
that G = SLn(k)× ŜLn(Z). The key to the proof is the following claim.

Claim. Let F be a finite quotient of SLn(Z) and let

π : SLn(k)× ŜLn(Z)→ SLn(k)× F

be the projection. Then π(G) = SLn(k)× F .

Proof of claim. Let K C SLn(Z) be the kernel of the projection to F , so π(K) = K × 1.
Lemma 2.2 implies that K is Zariski dense in SLn(k), so we conclude that

SLn(k)× 1 = K × 1 ⊂ π(G). (2.1)

For all f ∈ F , we can find some element of SLn(Z) projecting to f , which implies that there
exists some f ′ ∈ SLn(k) such that (f ′, f) ∈ π(G). Since (f ′, 1) ∈ π(G), we deduce that
(1, f) ∈ π(G), so

1× F ⊂ π(G). (2.2)

Inclusions 2.1 and 2.2 imply the claim.

We now turn to proving that G = SLn(k)× ŜLn(Z). Let

K = {K | K C SLn(Z), [SLn(Z) : K] <∞}.

The group ŜLn(Z) is thus the closed subset of∏
K∈K

SLn(Z)/K

consisting of all (aK)K∈K such that for all K1,K2 ∈ K with K2 < K1, the element aK2 ∈
SLn(Z)/K2 projects to aK1 ∈ SLn(Z)/K1 under the projection SLn(Z)/K2 → SLn(Z)/K1.
Consider some

λ = (b, (aK)K∈K) ∈ SLn(k)× ŜLn(Z).

Our goal is to show that λ ∈ G. Enumerate K as

K = {K1,K2, . . .}.

For all r ≥ 1, let L = K1 ∩ · · · ∩ Kr ∈ K. By the above claim, we can find some λr =
(b, (a′K)K∈K) ∈ G such that a′L = aL. Since L < Ki for all 1 ≤ i ≤ r, it follows that
aK′i = aKi for all 1 ≤ i ≤ r. The sequence {λi}∞i=1 is therefore a sequence of elements of G
that converges to λ. Since G is closed, we conclude that λ ∈ G, as desired.
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3 Extending representations

We now prove Theorem A.

Proof of Theorem A. We start by recalling what we have to prove. Let k be a field of
characteristic 0 and let n ≥ 3. Let V be a finite-dimensional vector space over k and let
ρ : SLn(Z) → GL(V ) be a representation. Our goal is to prove that ρ can be uniquely
extended to a rational representation ρ : SLn(k)× ŜLn(Z)→ GL(V ). Moreover, this exten-
sion should be such that if W ⊂ V is a subspace that is an SLn(Z)-subrepresentation of V ,
then W is also an SLn(k)× ŜLn(Z)-subrepresentation.

The uniqueness of such an extension (if it exists) is an immediate consequence of Theorem
2.1 (Density), which also implies that such an extension must preserve all subrepresen-
tations. All we must do, therefore, is construct our extension. As was pointed out by
Lubotzky in [9, p. 680], the argument for this was originally given by Serre in the special
case of SL2 (see [15, p. 502]), and the general case is exactly the same.

Applying Theorem D (Super-rigidity), we get a rational representation f : SLn(k)→ GL(V )
and a finite-index subgroup K < SLn(Z) such that f |K = ρ|K . Replacing K by a deeper
finite-index subgroup if necessary, we can assume that K is a normal subgroup of SLn(Z).
To extend ρ to a rational representation of SLn(k) × ŜLn(Z), it is enough to construct a
homomorphism g : SLn(Z)→ GL(V ) with the following three properties:

(a) For all x ∈ K, we have g(x) = 1, and thus g factors through the finite group SLn(Z)/K
and induces a continuous representation g : ŜLn(Z)→ GL(V ).

(b) For all x ∈ SLn(k) and y ∈ SLn(Z), the elements f(x) and g(y) of GL(V ) commute,
so f × g is a rational representation of SLn(k)× ŜLn(Z).

(c) For all x ∈ SLn(Z), we have ρ(x) = f(x)g(x).

For (c) to hold, we must define

g(y) = f(y)−1ρ(y) ∈ GL(V ) (y ∈ SLn(Z)).

