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ESSAY A

Review of point-set topology

This essay is a rapid review of some basic facts about point-set topology. Our goal is to emphasize
definitions and examples that are important for algebraic topology, and also to explain a few things
at a slightly more sophisticated level than the usual undergraduate textbooks. Since we expect that
our readers have seen this material before, our coverage is selective and we do not attempt to prove
(or even state) all the results that would necessarily be included in a basic course. I first learned this
material from Munkres’s undergraduate textbook [8]. See [1, 2, 7] for more advanced references.

A.1. From Euclidean space to metric spaces

We first describe the naive notion of a space. We then make an initial attempt to formalize this
via metric spaces and discuss the ways in which this is unsatisfactory.

A.1.1. Spaces. The most familiar spaces are Rn and its subspaces. Indeed, since we live in R3

our drawings necessarily lie in R3. For instance:

We can imagine subspaces of Rn for n ≥ 4 by analogy with R3. These are the geometric objects
studied by mathematicians going back to the ancient Greeks.

Modern formalizations of the notion of “space” give a precise language for talking about these
spaces and extending our geometric imagination to spaces that are less easily visualized. However, it
is important to keep in mind that mathematicians have been studying geometry for thousands of
years. The formal language might change and the scope of the field might expand, but it is still the
same subject.

A.1.2. Metric spaces. Perhaps the easiest modern formalization is the notion of a metric
space, which was introduced by Hausdorff [5]. A metric space is a pair (M, d) where M is a set and
d is a distance function d : M ×M → R such that:

• For all p, q ∈M , we have d(p, q) ≥ 0 with equality if and only if p = q.
• For all p, q ∈M , we have d(p, q) = d(q, p).
• For all p, q, r ∈M , we have the triangle inequality d(p, q) ≤ d(p, r) + d(r, q).

Sometimes we will not mention d and just say that M is a metric space. Subspaces of Rn fit into
this framework as follows:

Example A.1.1. Let ∥·∥ be the usual norm on Rn:

∥(x1, . . . , xn)∥ =
√
x21 + · · ·+ x2n for all (x1, . . . , xn) ∈ Rn.

Consider M ⊂ Rn. For x, y ∈M , define [d(x, y) = ∥x− y∥. This makes M into a metric space. □

Spaces of functions provide other important examples. For instance:

Example A.1.2. Let I = [0, 1] be the closed interval and let C(I,R) be the set of all continuous
functions f : I → R. Define a metric on C(I,R) as follows:

d(f, g) = max {|f(x)− g(x)| | x ∈ I} for all continuous f, g : I → R.
Since I is compact, this maximum makes sense. This makes C(I,R) into a metric space. □
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2 A. REVIEW OF POINT-SET TOPOLOGY

A.1.3. Continuity. Once we have defined metric spaces, we can define continuity by imitating
the classical definition from real analysis. Let (M, dM ) and (N, dN ) be metric spaces and let
f : M → N be a function. Then:

• f is continuous at p ∈M if for all ϵ > 0, there exists a δ > 0 such that for all q ∈M with
dM (p, q) < δ we have dN (f(p), f(q)) < ϵ.

• f is continuous if it is continuous at all p ∈M .

A.1.4. Topology. Ordinary geometry concerns distances, angles, etc. At least for distances,
metric spaces are a natural context for this. Topology is a primitive kind of geometry where distances
are ignored. Instead, topology focuses on tools for studying continuous function between spaces.
Here are two examples of the kinds of questions it might ask:

Question A.1.3. For metric spaces M and N , we say that M and N are homeomorphic if there
exists a bijection f : M → N such that f and f−1 are continuous. Can we classify metric spaces up
to homeomorphism? □

Question A.1.4. Fix metric spaces M and N . An embedding of M into N is a continuous
injective function f : M → N that is a homeomorphism onto its image. Can we determine whether
M can be embedded into N? □

General metric spaces are far too wild for questions like these to have reasonable answers.
Typically topologists restrict to classes of spaces like those drawn at the beginning of this chapter.

A.1.5. Downsides of metric spaces. The geometric meaning of the definition of a metric
space is easily grasped. However, for topology they have downsides:

• Though continuity is defined in terms of a metric, there are many metrics on a given space
that give the same notion of continuity (see Exercise A.1). In other words, continuity is a
more primitive notion than a metric.

• There are many geometric operations one would like to perform on spaces (gluing them
together, taking quotients, etc). However, these operations do not always interact well with
a metric and often result in “spaces” that are not metric spaces.

Here is an example of this second pathology:

Example A.1.5. For each integer n ≥ 1, let In be a copy of the interval I = [0, 1]. Let M be
the “space” obtained by identifying the points 0 ∈ In all together to a single point x0:

I1

I2

I3
I4
I5 I6 I7

I8

...
x0

Each In is a subspace of M , so each p ∈M lies in some In. This In is unique unless p = x0. There
is a natural choice of a metric on M :

• Consider p, q ∈M . If there is some n ≥ 1 such that p, q ∈ In = [0, 1], define d(p, q) = |p− q|.
Otherwise, if p ∈ In and q ∈ Im with n ̸= m, then define d(p, q) = p+ q.

For an explanation of this formula, see here:
In

x0

p+q
p q Im

Define a function f : M → R via the formula f(p) = np for p ∈ In. This formula makes sense since
the map p 7→ np takes 0 to 0 for all n, so the resulting function f satisfies f(x0) = 0. The restriction
of f to each In is continuous; however, f itself is not continuous (see Exercise A.2). □

In this example, it is inconvenient that continuous functions on the In do not “glue together” to
a continuous function on M . Once we have defined topological spaces, we will be able to turn M
into a topological space where this kind of gluing works.
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A.1.6. Open sets and continuity. To give a hint for how to discuss continuity without a
metric, we review some other facts about metric spaces. Fix a metric space (M, d). For p ∈M and
r > 0, let

Br(p) = {q ∈M | d(p, q) < r} .

This is called the open ball of radius r around p. A set U ⊂M is open if for all p ∈ U , there exists
some r > 0 such that Bp(r) ⊂ U . We then have:

Lemma A.1.6. Let M1 and M2 be metric spaces and let f : M1 →M2 be a function. Then f is
continuous if and only if for all U ⊂M2 open we have f−1(U) ⊂M1 open.

Proof. See Exercise A.3. □

A.2. Topological spaces

Since continuity for metric spaces can be described entirely in terms of open sets, it is natural to
abstract the notion of “open sets”.

A.2.1. Definition of topological space. A topological space is a set X equipped with a
collection of subsets of X called the open sets. These open sets should satisfy the following three
properties:

• The whole space X and the empty set ∅ are both open.
• The collection of open sets is closed under arbitrary unions: if {Ui}i∈I is any collection of
open sets, then ∪i∈IUi is open.

• The collection of open sets is closed under finite intersections: if U1, . . . , Un are open sets,
then U1 ∩ · · · ∩ Un is open.

We call the collection of open sets on X a topology on X. A key example is:

Example A.2.1. If M is a metric space, then the collection of open sets in M makes M into a
topological space (see Exercise A.4). □

Convention A.2.2. Whenever we draw a figure in Rn, we give it the topology it inherits as a
metric space via the Euclidean metric on Rn discussed in Example A.1.1. □

Remark A.2.3. The notion of a topological space has a long pre-history. The definition we gave
above first appeared in Bourbaki [1], but earlier Hausdorff [5] defined something very close to it. We
recommend the historical notes in [1] for a more thorough discussion of its history. □

A.2.2. Continuity. A map f : X → Y between topological spaces is continuous if for all U ⊂ Y
open, its preimage f−1(U) ⊂ X is open. By Lemma A.1.6, this is equivalent to the usual ϵ-δ definition
if X and Y are metric spaces. We say that f : X → Y is a homeomorphism if f is a bijection and
both f and f−1 are continuous.

Remark A.2.4. For metric spaces, another way to characterize continuity is to use limits:

• If (M, d) is a metric space, then a sequence of points {xn}n≥1 of M converges to y ∈ M
if for all ϵ > 0, there exists some N ≥ 1 such that d(xn, y) < ϵ for n ≥ N . We write
this as limn 7→∞ xn = y, and if we do not want to specify y we simply say that {xn}n≥1 is
convergent.

• A map f : M → N between metric spaces is continuous if and only if for all sequences
{xn}n≥1 of points in M converging to y ∈M , the sequence {f(xn)}n≥1 converges to f(y).
In other words, for a convergent sequence {xn}n≥1 in M we require f(limn 7→∞ xn) =
limn7→∞ f(xn).

This definition could also be generalized to topological spaces, though with some subtleties (for
instance, limits of sequences need not be unique). However, without some additional assumptions it
would give a different notion of continuity. See §A.5.2 below for more about this. □
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A.2.3. Gluing intervals. We now return to Example A.1.5 and explain how the notion of a
topological space fixes its pathological behavior.

Example A.2.5. For each integer n ≥ 1, let In be a copy of the interval I = [0, 1]. Let M be
the topological space obtained by identifying the points 0 ∈ In all together to a single point x0:

I1

I2

I3
I4
I5 I6 I7

I8

...
x0

Each In is a subspace of M , so each p ∈M lies in some In. This In is unique unless p = x0. Endow
M with the following topology:

• A set U ⊂M is open if and only if U ∩ In is open for all n ≥ 1.

It is immediate from this definition that a function f : M → R is continuous if and only if f |In : In → R
is continuous for all n ≥ 1. In particular, the function f : M → R from Example A.1.5 defined via
the formula f(p) = np for p ∈ In is continuous. □

Remark A.2.6. The topology we imposed on the space M in Example A.2.5 is an example of
an identification space topology. See §A.3 below for more details about this. □

A.2.4. Conventions. Henceforth, we will use the word “space” as a synonym for “topological
space”. Also, unless otherwise specified all maps between spaces are assumed to be continuous.

A.2.5. Subspaces. Before giving more examples, we introduce some terminology. Let X be
a space and let Y ⊂ X be a subset. We would like to make Y into a space. Letting ι : Y → X be
the inclusion, the topology we impose on Y should make ι into a continuous function. For an open
set U ⊂ X, we therefore need ι−1(U) = U ∩ Y to be open in Y . This suggests the following: the
subspace topology on Y is the topology whose open sets V ⊂ Y are the sets of the form V = U ∩ Y
for an open set U ⊂ X. Unless we say otherwise, all subspaces are given the subspace topology.

A.2.6. Embeddings. An embedding if a map f : X → Z that is a homeomorphism onto its
image. In other words, f is a continuous injection onto a subspace f(X) of Z, and the inverse map
f−1 : f(X) → X is continuous. For a subspace Y of X, the inclusion ι : Y → X is an embedding.

A.2.7. Closed sets. If X is a space, then a set C ⊂ X is closed if X \C is open. The collection
of closed sets is closed under finite unions and arbitrary intersections. The whole subject could be
developed using closed sets instead of open ones.

A.2.8. Interior, closure, and neighborhoods. If X is a space and A ⊂ X is a subset, we
define the interior Int(A) and the closure A as follows:

• The interior Int(A) is the union of all open sets U with U ⊂ A. In other words, Int(A) is
the largest open set contained in A.

• The closure A is the intersection of all closed sets C with A ⊂ C. In other words, A is the
smallest closed set containing A.

For p ∈ X, a neighborhood of p is a set A with p ∈ Int(A). More generally, for a set B ⊂ X, a
neighborhood of B is a set A with B ⊂ Int(A). The most important special case of this terminology
is an open neighborhood of B ⊂ X, which is an open set U with B ⊂ U = Int(U).

A.2.9. Basis for a topology. A basis for a topology on a set X consists of a set B of subsets
of X such that:

• all points of X lie in some U ∈ B; and
• for all U, V ∈ B, the intersection U ∩ V can be written as a union of sets in B.

Given such a basis, the corresponding topology is the one where a set U ⊂ X is open if and only if U
is a union of sets in B. For instance, the topology on a metric space M has for a basis the set of
open balls in M .

Remark A.2.7. There is a also the weaker notion of a subbasis; see §A.11.1 below. □
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A.2.10. Other examples. The notion of a topological space is extremely general. Here are a
few more examples.

Example A.2.8. Let X be a set. The discrete topology on X is the one where all sets are open.
The trivial topology on X is the one where the only open sets are ∅ and X. Another topology that
can be put on an arbitrary set X is the cofinite topology whose open sets are those of the form X \ F
with F finite. The fact that this is a topology follows from the fact that finite sets are closed under
finite unions and arbitrary intersections. □

Example A.2.9. Let k be a field; for instance, k might be C or R. For a polynomial f ∈
k[z1, . . . , zn], define the vanishing and non-vanishing loci of f to be

V (f) = {(x1, . . . , xn) ∈ kn | f(x1, . . . , xn) = 0} ⊂ kn and NV (f) = kn \ V (f).

The Zariski topology on kn is the topology whose open sets are the nonvanishing loci NV (f) as f
ranges over elements of k[z1, . . . , zn] (see Exercise A.5). The closed sets are thus the vanishing loci
Z(f). For n = 1, the vanishing locus of a polynomial in k[z1] can be any finite subset of k1, so the
Zariski topology on k1 is the cofinite topology. □

Remark A.2.10. For k equal to C or R, we have now seen two topologies on kn:

• the classical topology obtained by regarding kn as a metric space; and
• the Zariski topology.

Every open set in the Zariski topology is open in the classical topology. We say that the classical
topology is finer or stronger than the Zariski topology, and that the Zariski topology is coarser or
weaker than the classical topology. □

A.2.11. Rest of essay. Because the notion of a topological space is so general, there is almost
nothing nontrivial that can be said about an arbitrary topological space. They are thus almost never
studied for their own sake. Rather, they provide a minimal framework and language for studying
continuity as it appears throughout mathematics.

The tools of algebraic topology are most useful for spaces that have some kind of geometric
origin. In the rest of this essay, we introduce language to allow us to work with the kinds of spaces
that appear in the rest of this book. We try to include enough examples and sample results to make
reading this essay more interesting than reading a dictionary, but we apologize if at some points
it does seem merely like a compendium of definitions. We close with a discussion of topological
manifolds, which illustrate most of our tools and play a basic role in the subject.

Remark A.2.11. Ultimately, the most natural class of spaces for algebraic topology are CW
complexes. These are best introduced as part of a course in algebraic topology. □

A.3. Identification spaces and the quotient topology

We now explain how to construct a new space from a collection of existing ones by identifying
certain points together. This generalizes the construction we gave in Example A.2.5.

A.3.1. Identification spaces. Let {Xi}i∈I be a collection of spaces. An identification space is
a topological space Y equipped with maps fi : Xi → Y for each i ∈ I such that:

• each y ∈ Y is in the image of some fi; and
• a set U ⊂ Y is open if and only if f−1

i (U) ⊂ Xi is open for all i ∈ I.

The second condition ensures that each fi : Xi → Y is continuous. It also ensures that for a space Z
a map of sets ϕ : Y → Z if continuous if and only if ϕ ◦ fi : Xi → Z is continuous for all i ∈ I (we
will say more about this in §A.3.4 below).

In general, if Y is a set obtained by taking the Xi and identifying some points together, then
letting fi : Xi → Y be the projections we can turn Y into an identification space by imposing the
topology discussed above. We will call this the identification space topology on Y . If we have a
construction of a purported “space” from the points of the Xi, then this gives a canonical way of
turning our purported “space” into a topological space.
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A.3.2. Examples. The above discussion is a little abstract. Here are some examples.

Example A.3.1 (Gluing). Let X1 and X2 be spaces. Assume that A ⊂ X1 is a subspace and
ϕ : A → X2 is a map. As a set, let Y be the disjoint union of X1 and X2 modulo the equivalence
relation that identifies each a ∈ A ⊂ X1 with ϕ(a) ∈ X2. There are natural maps f1 : X1 → Y and
f2 : X2 → Y , and we give Y the identification space topology. We call Y the space obtained by gluing
X1 to X2 via the gluing map ϕ.

Here is one easy example of this with X1 and X2 surfaces with one boundary component and
A ∼= S1 the boundary component of X1 glued to the boundary component of X2 to form Y :

glueϕ
A

X1 X2 Y

Two open sets on Y are drawn together with their preimages in X1 and X2. In this example, ϕ is a
homeomorphism onto its image and both X1 and X2 are subspaces of Y . However, in the definition
ϕ is not required to be injective. For an example where the gluing map is not injective, consider the
following where X1 and X2 are rectangles and ϕ identifies the two blue vertical edges of X1 with a
single segment in the left-hand vertical edge of X2:

glueϕ

AA

X1

X2

In general, we will use informal language to describe how we are gluing spaces together, but we
always mean this topology. □

Example A.3.2 (Wedge product). Let {Xi}i∈I be a collection of topological spaces. Assume
that each Xi has a distinguished basepoint xi ∈ Xi. The wedge product of the Xi, denoted ∨i∈IXi,
is the space obtained by identifying all the xi together to a single point p0. There are inclusions
fi : Xi → ∨i∈IXi, and we give ∨i∈IXi the identification space topology. Here is an example, with an
open neighborhood of p0 together with its preimage in the Xi indicated:

wedge
X2

X1 X3 p0

Example A.2.5 is the special case of this where we are taking the wedge product of countably many
intervals In = I equipped with the basepoints 0 ∈ In. Here is a picture of this, with an open
neighborhood p0 together with its preimage in the In indicated:

...
I1

I2

I3

I4
I5 I6

I7

I8

...
wedge

p0
Note that the length of the portion of this open set in In is shrinking to 0 at n increases, which
would not be possible if we were using the topology coming from a metric. □

Example A.3.3 (Collapsing subspace). In an identification space, we allow there to only be a
single space X. As an example of this, let X be a space and let A ⊂ X be a subspace. Denote by
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X/A the result of collapsing A to a single point. The points of X/A are thus the points of X \ A
together with a single point [A] corresponding to A. Letting f : X → X/A be the projection, we can
endow X/A with the identification space topology.

