Review of point-set topology

Andrew Putman

Department of Mathematics, University of Notre Dame, 255 Hurley Hall, Notre Dame, IN $46556\,$

Email address: andyp@nd.edu

Table of contents

E	SSAY	A. Review of point-set topology
	A.1.	From Euclidean space to metric spaces
	A.2.	Topological spaces
	A.3.	Identification spaces and the quotient topology
	A.4.	Connectivity properties
	A.5.	Countability properties
	A.6.	Separation properties and the Tietze extension theorem
	A.7.	Compactness and the Heine–Borel theorem
	A.8.	Local compactness and the Baire category theorem
	A.9.	Paracompactness and partitions of unity
	A.10.	Products and Tychonoff's theorem 24
	A.11.	Function spaces and the compact-open topology
	A.12.	Manifolds
	A.13.	Exercises
	Biblio	graphy

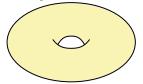
Review of point-set topology

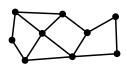
This essay is a rapid review of some basic facts about point-set topology. Our goal is to emphasize definitions and examples that are important for algebraic topology, and also to explain a few things at a slightly more sophisticated level than the usual undergraduate textbooks. Since we expect that our readers have seen this material before, our coverage is selective and we do not attempt to prove (or even state) all the results that would necessarily be included in a basic course. I first learned this material from Munkres's undergraduate textbook [8]. See [1, 2, 7] for more advanced references.

A.1. From Euclidean space to metric spaces

We first describe the naive notion of a space. We then make an initial attempt to formalize this via metric spaces and discuss the ways in which this is unsatisfactory.

A.1.1. Spaces. The most familiar spaces are \mathbb{R}^n and its subspaces. Indeed, since we live in \mathbb{R}^3 our drawings necessarily lie in \mathbb{R}^3 . For instance:





We can imagine subspaces of \mathbb{R}^n for $n \geq 4$ by analogy with \mathbb{R}^3 . These are the geometric objects studied by mathematicians going back to the ancient Greeks.

Modern formalizations of the notion of "space" give a precise language for talking about these spaces and extending our geometric imagination to spaces that are less easily visualized. However, it is important to keep in mind that mathematicians have been studying geometry for thousands of years. The formal language might change and the scope of the field might expand, but it is still the same subject.

- **A.1.2.** Metric spaces. Perhaps the easiest modern formalization is the notion of a metric space, which was introduced by Hausdorff [5]. A *metric space* is a pair (M, \mathfrak{d}) where M is a set and \mathfrak{d} is a distance function $\mathfrak{d}: M \times M \to \mathbb{R}$ such that:
 - For all $p, q \in M$, we have $\mathfrak{d}(p,q) \geq 0$ with equality if and only if p = q.
 - For all $p, q \in M$, we have $\mathfrak{d}(p, q) = \mathfrak{d}(q, p)$.
 - For all $p, q, r \in M$, we have the triangle inequality $\mathfrak{d}(p, q) \leq \mathfrak{d}(p, r) + \mathfrak{d}(r, q)$.

Sometimes we will not mention \mathfrak{d} and just say that M is a metric space. Subspaces of \mathbb{R}^n fit into this framework as follows:

EXAMPLE A.1.1. Let $\|\cdot\|$ be the usual norm on \mathbb{R}^n :

$$\|(x_1, \dots, x_n)\| = \sqrt{x_1^2 + \dots + x_n^2}$$
 for all $(x_1, \dots, x_n) \in \mathbb{R}^n$.

Consider $M \subset \mathbb{R}^n$. For $x, y \in M$, define $[\mathfrak{d}(x, y) = ||x - y||$. This makes M into a metric space. \square

Spaces of functions provide other important examples. For instance:

EXAMPLE A.1.2. Let I = [0,1] be the closed interval and let $\mathcal{C}(I,\mathbb{R})$ be the set of all continuous functions $f: I \to \mathbb{R}$. Define a metric on $\mathcal{C}(I,\mathbb{R})$ as follows:

$$\mathfrak{d}(f,g) = \max\{|f(x) - g(x)| \mid x \in I\}$$
 for all continuous $f,g \colon I \to \mathbb{R}$.

Since I is compact, this maximum makes sense. This makes $\mathcal{C}(I,\mathbb{R})$ into a metric space.

1

A.1.3. Continuity. Once we have defined metric spaces, we can define continuity by imitating the classical definition from real analysis. Let (M, \mathfrak{d}_M) and (N, \mathfrak{d}_N) be metric spaces and let $f: M \to N$ be a function. Then:

- f is continuous at $p \in M$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $q \in M$ with $\mathfrak{d}_M(p,q) < \delta$ we have $\mathfrak{d}_N(f(p),f(q)) < \epsilon$.
- f is continuous if it is continuous at all $p \in M$.

A.1.4. Topology. Ordinary geometry concerns distances, angles, etc. At least for distances, metric spaces are a natural context for this. Topology is a primitive kind of geometry where distances are ignored. Instead, topology focuses on tools for studying continuous function between spaces. Here are two examples of the kinds of questions it might ask:

QUESTION A.1.3. For metric spaces M and N, we say that M and N are homeomorphic if there exists a bijection $f: M \to N$ such that f and f^{-1} are continuous. Can we classify metric spaces up to homeomorphism?

QUESTION A.1.4. Fix metric spaces M and N. An *embedding* of M into N is a continuous injective function $f: M \to N$ that is a homeomorphism onto its image. Can we determine whether M can be embedded into N?

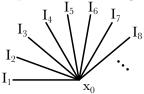
General metric spaces are far too wild for questions like these to have reasonable answers. Typically topologists restrict to classes of spaces like those drawn at the beginning of this chapter.

A.1.5. Downsides of metric spaces. The geometric meaning of the definition of a metric space is easily grasped. However, for topology they have downsides:

- Though continuity is defined in terms of a metric, there are many metrics on a given space that give the same notion of continuity (see Exercise A.1). In other words, continuity is a more primitive notion than a metric.
- There are many geometric operations one would like to perform on spaces (gluing them together, taking quotients, etc). However, these operations do not always interact well with a metric and often result in "spaces" that are not metric spaces.

Here is an example of this second pathology:

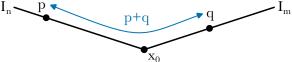
EXAMPLE A.1.5. For each integer $n \ge 1$, let I_n be a copy of the interval I = [0, 1]. Let M be the "space" obtained by identifying the points $0 \in I_n$ all together to a single point x_0 :



Each I_n is a subspace of M, so each $p \in M$ lies in some I_n . This I_n is unique unless $p = x_0$. There is a natural choice of a metric on M:

• Consider $p, q \in M$. If there is some $n \ge 1$ such that $p, q \in I_n = [0, 1]$, define $\mathfrak{d}(p, q) = |p - q|$. Otherwise, if $p \in I_n$ and $q \in I_m$ with $n \ne m$, then define $\mathfrak{d}(p, q) = p + q$.

For an explanation of this formula, see here:



Define a function $f: M \to \mathbb{R}$ via the formula f(p) = np for $p \in I_n$. This formula makes sense since the map $p \mapsto np$ takes 0 to 0 for all n, so the resulting function f satisfies $f(x_0) = 0$. The restriction of f to each I_n is continuous; however, f itself is not continuous (see Exercise A.2).

In this example, it is inconvenient that continuous functions on the I_n do not "glue together" to a continuous function on M. Once we have defined topological spaces, we will be able to turn M into a topological space where this kind of gluing works.

A.1.6. Open sets and continuity. To give a hint for how to discuss continuity without a metric, we review some other facts about metric spaces. Fix a metric space (M, \mathfrak{d}) . For $p \in M$ and r > 0, let

$$B_r(p) = \{ q \in M \mid \mathfrak{d}(p,q) < r \}.$$

This is called the *open ball* of radius r around p. A set $U \subset M$ is *open* if for all $p \in U$, there exists some r > 0 such that $B_p(r) \subset U$. We then have:

LEMMA A.1.6. Let M_1 and M_2 be metric spaces and let $f: M_1 \to M_2$ be a function. Then f is continuous if and only if for all $U \subset M_2$ open we have $f^{-1}(U) \subset M_1$ open.

Proof. See Exercise A.3.

A.2. Topological spaces

Since continuity for metric spaces can be described entirely in terms of open sets, it is natural to abstract the notion of "open sets".

- **A.2.1. Definition of topological space.** A topological space is a set X equipped with a collection of subsets of X called the *open sets*. These open sets should satisfy the following three properties:
 - The whole space X and the empty set \emptyset are both open.
 - The collection of open sets is closed under arbitrary unions: if $\{U_i\}_{i\in I}$ is any collection of open sets, then $\cup_{i\in I}U_i$ is open.
 - The collection of open sets is closed under finite intersections: if U_1, \ldots, U_n are open sets, then $U_1 \cap \cdots \cap U_n$ is open.

We call the collection of open sets on X a topology on X. A key example is:

EXAMPLE A.2.1. If M is a metric space, then the collection of open sets in M makes M into a topological space (see Exercise A.4).

CONVENTION A.2.2. Whenever we draw a figure in \mathbb{R}^n , we give it the topology it inherits as a metric space via the Euclidean metric on \mathbb{R}^n discussed in Example A.1.1.

Remark A.2.3. The notion of a topological space has a long pre-history. The definition we gave above first appeared in Bourbaki [1], but earlier Hausdorff [5] defined something very close to it. We recommend the historical notes in [1] for a more thorough discussion of its history.

A.2.2. Continuity. A map $f: X \to Y$ between topological spaces is *continuous* if for all $U \subset Y$ open, its preimage $f^{-1}(U) \subset X$ is open. By Lemma A.1.6, this is equivalent to the usual ϵ - δ definition if X and Y are metric spaces. We say that $f: X \to Y$ is a homeomorphism if f is a bijection and both f and f^{-1} are continuous.