The resulting map g : SLn(Z) → GL(V ) is a priori only a set map, but we will prove that
it is a homomorphism satisfying (a) and (b) above. This will be a 3 step process.

Claim 1. For all y ∈ SLn(Z), the image g(y) only depends on the image of y in SLn(Z)/K.

Since ρ|K = f |K , we have g(x) = 1 for all x ∈ K. However, since we do not yet know that
g is a homomorphism, this is not enough. So consider some y ∈ SLn(Z) and x ∈ K. We
must prove that g(xy) = g(y). To do this, we calculate ρ(xy) in two ways:

ρ(xy) = f(xy)g(xy) = f(x)f(y)g(xy)

and
ρ(xy) = ρ(x)ρ(y) = f(x)g(x)f(y)g(y) = f(x)f(y)g(y).

Comparing these, we see that g(xy) = g(y), as desired.
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Claim 2. Condition (b) holds: for all x ∈ SLn(k) and y ∈ SLn(Z), the elements f(x) and
g(y) of GL(V ) commute.

Fixing some y ∈ SLn(Z), the set Λ of elements of GL(V ) that commute with g(y) is Zariski
closed. We will prove that f(SLn(k)) ⊂ Λ. Lemma 2.2 implies that the finite-index subgroup
K < SLn(Z) is Zariski dense in SLn(k), so it is enough to prove that for all x ∈ K we have
f(x) ∈ Λ, i.e. that f(x) and g(y) commute. To do this, we calculate ρ(yx) in two ways:

ρ(yx) = f(yx)g(yx) = f(y)f(x)g(y),

where the second equality uses previously proven fact that g(yx) = g(y), and

ρ(yx) = ρ(y)ρ(x) = f(y)g(y)f(x)g(x) = f(y)g(y)f(x),

where the third equality uses the fact that g(x) = 1 since x ∈ K. Comparing these, we see
that f(x)g(y) = g(y)f(x), as desired.

Claim 3. The map g is a homomorphism, and thus by the first claim (a) holds.

For y, y′ ∈ SLn(Z), we can apply the previous claim to see that

ρ(yy′) = ρ(y)ρ(y′) = f(y)g(y)f(y′)g(y′) = f(y)f(y′)g(y)g(y′).

Since
ρ(yy′) = f(yy′)g(yy′) = f(y)f(y′)g(yy′),

we conclude that g(yy′) = g(y)g(y′), as desired.

4 Classifying the irreducible representations

We now prove Theorem C.

Proof of Theorem C. We start by recalling what we must prove. Let k be an algebraically
closed field of characteristic 0 and let n ≥ 2. Consider a rational representation U of
SLn(k)×ŜLn(Z). Since U is a continuous representation of the profinite completion ŜLn(Z),
the action of ŜLn(Z) on U factors through the action of a finite group F . We must prove
that U is irreducible if and only if U ∼= V ⊗W , where V and W are as follows:

• V is an irreducible finite-dimensional rational representation of SLn(k).
• W is an irreducible finite-dimensional representation of F .

We prove the two directions of this result separately.

Claim. Assume that U ∼= V ⊗W , where V and W are as above. Then U is irreducible.
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In fact, for this claim it is not important that V is a rational representation of SLn(k),
only that it is irreducible. By assumption, V and W are simple modules over the group
rings k[SLn(k)] and k[F ], respectively. We remark that by k[SLn(k)] we mean simply the
ordinary group ring, not the ring of regular functions on the affine variety SLn(k). Since k is
algebraically closed, we can apply the Jacobson Density Theorem (see [5, Theorem 3.2.2] or
[12]) and see that the resulting ring maps φ : k[SLn(k)]→ End(V ) and ψ : k[F ]→ End(W )
are surjections. It follows that the ring map

k[SLn(k)× F ] ∼= k[SLn(k)]⊗ k[F ] φ⊗ψ−→ End(V )⊗ End(W ) ∼= End(V ⊗W )

is a surjection and thus that V ⊗W is a simple k[SLn(k)× F ]-module, as desired.