Here is an example of this with X = S2 and A two points on X:

collapse

A

A

As another example, consider the boundary ∂Dn = Sn−1. As the following shows, Dn/∂Dn ∼= Sn,
with the blue ∂Dn mapping to the north pole of Sn:

collapse

∂𝔻2
𝔻2

As this figure shows, a neighborhood of the north pole in Sn lifts to a neighborhood of ∂Dn. □

Remark A.3.4. Collapsing a subspace can turn a nice space into a pathological one. For instance,
collapsing the subspace Q of R gives a terrible space R/Q. □

Example A.3.5 (Quotienting by group action). Let X be a space and let G be a group acting
on X. As a set, X/G consists of the orbits of X under the action of G. Letting f : X → X/G be the
quotient map, we endow X/G with the identification space topology. For example, let the group
Z2 act on R2 by translations. As the following shows, the quotient R2/Z2 is homeomorphic to the
2-torus:

ℝ2

ℝ2/ℤ2

quotient

The orange and blue loops on R2/Z2 lift to the orange and blue parallel lines on R2. □

A.3.3. Disjoint unions and the quotient topology. A map f : X → Y is a quotient map
if f is surjective and U ⊂ Y is open if and only if f−1(U) ⊂ X is open. Given a space X and a
surjection of sets f : X → Y , the quotient topology on Y is the topology making f : X → Y a quotient
map. We call Y a quotient space of X.

Of course, this is a special case of an identification space. Moreover, given a collection of spaces
{Xi}i∈ and an identification space Y of the Xi with maps fi : Xi → Y , we can realize Y as a quotient
space in the following way. Let ⊔i∈IXi be the disjoint union of the Xi. Topologize ⊔i∈IXi by letting
a set U ⊂ ⊔i∈IXi be open if and only if U ∩Xi is open for all i ∈ I. The maps fi : Xi → Y then
assemble to a quotient map F : ⊔i∈I Xi → Y .
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Remark A.3.6. Many treatments of point-set topology only talk about quotient spaces, but we
find it convenient to use the slightly more general notion of identification spaces since like in the
examples from earlier in this section, we often use them to build a space out of several spaces, not
just one. □

A.3.4. Universal mapping property. Let f : X → Y be a quotient map. Let ∼ be the
equivalence relation on the set X where p ∼ q if and only if f(p) = f(q). The equivalence classes of
∼ are the fibers f−1(y) for y ∈ Y . Letting Z be another space and ϕ : Y → Z be a continuous map,
the composition Φ = ϕ ◦ f is a continuous map Φ: X → Z is ∼-invariant, i.e., Φ(p) = Φ(q) whenever
p ∼ q. Conversely, if Φ: X → Z is a continuous ∼-invariant map, then there is a set map ϕ : Y → Z
such that Φ = ϕ ◦ f and the quotient topology on Y is set up to ensure that ϕ is continuous.

The above discussion shows that composition with f gives a bijection between continuous maps
ϕ : Y → Z and ∼-invariant continuous maps Φ: X → Z. This is an example of a universal mapping
property, and we will describe it informally by saying that a map ϕ : Y → Z is the same as a
∼-invariant map Φ: X → Z. This universal mapping property characterizes quotient spaces (see
Exercise A.7). Here are several examples of it:

Example A.3.7 (Wedge product). Let {Xi}i∈I be a collection of topological spaces. Assume
that each Xi has a distinguished basepoint xi ∈ Xi. For a space Z, maps ϕ : ∨i∈I Xi → Z are the
same as collections of maps Φi : Xi → Z such that Φi(xi) = Φj(xj) for all i, j ∈ I. In particular, this
explains why the quotient topology is the right one to ensure the real-valued function in Example
A.2.5 is continuous. □

Example A.3.8 (Collapsing subspace). Let X be a space and let A ⊂ X be a subspace. For a
space Z, maps ϕ : X/A→ Z are the same as maps Φ: X → Z such that Φ(A) is a single point. □

Example A.3.9 (Quotienting by group action). Let X be a space and let G be a group acting
on X. For a space Z, maps ϕ : X/G→ Z are the same as maps Φ: X → Z that are G-invariant in
the sense that Φ(g·x) = Φ(x) for all x ∈ X and g ∈ G. □

A.4. Connectivity properties

Our next topic is connectivity and path connectivity.

A.4.1. Path connectivity. Recall that I = [0, 1]. A path in a space X from p ∈ X to q ∈ X is
a map γ : I → X with γ(0) = p and γ(1) = q:

p

q

γ

The space X is path connected if for all p, q ∈ X there exists a path in X from p to q. The geometric
meaning of this is hopefully clear.

A.4.2. Connectivity. We now turn to connectivity. It is easier to say what it means for a
space to be disconnected. A space X is disconnected if we can write X = U ∪ V with U, V ⊂ X
disjoint nonempty open subsets of X. Since X \ U = V and X \ V = U , the sets U and V are
necessarily closed as well as open. Sets that are both open and closed are called clopen sets.1

A space X is connected if it is not disconnected. Another way of saying this is that X is connected
if whenever X = U ∪ V with U, V ⊂ X open we have U ∩ V ̸= ∅. Here are some basic properties of
this (see Exercise A.8):

• The space I = [0, 1] is connected.
• If X is connected and f : X → Y is a map, then f(X) is connected.
• Let X be a space and let {Yi}i∈I be a collection of subspaces of X. Assume that:

– each Yi is connected; and
– for all i, j ∈ I, the space Yi ∩ Yj is nonempty; and
– X = ∪i∈IYi.

Then X is connected.

1This is a terrible term, but is the standard word for this.
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Together, these three properties imply the following:

Lemma A.4.1. Let X be a path connected space. Then X is connected.

Proof. This is trivial if X = ∅, so assume that X ̸= ∅. Fix a point p ∈ X. For each q ∈ X, pick
a path γq : I → X from p to q. Set Yq = γq(I). Since I is connected, so is Yq. The space X is the
union of the Yq, and for q, q′ ∈ X we have p ∈ Yq ∩ Yq′ . It follows that X is connected. □

The converse of Lemma A.4.1 is not true:

Example A.4.2. Let X be the following subset of R2:

X = {(0, y) | −1 ≤ y ≤ 1} ∪ {(x, sin(1/x) | x > 0} .
This is a closed subset of R2 that is often called the topologist’s sine-curve:

The space X is not path connected; indeed, there is no path connecting (0, 0) and (x, sin(1/x)) for
any x > 0 (see Exercise A.9). However, X is connected (see also Exercise A.9). □

A.4.3. Path components. Let X be a space. Say that p, q ∈ X are equivalent if there is a
path in X from p to q. This is an equivalence relation on the points of X (see Exercise A.10), and
the equivalence classes are the path components of X. It is immediate from the definition that the
path components of X are path connected and that X is the disjoint union of its path components.

Example A.4.3. Let X be the topologist’s sine-curve from Example A.4.2. The path components
of X are as follows (see Exercise A.9):

X1 = {(0, y) | −1 ≤ y ≤ 1} ,
X2 = {(x, sin(1/x) | x > 0} . □

A.4.4. Connected components. Continue to let X be a space. Now say that points p, q ∈ X
are equivalent if there is a connected subspace Y ⊂ X with p, q ∈ Y . This is an equivalence relation
on the points of X (see Exercise A.10), and the equivalence classes are the connected components of
X. The connected components of X are connected (see Exercise A.11), and X is the disjoint union
of its connected components. Since path connected spaces are connected, each connected component
of X is the union of a collection of path components.

A.4.5. Local connectivity. Since a space X is disconnected if we can write X = U ∪ V with
U, V ⊂ X disjoint nonempty clopen subsets, it is natural to hope that the connected components of
X are clopen. Unfortunately, this need not hold:

Example A.4.4. Let X = Q. The connected components of X and the path components of X
both consist of the one-points sets {q} for q ∈ Q. □

As this example suggests, the cause of this is pathological local behavior. A space X is locally
connected at p ∈ X if for all open neighborhoods U of p, there is a connected open neighborhood V
of p with V ⊂ U . The space X is locally connected if it is locally connected at all p ∈ X. Similarly,
a space X is locally path connected at p ∈ X if for all open neighborhoods U of p, there is a path
connected open neighborhood V of p with V ⊂ U . The space X is locally path connected if it is
locally path connected at all p ∈ X. We then have:

Lemma A.4.5. Let X be a space. Then:

• If X is locally connected, then all connected components of X are clopen.
• If X is locally path connected, then all path components of X are clopen.

Proof. The two conclusions have similar proofs, so we will prove the first. Assume that X is
locally connected. Let Y be a connected component of X. For p ∈ Y , since X is locally connected
we can find a connected open neighborhood V of p. Since Y and V are connected and p ∈ Y ∩ V ,
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the union Y ∪ V is connected (see Exercise A.8). This implies that Y = Y ∪ V , i.e., that V ⊂ Y .
We deduce that Y is open. Since X \ Y is the union of connected components and these connected
components are open, it follows that X \Y is open. Thus Y is closed and hence clopen, as desired. □

Corollary A.4.6. Let X be a locally path connected space. Then the connected components
and path components of X coincide.

Proof. Let Y be a connected component of X. The subspace Y is the disjoint union of a
collection of path components. To prove that it is actually a path component, it is enough to prove
that Y is path connected. Assume otherwise. We can then write Y = Y1∪Y2 with each Yi a nonempty
union of path components and Y1 ∩ Y2 = ∅. Lemma A.4.5 implies that each path component is
clopen, so both Y1 and Y2 are also clopen. Since Y = Y1 ∪ Y2, we deduce that Y is disconnected,
contradicting the fact that it is connected. □

Remark A.4.7. As our examples show, not all metric spaces (or even subspaces of Rn) are
locally connected or locally path connected. However, most spaces that appear in algebraic topology
are locally path connected. In particular, CW complexes are always locally path connected. □

A.5. Countability properties

This section discussed properties that ensure a topological space is not “too large”.

A.5.1. First countability. Let X be a space. A neighborhood basis for X at a point p ∈ X is
a collection Bp of open neighborhoods of p such that:

• For all open neighborhoods V of p, we have U ⊂ V for some U ∈ Bp.

The space X is first countable if it has a countable neighborhood basis at each point p ∈ X. All
metric spaces have this property:

Lemma A.5.1. Let M be a metric space. Then M is first countable.

Proof. Recall that Br(p) is the open ball of radius r > 0 around p ∈ M . For p ∈ M , the set
{Br(p) | r > 0 rational} is a countable neighborhood basis for X at p. □

A.5.2. Sequences. Let X be a space. If X is first countable, then we will show that limits of
sequences can be used in X in a manner analogous to the way sequences are used in real analysis. A
sequence in X is an ordered collection {xn}n≥1 of points of X. Given such a sequence, a point y ∈ X
is its limit if for all open neighborhoods U of y there is some N ≥ 1 such that xn ∈ U for n ≥ N . If
y is a limit of {xn}n∈X , then we write limn 7→∞ xn = y and say that {xn}n≥1 converges to y. If such
a y exists, then we say that {xn}n≥1 is a convergent sequence.

Remark A.5.2. Be warned that a sequence can have multiple distinct limits. This only happens
for fairly pathological spaces. In the next section, we introduce a property of spaces called being
Hausdorff that forces convergent sequences to have unique limits. □

A.5.3. Closure. If X is first countable, then for A ⊂ X we can construct the closure A using
limits:

Lemma A.5.3. Let X be a first countable space and let A ⊂ X. Then A is the set of all y ∈ A
such that there exists a sequence {an}n≥1 of points of A such that limn 7→∞ an = y.

Proof. Let B be the set of limits of sequences of points of A. We first prove that B ⊂ A. Let
b ∈ B and let C ⊂ X be a closed set with A ⊂ C. We must prove that b ∈ C. Indeed, if b /∈ C then
we can find an open neighborhood U of b such that U ⊂ X \ C. However, since b ∈ B there must
exist points of A ⊂ C in U , contradicting the fact that U is disjoint from C.

We next prove that A ⊂ B. This uses first countability. Consider a point p ∈ A. Each open
neighborhood V of p must contain a point of A. Let Bp = {U1, U2, . . .} be a countable neighborhood
basis at p. For each n ≥ 1, choose xn ∈ Un with xn ∈ A. We then have limn 7→∞ xn = p, so p ∈ B. □
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Remark A.5.4. Though metric spaces are first countable, not all spaces that appear in algebraic
topology are first countable. In particular, not all CW complexes are first countable. This is why
arguments using limits are mostly avoided in this book. There are generalizations of sequences and
limits (nets, filters, etc.) that work for spaces that are not first countable (see [7]), but in practice
they do not simplify arguments in algebraic topology. □

A.5.4. Second countability. A space X is second countable if there is a countable basis for
its topology. It is clear that all second countable spaces are first countable. It is not true that all
metric spaces are second countable, but all subspaces of Rn are second countable:

Lemma A.5.5. Let X be a subspace of Rn. Then X is second countable.

Proof. For all p ∈ Rn and r > 0, let Br(p) ⊂ Rn be the open ball around p. Then X has the
countable basis {Br(p) ∩X | p ∈ Qn and r > 0 rational}. □

Remark A.5.6. Since CW complexes need not be first countable, they definitely do not need to
be second countable. The main reason we introduce second countability is that it appears in the
definition of a manifold; see §A.12 below. □

A.5.5. Separability. There is one further countability condition that occasionally shows up.
For a space X, a set A ⊂ X is dense if its closure A equals X. The space X is separable if X has a
countable dense subset. This is slightly weaker than second countability:

Lemma A.5.7. Let X be a second countable space. Then X is separable.

Proof. Let B = {U1, U2, . . . , } be a countable basis for the topology of X. Pick xn ∈ Un. Then
the set {xn | n ≥ 1} is a countable dense set in X. □

For metric spaces, these two notions coincide:

Lemma A.5.8. Let M be a separable metric space. Then M is second countable.

Proof. The proof is similar to that of Lemma A.5.5: if A ⊂M is a countable dense set, then{
B1/n(a) | a ∈ A, n ≥ 1

}
is a countable basis for the topology on M . □

A.6. Separation properties and the Tietze extension theorem

This section discusses properties that are necessary to ensure that continuous functions have the
properties one would expect.

A.6.1. Pathology. Consider maps f, g : X → Y . If A ⊂ X is dense and f |A = g|A, then it is
natural to expect that f = g. Unfortunately, this need not hold:

Example A.6.1 (Line with two origins). As a set, let Y = (R \ {0}) ⊔ {01, 02}. For i = 1, 2, let
fi : R → Y be the map defined by fi(x) = x for x ∈ R \ {0} and fi(0) = 0i. Give Y the identification
space topology, so:

• a set U ⊂ Y is open if and only if f−1
1 (U) and f−1

2 (U) are open in R.
With this topology, the subspaces Y \ {02} = f1(R) and Y \ {01} = f2(R) are both homeomorphic to
R. The maps f1, f2 : R → Y are continuous and agree on the dense set R\{0}. However, f1 ̸= f2. □

A.6.2. Hausdorff spaces. The issue with the line with two origins from Example A.6.1 is that
the points 01 and 02 do not have disjoint open neighborhoods. To rule this out, say that a space X
is Hausdorff if for all distinct points p, q ∈ X, there are open neighborhoods U of p and V of q with
U ∩ V = ∅. This has a number of nice consequences (see Exercise A.13):

• All points in X are closed, i.e., for all p ∈ X the one-point set {p} is closed.
• If Z is another space and f, g : Z → X are two maps, then the subset {z ∈ Z | f(z) = g(z)}

of points in Z where f and g are equal is closed. In particular, if f and g agree on a dense
subset of Z, then f = g.

• Limits in X are unique in the following sense. Let {xn}n≥1 be a sequence in X and let
y1, y2 ∈ X be such that limn 7→∞ xn = y1 and limn7→∞ xn = y2. Then y1 = y2.

Most geometrically natural spaces are Hausdorff. In particular:
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Lemma A.6.2. Let (M, d) be a metric space. Then M is Hausdorff.

Proof. Consider distinct p, q ∈ M . Set ϵ = d(p, q). Then the open balls Bϵ/2(p) and Bϵ/2(q)
are disjoint. □

Remark A.6.3. For an infinite field k, an important non-example is given by the Zariski topology
on kn. See Exercise A.14. □

A.6.3. Continuity. For first countable Hausdorff spaces, we can characterize continuity with
sequences:

Lemma A.6.4. Let X be a first countable Hausdorff space, let Y be a Hausdorff space, and let
f : X → Y be a map of sets. Then f is continuous if and only if the following holds:2

• Let {xn}n≥1 be a convergent sequence in X. Then {f(xn)}n≥1 is a convergent sequence in
Y and limn 7→∞ f(xn) = f(limn 7→∞ xn).

Proof. See Exercise A.12. □

A.6.4. Normal spaces. In fact, most geometrically natural spaces have even stronger separation
properties. A space X is normal if it satisfies the following two conditions:

• for all disjoint closed sets C,D ⊂ X, there exist open neighborhoods U of C and V of D
with U ∩ V = ∅; and

• all points in X are closed.3

All normal spaces are Hausdorff. The key example is:

Lemma A.6.5. Let (M, d) be a metric space. Then M is normal.

Proof. SinceM is Hausdorff, all points inM are closed. Consider disjoint closed sets C,D ⊂M .
For z ∈M , let

r(z) = inf {d(z, c) | c ∈ C} and s(z) = inf {d(z, d) | d ∈ D} .
Since C and D are disjoint closed sets, we have r(d) > 0 for d ∈ D and s(c) > 0 for c ∈ C. Define

U =
⋃
c∈C

Bs(c)/3(c) and V =
⋃
d∈D

Br(d)/3(d).

The sets U and V are open, and C ⊂ U and D ⊂ V . To prove the lemma, it is enough to show that
U ∩ V = ∅. Assume this is false, and let x ∈ U ∩ V . We can therefore find c0 ∈ C and d0 ∈ D such
that d(c0, x) < s(c0)/3 and d(d0, x) < r(d0)/3. We either have s(c0) ≤ r(d0) or r(d0) ≤ s(c0). Both
cases lead to a similar contradiction, so we will give the details for s(c0) ≤ r(d0). This implies that

d(c0, d0) ≤ d(c0, x) + d(x, d0) < s(c0)/3 + r(d0)/3 ≤ r(d0)/3 + r(d0)/3 =
2

3
r(d0).

However, we also have d(c0, d0) ≥ inf {d(d0, c) | c ∈ C} = r(d0), a contradiction. □

The following characterization of normality is often useful. Recall that V is the closure of V .

Lemma A.6.6. A space X is normal if and only if all points in X are closed and:

(♠) For all closed sets C ⊂ X and all open neighborhoods U of C, there exists an open
neighborhood V of C with V ⊂ U .