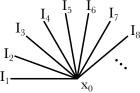
REMARK A.2.4. For metric spaces, another way to characterize continuity is to use limits:

- If (M, \mathfrak{d}) is a metric space, then a sequence of points $\{x_n\}_{n\geq 1}$ of M converges to $y\in M$ if for all $\epsilon>0$, there exists some $N\geq 1$ such that $\mathfrak{d}(x_n,y)<\epsilon$ for $n\geq N$. We write this as $\lim_{n\to\infty}x_n=y$, and if we do not want to specify y we simply say that $\{x_n\}_{n\geq 1}$ is convergent.
- A map $f: M \to N$ between metric spaces is continuous if and only if for all sequences $\{x_n\}_{n\geq 1}$ of points in M converging to $y\in M$, the sequence $\{f(x_n)\}_{n\geq 1}$ converges to f(y). In other words, for a convergent sequence $\{x_n\}_{n\geq 1}$ in M we require $f(\lim_{n\to\infty} x_n) = \lim_{n\to\infty} f(x_n)$.

This definition could also be generalized to topological spaces, though with some subtleties (for instance, limits of sequences need not be unique). However, without some additional assumptions it would give a different notion of continuity. See $\S A.5.2$ below for more about this.

A.2.3. Gluing intervals. We now return to Example A.1.5 and explain how the notion of a topological space fixes its pathological behavior.

EXAMPLE A.2.5. For each integer $n \ge 1$, let I_n be a copy of the interval I = [0, 1]. Let M be the topological space obtained by identifying the points $0 \in I_n$ all together to a single point x_0 :



Each I_n is a subspace of M, so each $p \in M$ lies in some I_n . This I_n is unique unless $p = x_0$. Endow M with the following topology:

• A set $U \subset M$ is open if and only if $U \cap I_n$ is open for all $n \geq 1$.

It is immediate from this definition that a function $f: M \to \mathbb{R}$ is continuous if and only if $f|_{I_n}: I_n \to \mathbb{R}$ is continuous for all $n \ge 1$. In particular, the function $f: M \to \mathbb{R}$ from Example A.1.5 defined via the formula f(p) = np for $p \in I_n$ is continuous.

Remark A.2.6. The topology we imposed on the space M in Example A.2.5 is an example of an identification space topology. See §A.3 below for more details about this.

- **A.2.4.** Conventions. Henceforth, we will use the word "space" as a synonym for "topological space". Also, unless otherwise specified all maps between spaces are assumed to be continuous.
- **A.2.5.** Subspaces. Before giving more examples, we introduce some terminology. Let X be a space and let $Y \subset X$ be a subset. We would like to make Y into a space. Letting $\iota \colon Y \to X$ be the inclusion, the topology we impose on Y should make ι into a continuous function. For an open set $U \subset X$, we therefore need $\iota^{-1}(U) = U \cap Y$ to be open in Y. This suggests the following: the subspace topology on Y is the topology whose open sets $V \subset Y$ are the sets of the form $V = U \cap Y$ for an open set $U \subset X$. Unless we say otherwise, all subspaces are given the subspace topology.
- **A.2.6. Embeddings.** An *embedding* if a map $f: X \to Z$ that is a homeomorphism onto its image. In other words, f is a continuous injection onto a subspace f(X) of Z, and the inverse map $f^{-1}: f(X) \to X$ is continuous. For a subspace Y of X, the inclusion $\iota: Y \to X$ is an embedding.
- **A.2.7.** Closed sets. If X is a space, then a set $C \subset X$ is closed if $X \setminus C$ is open. The collection of closed sets is closed under finite unions and arbitrary intersections. The whole subject could be developed using closed sets instead of open ones.
- **A.2.8. Interior, closure, and neighborhoods.** If X is a space and $A \subset X$ is a subset, we define the interior Int(A) and the closure \overline{A} as follows:
 - The interior $\operatorname{Int}(A)$ is the union of all open sets U with $U \subset A$. In other words, $\operatorname{Int}(A)$ is the largest open set contained in A.
 - The closure \overline{A} is the intersection of all closed sets C with $A \subset C$. In other words, \overline{A} is the smallest closed set containing A.

For $p \in X$, a neighborhood of p is a set A with $p \in Int(A)$. More generally, for a set $B \subset X$, a neighborhood of B is a set A with $B \subset Int(A)$. The most important special case of this terminology is an open neighborhood of $B \subset X$, which is an open set U with $B \subset U = Int(U)$.

- **A.2.9.** Basis for a topology. A *basis* for a topology on a set X consists of a set \mathfrak{B} of subsets of X such that:
 - all points of X lie in some $U \in \mathfrak{B}$; and
 - for all $U, V \in \mathfrak{B}$, the intersection $U \cap V$ can be written as a union of sets in \mathfrak{B} .

Given such a basis, the corresponding topology is the one where a set $U \subset X$ is open if and only if U is a union of sets in \mathfrak{B} . For instance, the topology on a metric space M has for a basis the set of open balls in M.

REMARK A.2.7. There is a also the weaker notion of a subbasis; see §A.11.1 below.

A.2.10. Other examples. The notion of a topological space is extremely general. Here are a few more examples.

EXAMPLE A.2.8. Let X be a set. The discrete topology on X is the one where all sets are open. The trivial topology on X is the one where the only open sets are \emptyset and X. Another topology that can be put on an arbitrary set X is the cofinite topology whose open sets are those of the form $X \setminus F$ with F finite. The fact that this is a topology follows from the fact that finite sets are closed under finite unions and arbitrary intersections.

EXAMPLE A.2.9. Let **k** be a field; for instance, **k** might be \mathbb{C} or \mathbb{R} . For a polynomial $f \in \mathbf{k}[z_1, \ldots, z_n]$, define the vanishing and non-vanishing loci of f to be

$$V(f) = \{(x_1, \dots, x_n) \in \mathbf{k}^n \mid f(x_1, \dots, x_n) = 0\} \subset \mathbf{k}^n \text{ and } NV(f) = \mathbf{k}^n \setminus V(f).$$

The Zariski topology on \mathbf{k}^n is the topology whose open sets are the nonvanishing loci NV(f) as f ranges over elements of $\mathbf{k}[z_1,\ldots,z_n]$ (see Exercise A.5). The closed sets are thus the vanishing loci Z(f). For n=1, the vanishing locus of a polynomial in $\mathbf{k}[z_1]$ can be any finite subset of \mathbf{k}^1 , so the Zariski topology on \mathbf{k}^1 is the cofinite topology.

Remark A.2.10. For **k** equal to \mathbb{C} or \mathbb{R} , we have now seen two topologies on \mathbf{k}^n :

- the classical topology obtained by regarding \mathbf{k}^n as a metric space; and
- the Zariski topology.

Every open set in the Zariski topology is open in the classical topology. We say that the classical topology is finer or stronger than the Zariski topology, and that the Zariski topology is coarser or weaker than the classical topology.

A.2.11. Rest of essay. Because the notion of a topological space is so general, there is almost nothing nontrivial that can be said about an arbitrary topological space. They are thus almost never studied for their own sake. Rather, they provide a minimal framework and language for studying continuity as it appears throughout mathematics.

The tools of algebraic topology are most useful for spaces that have some kind of geometric origin. In the rest of this essay, we introduce language to allow us to work with the kinds of spaces that appear in the rest of this book. We try to include enough examples and sample results to make reading this essay more interesting than reading a dictionary, but we apologize if at some points it does seem merely like a compendium of definitions. We close with a discussion of topological manifolds, which illustrate most of our tools and play a basic role in the subject.

Remark A.2.11. Ultimately, the most natural class of spaces for algebraic topology are CW complexes. These are best introduced as part of a course in algebraic topology.

A.3. Identification spaces and the quotient topology

We now explain how to construct a new space from a collection of existing ones by identifying certain points together. This generalizes the construction we gave in Example A.2.5.

- **A.3.1. Identification spaces.** Let $\{X_i\}_{i\in I}$ be a collection of spaces. An *identification space* is a topological space Y equipped with maps $f_i \colon X_i \to Y$ for each $i \in I$ such that:
 - each $y \in Y$ is in the image of some f_i ; and
 - a set $U \subset Y$ is open if and only if $f_i^{-1}(U) \subset X_i$ is open for all $i \in I$.

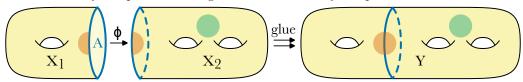
The second condition ensures that each $f_i: X_i \to Y$ is continuous. It also ensures that for a space Z a map of sets $\phi: Y \to Z$ if continuous if and only if $\phi \circ f_i: X_i \to Z$ is continuous for all $i \in I$ (we will say more about this in §A.3.4 below).

In general, if Y is a set obtained by taking the X_i and identifying some points together, then letting $f_i \colon X_i \to Y$ be the projections we can turn Y into an identification space by imposing the topology discussed above. We will call this the *identification space topology* on Y. If we have a construction of a purported "space" from the points of the X_i , then this gives a canonical way of turning our purported "space" into a topological space.

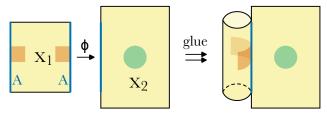
A.3.2. Examples. The above discussion is a little abstract. Here are some examples.

EXAMPLE A.3.1 (Gluing). Let X_1 and X_2 be spaces. Assume that $A \subset X_1$ is a subspace and $\phi \colon A \to X_2$ is a map. As a set, let Y be the disjoint union of X_1 and X_2 modulo the equivalence relation that identifies each $a \in A \subset X_1$ with $\phi(a) \in X_2$. There are natural maps $f_1 \colon X_1 \to Y$ and $f_2 \colon X_2 \to Y$, and we give Y the identification space topology. We call Y the space obtained by gluing X_1 to X_2 via the gluing map ϕ .