Claim. Assume that U is irreducible. Then U ∼= V ⊗W , where V and W are as above.

First regard U as a representation of F . Since F is finite, U decomposes as a direct sum of
isotypic components. Since the action of SLn(k) on U commutes with the action of F , it
must preserve these isotypic components. Since U was assumed to be irreducible, it follows
that U must have a single F -isotypic component, i.e. that U ∼= W⊕m for some irreducible
F -representation W and some m ≥ 0. Consider the map

Ψ: HomF (W,U)⊗W → U

defined via the formula Ψ(ρ ⊗ ~w) = ρ(~w). Since U ∼= W⊕m, this map is surjective. Also,
since k is algebraically closed we can apply Schur’s Lemma to see that

HomF (W,U) = HomF (W,W⊕m) ∼= km.

We deduce that Ψ is a surjective map between vector spaces of the same dimension, so Ψ
is an isomorphism.

The commuting actions of SLn(k) and F on U thus can be transported via Ψ to give com-
muting actions of SLn(k) and F on HomF (W,U)⊗W . These actions are easily understood:

• The group F acts trivially on HomF (W,U) and acts onW as the given representation.
Indeed, for f ∈ F and ρ ∈ HomF (W,U) and ~w ∈W we have

f ·Ψ(ρ⊗ ~w) = f · ρ(~w) = ρ(f · ~w) = Ψ(ρ⊗ f · ~w).

• The group SLn(k) acts on HomF (W,U) by postcomposition (via its action on U) and
acts trivially on W . Indeed, for x ∈ SLn(k) and ρ ∈ HomF (W,U) and ~w ∈ W we
have

x ·Ψ(ρ⊗ ~w) = x · ρ(~w) = (x · ρ)(~w) = Ψ(x · ρ⊗ ~w).

Since U was assumed to be irreducible, it follows that V := HomF (W,U) must be an
irreducible SLn(k)-module. What is more, since U was assumed to be a rational SLn(k)-
representation and V can be realized as an SLn(k)-subrepresentation of U (namely, for any
nonzero ~w ∈W as the subspace Ψ(U × ~w)), it follows that V is a rational representation of
SLn(k). The decomposition U ∼= V ⊗W is precisely the one we claimed must exist.
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A Appendix: On super-rigidity

In this section, we will show how to derive Theorem D (Super-rigidity) from a version of
Margulis’s super-rigidity theorem. The special case of Margulis’s theorem we will start with
will be as follows:

Theorem A.1 ([13, Theorem 16.1.1]). For some n ≥ 3, let ρ : SLn(Z) → GLm(R) be any
homomorphism. Then there exists a continuous homomorphism f : SLn(R)→ GLm(R) and
a finite-index subgroup K < SLn(Z) such that f |K = ρ|K .

Remark A.2. In the above reference, one can in fact replace SLn(Z) with any non-uniform
lattice in SLn(R). There are more general versions of Margulis’s theorem for any irreducible
lattice in a higher rank Lie group, but they are far more complicated to state.

There are two differences between Theorem A.1 and Theorem D:

• Theorem D concerns arbitrary fields k of characteristic 0, not just R.
• In Theorem D, the extended homomorphism f : SLn(k)→ GLm(k) is a rational rep-

resentation of the algebraic group SLn(k), while in Theorem A.1 the homomorphism
f : SLn(R)→ GLm(R) is just continuous.

We will deal with the second issue first. The first step is to upgrade f to a Lie group
homomorphism, i.e. a homomorphism that is everywhere smooth:

Theorem A.3. Let f : G → H be a continuous homomorphism between real Lie groups.
Then f is smooth.

Proof. This is a nontrivial but standard fact about Lie groups, so we will omit the proof.
See [18, Proposition 2.4.6] for an accessible account of it.

We next upgrade f to a rational representation. Before we explain how to do this, we review
some cautionary examples.
Example A.4. Here are some examples of nonalgebraic Lie group homomorphisms between
R-algebraic groups:

• The homomorphism f : GLn(R) → R× defined via the formula f(x) = det(x)
√

2.
This kind of phenomenon indicates that it is important to restrict one’s self to perfect
groups.
• Issues can still occur for perfect (or even semisimple) groups. For example, consider
the adjoint representation of SL3(R) obtained via the derivative of the conjugation
action:

ad: SL3(R) −→ GL(sl3(R)) ∼= GL8(R).