Proof. Assume first that X is normal. To verify (♠), let C ⊂ X be closed and let U be an
open neighborhood of C. The set D = X \ U is then a closed set that is disjoint from C, so by
normality there exist disjoint open neighborhoods V and W of C and D. Since X \W is a closed
subset of U containing V , it follows that V ⊂ U .

Assume now that all points in X are closed and (♠) holds. To verify normality, let C,D ⊂ X be
disjoint closed sets. Applying (♠) to the open neighborhood U = X \D of C, we obtain an open
neighborhood V of C with V ⊂ U . It follows that V and W = X \V are disjoint open neighborhoods
of C and D. □

2There is a version of this result that is true without the Hausdorff assumption, but it is awkward to state since

in non-Hausdorff spaces limits need not be unique.
3This is not always included in the definition of normality, but it ensures that normal spaces are Hausdorff.
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A.6.5. Urysohn’s Lemma. A key feature of normal spaces is that they have a rich supply of
continuous real-valued functions. For our first example of this, we need a definition. The support of a
function f : X → R, denoted supp(f), is the closure of the set {p ∈ X | f(p) ̸= 0}. We then have:

Theorem A.6.7 (Urysohn’s Lemma). Let X be a normal space, let C ⊂ X be closed, and let
U ⊂ X be an open neighborhood of C. Then there exists a map f : X → [0, 1] such that f |C = 1 and
supp(f) ⊂ U .

Proof. We must use the open sets provided by normality to construct f . The key is:

Claim. There exist open sets Vα for all α ∈ Q with the following properties:

(i) For rational r < s, we have V s ⊂ Vr.
(ii) C ⊂ V1 and V 0 ⊂ U .
(iii) Vα = ∅ for α > 1 and Vα = X for α < 0.

Proof of claim. The picture is as follows:

C
V0V1/3

V2/3
V1

U

Define Vα for α > 1 and α < 0 as in (iii). Next, using Lemma A.6.6 choose an open neighborhood
V0 of C with V 0 ⊂ U and an open neighborhood V1 of C with V 1 ⊂ V 0. Conditions (ii) and (iii)
hold, and we inductively construct the remaining Vα satisfying (i) as follows. Enumerate the rational
numbers in [0, 1] as {α0, α1, . . .} with α0 = 0 and α1 = 1. We have already constructed V0 and V1, so
assume that n ≥ 2 and that we have constructed Vαm for 0 ≤ m ≤ n− 1 satisfying (i). We construct
Vαn as follows. Let

r = max {αm | 0 ≤ m ≤ n− 1, αm < αn} and s = min {αm | 0 ≤ m ≤ n− 1, αm > αn} .

We thus have r < αn < s, and by (iii) we have V s ⊂ Vr. Using Lemma A.6.6, we can then find an
open neighborhood Vαn

of V s such that V αn
⊂ Vr. □

We now define a set map f : X → R via the formula

f(p) = sup {α ∈ Q | p ∈ Vα} .

By (iii) we have f(p) ∈ [0, 1] for all p ∈ X. Also, by (ii) we have f(p) = 1 for p ∈ C and supp(f) ⊂ U .
All that remains is to check that f is continuous.

Let W ⊂ R be open. We must prove that f−1(W ) is open. Consider p ∈ f−1(W ). Choose
rational r < s such that [r, s] ⊂ W and f(p) ∈ [r, s]. By (iii), we have V s ⊂ Vr. To prove that
f−1(W ) is open, it is enough to prove that the open set Vr \ V s is contained in f−1(W ). To do this,
it is enough to prove that f maps Vr \ V s into [r, s] ⊂W . This follows from the following two facts,
both of which are immediate from (iii):

• for q ∈ Vr, we have f(q) ≥ r; and
• for q /∈ Vs, we have f(q) ≤ s. □

A.6.6. Converse to Urysohn. The following lemma shows that the conclusion of Urysohn’s
lemma characterizes normality:

Lemma A.6.8. Let X be a space such that all points in X are closed. For every closed C ⊂ X
and every neighborhood U of C, assume that there exists a continuous map4 f : X → R with f |C = 1
and supp(f) ⊂ U . Then X is normal.

4In Urysohn’s lemma, the target of f is [0, 1]. Here we relax this.
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Proof. Let C and D be disjoint closed sets in X. By assumption, there is a continuous map
f : X → R with f |C = 1 and supp(f) ⊂ X \D. The sets U = f−1((1/2,∞)) and V = X \ supp(f)
are then disjoint open neighborhoods of C and D. □

A.6.7. Strengthening Urysohn. Say that a space X is perfectly normal if points in X are
closed and for all closed C ⊂ X and all open neighborhoods U of C, there exists a continuous map
f : X → [0, 1] such that f−1(1) = C and supp(f) ⊂ U . Lemma A.6.8 implies that perfectly normal
spaces are normal.

The definition of a perfectly normal space resembles the conclusion of Urysohn’s lemma, but
there is a small difference: in a perfectly normal space we have f−1(1) = C, while in the conclusion of
Urysohn’s lemma we only have C ⊂ f−1(1). Most geometrically natural spaces are perfectly normal.
In particular:

Lemma A.6.9. Let (M, d) be a metric space. Then M is perfectly normal.

Proof. Lemma A.6.5 implies that M is normal, and in particular points are closed. Consider
C ⊂ X closed and U an open neighborhood of C. By Urysohn’s Lemma, there exists a continuous
map f : X → [0, 1] such that f |C = 1 and supp(f) ⊂ U . We want to modify f to ensure it is less
than 1 at all points that do not lie in C. Let g : X → R be the function

g(p) = inf {d(p, c) | c ∈ C} for p ∈ X

and let h : X → [0, 1] be the function

h(p) = min(g(p), 1) for p ∈ X.

Both g and h are continuous and satisfy g−1(0) = h−1(0) = C. The function f ′ : X → [0, 1] defined
by

f ′(p) = (1− h(p))·f(p) for all p ∈M

then satisfies (f ′)−1(1) = C and supp(f ′) ⊂ U . □

Remark A.6.10. We have introduced the notion of a space being Hausdorff, being normal, and
being perfectly normal. These are called separation axioms. It is common to call a Hausdorff space a
T2-space, a normal space a T4-space, and a perfectly normal space a T6-space. As this terminology
suggests, there are many other separation axioms as well.5

The vast majority of spaces considered in algebraic topology are perfectly normal. In fact, as we
mentioned in Remark A.2.11 the most natural spaces from the viewpoint of algebraic topology are
the so-called CW complexes, and CW complexes are perfectly normal. □

A.6.8. Uniform limits of functions. Our next goal is to prove the Tietze extension theorem,
which says that continuous real-valued functions on closed subsets of normal spaces can be extended to
the whole space. The extension we construct will be a limit of functions constructed using Urysohn’s
Lemma. We therefore need a way to certify that such functions are continuous.

Let X be a space. A sequence of functions fn : X → R is said to converge uniformly to a function
f : X → R if the following holds:

• for all ϵ > 0, there exists some N ≥ 1 such that |f(p)− fn(p)| < ϵ for all n ≥ N and p ∈ X.

We then have the following, which generalizes a familiar fact from real analysis:

Lemma A.6.11. Let X be a space and let fn : X → R be a sequence of continuous functions
converging uniformly to a function f : X → R. Then f is continuous.

Proof. This can be proved using an argument similar to the one used to prove the analogous
fact for functions defined on X = R. See Exercise A.15. □

5In fact, not only are there Tk-spaces for 0 ≤ k ≤ 6, but there are even T2.5-spaces and T3.5-spaces.
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A.6.9. Tietze Extension Theorem. We can now prove the Tietze Extension Theorem:

Theorem A.6.12 (Tietze Extension Theorem). Let X be a normal space, let C ⊂ X be closed,
and let f : C → R be a continuous function. Then f can be extended to a continuous function
F : X → R. Moreover, if the image of f lies in a closed interval [a, b] then F can be chosen such
that its image also lies in [a, b].

Proof. We first prove the case where f is bounded, and then derive the unbounded case.

Case 1. The theorem holds if the image of f lies in a closed interval [a, b].

Since [a, b] ∼= [−1, 1], we can assume without loss of generality that [a, b] = [−1, 1]. For n ≥ 1, we
will construct continuous functions Gn : X → R such that letting Fn = G1 + · · ·+Gn, we have:

(i) The function Fn satisfies |f(p)− Fn(p)| ≤ (2/3)n for all p ∈ C.
(ii) The function Gn satisfies |Gn(p)| ≤ (1/3)(2/3)n−1 for all p ∈ X.

Condition (ii) will imply that the functions Fn = G1 + · · ·+Gn converge uniformly to a function F
such that

|F (p)| ≤ 1

3

(
1 + (2/3) + (2/3)2 + · · ·

)
=

1

3

(
1

1− 2/3

)
= 1 for all p ∈ X.

Lemma A.6.11 implies that F : X → [−1, 1] is continuous, and condition (i) implies that F |C = f .
It remains to construct the Gn. Assume that n ≥ 1 and we have constructed G1, . . . , Gn−1

satisfying (ii) such that letting Fn−1 = G1 + · · ·+Gn−1, we have

(A.6.1) |f(p)− Fn−1(p)| ≤ (2/3)n−1 for all p ∈ C.

This is vacuous for n = 1. We will construct Gn as follows. Let

L =
{
p ∈ C | f(p)− Fn−1(p) ≤ −(1/3)(2/3)n−1

}
R =

{
p ∈ C | f(p)− Fn−1(p) ≥ (1/3)(2/3)n−1

}
.

The sets L and R are disjoint closed sets. Using Urysohn’s lemma, we can find:

• a continuous map hL : X → [0, 1] with hL|L = 1 and supp(hL) ⊂ X \R; and
• a continuous map hR : X → [0, 1] with hR|R = 1 and supp(hR) ⊂ X \ L.

Let Gn : X → [−(1/3)(2/3)n−1, (1/3)(2/3)n−1] be the map

Gn = −(1/3)(2/3)n−1hL + (1/3)(2/3)n−1hR.

By construction, Gn satisfies (ii). To show that Fn = Fn−1 +Gn satisfies (i), consider some p ∈ C.
There are three cases:

• If p ∈ L, then by (A.6.1) we have

|f(p)− Fn(p)| = |f(p)− Fn−1(p) + (1/3)(2/3)n−1| ≤ (2/3)n−1 − (1/3)(2/3)n−1 = (2/3)n.

• If p ∈ R, then by (A.6.1) we have

|f(p)− Fn(p)| = |f(p)− Fn−1(p)− (1/3)(2/3)n−1| ≤ (2/3)n−1 − (1/3)(2/3)n−1 = (2/3)n.

• If p /∈ L ∪ R, then by definition we have |f(p) − Fn−1(p)| ≤ (1/3)(2/3)n−1, so since
|Gn(p)| ≤ (1/3)(2/3)n−1 we have

|f(p)− Fn(p)| = |f(p)− Fn−1(p)−Gn(p)| ≤ (1/3)(2/3)n−1 + (1/3)(2/3)n−1 = (2/3)n.

In all three cases, (ii) is satisfied. The theorem follows.

Case 2. The theorem holds in general.

Since R ∼= (−1, 1), it is enough to prove that every continuous function f : C → (−1, 1) can be
extended to a continuous function F : X → (−1, 1). By Case 1, we can extend f to a continuous
function F ′ : X → [−1, 1]. Our goal is to modify F ′ such that its image does not contain −1 or 1.
Set U = (F ′)−1((−1, 1)). Applying Urysohn’s Lemma (Theorem A.6.7), there exists a continuous
function g : X → [0, 1] with g|C = 1 and supp(g) ⊂ U . The product F = g·F ′ then still extends f
and satisfies F (X) ⊂ (−1, 1). □
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A.7. Compactness and the Heine–Borel theorem

We now introduce the key concept of compactness, which generalizes the notion of compactness
for subsets of R and Rn from real analysis.

A.7.1. Compactness. Let X be a space and let K ⊂ X. An open cover of K is a collection U
of open sets in X such that

K ⊂
⋃
U∈U

U.

The open cover U is finite if it consists of finitely many open sets. A subcover of an open cover U is a
subset U′ ⊂ U that is still a cover. The subspace K is compact if every open cover of K has a finite
subcover. In particular, X itself is compact if every open cover of X has a finite subcover.

A.7.2. Closed sets. Compactness behaves best for Hausdorff spaces. In fact, in some treatments
of point-set topology a space is said to be quasi-compact if each open cover has a finite subcover,
and a compact space is a space that is Hausdorff and quasi-compact. For Hausdorff spaces, we have:

Lemma A.7.1. Let X be a Hausdorff space and let K ⊂ X be compact. Then K is closed.

Proof. We must prove that X \K is open. Consider p ∈ X \K. Since X is Hausdorff, for
each k ∈ K there are disjoint open neighborhoods Uk and Vk of p and k. Since K is compact, we
can find finitely many points k1, . . . , kn ∈ K such that {Vk1

, . . . , Vkn
} is an open cover of K. Letting

U = Uk1 ∩ · · · ∩ Ukn , the set U is an open neighborhood of p that is disjoint from K, as desired. □

For all spaces, we have:

Lemma A.7.2. Let X be a space, let K ⊂ X be compact, and let C be a closed subset of X with
C ⊂ K. Then C is compact.

Proof. Let U be an open cover of C ⊂ X. The set {X \C} ∪U is an open cover of K. Since K
is compact, it has a finite subcover. Removing X \C from this finite subcover if necessary, we obtain
a finite subcover of U. □

As another indication of how strong an assumption being compact Hausdorff is, we have:

Lemma A.7.3. Let X be a compact Hausdorff space. Then X is normal.

Proof. See Exercise A.16. □

A.7.3. Compactness and functions. Continuous maps take compact sets to compact sets:

Lemma A.7.4. Let f : X → Y be a map of spaces and let K ⊂ X be compact. Then f(K) is
compact.

Proof. See Exercise A.18 □

Another important property of compact sets is that real-valued functions on them are bounded
and attain maximum and minimum values:

Lemma A.7.5. Let X be a compact space and let f : X → R be a map. Then there exist real
numbers m ≤M such that:

• for all p ∈ X, we have m ≤ f(p) ≤M ; and
• there exists p0, q0 ∈ X such that m = f(p0) and M = f(q0).

Proof. By Lemma A.7.4, the image K = f(X) is a compact subset of R. The lemma now
follows from the following standard fact about compact subsets of R: there exist m,M ∈ K such
that m ≤ k ≤M for all k ∈ K (see Exercise A.19). □
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A.7.4. Injective maps are embeddings. For general spaces X and Y , an injective map
f : X → Y need not be an embedding, i.e., a homeomorphism onto its image. Here is an example:

Example A.7.6. Consider the injective map f : (0, 1) → R2 whose image X is as follows:

p0

This is not an embedding; indeed, for every p ∈ (0, 1) the space (0, 1) \ {p} is disconnected but for
the indicated point p0 ∈ X we have X \ {p0} connected. □

However, if X is compact and Y is Hausdorff this pathology does not occur:

Lemma A.7.7. Let X be a compact space, let Y be a Hausdorff space, and let f : X → Y be an
injective map. Then f is an embedding.

Proof. Replacing Y with f(X), we can assume that f is bijective. We must prove that
f−1 : Y → X is continuous. Letting U ⊂ X be open, we must prove that (f−1)−1(U) = f(U) is
open. Equivalently, letting C = X \U we must prove that f(C) is closed. Since C is closed and X is
compact, C is compact. It follows that f(C) is compact, so since Y is Hausdorff f(C) is closed. □

A.7.5. Heine–Borel Theorem. Let (M, d) be a metric space. A subset K ⊂M is bounded
if there is some R ≥ 0 such that d(p, q) ≤ R for all p, q ∈ K. The following theorem gives a large
supply of compact spaces:

Theorem A.7.8 (Heine–Borel Theorem). Let K ⊂ Rn be closed and bounded. Then K is
compact.

Proof. For some D ≫ 0, the set K is contained in the cube [−D,D]n. By Lemma A.7.2, it is
enough to prove that [−D,D]n is compact. Since all cubes in Rn, are homeomorphic, it is actually
enough to prove that the unit cube C1 = [0, 1]n is compact. Let U be an open cover of C1. For the
sake of contradiction, assume that it has no finite subcover. Divide C1 into 2n subcubes with side
lengths 1/2:

The cover U is a cover of each of these subcubes. Since no finite subset of U covers C1, it must the
case that among these 2n subcubes there is a subcube C2 such that no finite subset of U covers C2.
This process can then be repeated: C2 can be divided into 2n subcubes with side length 1/22, and
there among these there must exist a subcube C3 such that no finite subset of U covers it. We then
divide C3 into 2n subcubes with side lengths 1/23, etc. This procedure gives a nested sequence

C1 ⊃ C2 ⊃ C3 ⊃ · · ·
of cubes with the following properties:

• the cube Cn has side lengths 1/2n; and
• no finite subset of U covers any of the the Cn.

By the completeness of R, the intersection ∩∞
n=1Cn must consist of a single point p. Pick U ∈ U

such that p ∈ U . Since U is open, for some ϵ > 0 the ϵ-ball around p must be contained in U . This
implies that for n≫ 0 we have Cn ⊂ U , contradicting the fact that no finite subset of U covers any
of the the Cn. □

Remark A.7.9. A metric space in which closed and bounded subsets are compact is called a
proper metric space. □
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A.7.6. Intersections of closed sets. The following is a useful rephrasing of the definition of
compactness:

Lemma A.7.10. Let X be a space. The X is compact if and only if the following holds for all
sets C of closed subsets of X:

(∗) If for all finite subsets C′ ⊂ C we have
⋂

C∈C′ C ̸= ∅, then
⋂

C∈C C ̸= ∅.
Proof. The condition (∗) is equivalent to:
(∗′) If

⋂
C∈C C = ∅, then there exists a finite subset C′ ⊂ C such that

⋂
C∈C′ C = ∅.

There is a bijection between sets of closed subsets of X and sets of open subsets of X taking a set C
of closed subsets to U(C) = {X \ C | C ∈ C}. A set C of closed subsets of X has empty intersection
exactly when U(C) covers X. It follows (∗′) is equivalent to saying that if U(C) is a cover of X, then
U(C) has a finite subcover. □

This has the following immediate corollary:

Corollary A.7.11. Let X be a space and let C1 ⊃ C2 ⊃ · · · be a nested sequence of nonempty
compact subspaces of X. Then ∩n≥1Cn ̸= ∅.