Here is one easy example of this with X_1 and X_2 surfaces with one boundary component and $A \cong \mathbb{S}^1$ the boundary component of X_1 glued to the boundary component of X_2 to form Y:

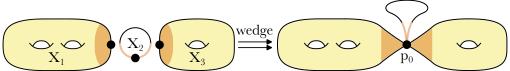


Two open sets on Y are drawn together with their preimages in X_1 and X_2 . In this example, ϕ is a homeomorphism onto its image and both X_1 and X_2 are subspaces of Y. However, in the definition ϕ is not required to be injective. For an example where the gluing map is not injective, consider the following where X_1 and X_2 are rectangles and ϕ identifies the two blue vertical edges of X_1 with a single segment in the left-hand vertical edge of X_2 :

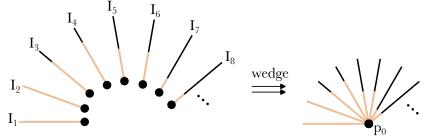


In general, we will use informal language to describe how we are gluing spaces together, but we always mean this topology. \Box

EXAMPLE A.3.2 (Wedge product). Let $\{X_i\}_{i\in I}$ be a collection of topological spaces. Assume that each X_i has a distinguished basepoint $x_i \in X_i$. The wedge product of the X_i , denoted $\vee_{i\in I}X_i$, is the space obtained by identifying all the x_i together to a single point p_0 . There are inclusions $f_i \colon X_i \to \vee_{i\in I}X_i$, and we give $\vee_{i\in I}X_i$ the identification space topology. Here is an example, with an open neighborhood of p_0 together with its preimage in the X_i indicated:



Example A.2.5 is the special case of this where we are taking the wedge product of countably many intervals $I_n = I$ equipped with the basepoints $0 \in I_n$. Here is a picture of this, with an open neighborhood p_0 together with its preimage in the I_n indicated:

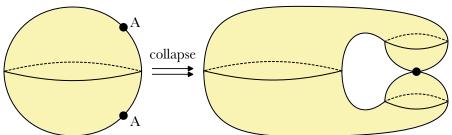


Note that the length of the portion of this open set in I_n is shrinking to 0 at n increases, which would not be possible if we were using the topology coming from a metric.

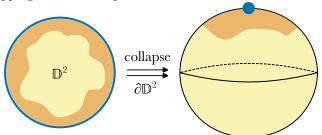
EXAMPLE A.3.3 (Collapsing subspace). In an identification space, we allow there to only be a single space X. As an example of this, let X be a space and let $A \subset X$ be a subspace. Denote by

X/A the result of collapsing A to a single point. The points of X/A are thus the points of $X \setminus A$ together with a single point [A] corresponding to A. Letting $f: X \to X/A$ be the projection, we can endow X/A with the identification space topology.

Here is an example of this with $X = \mathbb{S}^2$ and A two points on X:



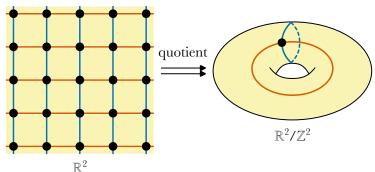
As another example, consider the boundary $\partial \mathbb{D}^n = \mathbb{S}^{n-1}$. As the following shows, $\mathbb{D}^n/\partial \mathbb{D}^n \cong \mathbb{S}^n$, with the blue $\partial \mathbb{D}^n$ mapping to the north pole of \mathbb{S}^n :



As this figure shows, a neighborhood of the north pole in \mathbb{S}^n lifts to a neighborhood of $\partial \mathbb{D}^n$. \square

Remark A.3.4. Collapsing a subspace can turn a nice space into a pathological one. For instance, collapsing the subspace \mathbb{Q} of \mathbb{R} gives a terrible space \mathbb{R}/\mathbb{Q} .

EXAMPLE A.3.5 (Quotienting by group action). Let X be a space and let G be a group acting on X. As a set, X/G consists of the orbits of X under the action of G. Letting $f: X \to X/G$ be the quotient map, we endow X/G with the identification space topology. For example, let the group \mathbb{Z}^2 act on \mathbb{R}^2 by translations. As the following shows, the quotient $\mathbb{R}^2/\mathbb{Z}^2$ is homeomorphic to the 2-torus:



The orange and blue loops on $\mathbb{R}^2/\mathbb{Z}^2$ lift to the orange and blue parallel lines on \mathbb{R}^2 .

A.3.3. Disjoint unions and the quotient topology. A map $f: X \to Y$ is a quotient map if f is surjective and $U \subset Y$ is open if and only if $f^{-1}(U) \subset X$ is open. Given a space X and a surjection of sets $f: X \to Y$, the quotient topology on Y is the topology making $f: X \to Y$ a quotient map. We call Y a quotient space of X.

Of course, this is a special case of an identification space. Moreover, given a collection of spaces $\{X_i\}_{i\in}$ and an identification space Y of the X_i with maps $f_i\colon X_i\to Y$, we can realize Y as a quotient space in the following way. Let $\sqcup_{i\in I}X_i$ be the disjoint union of the X_i . Topologize $\sqcup_{i\in I}X_i$ by letting a set $U\subset \sqcup_{i\in I}X_i$ be open if and only if $U\cap X_i$ is open for all $i\in I$. The maps $f_i\colon X_i\to Y$ then assemble to a quotient map $F\colon \sqcup_{i\in I}X_i\to Y$.

Remark A.3.6. Many treatments of point-set topology only talk about quotient spaces, but we find it convenient to use the slightly more general notion of identification spaces since like in the examples from earlier in this section, we often use them to build a space out of several spaces, not just one.

A.3.4. Universal mapping property. Let $f: X \to Y$ be a quotient map. Let \sim be the equivalence relation on the set X where $p \sim q$ if and only if f(p) = f(q). The equivalence classes of \sim are the fibers $f^{-1}(y)$ for $y \in Y$. Letting Z be another space and $\phi: Y \to Z$ be a continuous map, the composition $\Phi = \phi \circ f$ is a continuous map $\Phi: X \to Z$ is \sim -invariant, i.e., $\Phi(p) = \Phi(q)$ whenever $p \sim q$. Conversely, if $\Phi: X \to Z$ is a continuous \sim -invariant map, then there is a set map $\phi: Y \to Z$ such that $\Phi = \phi \circ f$ and the quotient topology on Y is set up to ensure that ϕ is continuous.

The above discussion shows that composition with f gives a bijection between continuous maps $\phi \colon Y \to Z$ and \sim -invariant continuous maps $\Phi \colon X \to Z$. This is an example of a universal mapping property, and we will describe it informally by saying that a map $\phi \colon Y \to Z$ is the same as a \sim -invariant map $\Phi \colon X \to Z$. This universal mapping property characterizes quotient spaces (see Exercise A.7). Here are several examples of it:

EXAMPLE A.3.7 (Wedge product). Let $\{X_i\}_{i\in I}$ be a collection of topological spaces. Assume that each X_i has a distinguished basepoint $x_i \in X_i$. For a space Z, maps $\phi \colon \bigvee_{i\in I} X_i \to Z$ are the same as collections of maps $\Phi_i \colon X_i \to Z$ such that $\Phi_i(x_i) = \Phi_j(x_j)$ for all $i, j \in I$. In particular, this explains why the quotient topology is the right one to ensure the real-valued function in Example A.2.5 is continuous.

EXAMPLE A.3.8 (Collapsing subspace). Let X be a space and let $A \subset X$ be a subspace. For a space Z, maps $\phi: X/A \to Z$ are the same as maps $\Phi: X \to Z$ such that $\Phi(A)$ is a single point. \square

EXAMPLE A.3.9 (Quotienting by group action). Let X be a space and let G be a group acting on X. For a space Z, maps $\phi \colon X/G \to Z$ are the same as maps $\Phi \colon X \to Z$ that are G-invariant in the sense that $\Phi(g \cdot x) = \Phi(x)$ for all $x \in X$ and $g \in G$.

A.4. Connectivity properties

Our next topic is connectivity and path connectivity.

A.4.1. Path connectivity. Recall that I = [0, 1]. A path in a space X from $p \in X$ to $q \in X$ is a map $\gamma: I \to X$ with $\gamma(0) = p$ and $\gamma(1) = q$:

The space X is path connected if for all $p, q \in X$ there exists a path in X from p to q. The geometric meaning of this is hopefully clear.

A.4.2. Connectivity. We now turn to connectivity. It is easier to say what it means for a space to be disconnected. A space X is disconnected if we can write $X = U \cup V$ with $U, V \subset X$ disjoint nonempty open subsets of X. Since $X \setminus U = V$ and $X \setminus V = U$, the sets U and V are necessarily closed as well as open. Sets that are both open and closed are called *clopen sets*.

A space X is connected if it is not disconnected. Another way of saying this is that X is connected if whenever $X = U \cup V$ with $U, V \subset X$ open we have $U \cap V \neq \emptyset$. Here are some basic properties of this (see Exercise A.8):

- The space I = [0, 1] is connected.
- If X is connected and $f: X \to Y$ is a map, then f(X) is connected.
- Let X be a space and let $\{Y_i\}_{i\in I}$ be a collection of subspaces of X. Assume that:
 - each Y_i is connected; and
 - for all $i, j \in I$, the space $Y_i \cap Y_j$ is nonempty; and
 - $-X = \cup_{i \in I} Y_i.$

Then X is connected.

¹This is a terrible term, but is the standard word for this.

Together, these three properties imply the following:

Lemma A.4.1. Let X be a path connected space. Then X is connected.

PROOF. This is trivial if $X = \emptyset$, so assume that $X \neq \emptyset$. Fix a point $p \in X$. For each $q \in X$, pick a path $\gamma_q \colon I \to X$ from p to q. Set $Y_q = \gamma_q(I)$. Since I is connected, so is Y_q . The space X is the union of the Y_q , and for $q, q' \in X$ we have $p \in Y_q \cap Y_{q'}$. It follows that X is connected. \square

The converse of Lemma A.4.1 is not true:

EXAMPLE A.4.2. Let X be the following subset of \mathbb{R}^2 :

$$X = \{(0, y) \mid -1 \le y \le 1\} \cup \{(x, \sin(1/x) \mid x > 0\}.$$

This is a closed subset of \mathbb{R}^2 that is often called the *topologist's sine-curve*:

The space X is *not* path connected; indeed, there is no path connecting (0,0) and $(x,\sin(1/x))$ for any x > 0 (see Exercise A.9). However, X is connected (see also Exercise A.9).