The kernel of ad is the center of SL3(R), which is trivial. It follows that ad is an
isomorphism onto its image, which is a closed subgroup G of GL8(R). The inverse

ad−1 : G −→ SL3(R)
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is certainly smooth; however, it is not algebraic since if it was, then we could extend
scalars to C and deduce that the complexified adjoint representation

adC : SL3(C) −→ GL(sl3(C)) ∼= GL8(C)

is an isomorphism, which is false since SL3(C) has a nontrivial center (of order 3).
See [8] for a discussion of this kind of phenomenon.

Despite these examples, the following result still holds.

Lemma A.5. Every Lie group homomorphism f : SLn(R)→ GLm(R) is R-algebraic. Sim-
ilarly, every complex Lie group homomorphism F : SLn(C)→ GLm(C) is C-algebraic.

Proof. We start by reducing to the complex case. The derivative of a real Lie group ho-
momorphism f : SLn(R) → GLm(R) at the identity is a map sln(R) → glm(R) of real Lie
algebras. Since sln(R)⊗C ∼= sln(C) and glm(R)⊗C = glm(C), we can tensor this map with
C and get a map sln(C) → glm(C) of complex Lie algebras. This is the derivative at the
identify of a homomorphism F : SLn(C)→ GLm(C) of complex Lie groups that fits into a
commutative diagram

SLn(R) f
//

� _

��

GLm(R)� _

��

SLn(C) F // GLm(C).

To prove that f is a R-algebraic homomorphism, it is enough to prove that F is a C-algebraic
homomorphism.

It remains to prove that every complex Lie group homomorphism F : SLn(C) → GLm(C)
is C-algebraic. Let

Λ = {(x, F (x)) | x ∈ SLn(C)} ⊂ SLn(C)×GLm(C)

be the graph of F . There are thus two projections

π1 : Λ
∼=−→ SLn(C) and π2 : Λ −→ GLm(C),

and F factors as
SLn(C)

π−1
1−→ Λ π2−→ GLm(C). (A.1)

The Lie algebra of the subgroup Λ of the C-algebraic group SLn(C)×GLm(C) is isomorphic
to sln(C). Not all connected Lie subgroups of C-algebraic groups are algebraic subgroups,
and the Lie algebras of the ones that are are called algebraic Lie algebras. A basic result
about algebraic groups is that over an algebraically closed field of characteristic 0 like C,
all perfect Lie subalgebras are algebraic (see [4, Corollary 7.9]). Since sln(C) is perfect, we
conclude that Λ is a C-algebraic subgroup of SLn(C)×GLm(C).

The projection π1 : Λ → SLn(C) is a bijective algebraic map between algebraic groups.
Bijective maps between algebraic varieties need not be isomorphisms; however, they are if
the target is smooth (or even normal) and the varieties are defined over an algebraically
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closed field of characteristic 0 (see [16]; the key tool here is Zariski’s Main Theorem).
Since algebraic groups are automatically smooth, we conclude that π1 is an isomorphism
of algebraic varieties. Its inverse π−1

1 is thus algebraic. Since the projection π2 is also
algebraic, we conclude from (A.1) that F is an algebraic map.

We now prove the complex case of Theorem D:

Theorem A.6. For some n ≥ 3, let ρ : SLn(Z) → GLm(C) be any homomorphism. Then
there exists a rational representation f : SLn(C) → GLm(C) and a finite-index subgroup
K < SLn(Z) such that f |K = ρ|K .