A.7.7. Lebesgue number. IfM is a metric space and U is an open cover ofM , then a Lebesgue
number for U is an ϵ > 0 such that for all p ∈M there exists some U ∈ U such that the ϵ-ball Bϵ(p)
is contained in U . The following basic result shows that these always exist if M is compact:

Lemma A.7.12 (Lebesgue number lemma). Let M be a compact metric space and let U be an
open cover of M . Then U has a Lebesgue number.

Proof. Since M is compact, we can write M as

M = Bϵ1(p1) ∪ · · · ∪Bϵn(pn) for some p1, . . . , pn ∈M and ϵ1, . . . , ϵn > 0

such that for each 1 ≤ i ≤ n there is some U ∈ U with B2ϵi(pi) ⊂ U . Set ϵ = min(ϵ1, . . . , ϵn), and
consider p ∈M . We have p ∈ Bϵi(pi) for some 1 ≤ i ≤ n. By assumption, there is some U ∈ U with
B2ϵi(pi) ⊂ U . The triangle inequality implies that Bϵ(p) ⊂ B2ϵi(zi) and thus Bϵ(p) ⊂ U . □

A.7.8. Compactness and limits. If X is a space and {xn}n≥1 is a sequence in X, then a
subsequence of {xn}n≥1 is a sequence of the form {xni}i≥1 with n1 < n2 < · · · a strictly increasing
sequence of natural numbers. A subspace K ⊂ X is sequentially compact if every sequence in K has
a subsequence that converges to a point of K. With appropriate countability assumptions, this is
equivalent to compactness. We divide this into two results:

Lemma A.7.13. Let X be a first countable space and let K ⊂ X be compact. Then K is
sequentially compact.

Proof. See Exercise A.17. □

Lemma A.7.14. Let X be a second countable space and let K ⊂ X be sequentially compact. Then
K is compact.

Proof. See Exercise A.17. □

Similarly, for metric spaces compactness and sequential compactness are the same:

Lemma A.7.15. Let (M, d) be a metric space and let K ⊂ X. Then K is compact if and only if
K is sequentially compact.

Proof. Since M is first first countable, Lemma A.7.13 implies that compact subsets of M are
sequentially compact. For the converse, we can replace M by the subspace in question and prove
that if M is sequentially compact, then M is compact. By Lemma A.7.14 it is enough to prove that
M is second countable, which by Lemma A.5.8 is equivalent to proving that M is separable, i.e., that
M has a countable dense subset.

Since M is sequentially compact, it cannot contain an infinite discrete subspace. In particular,
for each n ≥ 1 there does not exist an infinite subset T ⊂ M with d(t1, t2) ≥ 1/n for all distinct
t1, t2 ∈ T . For each n ≥ 1, we can therefore find a finite set Sn such that for all p ∈M there exists
some s ∈ Sn with d(p, s) < 1/n. The set ∪n≥1Sn is then a countable dense subset of M . □



A.8. LOCAL COMPACTNESS AND THE BAIRE CATEGORY THEOREM 19

A.8. Local compactness and the Baire category theorem

Let X be a space. Recall that a general neighborhood of p ∈ X is a set Z ⊂ X with p ∈ Int(Z).

A.8.1. Local compactness. A space X is locally compact if the following holds for all p ∈ X:

• For all open neighborhoods U of p, there exists a compact neighborhood K of p with
K ⊂ U .

For Hausdorff spaces, this is much easier to understand:

Lemma A.8.1. Let X be a Hausdorff space. Then X is locally compact if and only if for all
p ∈ X, there exists a compact neighborhood K of p. In particular, if X is compact then X is locally
compact.

Proof. See Exercise A.20. □

Remark A.8.2. Local compactness is poorly behaved for non-Hausdorff spaces, and not all
sources agree on the right definition for non-Hausdorff spaces. □

Example A.8.3. If X is either an open or a closed subspace of Rn, then the Heine–Borel Theorem
(Theorem A.7.8) implies that X is locally compact. □

A.8.2. σ-compactness. A space X is σ-compact if it is the union of countably many compact
subspaces. This condition will be important in the next section when we discuss paracompactness
and partitions of unity. Here we prove:

Lemma A.8.4. Let X be a Hausdorff space that is second countable and locally compact. Then
X is σ-compact.

Proof. Let B be a countable basis for the topology of X. Set

U =
{
U ∈ B | U is compact

}
,

so U is a countable collection of open sets of X. It is enough to prove that U covers X. Indeed,
consider p ∈ X. We must find some U ∈ U with p ∈ U . By Lemma A.8.1, there is a compact
neighborhood K of p. Since p ∈ Int(K), we can find U ∈ B such that p ∈ U and U ⊂ K. Since X is
Hausdorff the compact set K is closed, so U ⊂ K. Since U is a closed subset of the compact set K,
it follows that U is compact and U ∈ U, as desired. □

Example A.8.5. If X is either an open or a closed subspace of Rn, then the Heine–Borel Theorem
(Theorem A.7.8) implies that X is σ-compact. □

A.8.3. Baire category theorem. The following is a surprisingly powerful tool for proving
existence theorems:

Theorem A.8.6 (Baire category theorem). Let X be a locally compact Hausdorff space and let
{Un}n≥1 be a collection of open dense subsets of X. Then ∩n≥1Un is dense.

Proof. Let V0 ⊂ X be a nonempty open set. We must prove that V0 intersects ∩n≥1Un. Since
U1 is open and dense, the set V0∩U1 is open and nonempty. Since X is locally compact and Hausdorff,
we can find a nonempty open set V1 with V 1 compact such that V 1 ⊂ V0 ∩ U1. The same argument
shows that there exists a nonempty open set V2 with V 2 compact such that V 2 ⊂ V1 ∩U2. Repeating
this over and over, we find nonempty open sets {Vn}n≥1 with the following property for all n ≥ 1:

• V n is compact and V n+1 ⊂ Vn ∩ Un+1.

Applying Corollary A.7.11 to the nested sequence V 1 ⊃ V 2 ⊃ V 3 ⊃ · · · of nonempty compact
subspaces of X, we see that their intersection must be nonempty, i.e., there exists some p with p ∈ V n

for all n ≥ 1. By construction, p lies in both V0 and ∩n≥1Un, as desired. □

Remark A.8.7. The word “category” in the Baire category theorem has nothing to do with
category theory. Instead, it refers to the following archaic terminology: a space X is of the first
category if it is the union of countably many nowhere dense6 sets, and is of the second category
otherwise. The conclusion of the Baire category theorem then is equivalent to saying that every
nonempty open set in X is of the second category. □

6A subset A of a topological space is nowhere dense if A contain no nonempty open sets, i.e., if Int(A) = ∅.
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A.8.4. Complete metric spaces. A space X is a Baire space if all countable intersections
of open dense subsets of X are dense. Theorem A.8.6 says that locally compact Hausdorff spaces
are Baire spaces. For another useful class of such spaces, consider a metric space (M, d). A Cauchy
sequence in M is a sequence {pn}n≥1 such that for all ϵ > 0 there exists some N ≥ 1 such that
d(pn, pm) < ϵ for all n,m ≥ N . The metric space M is complete if all Cauchy sequences in M have
limits. For instance, Rn is complete (Exercise A.22). We have:

Theorem A.8.8 (Baire category theorem′). Let M be a complete metric space. Then M is a
Baire space.

Proof. This is similar to the proof of Theorem A.8.6, so we leave it as Exercise A.23. □

A.8.5. Application: nowhere differentiable functions. To illustrate how the Baire category
theorem can be used, we prove the following classic result:

Theorem A.8.9. Let C(I,R) be the set of continuous functions f : I → R. Let d(f, g) =
max {|f(x)− g(x)| | x ∈ I} be the standard metric on C(I,R). Then the set of nowhere-differentiable
functions on is dense in C(I,R).

Proof. For each n ≥ 1, let Un be the set of all continuous functions f : I → R satisfying:

(♠)
There exists 0 < δ < 1/n and λ > 0 such that for all x ∈ I, there exists some

y ∈ I with δ < |x− y| < 1/n and
∣∣∣ f(x)−f(y)

x−y

∣∣∣ > n+ λ.

In the three steps below, we will prove that Un is open (Step 1), we will construct a family of function
in Un (Step 2), and we will show that Un is dense (Step 3). Since C(I,R) is a complete metric
space, Theorem A.8.8 will then apply and show that Λ = ∩n≥1Un is dense in C(I,R). Each f ∈ Λ is

nowhere differentiable; indeed, for x ∈ I the condition (♠) forces limy 7→x
f(x)−f(y)

x−y to either not exist

or be infinite.

Step 1. For all n ≥ 1, the set Un is open in C(I,R).

Consider f ∈ Un. Let 0 < δ < 1/n and λ > 0 be the constants for f from (♠). Let g ∈ C(I,R)
be such that d(f, g) < λδ/4. We claim that g ∈ Un. Indeed, consider x ∈ I. Choose y ∈ I such that

δ < |x− y| < 1/n and
∣∣∣ f(x)−f(y)

x−y

∣∣∣ > n+ λ. We then have∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ ≥ ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣− ∣∣∣∣g(x)− f(x)

x− y

∣∣∣∣− ∣∣∣∣g(y)− f(y)

x− y

∣∣∣∣
>(n+ λ)− 2

λδ/4

δ
= n+ λ/2.

It follows that g satisfies (♠) with the constants δ and λ/2, so g ∈ Un.

Step 2. For some n ≥ 1, let g : I → R be a piecewise-linear continuous function such that
|g′(x)| > n for all x ∈ I where g is differentiable. Then g ∈ Un.

Let 0 = a0 < a1 < · · · < am = 1 be a partition of I such that g|[ai,ai+1] is linear for all 0 ≤ i < m.
For each 0 ≤ i < m, let ci, di ∈ R be the constants such that g(x) = cix+ di for all x ∈ [ai, ai+1].
By assumption, |ci| > n for all 0 ≤ i < m. Pick λ > 0 such that |ci| > n + λ for all 0 ≤ i < m.
Also, pick 0 < δ < 1/n such that δ < (ai+1 − ai)/2 for all 0 ≤ i < m. Consider some x ∈ I. We
have x ∈ [ai0 , ai0+1] for some 0 ≤ i0 < m. Since 0 < δ < (ai0+1 − ai0)/2, we can choose some
y ∈ [ai0 , ai0+1] such that δ < |x− y| < 1/n. It follows that∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ = ∣∣∣∣ (cix+ di)− (ciy + di)

x− y

∣∣∣∣ = |ci| > n+ λ,

proving that g satisfies (♠) and thus g ∈ Un.

Step 3. For all n ≥ 1, the set Un is dense in C(I,R).
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Consider f ∈ C(I,R) and ϵ > 0. We must find some g ∈ Un such that d(f, g) < ϵ. Since f is
uniformly continuous on I, we can choose a partition 0 = a0 < a1 < · · · < am = 1 of I such that for
all 0 ≤ i < m and x ∈ [ai, ai+1] we have |f(x)− f(ai)| < ϵ/4. Let h : I → R be the piecewise-linear
continuous function that is linear on each [ai, ai+1] and satisfies h(ai) = f(ai) for 0 ≤ i ≤ m. For
x ∈ [ai, ai+1], we therefore have

|h(x)− f(x)| =
∣∣∣∣f(ai+1)− f(ai)

ai+1 − ai
(x− ai) + f(ai)− f(x)

∣∣∣∣
≤
∣∣∣∣f(ai+1)− f(ai)

ai+1 − ai

∣∣∣∣ |x− ai|+ |f(ai)− f(x)|

≤ |f(ai+1)− f(ai)|+ |f(ai)− f(x)| < ϵ/4 + ϵ/4 = ϵ/2.

It follows that d(f, h) < ϵ/2. As in the following figure, we can find a piecewise-linear continuous
function g : I → R with d(g, h) < ϵ/2 and |g′(x)| > n for all x ∈ I where g is differentiable by
changing h on each interval [ai, ai+1] to a function whose graph is a rapidly osculating sawtooth:

(ai,h(ai))

(ai+1,h(ai+1))

h g

We have d(f, g) ≤ d(f, h) + d(h, g) < ϵ, and by Step 2 we have g ∈ Un. □

A.9. Paracompactness and partitions of unity

We now turn to paracompactness, which is a condition that ensure the existence of what are
called partitions of unity. These play a basic role in algebraic topology, especially in the theory of
manifolds.

A.9.1. Locally finite collections of subsets. Let X be a space and let Z be a collection of
subsets X. We say that Z is locally finite if for all p ∈ X, there are only finitely many Z ∈ Z such
that p ∈ Z. One nice property of locally finite collections of open sets is:

Lemma A.9.1. Let X be a space and let Z be a locally finite collection of subsets of X. Then⋃
Z∈Z

Z =
⋃
Z∈Z

Z.

Proof. See Exercise A.24. In that exercise, you will also show that this is false without the
local finiteness assumption. □

A.9.2. Paracompactness. Now let U be an open cover of X. A refinement of U is an open
cover V such that for all V ∈ V, there exists some U ∈ U with V ⊂ U . A space X is paracompact if
it is Hausdorff and every open cover of X admits a locally finite refinement. We will prove that this
has strong consequences for the topology of X. In particular, X must be normal (see Lemma A.9.5).

Remark A.9.2. Most spaces that appear in algebraic topology are paracompact. In particular,
CW complexes are paracompact. □

A.9.3. Paracompactness criterion. The easiest examples of paracompact spaces are compact
Hausdorff spaces, where every open cover admits a finite cover (not just a locally finite one). Our
next goal is to prove the following generalization of this:

Theorem A.9.3. Let X be a locally compact Hausdorff space that is σ-compact. Then X is
paracompact.

Before we prove this, we note that in light of Lemma A.8.4 it implies:

Corollary A.9.4. Let X be a locally compact Hausdorff space that is second countable. Then
X is paracompact. In particular, both open and closed subspaces of Rn are paracompact.
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We remark that Stone [12] proved that every metric space is paracompact. We omit the proof,
but good references for it include [2, Theorem IX.5.3] and [7, Corollary 5.35] and [10].

Proof of Theorem A.9.3. We start by proving:

Claim. There exists a countable open cover {W1,W2, . . .} of X such that for all n ≥ 1 the set
Wn is compact and satisfies Wn ⊂Wn+1.

Proof of claim. Since X is σ-compact, we can write X = ∪n≥1Kn with Kn compact. We
will inductively construct open sets Wn of X such that W0 = ∅ and for all n ≥ 0 we have:

• Wn is compact; and
• Wn+1 contains Wn ∪Kn+1.

Since X = ∪n≥1Kn, this will be a open open cover of X with the properties indicated in the claim.

Start by setting W0 = ∅, and assume we have constructed W0, . . . ,Wn. For p ∈ Wn ∪Kn+1, local
compactness gives an open neighborhood Wn+1(p) of p with Wn+1(p) compact. Since Wn ∪Kn+1

is compact, we can find p1, . . . , pm ∈ Wn ∪ Kn+1 such that {Wn+1(p1), . . . ,Wn+1(pm)} covers
Wn ∪Kn+1. We can then define Wn+1 = Wn+1(p1) ∪ · · · ∪Wn+1(pm). The set Wn+1 is compact
since Wn+1 =Wn+1(p1) ∪ · · · ∪Wn+1(pm) (see Lemma A.9.1). □

We now prove that X is paracompact. Let U be an open cover of X. Let {Wn}n≥1 be as in

the claim. Set Wm = ∅ for m ≤ 0. For n ∈ Z, define Yn =Wn \Wn−1 and W ′
n+1 =Wn+1 \Wn−2.

These satisfy:

(i) Yn is a compact subset of the open set W ′
n+1; and

(ii) X = ∪∞
n=1Yn; and

(iii) W ′
n1

∩W ′
n2

= ∅ whenever |n1 − n2| ≥ 3.

See here:

{W'n+1=Wn+1∖Wn-2

_ Yn=Wn∖Wn-1

Wn+1∖Wn

Wn∖Wn-1

Wn-1∖Wn-2

_

For each n ≥ 1, the set
{
U ∩W ′

n+1 | U ∈ U
}
is an open cover of compact set Yn, so there is a finite

subset U(n) ⊂ U such that
{
U ∩W ′

n+1 | U ∈ U(n)
}
covers Yn. Let

V =
{
U ∩W ′

n+1 | n ≥ 1 and U ∈ U(n)
}
.

The set V is an open cover of each Yn, so by (ii) it follows that V is an open cover of X. By
construction, V refines U. Using (iii) together with the fact that only finitely many V ∈ V are
contained in each W ′

n, the open cover V is locally finite. The theorem follows. □

A.9.4. Normality. Our next goal is to prove that paracompact spaces are normal:

Lemma A.9.5. Let X be a paracompact space. Then X is normal.

Proof. Recall that paracompact spaces are assumed to be Hausdorff. We start by proving the
following weakening of normality which is often called being regular:

Claim. For p ∈ X and C ⊂ X closed with p /∈ C, there exist disjoint open neighborhoods of p
and C.

Proof of claim. For each q ∈ C, since X is Hausdorff there exist open neighborhoods Uqp of q
and U ′

qp of p such that Uqp∩U ′
qp = ∅. Since X is paracompact, the open cover {X \C}∪{Uqp | q ∈ C}

admits a locally finite refinement. Let V be the open sets in this locally finite refinement that are not
contained in X \ C. For each V ∈ V, there is some q ∈ C such that V ⊂ Uqp. Since U

′
qp is an open
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neighborhood of p that is disjoint from Uqp, we deduce that p /∈ V for all V ∈ V. Set W = ∪V ∈VV .
The set W is an open neighborhood of C, and by local finiteness and Lemma A.9.1 we have

W =
⋃

V ∈V

V .

Since p /∈ V for all V ∈ V, we deduce that p /∈W . It follows that X \W and W are disjoint open
neighborhoods of p and C. □

To prove that X is normal, let C and D be disjoint closed subsets of X. We can find disjoint
open neighborhoods of C and D by the same argument we used to prove the above claim. Simply
substitute the above claim for X being Hausdorff and replace every occurrence of the point p by the
closed set D. □

A.9.5. Strong refinements. Let U be an open cover of a spaceX. Enumerate U as U = {Ui}i∈I .
A strong refinement of U consists of an open cover {Vi}i∈I such that V i ⊂ Ui for all i ∈ I. We have:

Lemma A.9.6. Let X be a paracompact space and let U be an open cover of X. Then there exists
a locally finite strong refinement of U.