A.4.3. Path components. Let X be a space. Say that $p, q \in X$ are equivalent if there is a path in X from p to q. This is an equivalence relation on the points of X (see Exercise A.10), and the equivalence classes are the *path components* of X. It is immediate from the definition that the path components of X are path connected and that X is the disjoint union of its path components.

EXAMPLE A.4.3. Let X be the topologist's sine-curve from Example A.4.2. The path components of X are as follows (see Exercise A.9):

$$X_1 = \{(0, y) \mid -1 \le y \le 1\},\$$

 $X_2 = \{(x, \sin(1/x) \mid x > 0\}.$

- **A.4.4.** Connected components. Continue to let X be a space. Now say that points $p, q \in X$ are equivalent if there is a connected subspace $Y \subset X$ with $p, q \in Y$. This is an equivalence relation on the points of X (see Exercise A.10), and the equivalence classes are the *connected components* of X. The connected components of X are connected (see Exercise A.11), and X is the disjoint union of its connected components. Since path connected spaces are connected, each connected component of X is the union of a collection of path components.
- **A.4.5.** Local connectivity. Since a space X is disconnected if we can write $X = U \cup V$ with $U, V \subset X$ disjoint nonempty clopen subsets, it is natural to hope that the connected components of X are clopen. Unfortunately, this need not hold:

EXAMPLE A.4.4. Let $X = \mathbb{Q}$. The connected components of X and the path components of X both consist of the one-points sets $\{q\}$ for $q \in \mathbb{Q}$.

As this example suggests, the cause of this is pathological local behavior. A space X is locally connected at $p \in X$ if for all open neighborhoods U of p, there is a connected open neighborhood V of p with $V \subset U$. The space X is locally connected if it is locally connected at all $p \in X$. Similarly, a space X is locally path connected at $p \in X$ if for all open neighborhoods U of p, there is a path connected open neighborhood V of p with $V \subset U$. The space X is locally path connected if it is locally path connected at all $p \in X$. We then have:

Lemma A.4.5. Let X be a space. Then:

- If X is locally connected, then all connected components of X are clopen.
- If X is locally path connected, then all path components of X are clopen.

PROOF. The two conclusions have similar proofs, so we will prove the first. Assume that X is locally connected. Let Y be a connected component of X. For $p \in Y$, since X is locally connected we can find a connected open neighborhood V of p. Since Y and V are connected and $p \in Y \cap V$,

the union $Y \cup V$ is connected (see Exercise A.8). This implies that $Y = Y \cup V$, i.e., that $V \subset Y$. We deduce that Y is open. Since $X \setminus Y$ is the union of connected components and these connected components are open, it follows that $X \setminus Y$ is open. Thus Y is closed and hence clopen, as desired. \square

COROLLARY A.4.6. Let X be a locally path connected space. Then the connected components and path components of X coincide.

PROOF. Let Y be a connected component of X. The subspace Y is the disjoint union of a collection of path components. To prove that it is actually a path component, it is enough to prove that Y is path connected. Assume otherwise. We can then write $Y = Y_1 \cup Y_2$ with each Y_i a nonempty union of path components and $Y_1 \cap Y_2 = \emptyset$. Lemma A.4.5 implies that each path component is clopen, so both Y_1 and Y_2 are also clopen. Since $Y = Y_1 \cup Y_2$, we deduce that Y is disconnected, contradicting the fact that it is connected.

Remark A.4.7. As our examples show, not all metric spaces (or even subspaces of \mathbb{R}^n) are locally connected or locally path connected. However, most spaces that appear in algebraic topology are locally path connected. In particular, CW complexes are always locally path connected.

A.5. Countability properties

This section discussed properties that ensure a topological space is not "too large".

- **A.5.1. First countability.** Let X be a space. A *neighborhood basis* for X at a point $p \in X$ is a collection \mathfrak{B}_p of open neighborhoods of p such that:
 - For all open neighborhoods V of p, we have $U \subset V$ for some $U \in \mathfrak{B}_p$.

The space X is first countable if it has a countable neighborhood basis at each point $p \in X$. All metric spaces have this property:

Lemma A.5.1. Let M be a metric space. Then M is first countable.

PROOF. Recall that $B_r(p)$ is the open ball of radius r > 0 around $p \in M$. For $p \in M$, the set $\{B_r(p) \mid r > 0 \text{ rational}\}$ is a countable neighborhood basis for X at p.

A.5.2. Sequences. Let X be a space. If X is first countable, then we will show that limits of sequences can be used in X in a manner analogous to the way sequences are used in real analysis. A sequence in X is an ordered collection $\{x_n\}_{n\geq 1}$ of points of X. Given such a sequence, a point $y\in X$ is its limit if for all open neighborhoods U of y there is some $N\geq 1$ such that $x_n\in U$ for $n\geq N$. If y is a limit of $\{x_n\}_{n\in X}$, then we write $\lim_{n\to\infty}x_n=y$ and say that $\{x_n\}_{n\geq 1}$ converges to y. If such a y exists, then we say that $\{x_n\}_{n\geq 1}$ is a convergent sequence.

Remark A.5.2. Be warned that a sequence can have multiple distinct limits. This only happens for fairly pathological spaces. In the next section, we introduce a property of spaces called being Hausdorff that forces convergent sequences to have unique limits. \Box

A.5.3. Closure. If X is first countable, then for $A \subset X$ we can construct the closure \overline{A} using limits:

LEMMA A.5.3. Let X be a first countable space and let $A \subset X$. Then \overline{A} is the set of all $y \in A$ such that there exists a sequence $\{a_n\}_{n\geq 1}$ of points of A such that $\lim_{n\to\infty} a_n = y$.

PROOF. Let B be the set of limits of sequences of points of A. We first prove that $B \subset \overline{A}$. Let $b \in B$ and let $C \subset X$ be a closed set with $A \subset C$. We must prove that $b \in C$. Indeed, if $b \notin C$ then we can find an open neighborhood U of b such that $U \subset X \setminus C$. However, since $b \in B$ there must exist points of $A \subset C$ in U, contradicting the fact that U is disjoint from C.

We next prove that $\overline{A} \subset B$. This uses first countability. Consider a point $p \in \overline{A}$. Each open neighborhood V of p must contain a point of A. Let $\mathfrak{B}_p = \{U_1, U_2, \ldots\}$ be a countable neighborhood basis at p. For each $n \geq 1$, choose $x_n \in U_n$ with $x_n \in A$. We then have $\lim_{n \to \infty} x_n = p$, so $p \in B$. \square

Remark A.5.4. Though metric spaces are first countable, not all spaces that appear in algebraic topology are first countable. In particular, not all CW complexes are first countable. This is why arguments using limits are mostly avoided in this book. There are generalizations of sequences and limits (nets, filters, etc.) that work for spaces that are not first countable (see [7]), but in practice they do not simplify arguments in algebraic topology.

A.5.4. Second countability. A space X is *second countable* if there is a countable basis for its topology. It is clear that all second countable spaces are first countable. It is not true that all metric spaces are second countable, but all subspaces of \mathbb{R}^n are second countable:

LEMMA A.5.5. Let X be a subspace of \mathbb{R}^n . Then X is second countable.

PROOF. For all $p \in \mathbb{R}^n$ and r > 0, let $B_r(p) \subset \mathbb{R}^n$ be the open ball around p. Then X has the countable basis $\{B_r(p) \cap X \mid p \in \mathbb{Q}^n \text{ and } r > 0 \text{ rational}\}.$

Remark A.5.6. Since CW complexes need not be first countable, they definitely do not need to be second countable. The main reason we introduce second countability is that it appears in the definition of a manifold; see $\S A.12$ below.

A.5.5. Separability. There is one further countability condition that occasionally shows up. For a space X, a set $A \subset X$ is *dense* if its closure \overline{A} equals X. The space X is *separable* if X has a countable dense subset. This is slightly weaker than second countability:

Lemma A.5.7. Let X be a second countable space. Then X is separable.

PROOF. Let $\mathfrak{B} = \{U_1, U_2, \dots, \}$ be a countable basis for the topology of X. Pick $x_n \in U_n$. Then the set $\{x_n \mid n \geq 1\}$ is a countable dense set in X.

For metric spaces, these two notions coincide:

Lemma A.5.8. Let M be a separable metric space. Then M is second countable.

PROOF. The proof is similar to that of Lemma A.5.5: if $A \subset M$ is a countable dense set, then $\{B_{1/n}(a) \mid a \in A, n \geq 1\}$ is a countable basis for the topology on M.

A.6. Separation properties and the Tietze extension theorem

This section discusses properties that are necessary to ensure that continuous functions have the properties one would expect.

A.6.1. Pathology. Consider maps $f, g: X \to Y$. If $A \subset X$ is dense and $f|_A = g|_A$, then it is natural to expect that f = g. Unfortunately, this need not hold:

EXAMPLE A.6.1 (Line with two origins). As a set, let $Y = (\mathbb{R} \setminus \{0\}) \sqcup \{0_1, 0_2\}$. For i = 1, 2, let $f_i \colon \mathbb{R} \to Y$ be the map defined by $f_i(x) = x$ for $x \in \mathbb{R} \setminus \{0\}$ and $f_i(0) = 0_i$. Give Y the identification space topology, so:

• a set $U \subset Y$ is open if and only if $f_1^{-1}(U)$ and $f_2^{-1}(U)$ are open in \mathbb{R} .

