Algebraicity of matrix entries of representations

Andrew Putman

Abstract

We prove that with respect to an appropriate basis, the matrices associated to complex representations of finite groups have entries lying in algebraic number rings.

Fix a finite group G. All representations of G discussed in this note are finite dimensional. Given an *n*-dimensional \mathbb{C} -representation V of G, we will say that V is defined over a subring R of \mathbb{C} if there is an R[G]-module V' with the following two properties:

• V' is a rank-*n* free *R*-module.

• There is an isomorphism $V' \otimes_R \mathbb{C} \cong V$ of $\mathbb{C}[G]$ -modules.

A more pedestrian way of saying this is that with respect an appropriate basis for V, the matrices representing the action of G on V have entries in $\operatorname{GL}_n(\mathbb{C}) \subset \operatorname{GL}_n(\mathbb{C})$.

Recall that a number ring $\mathcal{O}_{\mathbf{k}}$ is the ring of integers in an algebraic number field \mathbf{k} , i.e. a finite extension of \mathbb{Q} . The goal of this note is to prove the following standard theorem.

Theorem A. For all \mathbb{C} -representations V of G, there exists a number ring $\mathcal{O}_{\mathbf{k}}$ such that V is defined over $\mathcal{O}_{\mathbf{k}}$.

Proof. The proof will have two steps.

Step 1. There exists an algebraic number field \mathbf{k} such that V is defined over \mathbf{k} .

We remark that Brauer proved that V can be defined over a cyclotomic extension of \mathbb{Q} containing the m^{th} roots of unity for m the least common multiple of the orders of the elements of G; see [1, Theorem 24]. We will give a much softer argument that does not give an explicit **k**.

Since G is finite, it is enough to show that V is defined over $\overline{\mathbb{Q}}$. Without loss of generality, V is irreducible. This implies that V is isomorphic to a subrepresentation of the regular representation $\mathbb{C}[G]$. The regular representation $\overline{\mathbb{Q}}[G]$ over $\overline{\mathbb{Q}}$ can be decomposed as a direct sum of irreducible representations, and the only thing that might go wrong is that this decomposition might not be fine enough, i.e. there is an irreducible subrepresentation W of $\overline{\mathbb{Q}}[G]$ such that $W \otimes \mathbb{C}$ is reducible and V is isomorphic to a proper subrepresentation of $W \otimes \mathbb{C}$.

Assume that this happens. Let $n = \dim(V)$, and define

$$X = \{ U \in \operatorname{Gr}_n(W) \mid g(U) = U \text{ for all } g \in G \}.$$

Thus X is a closed subvariety of the Grassmannian $\operatorname{Gr}_n(W)$, which is a projective variety defined over $\overline{\mathbb{Q}}$. Our assumption that W is irreducible implies that $X(\overline{\mathbb{Q}}) = \emptyset$, while our assumption that $W \otimes \mathbb{C}$ is reducible and V is isomorphic to a proper subrepresentation of $W \otimes \mathbb{C}$ implies that $X(\mathbb{C}) \neq \emptyset$.

This is impossible. Indeed, if $Y \subset \mathbb{A}^{\underline{m}}_{\overline{\mathbb{Q}}}$ is an open affine subset of X defined by a radical ideal $I \subset \overline{\mathbb{Q}}[x_0, \ldots, x_m]$, then since $Y(\overline{\mathbb{Q}}) = \emptyset$ the Nullstellensatz says that $I = \overline{\mathbb{Q}}[x_0, \ldots, x_m]$. This is preserved when we extend scalars to \mathbb{C} , i.e. we have

$$Y(\mathbb{C}) = V(I \otimes \mathbb{C}) = V(\mathbb{C}[x_0, \dots, x_m]) = \emptyset.$$

The desired result follows.

Step 2. There exists a finite extension \mathbf{k}' of \mathbf{k} such that V is defined over $\mathcal{O}_{\mathbf{k}'}$.

By the previous step, there exists an action of G on \mathbf{k}^n such that $V \cong \mathbf{k}^n \otimes \mathbb{C}$ as $\mathbb{C}[G]$ -modules. Let $L \subset \mathbf{k}^n$ be $\mathcal{O}_{\mathbf{k}}$ -submodule spanned by the G-orbit of the standard lattice $\mathcal{O}^n_{\mathbf{k}} \subset \mathbf{k}^n$, so L is a finitely generated $\mathcal{O}_{\mathbf{k}}$ -submodule of \mathbf{k}^n that is preserved by G such that $L \otimes \mathbf{k} = \mathbf{k}^n$. If we had an $\mathcal{O}_{\mathbf{k}}$ -module isomorphism $L \cong \mathcal{O}^n_{\mathbf{k}}$, then we would be done. Unfortunately, this need not be true; however, the classification of finitely generated modules over a Dedekind domain shows that

$$L\cong I_1\oplus\cdots\oplus I_n$$

for some nonzero ideals $I_1, \ldots, I_n \subset \mathcal{O}_{\mathbf{k}}$.

The problem is that the I_i might not be principal ideals, i.e. they might define nonzero elements $[I_i]$ of the class group $cl(\mathcal{O}_{\mathbf{k}})$. The class group is a finite abelian group, so we can find $k_1, \ldots, k_n \geq 1$ such that $k_i[I_i] = 0$. Pick the k_i to be the minimal such integers. By definition, the ideal $I_i^{k_i}$ is principal, i.e. there exists some $a_i \in \mathcal{O}_{\mathbf{k}}$ such that

$$I_i^{k_i} = (a_i).$$

Define

$$\mathbf{k}' = \mathbf{k}[a_1^{1/k_1}, \dots, a_n^{1/k_n}],$$

 \mathbf{SO}

$$I_i \otimes_{\mathcal{O}_{\mathbf{k}}} \mathcal{O}_{\mathbf{k}'} = (a_i^{1/k_i}) \subset \mathcal{O}_{\mathbf{k}'}.$$

Setting

$$L' = L \otimes_{\mathfrak{O}_{\mathbf{k}}} \mathfrak{O}_{\mathbf{k}'} \subset (\mathbf{k}')^n,$$

we then have

$$L' \cong (I_1 \otimes \mathcal{O}_{\mathbf{k}'}) \oplus \cdots \oplus (I_n \otimes \mathcal{O}_{\mathbf{k}'}) \cong \mathcal{O}_{\mathbf{k}'}^n.$$

We conclude that our original representation is defined over $\mathcal{O}_{\mathbf{k}'}$, as desired.

References

[1] J.-P. Serre, *Linear representations of finite groups*, translated from the second French edition by Leonard L. Scott, Springer-Verlag, New York, 1977.

Andrew Putman Department of Mathematics University of Notre Dame 255 Hurley Hall Notre Dame, IN 46556 andyp@nd.edu