Proof. Enumerate U as U = {Ui}i∈I . Let

W′ =
{
W ′ | W ′ open set with W

′ ⊂ Ui for some i ∈ I
}
.

The set W′ is an open cover of X; indeed, since X is normal for all p ∈ X and all i ∈ I with p ∈ Ui

we can find an open neighborhood W ′ of p with W
′ ⊂ Ui. Since X is paracompact, we can find a

locally finite refinement W of W′. For each W ∈ W, there is some i ∈ I with W ⊂ Ui. For i ∈ I, let
W(i) =

{
W ∈ W | W ⊂ Ui

}
and Vi = ∪W∈W(i)W . Since W(i) is a locally finite collection of open

sets, Lemma A.9.1 implies that

V i =
⋃

W∈W(i)

W ⊂ Ui.

The open cover V = {Vi}i∈I is thus a locally finite strong refinement of U = {Ui}i∈I . □

A.9.6. Partitions of unity. We now come to the most important property of paracompact
spaces. Let X be a space. Recall that for a continuous function f : X → R, the support of f is
supp(f) = {p ∈ X | f(p) ̸= 0}. A partition of unity subordinate to an open cover U of X consists of
continuous functions fU : X → [0, 1] for each U ∈ U satisfying the following three conditions:

(a) For all U ∈ U, we have supp(f) ⊂ U .
(b) The set {supp(fU ) | U ∈ U} is locally finite.
(c) For all p ∈ X, we have

∑
U∈U fU (p) = 1. Note that (b) implies that only finitely many

terms of this sum are nonzero, so this sum makes sense.

We have:

Theorem A.9.7. Let X be a paracompact space and let U be an open cover of X. Then there
exists a partition of unity subordinate to U.

Proof. Enumerate U as U = {Ui}i∈I . By Lemma A.9.6, we can find a locally finite strong
refinement {Vi}i∈I of {Ui}i∈I . Applying this lemma again, we obtain a locally finite strong refinement
{Wi}i∈I of {Vi}i∈I . Lemma A.9.5 says that X is normal, so we can apply Urysohn’s Lemma (Theorem
A.6.7) to X. For i ∈ I, since W i ⊂ Vi Urysohn’s Lemma (Theorem A.6.7) implies that there is a
continuous function f ′i : X → [0, 1] such that f ′i |W i

= 1 and supp(f ′i) ⊂ Vi. Since {Vi}i∈I is locally

finite and supp(f ′i) ⊂W i ⊂ Vi for each i ∈ I, we can define g : X → [0,∞) via the formula

g(p) =
∑
i∈I

f ′i(p) for p ∈ X.

The function g : X → [0,∞) is continuous (see Exercise A.26). Each p ∈ X lies in some Wi, so since
f ′i |W i

= 1 it follows that g(p) > 0 for all p ∈ X. For i ∈ I, we can therefore define fi : X → [0,∞)
via the formula

fi(p) =
1

g(p)
f ′i(p) for p ∈ X.
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For p ∈ X, we have ∑
i∈I

fi(p) =
1

g(p)

∑
i∈I

f ′i(p) =
1

g(p)
g(p) = 1.

Since fi(p) ∈ [0,∞) for all i ∈ I, this implies that the image of each fi lies in [0, 1] and that the fi
form a partition of unity subordinate to U = {Ui}i∈I . □

A.9.7. Application: extending functions. Here is a typical application of partitions of
unity:

Lemma A.9.8. Let X be a paracompact space, let A ⊂ X be a subspace, and let f : A → R be
continuous. For all a ∈ A, assume that there is a neighborhood Ua of a and an extension of f |Ua∩A

to Fa : Ua → R. Set U = ∪a∈AUa. Then f can be extended to a continuous function F : U → R.

Remark A.9.9. If A is closed, then the Tietze extension theorem (Theorem A.6.12) says that f
can be extended to the whole space X. This can fail for non-closed subspaces. For instance, consider
the subspace Q of R. The function f : Q → R defined by

f(x) =

{
−1 if x <

√
2,

1 if x >
√
2

for x ∈ Q.

can be extended to a continuous function on the open set R \ {
√
2}, but cannot be extended to a

continuous function on R. □

Proof. Replacing X by U , we can assume that U = {Ua | a ∈ A} is an open cover of X. Let
{ϕUa

: X → R | a ∈ A} be a partition of unity subordinate to U. Since supp(ϕUa
) ⊂ Ua, the function

FaϕUa
: Ua → R can be extended to a continuous function Ga : X → R by letting Ga(x) = 0 for

x ∈ X \ Ua. We have supp(Ga) ⊂ supp(ϕa) for a ∈ A, so since the set of supports of the ϕa are
locally finite we can define F : X → R via the formula F =

∑
a∈AGa. For a ∈ A, we have

F (a) =
∑
a∈A

Fa(a)ϕUa
(a) = f(a)

∑
a∈A

ϕUa
(a) = f(a),

so F is an extension of f . □

A.10. Products and Tychonoff’s theorem

We now discuss products of spaces.

A.10.1. Finite products. Let X1, . . . , Xn be spaces. As a set, X1 × · · · × Xn consists of
tuples (x1, . . . , xn) with xi ∈ Xi for 1 ≤ i ≤ n. Give this the topology with the basis consisting of
products U1 × · · · × Un with Ui ⊂ Xi open for 1 ≤ i ≤ n. We will call these the basic open sets of
the product. A general open set V ⊂ X1 × · · · ×Xn can therefore be written a union of basic open
sets. Equivalently, V ⊂ X1 × · · · ×Xn is open if and only if for all (p1, . . . , pn) ∈ V , there exist open
neighborhoods Ui ⊂ Xi of each pi such that U1 × · · · × Un ⊂ V .

Example A.10.1. This gives the usual topology on Rn = R× · · · × R (see Exercise A.27). □

A.10.2. Finite universal property. Let πi : X1 × · · · ×Xn → Xi be the projection. The map
πi is continuous; indeed, if Ui ⊂ Xi is open, then

π−1
i (Ui) = X1 × · · · ×Xi−1 × Ui ×Xi+1 × · · · ×Xn.

Now let Y be another space, and for 1 ≤ i ≤ n let fi : Y → Xi be a continuous map. Let
f1 × · · · × fn : Y → X1 × · · · ×Xn be the map where f1 × · · · × fn(y) = (f1(y), . . . , fn(y)) for y ∈ Y .
This is continuous; indeed, if Ui ⊂ Xi is open for 1 ≤ i ≤ n then

(f1 × · · · × fn)
−1(U1 × · · · × Un) = U1 ∩ · · · ∩ Un.

Conversely, if F : Y → X1 × · · · × Xn is a continuous map, then letting fi = πi ◦ F we have
F = f1 × · · · × fn. We summarize this informally as:

• A continuous map F : Y → X1 × · · · ×Xn is the same thing as a collection of continuous
maps fi : Y → Xi for all 1 ≤ i ≤ n.
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Just like for quotient spaces in §A.3.4, this is an example of a universal mapping property and it
characterizes product spaces (see Exercise A.29).

A.10.3. Homotopies, products, and quotient maps. One place where products show up in
algebraic topology is in the definition of a homotopy. Roughly speaking, a homotopy is a continuous
deformation of a map. The precise definition is as follows. Let f0, f1 : Y → Z be maps. A homotopy
from f0 to f1 is a map H : Y × I → Z such that H(y, 0) = f0(y) and H(y, 1) = f1(y) for y ∈ Y . If
such a homotopy exists, we say that f0 and f1 are homotopic

For t ∈ I, we can let ft : Y → Z be the map defined by ft(y) = H(y, t) for y ∈ Y . The maps
ft : Y → Z can be viewed informally as a continuous family of maps connecting f0 to f1. See §A.11.7
for how to topologize the space of maps Y → Z and make this precise.

Example A.10.2. Any two maps f0, f1 : Y → Rn are homotopic via the homotopyH : Y ×I → Rn

defined by H(y, t) = (1− t)f0(y) + tf1(y). □

Example A.10.3. Let Y = {∗} be a one-point space. Two maps f0, f1 : Y → Z are homotopic if
and only if f0(∗) and f1(∗) lie in the same path component of Z. □

Now assume that q : X → Y is a quotient map (see §A.3.3), so q is surjective and U ⊂ Y is open
if and only if q−1(U) ⊂ X is open. Given f0, f1 : Y → Z, it is natural to try to construct a homotopy
from f0 to f1 as follows:

• Define g0 = f0 ◦ q and g1 = f1 ◦ q. Construct a homotopy H̃ : X × I → Z from g0 to g1.

• Next, use the universal property of the quotient map from §A.3.3 to show that H̃ descends
to a homotopy H : Y × I → Z.

Here are an example of how this might work:

Example A.10.4. We have Dn/∂Dn ∼= Sn (see Example A.3.3). A map f : Sn → Z is thus the
same as a map g : Dn → Z such that g|∂Dn is constant. Given f0, f1 : Sn → Z, let g0, g1 : Dn → Z
be the corresponding maps. To construct a homotopy from f0 to f1, it is natural to instead try to
construct a homotopy gt from g0 to g1 such that gt|∂Dn is constant for all t. □

However, there is a flaw in the above reasoning: if q : X → Y is a quotient map, it not clear that
q × 1 : X × I → Y × I is a quotient map. Indeed, there are counterexamples if I is replaced by a
more complicated space. However, for nice spaces like I this is not a problem. More generally:

Lemma A.10.5. Let q : X → Y be a quotient map and let Z be a locally compact space. Then the
map q × 1 : X × Z → Y × Z is a quotient map.

Proof. The map q × 1 : X × Z → Y × Z is continuous, so for every open set U ⊂ Y × Z we
have q−1(U) open. We must prove the converse. In other words, letting U ⊂ Y × Z be a set such
that q−1(U) is open, we must prove that U is open. Letting (y, z) ∈ U , it is enough to find an open
neighborhood of (y, z) that is contained in U .

Pick x ∈ X with q(x) = y. We have (x, z) ∈ q−1(U). Since q−1(U) ⊂ X × Z is open and Z
is locally compact, we can find an open neighborhood V1 ⊂ X of x and a compact neighborhood
K ⊂ Z of z such that V1 ×K ⊂ q−1(U). We have

(y, z) ∈ q(V1 × Int(K)) = q(V1)× Int(K) ⊂ U.

If q(V1) ⊂ Y were open, then q(V1)× Int(K) would be an open neighborhood of (y, z) contained in
U and we would be done.

Unfortunately, q(V1) might not be open since q−1(q(V1)) might be larger than V1. We do have
q−1(q(V1))×K ⊂ q−1(U). Since K is compact and q−1(U) is open, we can find an open neighborhood
V2 of q−1(q(V1)) with V2 ×K ⊂ q−1(U) (see Exercise A.28; this is often called the “tube lemma”).
Just like for V1, there is no reason to expect q(V2) ⊂ Y to be open since q−1(q(V2)) might be larger
than V2. However, we can iterate the procedure we used to find V2. The result is an increasing
sequence V1 ⊂ V2 ⊂ · · · of open subsets of Y such that for all n ≥ 1 we have:

• Vn ×K ⊂ q−1(U) and q−1(q(Vn)) ⊂ Vn+1.

The set V = ∪n≥1Vn is then an open subset of X with V ×K ⊂ q−1(U) and q−1(q(V )) = V . It
follows that q(V ) is an open subset of Y , so q(V )× Int(K) is an open neighborhood of (y, z) with
q(V )× Int(K) ⊂ U , as desired. □
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A.10.4. Tychonoff’s theorem, finite case. We have the following basic result:

Theorem A.10.6 (Tychonoff’s theorem, finite case). Let X1, . . . , Xn be compact spaces. Then
X1 × · · · ×Xn is compact.

Proof. By induction, it is enough to prove this for n = 2. Let U be an open cover of X1 ×X2.
We must prove that U has a finite subcover. In fact, it is enough to prove that some refinement of U
has a finite subcover (see Exercise A.25). Each element of U is a union of basic open sets. Letting V
be the set of all basic open sets V such that there exists some U ∈ U with V ⊂ U , it is therefore
enough to prove that V has a finite subcover.

For p ∈ X1, let Z(p) = p×X2. By assumption, Z(p) ∼= X2 is compact. We can therefore find a
finite subset V(p) of V that covers Z(p). Since V consists of basic open sets, we can write

V(p) = {V1(p)× V ′
1(p), . . . , Vmp

(p)× V ′
mp

(p)}

with Vi(p) ⊂ X1 and V ′
i (p) ⊂ X2 for 1 ≤ i ≤ mp. Discarding unneeded terms if necessary, we can

assume that p ∈ Vi(p) for all 1 ≤ i ≤ mp. Letting

V (p) = V1(p) ∩ · · · ∩ Vmp
(p),

it follows that V (p) is an open neighborhood of p and V(p) covers V (p)×X2.
The set {V (p) | p ∈ X1} is an open cover of the compact space X1, so we can find p1, . . . , pd ∈ X1

such that X1 = V (p1) ∪ · · · ∪ V (pd). Since V(pi) is a finite cover of V (pi) ×X2 for 1 ≤ i ≤ d, we
conclude that V(p1) ∪ · · ·V(pd) is a finite subset of V that covers X1 ×X2. □

A.10.5. Infinite products. Now let {Xi}i∈I be an arbitrary collection of spaces. As a set,
the product

∏
i∈I Xi consists of tuples (xi)i∈I with xi ∈ Xi for i ∈ I. The obvious first guess for a

topology on
∏

i∈I Xi is the one with basis the collection of products
∏

i∈I Ui with Ui ⊂ Xi open for
all i ∈ I. However, this topology turns out to be pathological. The issue is that it has too many
open sets, and there are maps into it that should be continuous but are not. Here is a key example:

Example A.10.7. Let X be a space and let I be an infinite indexing set. Consider the diagonal
map ∆: X →

∏
i∈I X, so ∆(x) = (x)i∈I for all x ∈ X. If Ui ⊂ X is an open set for all i ∈ I, then

∆−1(
∏
i∈I

Ui) =
⋂
i∈I

Ui.

Since the collection of open sets is not closed under infinite intersections, this is not always an open
set. It follows that ∆ will generally not be continuous if each set of the form

∏
i∈I Ui with Ui ⊂ X

for i ∈ I is open. □

To eliminate this pathology, we must avoid infinite intersections of open sets. This can be done
as follows. A basic open set in

∏
i∈I Xi is a product

∏
i∈I Ui such that:

• Ui ⊂ Xi is open for all i ∈ I; and
• Ui = Xi for all but finitely many i ∈ I.

The product topology on
∏

i∈I Xi is the topology with basis the basic open sets, so a subset of
∏

i∈I Xi

is open if and only if it is a union of basic open sets. To simplify our notation when talking about
these infinite products, we introduce the following convention:

Convention A.10.8. We regard the indexing set I as being unordered, and thus if I = J ⊔K
we identify ∏

j∈J

Xj

×

(∏
k∈K

Xk

)
and

∏
i∈I

Xi

in the obvious way. □

With this notational convention, the basic open sets in
∏

i∈I Xi are those that for some distinct
j1, . . . , jn ∈ I can be written as

Uj1 × · · · × Ujn ×
∏

i∈I\{j1,...,jn}

Xi

with Ujk ⊂ Xjk open for 1 ≤ k ≤ n.
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Remark A.10.9. The topology on
∏

i∈I Xi with basis arbitrary products
∏

i∈I Ui with Ui ⊂ Xi

open is sometimes called the box topology. It is rarely useful. □

A.10.6. Infinite universal property. Continue to let {Xi}i∈I be an arbitrary collection of
spaces. For j ∈ I, let πj :

∏
i∈I Xi → Xj be the projection. The map πj is continuous; indeed, if

Uj ⊂ Xi is open, then

π−1
j (Uj) = Uj ×

∏
i∈I\{j}

Xi.

Now let Y be another space, and for i ∈ I let fi : Y → Xi be a continuous map. Let
∏

i∈I fi : Y →∏
i∈I Xi be the map (∏

i∈I

fi

)
(y) = (fi(y))i∈I for y ∈ Y .

This map is continuous; indeed, if
∏

i∈I Ui is a basic open set then

(

(∏
i∈I

fi

)−1

(
∏
i∈I

Ui) =
⋂
i∈I

f−1
i (Ui).

This is open since f−1
i (Ui) = f−1

i (Xi) = Y for all but finitely many i ∈ I, so this intersection is
actually a finite intersection. Conversely, if F : Y →

∏
i∈I Xi is a continuous map, then letting

fi = πi ◦ F we have F =
∏

i∈I fi. We summarize this informally as:

• A continuous map F : Y →
∏

i∈I Xi is the same thing as a collection of continuous maps
fi : Y → Xi for all i ∈ I.

This universal property characterizes product spaces (see Exercise A.29), and having it is one of the
reasons we defined the product topology like we did.

Remark A.10.10. In more categorical language, what the above shows is that
∏

i∈I Xi is the
product of the Xi in the category of topological spaces. There is also a notion of a sum of objects in
a category, and it turns out that the disjoint union ⊔i∈IXi with the disjoint union topology discussed
in §A.3.3 is the categorical sum of the Xi. See Exercise A.30 for a precise statement of what this
means and Exercise A.31 for related constructions in the category of abelian group. □

A.10.7. Metrics on countable products. Arbitrary products of metric spaces need not be
metric spaces. However, it turns out that countable products of metric spaces can be given metrics.
This would not be true if we used the box topology.

Lemma A.10.11. For each n ≥ 1, let (Mn, dn) be a metric space. There is then a metric on∏∞
n=1Mn inducing the product topology.

Proof. Let d′n be the metric on Mn defined by d′n(p, q) = min{dn(p, q), 1}. This induces the
same topology onMn as dn (see Exercise A.1). We can then define a two-variable real-valued function
on
∏∞

n=1Mn via the formula

d((pn)n≥1, (qn)n≥1) =

∞∑
n=1

1

2n
d′n(pn, qn).