With this topology, the subspaces $Y \setminus \{0_2\} = f_1(\mathbb{R})$ and $Y \setminus \{0_1\} = f_2(\mathbb{R})$ are both homeomorphic to \mathbb{R} . The maps $f_1, f_2 \colon \mathbb{R} \to Y$ are continuous and agree on the dense set $\mathbb{R} \setminus \{0\}$. However, $f_1 \neq f_2$. \square

- **A.6.2.** Hausdorff spaces. The issue with the line with two origins from Example A.6.1 is that the points 0_1 and 0_2 do not have disjoint open neighborhoods. To rule this out, say that a space X is Hausdorff if for all distinct points $p, q \in X$, there are open neighborhoods U of p and V of q with $U \cap V = \emptyset$. This has a number of nice consequences (see Exercise A.13):
 - All points in X are closed, i.e., for all $p \in X$ the one-point set $\{p\}$ is closed.
 - If Z is another space and $f, g: Z \to X$ are two maps, then the subset $\{z \in Z \mid f(z) = g(z)\}$ of points in Z where f and g are equal is closed. In particular, if f and g agree on a dense subset of Z, then f = g.
 - Limits in X are unique in the following sense. Let $\{x_n\}_{n\geq 1}$ be a sequence in X and let $y_1, y_2 \in X$ be such that $\lim_{n\to\infty} x_n = y_1$ and $\lim_{n\to\infty} x_n = y_2$. Then $y_1 = y_2$.

Most geometrically natural spaces are Hausdorff. In particular:

Lemma A.6.2. Let (M, \mathfrak{d}) be a metric space. Then M is Hausdorff.

PROOF. Consider distinct $p, q \in M$. Set $\epsilon = \mathfrak{d}(p, q)$. Then the open balls $B_{\epsilon/2}(p)$ and $B_{\epsilon/2}(q)$ are disjoint.

Remark A.6.3. For an infinite field \mathbf{k} , an important non-example is given by the Zariski topology on \mathbf{k}^n . See Exercise A.14.

A.6.3. Continuity. For first countable Hausdorff spaces, we can characterize continuity with sequences:

LEMMA A.6.4. Let X be a first countable Hausdorff space, let Y be a Hausdorff space, and let $f: X \to Y$ be a map of sets. Then f is continuous if and only if the following holds:²

• Let $\{x_n\}_{n\geq 1}$ be a convergent sequence in X. Then $\{f(x_n)\}_{n\geq 1}$ is a convergent sequence in Y and $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

Proof. See Exercise A.12.

- **A.6.4.** Normal spaces. In fact, most geometrically natural spaces have even stronger separation properties. A space X is *normal* if it satisfies the following two conditions:
 - for all disjoint closed sets $C, D \subset X$, there exist open neighborhoods U of C and V of D with $U \cap V = \emptyset$; and
 - all points in X are closed.³

All normal spaces are Hausdorff. The key example is:

LEMMA A.6.5. Let (M, \mathfrak{d}) be a metric space. Then M is normal.

PROOF. Since M is Hausdorff, all points in M are closed. Consider disjoint closed sets $C, D \subset M$. For $z \in M$, let

$$r(z) = \inf \left\{ \mathfrak{d}(z,c) \mid c \in C \right\} \quad \text{and} \quad s(z) = \inf \left\{ \mathfrak{d}(z,d) \mid d \in D \right\}.$$

Since C and D are disjoint closed sets, we have r(d) > 0 for $d \in D$ and s(c) > 0 for $c \in C$. Define

$$U = \bigcup_{c \in C} B_{s(c)/3}(c)$$
 and $V = \bigcup_{d \in D} B_{r(d)/3}(d)$.

The sets U and V are open, and $C \subset U$ and $D \subset V$. To prove the lemma, it is enough to show that $U \cap V = \emptyset$. Assume this is false, and let $x \in U \cap V$. We can therefore find $c_0 \in C$ and $d_0 \in D$ such that $\mathfrak{d}(c_0, x) < s(c_0)/3$ and $\mathfrak{d}(d_0, x) < r(d_0)/3$. We either have $s(c_0) \le r(d_0)$ or $r(d_0) \le s(c_0)$. Both cases lead to a similar contradiction, so we will give the details for $s(c_0) \le r(d_0)$. This implies that

$$\mathfrak{d}(c_0, d_0) \le \mathfrak{d}(c_0, x) + \mathfrak{d}(x, d_0) < s(c_0)/3 + r(d_0)/3 \le r(d_0)/3 + r(d_0)/3 = \frac{2}{3}r(d_0).$$

However, we also have $\mathfrak{d}(c_0, d_0) \geq \inf \{ \mathfrak{d}(d_0, c) \mid c \in C \} = r(d_0),$ a contradiction.

The following characterization of normality is often useful. Recall that \overline{V} is the closure of V.

Lemma A.6.6. A space X is normal if and only if all points in X are closed and:

(\spadesuit) For all closed sets $C \subset X$ and all open neighborhoods U of C, there exists an open neighborhood V of C with $\overline{V} \subset U$.

PROOF. Assume first that X is normal. To verify (\spadesuit) , let $C \subset X$ be closed and let U be an open neighborhood of C. The set $D = X \setminus U$ is then a closed set that is disjoint from C, so by normality there exist disjoint open neighborhoods V and W of C and D. Since $X \setminus W$ is a closed subset of U containing V, it follows that $\overline{V} \subset U$.

Assume now that all points in X are closed and (\spadesuit) holds. To verify normality, let $C, D \subset X$ be disjoint closed sets. Applying (\spadesuit) to the open neighborhood $U = X \setminus D$ of C, we obtain an open neighborhood V of C with $\overline{V} \subset U$. It follows that V and $W = X \setminus \overline{V}$ are disjoint open neighborhoods of C and D.

²There is a version of this result that is true without the Hausdorff assumption, but it is awkward to state since in non-Hausdorff spaces limits need not be unique.

³This is not always included in the definition of normality, but it ensures that normal spaces are Hausdorff.

A.6.5. Urysohn's Lemma. A key feature of normal spaces is that they have a rich supply of continuous real-valued functions. For our first example of this, we need a definition. The *support* of a function $f: X \to \mathbb{R}$, denoted supp(f), is the closure of the set $\{p \in X \mid f(p) \neq 0\}$. We then have:

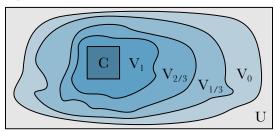
THEOREM A.6.7 (Urysohn's Lemma). Let X be a normal space, let $C \subset X$ be closed, and let $U \subset X$ be an open neighborhood of C. Then there exists a map $f: X \to [0,1]$ such that $f|_C = 1$ and $\text{supp}(f) \subset U$.

PROOF. We must use the open sets provided by normality to construct f. The key is:

CLAIM. There exist open sets V_{α} for all $\alpha \in \mathbb{Q}$ with the following properties:

- (i) For rational r < s, we have $\overline{V}_s \subset V_r$.
- (ii) $C \subset V_1$ and $\overline{V}_0 \subset U$.
- (iii) $V_{\alpha} = \emptyset$ for $\alpha > 1$ and $V_{\alpha} = X$ for $\alpha < 0$.

PROOF OF CLAIM. The picture is as follows:



Define V_{α} for $\alpha > 1$ and $\alpha < 0$ as in (iii). Next, using Lemma A.6.6 choose an open neighborhood V_0 of C with $\overline{V}_0 \subset U$ and an open neighborhood V_1 of C with $\overline{V}_1 \subset \overline{V}_0$. Conditions (ii) and (iii) hold, and we inductively construct the remaining V_{α} satisfying (i) as follows. Enumerate the rational numbers in [0,1] as $\{\alpha_0,\alpha_1,\ldots\}$ with $\alpha_0=0$ and $\alpha_1=1$. We have already constructed V_0 and V_1 , so assume that $n\geq 2$ and that we have constructed V_{α_m} for $0\leq m\leq n-1$ satisfying (i). We construct V_{α_n} as follows. Let

$$r = \max \{ \alpha_m \mid 0 \le m \le n-1, \alpha_m < \alpha_n \}$$
 and $s = \min \{ \alpha_m \mid 0 \le m \le n-1, \alpha_m > \alpha_n \}$.

We thus have $r < \alpha_n < s$, and by (iii) we have $\overline{V}_s \subset V_r$. Using Lemma A.6.6, we can then find an open neighborhood V_{α_n} of \overline{V}_s such that $\overline{V}_{\alpha_n} \subset V_r$.

We now define a set map $f: X \to \mathbb{R}$ via the formula

$$f(p) = \sup \{ \alpha \in \mathbb{Q} \mid p \in V_{\alpha} \}.$$

By (iii) we have $f(p) \in [0,1]$ for all $p \in X$. Also, by (ii) we have f(p) = 1 for $p \in C$ and supp $(f) \subset U$. All that remains is to check that f is continuous.

Let $W \subset \mathbb{R}$ be open. We must prove that $f^{-1}(W)$ is open. Consider $p \in f^{-1}(W)$. Choose rational r < s such that $[r, s] \subset W$ and $f(p) \in [r, s]$. By (iii), we have $\overline{V}_s \subset V_r$. To prove that $f^{-1}(W)$ is open, it is enough to prove that the open set $V_r \setminus \overline{V}_s$ is contained in $f^{-1}(W)$. To do this, it is enough to prove that f maps $V_r \setminus \overline{V}_s$ into $[r, s] \subset W$. This follows from the following two facts, both of which are immediate from (iii):

- for $q \in V_r$, we have $f(q) \ge r$; and
- for $q \notin V_s$, we have $f(q) \leq s$.

A.6.6. Converse to Urysohn. The following lemma shows that the conclusion of Urysohn's lemma characterizes normality:

LEMMA A.6.8. Let X be a space such that all points in X are closed. For every closed $C \subset X$ and every neighborhood U of C, assume that there exists a continuous map⁴ $f: X \to \mathbb{R}$ with $f|_{C} = 1$ and supp $(f) \subset U$. Then X is normal.

⁴In Urysohn's lemma, the target of f is [0,1]. Here we relax this.

PROOF. Let C and D be disjoint closed sets in X. By assumption, there is a continuous map $f: X \to \mathbb{R}$ with $f|_C = 1$ and $\operatorname{supp}(f) \subset X \setminus D$. The sets $U = f^{-1}((1/2, \infty))$ and $V = X \setminus \operatorname{supp}(f)$ are then disjoint open neighborhoods of C and D.