Proof of Theorem A.6. Forgetting its complex structure, the group GLm(C) is a Zariski
closed subgroup of the R-algebraic group GL2m(R). Applying Theorem A.1 to the composi-
tion of ρ : SLn(Z)→ GLm(C) with the inclusion GLm(C) ↪→ GL2m(R), we get a continuous
homomorphism f : SLn(R)→ GL2m(R) and a finite-index subgroup K < SLn(Z) such that
f |K = ρ|K . Combining Theorem A.3 and Lemma A.5, we see that f is a rational representa-
tion of SLn(R). Lemma 2.2 says thatK is Zariski dense in SLn(R), so since ρ(K) is contained
in the R-algebraic subgroup GLm(C) of GL2m(R), we see that the image of f lies in GLm(C),
so we can regard f as a R-algebraic homomorphism f : SLn(R)→ GLm(C). The derivative
of f at the identity is an R-linear Lie algebra homomorphism sln(R) → glm(C). We can
factor this Lie algebra homomorphism through a C-linear Lie algebra homomorphism

sln(C) = sln(R)⊗ C→ glm(C),

which is the derivative at the identity of a map F : SLn(C) → GLm(C) of complex Lie
algebras that fits into a commutative diagram

SLn(R) f
//

� _

��

GLm(C).

SLn(C)

F
99

Another application of Lemma A.5 shows that F : SLn(C) → GLm(C) is a rational repre-
sentation, and F |K = f |K = ρ|K , as desired.

Before we prove our main result, we need one final lemma showing how to recognize the
field of definition of a rational representation.

Lemma A.7. Let f : SLn(C) → GLm(C) be a rational representation, let K < SLn(Z) be
a finite-index subgroup, and let k be a subfield of C such that f(K) ⊂ GLm(k). Then f is
defined over k, and thus restricts to a rational representation SLn(k)→ GLm(k).

Proof. Let C[SLn] be the C-algebra of regular functions SLn(C)→ C and let k[SLn] be the
k-algebra of such regular functions that are defined over k, i.e. by polynomials in the entries
of SLn(C) with coefficients in k. Since SLn is an algebraic group defined over Q, we have

C[SLn] = k[SLn]⊗k C. (A.2)
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Letting h ∈ C[SLn] be one of the matrix coefficients of f , our goal is to show that h ∈ k[SLn].

Since C is an algebraically closed field of characteristic 0, the field k is precisely the set
of elements of C that are invariant under all elements of Aut(C/k). Combining this with
(A.2), we see that k[SLn] is the set of all elements of C[SLn] that are invariant under all
elements of Aut(C/k). Considering some λ ∈ Aut(C/k), we see that our goal is equivalent
to showing that λ ◦ h = h.

By assumption, λ◦h and h agree on all elements of K. Lemma 2.2 implies that K is Zariski
dense in SLn(C), so this implies that in fact λ ◦ h = h, as desired.

We finally prove Theorem D.

Proof of Theorem D. We start by recalling what we must prove. Let k be a field of char-
acteristic 0 and let n ≥ 3. For some m, let ρ : SLn(Z) → GLm(k) be a representation.
We must prove that there exists a rational representation f : SLn(k) → GLm(k) of the
algebraic group SLn(k) and a finite-index subgroup K of SLn(Z) such that f |K = ρ|K .

Since SLn(Z) is a finitely generated group, there exists a subfield k′ of k with the following
two properties:

(a) For all x ∈ SLn(Z), the matrix entries of ρ(x) lie in k′.
(b) The field k′ is a finitely generated Q-algebra.

By (a), there exists a homomorphism ρ′ : SLn(Z)→ GLm(k′) such that ρ factors as

SLn(Z) ρ′−→ GLm(k′) ↪→ GLm(k).

Since k′ is a finitely generated Q-algebra, it is isomorphic to a subfield of C. Identifying k′
with this subfield of C allows us to identify the image of ρ′ with a subfield of C. We can
thus apply Theorem A.6 and obtain a rational representation f ′ : SLn(C) → GLm(C) and
a finite-index subgroup K < SLn(Z) such that f ′|K = ρ′|K . Since

f ′(K) = ρ′(K) ⊂ GLm(k′) ⊂ GLm(C),

we can apply Lemma A.7 to deduce that f ′ is defined over k′, and thus restricts to a
rational representation f ′′ : SLn(k′)→ GLm(k′). Extending scalars from k′ to k, we obtain
a rational representation f : SLn(k)→ GLm(k) such that

f |K = f ′|K = ρ′|K = ρ|K ,

as desired.
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