This is a metric on
∏∞

n=1Mn that induces the product topology (see Exercise A.33). □

A.10.8. Sequences in infinite products. Another nice property of the product topology is
the following, which would also not be true if we used the box topology:

Lemma A.10.12. Let {Xi}i∈I be a collection of spaces. For each i ∈ I, let {p(i)n}n≥1 be a
sequence of points in Xi that converges to p(i) ∈ Xi. For n ≥ 1, let pn = (p(i)n)i∈I ∈

∏
i∈I Xi. Then

{pn}n≥1 converges to (p(i))i∈I ∈
∏

i∈I Xi.

Proof. See Exercise A.32. □

Example A.10.13. For n ≥ 1, let pn ∈
∏

i≥1 Z be the tuple of integers pn = (1, . . . , 1, 0, . . .)

with n initial 1’s and then 0’s. Let p∞ = (1, 1, 1, . . .) be the tuple all of whose entries are 1. Then
limn 7→∞ pn = p∞. □



28 A. REVIEW OF POINT-SET TOPOLOGY

A.10.9. Tychonoff’s theorem, countable case. Tychonoff’s theorem generalizes to arbitrary
products of compact spaces. We start by proving this for countable products. The proof of the
general case is similar, but requires more set theoretic technology.

Theorem A.10.14 (Tychonoff’s theorem, countable case). Let {Xi}i≥1 be a countable collection
of compact spaces. Then

∏
i≥1Xi is compact.

Proof. Unlike in the finite case, we cannot prove this by induction. However, we will see that
the argument we gave in the finite case is almost enough. Only one new idea is needed. Let U be an
open cover of

∏
i≥1Xi. We must prove that U has a finite subcover. In fact, it is enough to prove

that some refinement of U has a finite subcover (see Exercise A.25). Each element of U is a union of
basic open sets. Letting V be the set of all basic open sets V such that there exists some U ∈ U with
V ⊂ U , it is therefore enough to prove that V has a finite subcover.

Assume for the sake of contradiction that V has no finite subcover. The proof now has two steps:

Step 1. For all i ≥ 1, there exists some pi ∈ Xi such that no finite subset of V covers
p1 × · · · × pn ×

∏
i≥n+1Xi for any n ≥ 1.

We construct the pi inductively. Assume that for some n ≥ 1 we have found pi ∈ Xi for
1 ≤ i ≤ n− 1 such that no finite subset of V covers p1 × · · · × pn−1 ×

∏
i≥nXi. For n = 1, this is

simply our assumption that the open cover V of
∏

i≥1Xi has no finite subcover. We find pn ∈ Xn as
follows. For p ∈ Xn, let

Z(p) = p1 × · · · × pn−1 × p×
∏

i≥n+1

Xi.

Assume for the sake of contradiction that for all p ∈ Xn, there exists a finite subset V(p) of V that
covers Z(p). Since V consists of basic open sets, we can write

V(p) =

∏
i≥1

Vi,j(p) | 1 ≤ j ≤ mp


with Vi,j(p) ⊂ Xi for all i ≥ 1 and 1 ≤ j ≤ mp. Discarding unneeded terms if necessary, we can
assume that pi ∈ Vi,j(p) for all 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ mp, and also that p ∈ Vn,j(p) for all
1 ≤ j ≤ mp. Define

Vi(p) =

mp⋂
j=1

Vi,j(p) for 1 ≤ i ≤ n,

V (p) = V1(p)× · · · × Vn(p).

It follows that V (p) is an open neighborhood of (p1, . . . , pn−1, p) ∈ X1 × · · · × Xn and that V(p)
covers V (p)×

∏
i≥n+1Xi.

The set {V (p) | p ∈ Xn} is an open cover of the compact space p1 × · · · × pn−1 ×Xn, so we can
find q1, . . . , qd ∈ Xn such that

p1 × · · · × pn−1 ×Xn ⊂ V (q1) ∪ · · · ∪ V (qd).

Since V(qk) is a finite cover of V (qk)×
∏

i≥n+1Xi for 1 ≤ k ≤ d, we conclude that V(q1) ∪ · · ·V(qd)

is a finite subset of V that covers p1 × · · · × pn−1 ×
∏

i≥nXi, contradicting the fact that no such
finite cover exists.

Step 2. No finite subset of V covers
∏

i≥1Xi.

Pick V ∈ V such that (pi)i≥1 ∈ V . Since V consists of basic open sets, we can write V =
∏

i≥1 Vi
with Vi ⊂ Xi open for all i ≥ 1. Moreover, we have Vi = Xi for all but finitely many i ≥ 1. This
implies that there exists some n ≥ 1 such that Vi = Xi for i ≥ n+ 1. It follows that

p1 × · · · × pn ×
∏

i≥n+1

Xi ⊂ V ∈ V.

This contradicts the fact that no finite subset of V covers p1 × · · · × pn ×
∏

i≥n+1Xi. □
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A.10.10. Well-ordered sets. To generalize the above proof of Tychonoff’s theorem to arbitrary
products, we need some set-theoretic technology. A well-ordered set is a set I equipped with a total
ordering ≤ such that every nonempty subset S ⊂ I has a minimal element. The canonical example
is N = {1, 2, . . .} with the usual ordering. A remarkable consequence of the axiom of choice is that
every set can be equipped with a well-ordering.

If I is a well-ordered set with ordering ≤, then an initial segment of I is a subset J ⊂ I such
that for all j ∈ J and i ∈ I with i ≤ j we have i ∈ J . If J1, J2 ⊂ I are initial segments, then either
J1 ⊂ J2 or J2 ⊂ J1. Indeed, assume that J1 is not a subset of J2 and pick j1 ∈ J1 \ J2. For j2 ∈ J2,
we cannot have j1 ≤ j2 since j1 /∈ J2. It follows that j2 ≤ j1, so j2 ∈ J1 and thus J2 ⊂ J1. The
initial segments of I are thus totally ordered under inclusion. They fall into three classes:

• The empty set ∅, which is the unique initial segment that is contained in all initial segments.
• The successor segments, which are initial segments J ⊂ I of the form J = J ′ ⊔ {n} for some
initial segment J ′ ⊊ J and some n ∈ J \ J ′.

• The limit segments, which are nonempty initial segments J ⊂ I that are not successor
segments. These J are the union of the initial segments J ′ ⊊ J .

For instance, for N the successor segments are subsets of the form {1, . . . , n} and the whole set N is
the only limit segment.

A.10.11. Transfinite induction. Assume now that I is a well-ordered set and for each i ∈ I
we have a set Xi. Our goal is to construct some pi ∈ Xi for all i ∈ I. For each initial segment J ⊂ I,
we want some property P(J) to hold that only refers to the pi ∈ Xi for i ∈ J . To simplify our
exposition, assume that if P(J) holds then so does P(J ′) for all initial segments J ′ ⊂ J .

We can construct the pi ∈ Xi by transfinite induction.7 For this, we must prove three things:

(0) The property P(∅) holds. Note that this makes sense since by assumption P(∅) makes no
reference to any pi.

(1) Let J be a successor segment of the form J = J ′ ⊔ {n} for some initial segment J ′ ⊊ J .
Assume that we have already constructed pi ∈ Xi for all i ∈ J ′ such that P(J ′) holds. We
must show how to construct pn ∈ Xn such that P(J) holds.

(2) Let J be a limit segment. Assume that we have constructed pi ∈ Xi for all i ∈ J such that
P(J ′) holds for all initial segments J ′ ⊊ J . We must prove that P(J) holds.

We can then construct pi ∈ Xi for all i ∈ I such that P(J) holds for all initial segments J ⊂ I.
Indeed, let J be the set of all initial segments J ⊂ I for which we can construct pi ∈ Xi for each
i ∈ J such that P(J) holds. The set J is linearly ordered by inclusion and nonempty since ∅ ∈ J.
Let J0 = ∪J∈JJ . By (1) and (2), we have J0 ∈ J. We must prove that J0 = I. Indeed, assume that
J0 ⊊ I. Since I is well-ordered, there is a minimal n ∈ I \ J0. It follows that J0 ⊔ {n} is an initial
segment, and by (1) we have J0 ⊔ {n} ∈ J, contradicting the fact that J ⊂ J0 for all J ∈ J.

Remark A.10.15. Isomorphism classes of well-ordered sets are called ordinals. Any set of
ordinals has a well-ordering where O1 ≤ O2 when O1 is isomorphic to an initial segment of O2.
Transfinite induction is typically discussed using ordinals. □

A.10.12. Tychonoff’s theorem, general case. The above was a little abstract. We now use
it to prove the general case of Tychonoff’s theorem:

Theorem A.10.16 (Tychonoff’s theorem). Let {Xi}i∈I be a collection of compact spaces. Then∏
i∈I Xi is compact.

Proof. The proof will be almost identical to proof in the countable case, but with some small
complications due to the need for transfinite induction. Let U be an open cover of

∏
i∈I Xi. We must

prove that U has a finite subcover. In fact, it is enough to prove that some refinement of U has a
finite subcover (see Exercise A.25). Each element of U is a union of basic open sets. Letting V be
the set of all basic open sets V such that there exists some U ∈ U with V ⊂ U , it is therefore enough
to prove that V has a finite subcover.

7Since we constructing things, this is sometimes called transfinite recursion.
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Assume for the sake of contradiction that V has no finite subcover. Choose a well-ordering on
the indexing set I. By transfinite induction, for each i ∈ I we will construct some pi ∈ Xi such that
the following holds for all initial segments J ⊂ I:

(♠J) No finite subset of V covers Y (J) =
∏

j∈J pj ×
∏

i∈I\J Xi.

The special case (♠I) says that no finite subset of V covers the one-point set Y (I) =
∏

i∈I pi, which
will be our contradiction. We have (♠∅) from our assumption that no finite subset of V covers
Y (∅) =

∏
i∈I Xi. According to the transfinite induction scheme discussed in §A.10.11, to prove that

(♠J) holds for all initial segments J ⊂ I we must prove:

Step 1. Let J ⊂ I be a successor segment, so J = J ′ ⊔ {n} for some initial segment J ′ ⊂ J and
n ∈ J \ J ′. Assume that we have constructed pi ∈ Xi for all i ∈ J ′ such that (♠J′) holds. We can
then construct pn ∈ Xn such that (♠J) holds.

For p ∈ Xn, let

Z(p) = p×
∏
j′∈J′

pj′ ×
∏

i∈I\J

Xi.

Assume for the sake of contradiction that for all p ∈ Xn, there exists a finite subset V(p) of V that
covers Z(p). Since V consists of basic open sets, we can write

V(p) =

{∏
i∈I

Vi,k(p) | 1 ≤ k ≤ mp

}
with Vi,k(p) ⊂ Xi for all i ∈ I and 1 ≤ k ≤ mp. Discarding unneeded terms if necessary, we can
assume that pj′ ∈ Vj′,k(p) for all j

′ ∈ J ′ and 1 ≤ k ≤ mp, and also that p ∈ Vn,k(p) for all 1 ≤ k ≤ mp.
Keeping in mind that J = J ′ ⊔ {n}, define

Vj(p) =

mp⋂
k=1

Vj,k(p) for j ∈ J,

V (p) = Vn(p)×
∏
j′∈J′

Vj′(p).

It follows that V (p) is an open neighborhood of p×
∏

j′∈J pj′ and that V(p) covers V (p)×
∏

i≥I\J Xi.

The set {V (p) | p ∈ Xn} is an open cover of the compact space Xn ×
∏

j′∈J′ pj′ , so we can find
q1, . . . , qd ∈ Xn such that

Xn ×
∏
j′∈J′

pj′ ⊂ V (q1) ∪ · · · ∪ V (qd).

Since V(qℓ) is a finite cover of V (qℓ)×
∏

i∈I\J Xi for 1 ≤ ℓ ≤ d, we conclude that V(q1) ∪ · · ·V(qd)

is a finite subset of V that covers

Xn ×
∏
j′∈J′

pj′ ×
∏

i∈I\J

Xi =
∏
j′∈J′

pj′ ×
∏

i∈I\J′

Xi = Y (J ′),

contradicting the fact that no such finite cover exists.

Step 2. Let J ⊂ I be a limit segment. Assume that we have constructed pi for all i ∈ J such
that (♠J′) holds for all initial segments J ′ ⊊ J . Then (♠J) holds.

Assume for the sake of contradiction that a finite subset {V1, . . . , Vd} of V covers Y (J). Each Vk
is a basic open set, so we can write

Vk =
∏
i∈I

Vk,i with Vk,i ⊂ Xi open for all i ∈ I.

Moreover, we have Vk,i = Xi for all but finitely many i ∈ I. For 1 ≤ k ≤ d, let J(k) =

{j ∈ J | Vk,j ̸= Xj}. Set Ĵ = J(1) ∪ · · · · · · ∪ J(d). Let J ′ be the smallest initial segment con-

taining Ĵ . Since Ĵ is a finite subset of J , we have J ′ ⊊ J . Since Vk,j = Xj for all 1 ≤ k ≤ d and
j ∈ J \ J ′, the fact that {V1, . . . , Vd} covers Y (J) implies that it also covers Y (J ′). This contradicts
the fact that no finite subset of V covers Y (J ′). □
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A.11. Function spaces and the compact-open topology

Let X and Y be spaces and let8 C(X,Y ) be the set of all continuous maps f : X → Y . In this
section we explain how to turn C(X,Y ) into a space.

A.11.1. Subbasis. Let X be a set and let B be a set of subsets of X. We would like to
topologize X with the smallest collection of open sets possible to make each U ∈ B open. If for
all U, V ∈ B the intersection U ∩ V could be written as a union of sets in B, then B would be a
basis for a topology as in §A.2.9. In that case, we could topologize X by saying that U ⊂ X is open
precisely when U is the union of sets in B.

However, if B does not form a basis then this does not work since in the resulting “topology”
the collection of open sets is not closed under finite intersections. To fix this, let B′ be the set of all
finite intersections of elements of B. Here we interpret the intersection of zero sets as X, so X ∈ B′.
The set B′ does form a basis for a topology on X. In this case, we say that B is a subbasis for this
topology.

A.11.2. Compact-open topology. For sets A,B ⊂ X, define

B(A,B) = {f : X → Y | f(K) ⊂ U} ⊂ C(X,Y ).

The compact-open topology on C(X,Y ) is the topology with subbasis the collection of all B(K,U)
with K ⊂ X compact and U ⊂ Y open. In other words, a set V ⊂ C(X,Y ) is open if for all f ∈ V
there exist K1, . . . ,Kn ⊂ X compact and U1, . . . , Un ⊂ Y open such that

f ∈ B(K1, U1) ∩ · · · ∩B(Kn, Un) ⊂ V.

A.11.3. Metrics. If (Y, d) is a metric space, then it is also natural to try to topologize C(X,Y )
using d. This is easiest for X compact, in which case we can define a metric D on C(X,Y ) by letting

(A.11.1) D(f, g) = max {d(f(x1), f(x1)) | x1, x2 ∈ X} for f, g : X → Y .

This makes sense since X is compact, which implies that f(X) and g(X) are compact subsets of the
metric space Y and thus that the above maximum is finite and realized. We have:

Lemma A.11.1. Let X be a compact space and let (Y, d) be a metric space. The compact-open
topology on C(X,Y ) and the metric topology on C(X,Y ) coming from (A.11.1) are the same.

Proof. We divide the proof into two steps:

Step 1. Every open set in the compact-open topology is open in the metric topology.

Let K ⊂ X be compact and U ⊂ Y be open. We must prove that B(K,U) is open in the metric
topology. Indeed, consider f ∈ B(K,U), so f(K) ⊂ U . Since f(K) is a compact subset of U , we
can find some ϵ > 0 such that the ϵ-neighborhood of f(K) is contained in U . For g ∈ C(X,Y )
with D(f, g) < ϵ, since d(g(k), f(k)) < ϵ for all k ∈ K it follows that g(K) is contained in the
ϵ-neighborhood of f(K). We thus have g(K) ⊂ U , so g ∈ B(K,U). We conclude that the ϵ-ball
around f is contained in B(K,U), so B(K,U) is open in the metric topology.

Step 2. Every open set in the metric topology is open in the compact-open topology.

Let f ∈ C(X,Y ) and let ϵ > 0. Let

Bϵ(f) = {g ∈ C(X,Y ) | d(g(x), f(x)) < ϵ for all x ∈ X}

be the open ball around f in the metric topology. It is enough to find compact sets K1, . . . ,Kn ⊂ X
and open sets U1, . . . , Un ⊂ Y such that

f ∈ B(K1, U1) ∩ · · · ∩B(Kn, Un) ⊂ Bϵ(f).

Since f(X) is a compact subset of Y , we can find x1, . . . , xn ∈ X such that

(A.11.2) f(X) ⊂ Bϵ/3(f(x1)) ∪ · · · ∪Bϵ/3(f(xn)).

8It is also common to call this space Y X , but we think the notation C(X,Y ) is easier to understand.
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For 1 ≤ i ≤ n, let Ki = f−1(Bϵ/3(f(xi))) and Ui = Bϵ/2(f(xi)). Since Ki is a closed subset of
the compact space X, it follows that Ki is closed. By (A.11.2), the sets Ki cover X. Finally, by
construction

f ∈ B(K1, U1) ∩ · · · ∩B(Kn, Un).

Now consider some g ∈ B(K1, U1) ∩ · · · ∩ B(Kn, Un). We must prove that g ∈ Bϵ(f). In other
words, letting x ∈ X we must prove that d(f(x), g(x)) < ϵ. We have x ∈ Ki for some 1 ≤ i ≤ n, so
f(x), g(x) ∈ Ui. It follows that d(f(x), g(x)) is at most the diameter ϵ of Ui = Bϵ/2(f(xi)). □

Remark A.11.2. If (Y, d) is a metric space but X is not compact, then the metric d induces a
topology on C(X,Y ) as follows. For f ∈ C(X,Y ) and a compact subset K ⊂ X and ϵ > 0, let

B(f,K, ϵ) = {g ∈ C(X,Y ) | d(f(x), g(x)) < ϵ for all x, y ∈ K} .
These sets form the basis for a topology on C(X,Y ) called the topology of compact convergence, and
this is the same as the compact-open topology (see Exercise A.34). □

A.11.4. Composition. For spaces X and Y and Z, there is a composition map c : C(Y,Z)×
C(X,Y ) → C(X,Z) defined by c(g, f) = g ◦ f for g ∈ C(Y,Z) and f ∈ C(X,Z). It is natural to hope
that this is continuous. Unfortunately, this does not hold in general. However, it does hold if Y is
locally compact:

Lemma A.11.3. Let X and Y and Z be spaces with Y locally compact. Then the composition
map c : C(Y,Z)× C(X,Y ) → C(X,Z) is continuous.