A.6.7. Strengthening Urysohn. Say that a space X is *perfectly normal* if points in X are closed and for all closed $C \subset X$ and all open neighborhoods U of C, there exists a continuous map $f \colon X \to [0,1]$ such that $f^{-1}(1) = C$ and $\operatorname{supp}(f) \subset U$. Lemma A.6.8 implies that perfectly normal spaces are normal.

The definition of a perfectly normal space resembles the conclusion of Urysohn's lemma, but there is a small difference: in a perfectly normal space we have $f^{-1}(1) = C$, while in the conclusion of Urysohn's lemma we only have $C \subset f^{-1}(1)$. Most geometrically natural spaces are perfectly normal. In particular:

Lemma A.6.9. Let (M, \mathfrak{d}) be a metric space. Then M is perfectly normal.

PROOF. Lemma A.6.5 implies that M is normal, and in particular points are closed. Consider $C \subset X$ closed and U an open neighborhood of C. By Urysohn's Lemma, there exists a continuous map $f: X \to [0,1]$ such that $f|_C = 1$ and $\operatorname{supp}(f) \subset U$. We want to modify f to ensure it is less than 1 at all points that do not lie in C. Let $g: X \to \mathbb{R}$ be the function

$$g(p) = \inf \{ \mathfrak{d}(p,c) \mid c \in C \} \quad \text{for } p \in X$$

and let $h: X \to [0,1]$ be the function

$$h(p) = \min(g(p), 1)$$
 for $p \in X$.

Both g and h are continuous and satisfy $g^{-1}(0) = h^{-1}(0) = C$. The function $f': X \to [0,1]$ defined by

$$f'(p) = (1 - h(p)) \cdot f(p)$$
 for all $p \in M$

then satisfies $(f')^{-1}(1) = C$ and $\operatorname{supp}(f') \subset U$.

REMARK A.6.10. We have introduced the notion of a space being Hausdorff, being normal, and being perfectly normal. These are called *separation axioms*. It is common to call a Hausdorff space a T_2 -space, a normal space a T_4 -space, and a perfectly normal space a T_6 -space. As this terminology suggests, there are many other separation axioms as well.⁵

The vast majority of spaces considered in algebraic topology are perfectly normal. In fact, as we mentioned in Remark A.2.11 the most natural spaces from the viewpoint of algebraic topology are the so-called CW complexes, and CW complexes are perfectly normal. \Box

A.6.8. Uniform limits of functions. Our next goal is to prove the Tietze extension theorem, which says that continuous real-valued functions on closed subsets of normal spaces can be extended to the whole space. The extension we construct will be a limit of functions constructed using Urysohn's Lemma. We therefore need a way to certify that such functions are continuous.

Let X be a space. A sequence of functions $f_n: X \to \mathbb{R}$ is said to *converge uniformly* to a function $f: X \to \mathbb{R}$ if the following holds:

• for all $\epsilon > 0$, there exists some $N \ge 1$ such that $|f(p) - f_n(p)| < \epsilon$ for all $n \ge N$ and $p \in X$. We then have the following, which generalizes a familiar fact from real analysis:

LEMMA A.6.11. Let X be a space and let $f_n: X \to \mathbb{R}$ be a sequence of continuous functions converging uniformly to a function $f: X \to \mathbb{R}$. Then f is continuous.

PROOF. This can be proved using an argument similar to the one used to prove the analogous fact for functions defined on $X = \mathbb{R}$. See Exercise A.15.

⁵In fact, not only are there T_k -spaces for $0 \le k \le 6$, but there are even $T_{2.5}$ -spaces and $T_{3.5}$ -spaces.

A.6.9. Tietze Extension Theorem. We can now prove the Tietze Extension Theorem:

THEOREM A.6.12 (Tietze Extension Theorem). Let X be a normal space, let $C \subset X$ be closed, and let $f: C \to \mathbb{R}$ be a continuous function. Then f can be extended to a continuous function $F: X \to \mathbb{R}$. Moreover, if the image of f lies in a closed interval [a,b] then F can be chosen such that its image also lies in [a,b].

PROOF. We first prove the case where f is bounded, and then derive the unbounded case.

CASE 1. The theorem holds if the image of f lies in a closed interval [a, b].

Since $[a,b] \cong [-1,1]$, we can assume without loss of generality that [a,b] = [-1,1]. For $n \ge 1$, we will construct continuous functions $G_n \colon X \to \mathbb{R}$ such that letting $F_n = G_1 + \cdots + G_n$, we have:

- (i) The function F_n satisfies $|f(p) F_n(p)| \le (2/3)^n$ for all $p \in C$.
- (ii) The function G_n satisfies $|G_n(p)| \le (1/3)(2/3)^{n-1}$ for all $p \in X$.

Condition (ii) will imply that the functions $F_n = G_1 + \cdots + G_n$ converge uniformly to a function F such that

$$|F(p)| \le \frac{1}{3} (1 + (2/3) + (2/3)^2 + \cdots) = \frac{1}{3} (\frac{1}{1 - 2/3}) = 1$$
 for all $p \in X$.

Lemma A.6.11 implies that $F: X \to [-1, 1]$ is continuous, and condition (i) implies that $F|_C = f$.

It remains to construct the G_n . Assume that $n \geq 1$ and we have constructed G_1, \ldots, G_{n-1} satisfying (ii) such that letting $F_{n-1} = G_1 + \cdots + G_{n-1}$, we have

(A.6.1)
$$|f(p) - F_{n-1}(p)| \le (2/3)^{n-1}$$
 for all $p \in C$.

This is vacuous for n = 1. We will construct G_n as follows. Let

$$L = \left\{ p \in C \mid f(p) - F_{n-1}(p) \le -(1/3)(2/3)^{n-1} \right\}$$

$$R = \left\{ p \in C \mid f(p) - F_{n-1}(p) \ge (1/3)(2/3)^{n-1} \right\}.$$

The sets L and R are disjoint closed sets. Using Urysohn's lemma, we can find:

- a continuous map $h_L: X \to [0,1]$ with $h_L|_L = 1$ and supp $(h_L) \subset X \setminus R$; and
- a continuous map $h_R: X \to [0,1]$ with $h_R|_R = 1$ and supp $(h_R) \subset X \setminus L$.

Let $G_n: X \to [-(1/3)(2/3)^{n-1}, (1/3)(2/3)^{n-1}]$ be the map

$$G_n = -(1/3)(2/3)^{n-1}h_L + (1/3)(2/3)^{n-1}h_R.$$

By construction, G_n satisfies (ii). To show that $F_n = F_{n-1} + G_n$ satisfies (i), consider some $p \in C$. There are three cases:

• If $p \in L$, then by (A.6.1) we have

$$|f(p) - F_n(p)| = |f(p) - F_{n-1}(p) + (1/3)(2/3)^{n-1}| \le (2/3)^{n-1} - (1/3)(2/3)^{n-1} = (2/3)^n.$$

• If $p \in R$, then by (A.6.1) we have

$$|f(p) - F_n(p)| = |f(p) - F_{n-1}(p) - (1/3)(2/3)^{n-1}| \le (2/3)^{n-1} - (1/3)(2/3)^{n-1} = (2/3)^n.$$

• If $p \notin L \cup R$, then by definition we have $|f(p) - F_{n-1}(p)| \le (1/3)(2/3)^{n-1}$, so since $|G_n(p)| < (1/3)(2/3)^{n-1}$ we have

$$|f(p) - F_n(p)| = |f(p) - F_{n-1}(p) - G_n(p)| \le (1/3)(2/3)^{n-1} + (1/3)(2/3)^{n-1} = (2/3)^n.$$

In all three cases, (ii) is satisfied. The theorem follows.

Case 2. The theorem holds in general.

Since $\mathbb{R} \cong (-1,1)$, it is enough to prove that every continuous function $f\colon C\to (-1,1)$ can be extended to a continuous function $F\colon X\to (-1,1)$. By Case 1, we can extend f to a continuous function $F'\colon X\to [-1,1]$. Our goal is to modify F' such that its image does not contain -1 or 1. Set $U=(F')^{-1}((-1,1))$. Applying Urysohn's Lemma (Theorem A.6.7), there exists a continuous function $g\colon X\to [0,1]$ with $g|_C=1$ and $\operatorname{supp}(g)\subset U$. The product $F=g\cdot F'$ then still extends f and satisfies $F(X)\subset (-1,1)$.

A.7. Compactness and the Heine-Borel theorem

We now introduce the key concept of compactness, which generalizes the notion of compactness for subsets of \mathbb{R} and \mathbb{R}^n from real analysis.

A.7.1. Compactness. Let X be a space and let $K \subset X$. An open cover of K is a collection \mathfrak{U} of open sets in X such that

$$K\subset\bigcup_{U\in\mathfrak{U}}U.$$

The open cover \mathfrak{U} is *finite* if it consists of finitely many open sets. A *subcover* of an open cover \mathfrak{U} is a subset $\mathfrak{U}' \subset \mathfrak{U}$ that is still a cover. The subspace K is *compact* if every open cover of K has a finite subcover. In particular, K itself is compact if every open cover of K has a finite subcover.

A.7.2. Closed sets. Compactness behaves best for Hausdorff spaces. In fact, in some treatments of point-set topology a space is said to be quasi-compact if each open cover has a finite subcover, and a compact space is a space that is Hausdorff and quasi-compact. For Hausdorff spaces, we have:

LEMMA A.7.1. Let X be a Hausdorff space and let $K \subset X$ be compact. Then K is closed.

PROOF. We must prove that $X \setminus K$ is open. Consider $p \in X \setminus K$. Since X is Hausdorff, for each $k \in K$ there are disjoint open neighborhoods U_k and V_k of p and k. Since K is compact, we can find finitely many points $k_1, \ldots, k_n \in K$ such that $\{V_{k_1}, \ldots, V_{k_n}\}$ is an open cover of K. Letting $U = U_{k_1} \cap \cdots \cap U_{k_n}$, the set U is an open neighborhood of p that is disjoint from K, as desired. \square

For all spaces, we have:

LEMMA A.7.2. Let X be a space, let $K \subset X$ be compact, and let C be a closed subset of X with $C \subset K$. Then C is compact.