Proof. Let K ⊂ X be compact and U ⊂ Z be open. We must prove that c−1(B(K,U)) is open.
Let (g, f) ∈ C(Y,Z)× C(X,Y ) satisfy c(g, f) ∈ B(K,U). It is enough to find an open neighborhood
of (g, f) that is mapped by c into B(K,U). Since g ◦ f ∈ B(K,U), we have f(K) ⊂ g−1(U). Since
f(K) is a compact subset of the open subset g−1(U) ⊂ Y and Y is locally compact, there is a
compact neighborhood L of f(K) with L ⊂ g−1(U) (see Exercise A.21). It follows that c takes the
open neighborhood B(L,U)×B(K, g−1(U)) of (g, f) into B(K,U), as desired. □

A.11.5. Evaluation. For spaces X and Y , there is an evaluation map e : C(X,Y )×X → Y
defined by e(f, x) = f(x) for f ∈ C(X, y) and x ∈ X. Just like for the composition map, to ensure
this is continuous we need to assume that X is locally compact:

Lemma A.11.4. Let X and Y be spaces with X locally compact. Then the evaluation map
e : C(X,Y )×X → Y is continuous.

Proof. Let p0 be a one-point space. We have C(p0, X) = X and C(p0, Y ) = Y . Applying these
identities, the evaluation map becomes the composition map C(X,Y )× C(p0, X) → C(p0, Y ), which
is continuous by Lemma A.11.3. □

A.11.6. Parameterized maps. Let X and Y and Z be spaces. It is natural to expect maps
ϕ : X × Z → Y and Φ: Z → C(X,Y ) to be closely related. Indeed, if we were working with sets
rather than spaces then such maps would be in bijection with each other: a map Φ: Z → C(X,Y )
would correspond to the map ϕ : X ×Z → Y defined by ϕ(x, z) = Φ(z)(x). The following shows that
this holds topologically if X is locally compact:

Lemma A.11.5. Let X and Y and Z be spaces. The following holds:

(i) Let ϕ : X × Z → Y be continuous. Define Φ: Z → C(X,Y ) to be the map that takes z ∈ Z
to the map X → Y taking x ∈ X to ϕ(x, z) ∈ Y . Then Φ is continuous.

(ii) Assume that X is locally compact. Let Ψ: Z → C(X,Y ) be continuous. Define ψ : X×Z → Y
to be the map taking (x, z) ∈ X × Z to Ψ(z)(x) ∈ Y . Then ψ is continuous.

Proof. For (i), let ϕ : X × Z → Y be continuous and define Φ: Z → C(X,Y ) as in (i). Let
K ⊂ X be compact and U ⊂ Y be open. We must prove that Φ−1(B(K,U)) ⊂ Z is open. Let
z0 ∈ Φ−1(B(K,U)), so K × z0 ⊂ ϕ−1(U). Since K ⊂ X is compact and ϕ−1(U) is an open
neighborhood of K × z0, Exercise A.28 (the “tube lemma”) gives an open neighborhood V ⊂ Z of z0
with K × V ⊂ ϕ−1(U). It follows that V is an open neighborhood of z0 with V ⊂ Φ−1(B(K,U)), as
desired.
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We now prove (ii). Assume that X is locally compact and that Ψ: Z → C(X,Y ) is continuous.
The map ψ : X × Z → Y defined in (ii) is the composition

X × Z X × C(X,Y ) Y,
1 ×Ψ e

where e : X × C(X,Y ) → Y is the evaluation map e(x, f) = f(x). Lemma A.11.4 implies that e is
continuous, so we conclude that ψ is continuous. □

A.11.7. Homotopies and the compact-open topology. Let f0, f1 : X → Y be maps.
Recall that a homotopy from f0 to f1 is a continuous map H : X × I → Y with H(x, 0) = f0(x)
and H(x, 1) = f1(x) for all x ∈ X. Lemma A.11.5 implies that such a homotopy gives a map
h : I → C(X,Y ). This map h can be viewed as a path from h(0) = f0 to h(1) = f1. Conversely, if X
is locally compact then Lemma A.11.5 implies that a path in C(X,Y ) from f0 to f1 gives a homotopy
from f0 to f1.

A.11.8. Parameterized maps, II. Let X and Y and Z be spaces with X locally compact.
Lemma A.11.5 gives a bijection between C(X × Z, Y ) and C(Z, C(X,Y )). The following lemma says
that this bijection is a homeomorphism if X and Z are Hausdorff:

Lemma A.11.6. Let X and Y and Z be spaces with X locally compact Hausdorff and Z Hausdorff.
Let λ : C(X × Z, Y ) → C(Z, C(X,Y )) be the map taking ϕ : X × Z → Y to the map Φ: Z → C(X,Y )
defined by

Φ(z)(x) = ϕ(x, z) ∈ Y for all z ∈ Z and x ∈ X.

Then λ is a homeomorphism.

Proof. Lemma A.11.5 says that λ is a bijection. For K ⊂ X and L ⊂ Z compact and U ⊂ Y
open the map λ restricts to a bijection between B(K×L,U) and B(L,B(K,U)). To prove the lemma,
it is enough to prove that open sets of these forms are subbases for the topologies on C(X × Z, Y )
and C(Z, C(X,Y )):

• For C(X × Z, Y ), we prove this in Lemma A.11.7 below.
• For C(Z, C(X,Y )), in Lemma A.11.8 below we prove more generally that if B is any subbasis
for the topology on a space W , then sets of the form B(L, V ) with L ⊂ Z compact and
V ∈ B form a subbasis for C(Z,W ). □

The above proof used the following two results:

Lemma A.11.7. Let X and Y and Z be spaces with X and Z Hausdorff. Then the set of all
B(K × L,U) with K ⊂ X compact and L ⊂ Z compact and U ⊂ Y open forms a subbasis for the
compact-open topology on C(X × Z, Y ).

Proof. Let C ⊂ X × Z be compact and U ⊂ Y be open. We must prove that B(C,U) is
open in the topology with the indicated subbasis. Consider f ∈ B(C,U). It is enough to find
K1, . . . ,Kn ⊂ X compact and L1, . . . , Ln ⊂ Z compact such that

f ∈ B(K1 × L1, U) ∩ · · · ∩B(Kn × Ln, U) ⊂ B(C,U).

Unwrapping this, we need the Ki and Li to satisfy the following:

• C ⊂ ∪n
i=1Ki × Li; and

• Ki × Li ⊂ f−1(U) for all 1 ≤ i ≤ n.

Let C(X) ⊂ X and C(Z) ⊂ Z be the projections of C ⊂ X × Z. Both C(X) and C(Z) are compact
Hausdorff spaces, and C ⊂ C(X)×C(Z). Replacing X with C(X) and Z with C(Z), we can therefore
assume without loss of generality that X and Z are compact Hausdorff spaces. The space X × Z is
thus also a compact Hausdorff space, and in particular is normal (see Lemma A.7.3).

The set f−1(U) is an open neighborhood of C. Since X × Z is normal, for each c ∈ C we can
find open sets Vc ⊂ X and Wc ⊂ Z such that c ∈ Vc ×Wc and V c ×W c ⊂ f−1(U). Since C is
compact, we can find c1, . . . , cn such that C ⊂ ∪n

i=1Vci ×Wci . Let Ki = V ci ⊂ X and Li =W ci ⊂ Z,
so Ki × Li ⊂ f−1(U). Since X and Z are compact, the closed sets Ki and Li are also compact. By
construction we have C ⊂ ∪n

i=1Ki × Li, as desired. □
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Lemma A.11.8. Let Z and W be spaces with Z Hausdorff and let B be a subbasis for the topology
on W . Then the set of all B(K,V ) with K ⊂ Z compact and V ∈ B forms a subbasis for the
compact-open topology on C(Z,W ).

Proof. See Exercise A.35. □

Remark A.11.9. It is a little annoying that the above results require local compactness. Un-
fortunately, they are false in general. There is a way around this using the theory of compactly
generated spaces. Rather than try to describe this, we refer the interested reader to Steenrod’s classic
paper [11], where he describes conditions that make a category of spaces a “convenient category” for
homotopy theory. A nice textbook reference is [3, Chapter 8]. □

A.12. Manifolds

In this final section, we use the tools we have developed to study manifolds, which are perhaps
the most important class of spaces in algebraic topology.

A.12.1. Basic definitions. An n-dimensional manifold (or simply an n-manifold) is a second
countable Hausdorff space Mn that is locally homeomorphic to Rn in the following sense:

• For all p ∈Mn, there exists an open neighborhood U of p that is homeomorphic to an open
subset of Rn.

A chart on Mn is a homeomorphism ϕ : U → V with U ⊂ Mn and V ⊂ Rn open sets. If U is an
open neighborhood of p ∈Mn, we call this chart ϕ : U → V a chart around p. An atlas for Mn is a
collection of charts {ϕi : Ui → Vi}i∈I such that the Ui cover M

n.

A.12.2. Basic examples. Here are several basic examples:

Example A.12.1. The whole space Rn is an n-manifold with an atlas consisting of a single chart
1 : Rn → Rn. More generally, an open set U ⊂ Rn is an n-manifold, again with an atlas consisting of
a single chart 1 : U → U . □

Example A.12.2. More generally, if Mn is an n-manifold and W ⊂Mn is open, then W is an
n-manifold. Indeed, for p ∈W let ϕ : U → V be a chart around p for Mn. Letting U ′ = U ∩W and
V ′ = ϕ(U ′), the homeomorphism ϕ|U ′ : U ′ → V ′ is a chart around p for W . □

Example A.12.3. Let Sn be the n-sphere, so

Sn =
{
(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1

}
.

This is an n-manifold. Indeed, for 1 ≤ k ≤ n+ 1 let

Uxk>0 = {(x1, . . . , xn+1) ∈ Sn | xk > 0} ,
Uxk<0 = {(x1, . . . , xn+1) ∈ Sn | xk < 0} .

Letting B = B1(0) ⊂ Rn be the open unit ball, we have homeomorphisms ϕxk>0 : Uxk>0 → B and
ϕxk<0 : Uxk<0 → B taking a point (x1, . . . , xn+1) to (x1, . . . , x̂k, . . . , xn+1) ∈ B, where the hat in x̂j
indicates that this coordinate is being omitted. The set

{ϕxk>0 : Uxk>0 → B, ϕxk<0 : Uxk<0 → B | 1 ≤ k ≤ n+ 1}

is an atlas for Sn. □

Example A.12.4. Let RPn be the set of lines though the origin in Rn+1. There is a projection
map q : Rn+1 \ 0 → RPn taking x ∈ Rn+1 \ 0 to the line through 0 and x. We endow RPn with
the quotient topology from this projection, so U ⊂ RPn is open if and only if q−1(U) ⊂ Rn+1 \ 0
is open. The space RPn is known as the n-dimensional real projective space. As notation, for
(x1, . . . , xn+1) ∈ Rn+1 \ 0 we write [x1, . . . , xn+1] for the corresponding point of RPn, so for λ ∈ R
nonzero we have [λx1, . . . , λxn+1] = [x1, . . . , xn+1].

The space RPn is an n-manifold. Unlike our previous examples, it is not totally obvious
that it is second countable and Hausdorff, so we leave this as an exercise (Exercise A.36). We
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prove it is locally Euclidean by exhibiting an atlas as follows. For 1 ≤ k ≤ n + 1, let Uk =
{[x1, . . . , xn+1] ∈ RPn | xk ̸= 0}. This set is well-defined, and the map ϕk : Uk → Rn defined by

ϕk([x1, . . . , xn+1]) = (x1/xk, . . . , x̂k/xk, . . . , xn+1/xk) for [x1, . . . , xn+1] ∈ RPn

is a well-defined homeomorphism (see Exercise A.36). The set {ϕk : Uk → Rn | 1 ≤ k ≤ n+ 1} is an
atlas for RPn. □

Remark A.12.5. It is clear that the only connected 0-dimensional manifold is a single point.
It turns out that R and S1 are the only connected 1-dimensional manifolds. There is also a very
beautiful classification of compact connected 2-dimensional manifolds. Here are two examples of such
2-manifolds:

Σ2 Σ3

We describe the classification of 2-manifolds in our essay [9]. The exercises in that essay also outline
a proof of the classification of 1-dimensional manifolds. In higher dimensions, things are much more
complicated. □

Remark A.12.6. The requirement that manifolds be second countable and Hausdorff is needed
to rule out various pathological examples. Without them, even 1-manifolds would not have a simple
classification. We describe some of these pathological examples later in this section. □

A.12.3. Basic properties. The following summarizes some of the basic point-set topological
properties of manifolds:

Lemma A.12.7. Let Mn be an n-dimensional manifold. Then:

• Mn is normal.
• Mn is locally compact.
• Mn is paracompact.
• Mn is locally path connected, so its path components and connected components coincide
and are clopen.

Proof. Since Mn is locally homeomorphic to Rn, the fact that Mn is locally compact and
locally path connected follows immediately from the fact that Rn is locally compact and locally path
connected. Since Mn is second countable, Hausdorff, and locally compact, it follows that Mn is
paracompact (see Corollary A.9.4). This implies that Mn is normal (see Lemma A.9.5). □

Remark A.12.8. One basic property of manifolds we do not list above is that their dimension is
well-defined. In fact, it is true that if M is both an n-manifold and an m-manifold then n = m, but
this is a difficult theorem called the invariance of domain. The most natural proof of invariance of
domain uses homology. □

A.12.4. Embedding manifolds into Euclidean space. Many n-manifolds are constructed
as subspaces of some Rd, but some manifolds like RPn do not have obvious embeddings into any
Euclidean space. However, it turns out that all manifolds can be embedded in some Rd:

Theorem A.12.9. Let Mn be an n-dimensional manifold. Then for some d≫ 0 there exists an
embedding ι : Mn ↪→ Rd.

We remark that using dimension theory, one can embed Mn into R2n+1. See [6, Theorem V3].
To avoid technical complications, we only prove Theorem A.12.9 when Mn is compact. See the
remark after the proof for how to extend our argument to the non-compact case.

Proof of Theorem A.12.9 for Mn compact. Since Mn is compact, it has a finite atlas
{ϕk : Uk → Vk | 1 ≤ k ≤ m}. Since Mn is paracompact, there is a partition of unity {f1, . . . , fm}
subordinate to {U1, . . . , Un}. Recall that this means that each fk is a function fk : M

n → [0, 1]
with supp(fk) ⊂ Uk, and f1(p) + · · · + fm(p) = 1 for all p ∈ Mn. Multiplying ϕk by fk, we get a
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map fkϕk : Uk → Rn. Since supp(fk) ⊂ Uk, we can extend fkϕk : Uk → Rn to a continuous map
Gk : M

n → Rn with Gk(p) = 0 for p /∈ Uk. Let ι : M
n → Rnm+m be the map defined by

ι(p) = (G1(p), f1(p), . . . , Gm(p), fm(p)) ∈ (Rn × R1)×m = Rnm+m for p ∈Mn.

Since Mn is compact, to prove that ι is an embedding it is enough to prove that ι is injective (see
Lemma A.7.7). For this, consider p, q ∈Mn with ι(p) = ι(q). Since f1(p) + · · ·+ fm(p) = 1, there
is some 1 ≤ k ≤ m with fk(p) > 0. Since ι(p) = ι(q), we have fk(q) = fk(p). This implies that
p, q ∈ supp(fk) ⊂ Uk. Since ι(p) = ι(q), the points

Gk(p) = fk(p)ϕk(p) and Gk(q) = fk(q)ϕk(q)

must be equal, so ϕk(p) = ϕk(q). Since ϕk : Uk → Vk is a homeomorphism, it follows that p = q. □

Remark A.12.10. One way to extend Theorem A.12.9 to noncompact manifolds Mn is to prove
that there is still a finite atlas {ϕk : Uk → Vk | 1 ≤ k ≤ m}, which allows you to run the above proof
(though with a little more care since injective maps need not be embeddings in the noncompact
setting). That a finite atlas exists might sound surprising, but the key insight is that the Uk need
not be connected, and in fact can have countably many components. We omit the details. □

A.12.5. Metrics. Theorem A.12.9 implies the following:

Corollary A.12.11. Let Mn be an n-dimensional manifold. Then Mn can be given the structure
of a metric space.

Since we did not prove Theorem A.12.9 for noncompact manifolds, we give a proof of Corollary
A.12.11 that works in general:

Proof of Corollary A.12.11. Since
∏∞

k=1 Rn × R1 can be given the structure of a metric
space (see Lemma A.10.11), it is enough to embed Mn into this countable product. Since Mn is
second countable, it has a countable atlas {ϕk : Uk → Vk | k ≥ 1}. Since Mn is paracompact, there
is a partition of unity {fk : Mn → [0, 1] | k ≥ 1} subordinate to {Uk | k ≥ 1}. Multiplying ϕk by fk,
we get a map fkϕk : Uk → Rn. Since supp(fk) ⊂ Uk, we can extend fkϕk : Uk → Rn to a continuous
map Gk : M

n → Rn with Gk(p) = 0 for p /∈ Uk. Let ι : M
n →

∏∞
k=1 Rn × R1 be the map defined by

ι(p) = (Gk(p), fk(p))k≥1 ∈
∞∏
k=1

Rn × R1 for p ∈Mn.

The proof that ι is injective is the same as in the proof of Theorem A.12.9, so we omit it. Letting
X = Im(ι), to prove that ι is an embedding we must prove that ι−1 : X → Mn is continuous.
Consider some p0 ∈ Mn. We prove that ι−1 is continuous at ι(p0) as follows. Choose d ≥ 1 such
that fd(p0) > 0. Let

U ′
d = {p ∈ Ud | fd(p) > 0} and V ′

d = ϕd(U
′
d).

Set

W = X ∩

{
(xk, λk)k≥1 ∈

∞∏
k=1

Rn × R1 | λd > 0

}
,

so W is an open neighborhood of ι(p0) in X. The map ι−1 takes W to U ′
d. On W , the map ι−1 can

be written as a composition of a sequence of continuous maps:

• First, the projection

W
∏∞

k=1 Rn × R1 Rn × R1π

onto the dth factor, whose image is contained in {(λv, λ) | λ > 0 and v ∈ V ′
d}.