PROOF. Let $\mathfrak U$ be an open cover of $C \subset X$. The set $\{X \setminus C\} \cup \mathfrak U$ is an open cover of K. Since K is compact, it has a finite subcover. Removing $X \setminus C$ from this finite subcover if necessary, we obtain a finite subcover of $\mathfrak U$.

As another indication of how strong an assumption being compact Hausdorff is, we have:

Lemma A.7.3. Let X be a compact Hausdorff space. Then X is normal.

PROOF. See Exercise A.16. \Box

A.7.3. Compactness and functions. Continuous maps take compact sets to compact sets:

LEMMA A.7.4. Let $f: X \to Y$ be a map of spaces and let $K \subset X$ be compact. Then f(K) is compact.

PROOF. See Exercise A.18

Another important property of compact sets is that real-valued functions on them are bounded and attain maximum and minimum values:

LEMMA A.7.5. Let X be a compact space and let $f: X \to \mathbb{R}$ be a map. Then there exist real numbers $m \leq M$ such that:

- for all $p \in X$, we have $m \le f(p) \le M$; and
- there exists $p_0, q_0 \in X$ such that $m = f(p_0)$ and $M = f(q_0)$.

PROOF. By Lemma A.7.4, the image K = f(X) is a compact subset of \mathbb{R} . The lemma now follows from the following standard fact about compact subsets of \mathbb{R} : there exist $m, M \in K$ such that $m \leq k \leq M$ for all $k \in K$ (see Exercise A.19).

A.7.4. Injective maps are embeddings. For general spaces X and Y, an injective map $f: X \to Y$ need not be an embedding, i.e., a homeomorphism onto its image. Here is an example:

EXAMPLE A.7.6. Consider the injective map $f:(0,1)\to\mathbb{R}^2$ whose image X is as follows:

This is not an embedding; indeed, for every $p \in (0,1)$ the space $(0,1) \setminus \{p\}$ is disconnected but for the indicated point $p_0 \in X$ we have $X \setminus \{p_0\}$ connected.

However, if X is compact and Y is Hausdorff this pathology does not occur:

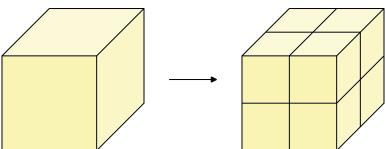
LEMMA A.7.7. Let X be a compact space, let Y be a Hausdorff space, and let $f: X \to Y$ be an injective map. Then f is an embedding.

PROOF. Replacing Y with f(X), we can assume that f is bijective. We must prove that $f^{-1}: Y \to X$ is continuous. Letting $U \subset X$ be open, we must prove that $(f^{-1})^{-1}(U) = f(U)$ is open. Equivalently, letting $C = X \setminus U$ we must prove that f(C) is closed. Since C is closed and X is compact, C is compact. It follows that f(C) is compact, so since Y is Hausdorff f(C) is closed. \square

A.7.5. Heine–Borel Theorem. Let (M, \mathfrak{d}) be a metric space. A subset $K \subset M$ is bounded if there is some $R \geq 0$ such that $\mathfrak{d}(p,q) \leq R$ for all $p,q \in K$. The following theorem gives a large supply of compact spaces:

Theorem A.7.8 (Heine–Borel Theorem). Let $K \subset \mathbb{R}^n$ be closed and bounded. Then K is compact.

PROOF. For some $D \gg 0$, the set K is contained in the cube $[-D,D]^n$. By Lemma A.7.2, it is enough to prove that $[-D,D]^n$ is compact. Since all cubes in \mathbb{R}^n , are homeomorphic, it is actually enough to prove that the unit cube $C_1 = [0,1]^n$ is compact. Let \mathfrak{U} be an open cover of C_1 . For the sake of contradiction, assume that it has no finite subcover. Divide C_1 into 2^n subcubes with side lengths 1/2:



The cover \mathfrak{U} is a cover of each of these subcubes. Since no finite subset of \mathfrak{U} covers C_1 , it must the case that among these 2^n subcubes there is a subcube C_2 such that no finite subset of \mathfrak{U} covers C_2 . This process can then be repeated: C_2 can be divided into 2^n subcubes with side length $1/2^2$, and there among these there must exist a subcube C_3 such that no finite subset of \mathfrak{U} covers it. We then divide C_3 into 2^n subcubes with side lengths $1/2^3$, etc. This procedure gives a nested sequence

$$C_1 \supset C_2 \supset C_3 \supset \cdots$$

of cubes with the following properties:

- the cube C_n has side lengths $1/2^n$; and
- no finite subset of \mathfrak{U} covers any of the the C_n .

By the completeness of \mathbb{R} , the intersection $\cap_{n=1}^{\infty} C_n$ must consist of a single point p. Pick $U \in \mathfrak{U}$ such that $p \in U$. Since U is open, for some $\epsilon > 0$ the ϵ -ball around p must be contained in U. This implies that for $n \gg 0$ we have $C_n \subset U$, contradicting the fact that no finite subset of \mathfrak{U} covers any of the the C_n .

Remark A.7.9. A metric space in which closed and bounded subsets are compact is called a proper metric space. \Box

A.7.6. Intersections of closed sets. The following is a useful rephrasing of the definition of compactness:

LEMMA A.7.10. Let X be a space. The X is compact if and only if the following holds for all sets $\mathfrak C$ of closed subsets of X:

(*) If for all finite subsets $\mathfrak{C}' \subset \mathfrak{C}$ we have $\bigcap_{C \in \mathfrak{C}'} C \neq \emptyset$, then $\bigcap_{C \in \mathfrak{C}} C \neq \emptyset$.

PROOF. The condition (*) is equivalent to:

(*') If $\bigcap_{C \in \mathfrak{C}} C = \emptyset$, then there exists a finite subset $\mathfrak{C}' \subset \mathfrak{C}$ such that $\bigcap_{C \in \mathfrak{C}'} C = \emptyset$.

There is a bijection between sets of closed subsets of X and sets of open subsets of X taking a set \mathfrak{C} of closed subsets to $\mathfrak{U}(\mathfrak{C}) = \{X \setminus C \mid C \in \mathfrak{C}\}$. A set \mathfrak{C} of closed subsets of X has empty intersection exactly when $\mathfrak{U}(\mathfrak{C})$ covers X. It follows (*') is equivalent to saying that if $\mathfrak{U}(\mathfrak{C})$ is a cover of X, then $\mathfrak{U}(\mathfrak{C})$ has a finite subcover.

This has the following immediate corollary:

COROLLARY A.7.11. Let X be a space and let $C_1 \supset C_2 \supset \cdots$ be a nested sequence of nonempty compact subspaces of X. Then $\cap_{n>1} C_n \neq \emptyset$.

A.7.7. Lebesgue number. If M is a metric space and \mathfrak{U} is an open cover of M, then a Lebesgue number for \mathfrak{U} is an $\epsilon > 0$ such that for all $p \in M$ there exists some $U \in \mathfrak{U}$ such that the ϵ -ball $B_{\epsilon}(p)$ is contained in U. The following basic result shows that these always exist if M is compact:

Lemma A.7.12 (Lebesgue number lemma). Let M be a compact metric space and let $\mathfrak U$ be an open cover of M. Then $\mathfrak U$ has a Lebesgue number.

PROOF. Since M is compact, we can write M as

$$M = B_{\epsilon_1}(p_1) \cup \cdots \cup B_{\epsilon_n}(p_n)$$
 for some $p_1, \ldots, p_n \in M$ and $\epsilon_1, \ldots, \epsilon_n > 0$

such that for each $1 \leq i \leq n$ there is some $U \in \mathfrak{U}$ with $B_{2\epsilon_i}(p_i) \subset U$. Set $\epsilon = \min(\epsilon_1, \ldots, \epsilon_n)$, and consider $p \in M$. We have $p \in B_{\epsilon_i}(p_i)$ for some $1 \leq i \leq n$. By assumption, there is some $U \in \mathfrak{U}$ with $B_{2\epsilon_i}(p_i) \subset U$. The triangle inequality implies that $B_{\epsilon}(p) \subset B_{2\epsilon_i}(z_i)$ and thus $B_{\epsilon}(p) \subset U$.

A.7.8. Compactness and limits. If X is a space and $\{x_n\}_{n\geq 1}$ is a sequence in X, then a subsequence of $\{x_n\}_{n\geq 1}$ is a sequence of the form $\{x_{n_i}\}_{i\geq 1}$ with $n_1 < n_2 < \cdots$ a strictly increasing sequence of natural numbers. A subspace $K \subset X$ is sequentially compact if every sequence in K has a subsequence that converges to a point of K. With appropriate countability assumptions, this is equivalent to compactness. We divide this into two results:

LEMMA A.7.13. Let X be a first countable space and let $K \subset X$ be compact. Then K is sequentially compact.

Proof.	See I	Exercise 🛭	A.17.		Ш
--------	-------	------------	-------	--	---

LEMMA A.7.14. Let X be a second countable space and let $K \subset X$ be sequentially compact. Then K is compact.

Proof. See Exercise A.17.

Similarly, for metric spaces compactness and sequential compactness are the same:

Lemma A.7.15. Let (M, \mathfrak{d}) be a metric space and let $K \subset X$. Then K is compact if and only if K is sequentially compact.

PROOF. Since M is first first countable, Lemma A.7.13 implies that compact subsets of M are sequentially compact. For the converse, we can replace M by the subspace in question and prove that if M is sequentially compact, then M is compact. By Lemma A.7.14 it is enough to prove that M is second countable, which by Lemma A.5.8 is equivalent to proving that M is separable, i.e., that M has a countable dense subset.

Since M is sequentially compact, it cannot contain an infinite discrete subspace. In particular, for each $n \geq 1$ there does not exist an infinite subset $T \subset M$ with $\mathfrak{d}(t_1, t_2) \geq 1/n$ for all distinct $t_1, t_2 \in T$. For each $n \geq 1$, we can therefore find a finite set S_n such that for all $p \in M$ there exists some $s \in S_n$ with $\mathfrak{d}(p, s) < 1/n$. The set $\cup_{n \geq 1} S_n$ is then a countable dense subset of M.