• Next, the map

{(λv, λ) | λ > 0 and v ∈ V ′
d} V ′

d

that takes (λv, λ) to v.
• Finally, the inverse of the map ϕd : U

′
d → V ′

d .

We deduce that the restriction of ι−1 toW is continuous, and thus that ι−1 is continuous at ι(p0). □
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Remark A.12.12. There are various metrization theorems giving conditions that imply that a
topological space can be given a metric. Most of them are proved using arguments related to the one
we gave for Corollary A.12.11. See [8, Chapter 6] for a discussion of this. □

A.12.6. Non-Hausdorff manifolds. Recall that we require manifolds to be Hausdorff and
second countable. Removing these hypotheses gives many exotic generalized manifolds, even in
dimension 1. We have already seen one example of a non-Hausdorff 1-manifold, namely the line with
two origins from Example A.6.1. We recall the construction:

Example A.12.13. As a set, let Y = (R \ {0})⊔{01, 02}. For i = 1, 2, let fi : R → Y be the map
defined by fi(x) = x for x ∈ R \ {0} and fi(0) = 0i. Give Y the identification space topology, so:

• a set U ⊂ Y is open if and only if f−1
1 (U) and f−1

2 (U) are open in R.
With this topology, the subspaces Y \ {02} = f1(R) and Y \ {01} = f2(R) are open subsets of Y that
are both homeomorphic to R. It follows that Y a second-countable non-Hausdorff 1-manifold. □

This example might not seem very geometrically interesting. The theory of foliations of the
plane gives non-Hausdorff 1-manifolds with a closer connection to geometry. See [4] for a beautiful
discussion of this. We content ourselves here with one example:

Example A.12.14. For c ∈ R, let Xc =
{
(x, y) | (x2 − 1)ey = c

}
⊂ R2. Define

F = {L | L is a connected component of Xc for some c ∈ R} .
The set F is what is called a foliation of R2. Each L ∈ L is called a leaf of the foliation. Here is a
picture of F:

A C

B

ℓ-1 ℓ1
Each leaf L is homeomorphic to R, and R2 is the disjoint union of the L ∈ F. The set X0 consists of
two vertical lines ℓ−1 and ℓ1 where x = ±1. For c > 0, the set Xc consists of two arcs, one lying in
the region to the left of ℓ−1 labeled A and one lying in the region to the right of ℓ1 labeled C. For
c < 0, the set Xc consists of a single arc in the region between ℓ−1 and ℓ1 labeled B.

Let L be the quotient space of R2 obtained by collapsing each L ∈ F to a point. This is called
the leaf space of the foliation F. The space L is a non-Hausdorff 1-manifold. To describe it, let R1

and R1 be copies of R. The space L is obtained by gluing R1 to R2 so as to identify each t ∈ R1 with
t > 0 with the corresponding t ∈ R2. The various types of leaves correspond to the following points:

• The points 0 ∈ R1 and 0 ∈ R2 correspond to ℓ−1 and ℓ1.
• The points t ∈ R1 with t < 0 correspond to the arcs in the region A.
• The points t ∈ R2 with t < 0 correspond to the arcs in the region C.
• The points t ∈ R1 and t ∈ R2 with t > 0 are glued together and correspond to the arcs in
the region B.

The picture is as follows:

A

C B

ℓ-1

ℓ1

This space is non-Hausdorff since the points corresponding to ℓ−1 and ℓ1 do not have disjoint
neighborhoods. You will verify all of this in Exercise A.37. □

A.12.7. Long line. The theory of non-second countable manifolds has a set-theoretic flavor.
It turns out that in dimension one there is a single example of a connected non-second countable
Hausdorff 1-manifold called the long line L. We close this essay with a brief discussion of it. The
space L has the following seemingly paradoxical properties:

• L is a path-connected Hausdorff non-second-countable 1-manifold.
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• Like R, the points of L are endowed with a total ordering.
• For x, y ∈ L with x < y, the “interval”

[x, y] = {z ∈ L | x ≤ z ≤ y}

is homeomorphic to the closed interval I = [0, 1]. This accounts for L being path connected.
• On the other hand, since L is not second countable it contains uncountably many subspaces
homeomorphic to the open interval (0, 1).

Before we can construct L, we need to discuss some more details about well-ordered sets, which we
introduced in §A.10.10 to set up the process of transfinite induction.

A.12.8. Minimal uncountable well-ordered set. Let S be an uncountable set. Pick a
well-ordering on S. Let C be the set of all initial segments of S that are either finite or countably
infinite. The set C is nonempty since ∅ ∈ C. In fact, by starting with ∅ and repeatedly adding the
minimal element we have not yet chosen we see that there exists a countably infinite set in C. As we
discussed in §A.10.10, the initial segments of S are totally ordered under inclusion. Let

SΩ =
⋃
J∈C

J.

The set SΩ is an initial segment of S. By construction, all initial segments J with J ⊊ SΩ are
countable. We claim that SΩ is not countable. Indeed, let s0 be the minimal element of S \ SΩ.
The initial segment SΩ ⊔ {s0} cannot lie in C, so SΩ ⊔ {s0} is uncountable. This implies that SΩ is
uncountable. The totally ordered set SΩ is called the minimal uncountable well-ordered set.9 It is
unique up to isomorphism, but we will not need this. All we need to know about SΩ is that it is
uncountable but all proper initial segments of SΩ are finite or countably infinite.

A.12.9. Constructing the long line. Let L̂ = SΩ × [0, 1). Both SΩ and [0, 1) have total

orderings. Give L̂ the dictionary ordering, so (s, x) ≤ (s′, x′) if s < s′ or if s = s′ and x < x′. An

open interval in L̂ is a set of the form (θ1, θ2) = {ν | θ1 < ν < θ2} for some θ1, θ2 ∈ L̂ with θ1 < θ2.

This is a basis for a topology (see Exercise A.6) called the order topology. We endow L̂ with the
order topology.

To form the long line L, let s0 ∈ Sω be the minimal element. It follows that (s0, 0) ∈ L̂ is the

minimal element of L̂. Define L = L̂ \ {(s0, 0)}. As you will verify in Exercise A.38, this has the
properties claimed in §A.12.7.

A.13. Exercises

Exercise A.1. Prove the following:

(a) Let (M, d) be a metric space. Define d′ : M × M → R via the formula d′(p, q) =
min{d(p, q), 1}. Prove that d′ is a metric on M that induces the same topology on M that
d does.

(b) Let ∥ − ∥ be the following standard norm on Rn:

∥(x1, . . . , xn)∥ =
√
x21 + · · ·+ x2n for all (x1, . . . , xn) ∈ Rn.

This induces the metric d(p, q) = ∥p− q∥ on Rn. Now let ∥ − ∥′ be an arbitrary norm on
the vector space Rn. Define a function d′ : Rn × Rn → R via the formula

d′(p, q) = ∥p− q∥′ for p, q ∈ Rn.

Prove that d′ is a metric on Rn and that d′ induces the same topology on Rn as d. □

Exercise A.2. Prove that the function f : M → R from Example A.1.5 is not continuous. □

Exercise A.3. Let M1 and M2 be metric spaces. Let f : M1 → M2 be a function. Prove
that f is continuous (defined using the ϵ-δ definition) if and only if for all U ⊂ M2 open we have
f−1(U) ⊂M1 open. □

9Or the minimal uncountable ordinal, but we have chosen not to use that terminology.
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Exercise A.4. Let M be a metric space. Prove that the collection of open sets in M makes M
into a topological space. □

Exercise A.5. Let k be a field. Prove that the Zariski topology on kn described in Example
A.2.9 is a topology. □

Exercise A.6. Let S be a set with a total ordering ≤. For s1, s2 ∈ S with s1 < s2, let
(s1, s2) = {s ∈ S | s1 < s < s2}. Prove that the collection of all sets of the form (s1, s2) forms a basis
for a topology on S. For instance, if S = R with its usual ordering this is the usual basis for the
topology on R. □

Exercise A.7. Let X be a space and let ∼ be an equivalence relation on X. As a set, let
Y = X/ ∼ and let f : X → Y be the projection. Endow Y with the quotient topology, so f : X → Y
is a quotient map. Let Y ′ be another space and let f ′ : X → Y ′ be a map such that the following
holds:

• For all spaces Z, composition with f ′ gives a bijection between continuous maps ϕ : Y ′ → Z
and ∼-invariant continuous maps Φ: X → Z.

Prove that there is a homeomorphism g : Y → Y ′ such that f ′ = g ◦ f . In other words, the above
universal mapping property characterizes the quotient space Y . □

Exercise A.8. Prove the following basic properties of connected spaces:

(a) The space I = [0, 1] is connected.
(b) If X is connected and f : X → Y is a map, then f(X) is connected.
(c) Let X be a space and let {Yi}i∈I be a collection of subspaces of X. Assume that:

• each Yi is connected; and
• for all i, j ∈ I, the space Yi ∩ Yj is nonempty; and
• X = ∪i∈IYi.

Then X is connected. □

Exercise A.9. Let X be the topologist’s sine curve:

X = {(0, y) | −1 ≤ y ≤ 1} ∪ {(x, sin(1/x) | x > 0} ⊂ R2.

Prove that X is connected but not path connected. Also, prove that its path components are

X1 = {(0, y) | −1 ≤ y ≤ 1} ,
X2 = {(x, sin(1/x) | x > 0} . □

Exercise A.10. Let X be a space. Prove that the following are equivalence relations on the
points of X:

(a) For p, q ∈ X, the relation where p is equivalent to q if there is a path in X from p to q.
(b) For p, q ∈ X, the relation where p is equivalent to q if there is a connected subspace Y ⊂ X

with p, q ∈ X. □

Exercise A.11. Let X be a space and let Y be a path component of X. Prove that Y is
connected. □

Exercise A.12. Let X be a first countable Hausdorff space, let Y be a Hausdorff space, and let
f : X → Y be a map of sets. Then f is continuous if and only if the following holds:

• Let {xn}n≥1 be a convergent sequence in X. Then {f(xn)}n≥1 is a convergent sequence in
Y and limn 7→∞ f(xn) = f(limn 7→∞ xn). □

Exercise A.13. Let X be a Hausdorff space. Prove the following:

(a) All points in X are closed, i.e., for all p ∈ X the one-point set {p} is closed.
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(b) If Z is another space and f, g : Z → X are two maps, then the subset {z ∈ Z | f(z) = g(z)}
of points in Z where f and g are equal is closed. In particular, if f and g agree on a dense
subset of Z, then f = g.

(c) Let {xn}n≥1 be a sequence in X and let y1, y2 ∈ X be such that limn 7→∞ xn = y1 and
limn7→∞ xn = y2. Then y1 = y2. □

Exercise A.14. Let k be a field. Prove that the Zariski topology on kn described in Example
A.2.9 is Hausdorff if and only if k is a finite field. □

Exercise A.15. Let X be a space and let fn : X → R be a sequence of continuous functions
converging uniformly to a function f : X → R. Prove that f is continuous. □

Exercise A.16. Let X be a compact Hausdorff space. Prove that X is normal. □

Exercise A.17. Let X be a space and K ⊂ X be a subspace. Prove:

(a) If X is first countable and K is compact, then K is sequentially compact.
(b) If X is second countable and K is sequentially compact, then K is compact. □

Exercise A.18. Let f : X → Y be a map of spaces and let K ⊂ X be compact. Prove that
f(K) is compact. □

Exercise A.19. Let K ⊂ R be compact. Prove that there exist m,M ∈ K such that m ≤ k ≤M
for all k ∈ K. □

Exercise A.20. Let X be a Hausdorff space. Prove that X is locally compact if and only if for
all p ∈ X, there exists a compact neighborhood K of p. □

Exercise A.21. Let X be a locally compact space. Let K ⊂ X be compact and U ⊂ X be open
with K ⊂ U . Prove that there is a compact neighborhood L of K with L ⊂ U . □

Exercise A.22. Prove that Rn with it standard metric is complete, i.e., that all Cauchy sequences
in Rn have limits. □

Exercise A.23. Let M be a complete metric space. Prove that M is a Baire space, i.e., that the
following holds. Let {Un}n≥1 be a collection of open dense subsets of X. Then ∩n≥1Un is dense. □

Exercise A.24. Let X be a space and let Z be a collection of subsets of X.

(a) If Z is locally finite, prove that ⋃
Z∈Z

Z =
⋃
Z∈Z

Z.

(b) Give an example to show that local finiteness is needed in the previous part. □

Exercise A.25. Let X be a space, let U be an open cover of X, and let V be an open cover of
X that refines U. Assume that V has a finite subcover. Prove that U has a finite subcover. □

Exercise A.26. Let X be a space and let {Vi}i∈I be a locally finite collection of open subsets
of X. For each i ∈ I, let hi : X → R be a continuous function such that supp(hi) ⊂ Vi. Define
h : X → R via the formula

h(p) =
∑
i∈I

hi(p) for p ∈ X.

Prove that h : X → R is continuous. □

Exercise A.27. Prove that the product topology on Rn = R× · · · ×R is the same as the metric
space topology. □

Exercise A.28. Let X and Y be spaces and let U ⊂ X × Y be open. Let A ⊂ X and K ⊂ Y
be such that A ⊂ K ⊂ U . Assume that K is compact. Prove that there exists an open neighborhood
V of A such that A×K ⊂ U . □

Exercise A.29. Let {Xi}i∈I be a collection of spaces. Let Y =
∏

i∈I Xi and for i ∈ I let
πi : Y → Xi be the projection. Let Y ′ be a space equipped with continuous maps π′

i : Y
′ → Xi for

each i ∈ I such that the following holds:
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• For all spaces Z and all collections of continuous maps fi : Z → Xi for i ∈ I, there exists a
unique continuous map F : Z → Y ′ such that fi = π′

i ◦ F for all i ∈ I.

Prove that there is a homeomorphism g : Y → Y ′ such that πi = π′
i ◦ g for all i ∈ I. In other words,

the above universal mapping property characterizes the product space. In category theory, a product
in a category is something satisfying a universal property of the above form. A category theorist
would therefore say that

∏
i∈I Xi is the product of the Xi in the category of topological spaces. □

Exercise A.30. Let {Xi}i∈I be a collection of spaces. Let Y = ⊔i∈IXi with the disjoint union
topology discussed in §A.3.3. For i ∈ I, let ι : Xi → Y be the inclusion. Let Y ′ be a space equipped
with continuous maps ι′i : Xi → Y ′ for each i ∈ I such that the following holds:

• For all spaces Z and all collections of continuous maps fi : Xi → Z for i ∈ I, there exists a
unique continuous map F : Y ′ → Z such that fi = F ◦ ι′i for all i ∈ I.

Prove that there is a homeomorphism g : Y → Y ′ such that ι′i = g ◦ ιi for all i ∈ I. In other words,
the above universal mapping property characterizes the disjoint union. In category theory, a sum in
a category is something satisfying a universal property of the above form. A category theorist would
therefore say that ⊔i∈IXi is the sum of the Xi in the category of topological spaces. □

Exercise A.31. Let {Ai}i∈I be a collection of abelian groups. Let
∏

i∈I Ai be the product of
the Ai and let ⊕i∈IAi be the sum of the Ai, so⊕

i∈I

Ai =

{
(ai)i∈I ∈

∏
i∈I

Ai | ai = 0 for all but finitely many i ∈ I

}
.

Imitate the definitions from Exercises A.29 and A.30 to formulate what it should mean to have a
product and a sum in the category of abelian groups, and prove that

∏
i∈I Ai and ⊕i∈IAi are the

product and sum of the Ai. We remark that unlike for topological spaces, the product and sum
coincide for finite collections of abelian group. □

Exercise A.32. Let {Xi}i∈I be a collection of spaces. For each i ∈ I, let {p(i)n}n≥1 be a
sequence of points in Xi that converges to p(i) ∈ Xi. For n ≥ 1, let pn = (p(i)n)i∈I ∈

∏
i∈I Xi.

Prove that {pn}n≥1 converges to (p(i))i∈I ∈
∏

i∈I Xi. □

Exercise A.33. For each n ≥ 1, let (Mn, dn) be a metric space. For each n ≥ 1, assume that
dn(p, q) ≤ 1 for all p, q ∈Mn. Define a two-variable real-valued function on

∏∞
n=1Mn via the formula

d((pn)n≥1, (qn)n≥1) =

∞∑
n=1

1

2n
d′n(pn, qn).

Prove that this is a metric on
∏∞

n=1Mn that induces the product topology. □

Exercise A.34. Let X be a space and let (Y, d) be a metric space. For f ∈ Y X and a compact
subset K ⊂ X and ϵ > 0, let

B(f,K, ϵ) =
{
g ∈ Y X | d(f(x), g(x)) < ϵ for all x, y ∈ K

}
.

Prove that these sets form the basis for a topology on Y X , and this topology is the same as the
compact-open topology. □

Exercise A.35. Let Z and W be spaces with Z Hausdorff and let B be a subbasis for the
topology on W . Prove that the set of all B(K,V ) with K ⊂ Z compact and V ∈ B forms a subbasis
for the compact-open topology on C(Z,W ). □

Exercise A.36. Prove the following:

(a) The space RPn is Hausdorff and second countable.
(b) Letting Uk = {[x1, . . . , xn+1] ∈ RPn | xk ̸= 0}, the map ϕk : Uk → Rn defined by

ϕk([x1, . . . , xn+1]) = (x1/xk, . . . , x̂k/xk, . . . , xn+1/xk) for [x1, . . . , xn+1] ∈ RPn

is a well-defined homeomorphism. □

Exercise A.37. Verify the description of L in Example A.12.14. □



42 A. REVIEW OF POINT-SET TOPOLOGY

Exercise A.38. Let L be the long line constructed in §A.12.9. Prove the following:

(a) For x, y ∈ L with x < y, the closed interval

[x, y] = {z ∈ L | x ≤ z ≤ y}
is homeomorphic to the closed interval I = [0, 1].

(b) The space L is path-connected.
(c) The space L contains uncountably many subspaces homeomorphic to the open interval

(0, 1).
(d) The space L is a Hausdorff non-second-countable 1-manifold. □
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