A.8. Local compactness and the Baire category theorem

Let X be a space. Recall that a general neighborhood of $p \in X$ is a set $Z \subset X$ with $p \in \text{Int}(Z)$.

A.8.1. Local compactness. A space X is *locally compact* if the following holds for all $p \in X$:

• For all open neighborhoods U of p, there exists a compact neighborhood K of p with $K \subset U$.

For Hausdorff spaces, this is much easier to understand:

LEMMA A.8.1. Let X be a Hausdorff space. Then X is locally compact if and only if for all $p \in X$, there exists a compact neighborhood K of p. In particular, if X is compact then X is locally compact.

PROOF. See Exercise A.20. $\hfill\Box$ REMARK A.8.2. Local compactness is poorly behaved for non-Hausdorff spaces, and not all sources agree on the right definition for non-Hausdorff spaces. $\hfill\Box$ Example A.8.3. If X is either an open or a closed subspace of \mathbb{R}^n , then the Heine–Borel Theorem (Theorem A.7.8) implies that X is locally compact. $\hfill\Box$

A.8.2. σ -compactness. A space X is σ -compact if it is the union of countably many compact subspaces. This condition will be important in the next section when we discuss paracompactness and partitions of unity. Here we prove:

Lemma A.8.4. Let X be a Hausdorff space that is second countable and locally compact. Then X is σ -compact.

PROOF. Let \mathfrak{B} be a countable basis for the topology of X. Set

$$\mathfrak{U} = \left\{ U \in \mathfrak{B} \mid \overline{U} \text{ is compact} \right\},\,$$

so $\mathfrak U$ is a countable collection of open sets of X. It is enough to prove that $\mathfrak U$ covers X. Indeed, consider $p \in X$. We must find some $U \in \mathfrak U$ with $p \in U$. By Lemma A.8.1, there is a compact neighborhood K of p. Since $p \in \operatorname{Int}(K)$, we can find $U \in \mathfrak B$ such that $p \in U$ and $U \subset K$. Since X is Hausdorff the compact set K is closed, so $\overline{U} \subset K$. Since \overline{U} is a closed subset of the compact set K, it follows that \overline{U} is compact and $U \in \mathfrak U$, as desired.

EXAMPLE A.8.5. If X is either an open or a closed subspace of \mathbb{R}^n , then the Heine–Borel Theorem (Theorem A.7.8) implies that X is σ -compact.

A.8.3. Baire category theorem. The following is a surprisingly powerful tool for proving existence theorems:

THEOREM A.8.6 (Baire category theorem). Let X be a locally compact Hausdorff space and let $\{U_n\}_{n\geq 1}$ be a collection of open dense subsets of X. Then $\cap_{n\geq 1}U_n$ is dense.

PROOF. Let $V_0 \subset X$ be a nonempty open set. We must prove that V_0 intersects $\cap_{n\geq 1}U_n$. Since U_1 is open and dense, the set $V_0 \cap U_1$ is open and nonempty. Since X is locally compact and Hausdorff, we can find a nonempty open set V_1 with \overline{V}_1 compact such that $\overline{V}_1 \subset V_0 \cap U_1$. The same argument shows that there exists a nonempty open set V_2 with \overline{V}_2 compact such that $\overline{V}_2 \subset V_1 \cap U_2$. Repeating this over and over, we find nonempty open sets $\{V_n\}_{n\geq 1}$ with the following property for all $n\geq 1$:

• \overline{V}_n is compact and $\overline{V}_{n+1} \subset V_n \cap U_{n+1}$.

Applying Corollary A.7.11 to the nested sequence $\overline{V}_1 \supset \overline{V}_2 \supset \overline{V}_3 \supset \cdots$ of nonempty compact subspaces of X, we see that their intersection must be nonempty, i.e., there exists some p with $p \in \overline{V}_n$ for all $n \geq 1$. By construction, p lies in both V_0 and $\bigcap_{n>1} U_n$, as desired.

Remark A.8.7. The word "category" in the Baire category theorem has nothing to do with category theory. Instead, it refers to the following archaic terminology: a space X is of the *first category* if it is the union of countably many nowhere dense⁶ sets, and is of the *second category* otherwise. The conclusion of the Baire category theorem then is equivalent to saying that every nonempty open set in X is of the second category.

⁶A subset A of a topological space is nowhere dense if \overline{A} contain no nonempty open sets, i.e., if $\operatorname{Int}(\overline{A}) = \emptyset$.

A.8.4. Complete metric spaces. A space X is a $Baire\ space$ if all countable intersections of open dense subsets of X are dense. Theorem A.8.6 says that locally compact Hausdorff spaces are Baire spaces. For another useful class of such spaces, consider a metric space (M, \mathfrak{d}) . A Cauchy sequence in M is a sequence $\{p_n\}_{n\geq 1}$ such that for all $\epsilon>0$ there exists some $N\geq 1$ such that $\mathfrak{d}(p_n,p_m)<\epsilon$ for all $n,m\geq N$. The metric space M is complete if all Cauchy sequences in M have limits. For instance, \mathbb{R}^n is complete (Exercise A.22). We have:

Theorem A.8.8 (Baire category theorem'). Let M be a complete metric space. Then M is a Baire space.

PROOF. This is similar to the proof of Theorem A.8.6, so we leave it as Exercise A.23. \Box

A.8.5. Application: nowhere differentiable functions. To illustrate how the Baire category theorem can be used, we prove the following classic result:

THEOREM A.8.9. Let $C(I,\mathbb{R})$ be the set of continuous functions $f: I \to \mathbb{R}$. Let $\mathfrak{d}(f,g) = \max\{|f(x) - g(x)| \mid x \in I\}$ be the standard metric on $C(I,\mathbb{R})$. Then the set of nowhere-differentiable functions on is dense in C(I,R).

PROOF. For each $n \geq 1$, let U_n be the set of all continuous functions $f: I \to \mathbb{R}$ satisfying:

There exists
$$0 < \delta < 1/n$$
 and $\lambda > 0$ such that for all $x \in I$, there exists some $y \in I$ with $\delta < |x - y| < 1/n$ and $\left| \frac{f(x) - f(y)}{x - y} \right| > n + \lambda$.

In the three steps below, we will prove that U_n is open (Step 1), we will construct a family of function in U_n (Step 2), and we will show that U_n is dense (Step 3). Since $\mathcal{C}(I,\mathbb{R})$ is a complete metric space, Theorem A.8.8 will then apply and show that $\Lambda = \bigcap_{n \geq 1} U_n$ is dense in $\mathcal{C}(I,\mathbb{R})$. Each $f \in \Lambda$ is nowhere differentiable; indeed, for $x \in I$ the condition (\spadesuit) forces $\lim_{y \mapsto x} \frac{f(x) - f(y)}{x - y}$ to either not exist or be infinite.

STEP 1. For all $n \geq 1$, the set U_n is open in $C(I, \mathbb{R})$.

Consider $f \in U_n$. Let $0 < \delta < 1/n$ and $\lambda > 0$ be the constants for f from (\clubsuit) . Let $g \in \mathcal{C}(I, \mathbb{R})$ be such that $\mathfrak{d}(f,g) < \lambda \delta/4$. We claim that $g \in U_n$. Indeed, consider $x \in I$. Choose $y \in I$ such that $\delta < |x-y| < 1/n$ and $\left|\frac{f(x)-f(y)}{x-y}\right| > n+\lambda$. We then have

$$\left| \frac{g(x) - g(y)}{x - y} \right| \ge \left| \frac{f(x) - f(y)}{x - y} \right| - \left| \frac{g(x) - f(x)}{x - y} \right| - \left| \frac{g(y) - f(y)}{x - y} \right|$$
$$> (n + \lambda) - 2\frac{\lambda \delta/4}{\delta} = n + \lambda/2.$$

It follows that g satisfies (\spadesuit) with the constants δ and $\lambda/2$, so $g \in U_n$.

STEP 2. For some $n \geq 1$, let $g: I \to \mathbb{R}$ be a piecewise-linear continuous function such that |g'(x)| > n for all $x \in I$ where g is differentiable. Then $g \in U_n$.

Let $0=a_0 < a_1 < \cdots < a_m=1$ be a partition of I such that $g|_{[a_i,a_{i+1}]}$ is linear for all $0 \le i < m$. For each $0 \le i < m$, let $c_i,d_i \in \mathbb{R}$ be the constants such that $g(x)=c_ix+d_i$ for all $x \in [a_i,a_{i+1}]$. By assumption, $|c_i| > n$ for all $0 \le i < m$. Pick $\lambda > 0$ such that $|c_i| > n+\lambda$ for all $0 \le i < m$. Also, pick $0 < \delta < 1/n$ such that $\delta < (a_{i+1}-a_i)/2$ for all $0 \le i < m$. Consider some $x \in I$. We have $x \in [a_{i_0},a_{i_0+1}]$ for some $0 \le i_0 < m$. Since $0 < \delta < (a_{i_0+1}-a_{i_0})/2$, we can choose some $y \in [a_{i_0},a_{i_0+1}]$ such that $\delta < |x-y| < 1/n$. It follows that

$$\left| \frac{g(x) - g(y)}{x - y} \right| = \left| \frac{(c_i x + d_i) - (c_i y + d_i)}{x - y} \right| = |c_i| > n + \lambda,$$

proving that g satisfies $(\)$ and thus $g \in U_n$.

Step 3. For all $n \geq 1$, the set U_n is dense in $C(I, \mathbb{R})$.

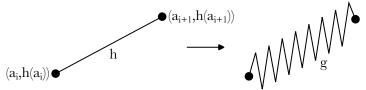
Consider $f \in \mathcal{C}(I,\mathbb{R})$ and $\epsilon > 0$. We must find some $g \in U_n$ such that $\mathfrak{d}(f,g) < \epsilon$. Since f is uniformly continuous on I, we can choose a partition $0 = a_0 < a_1 < \cdots < a_m = 1$ of I such that for all $0 \le i < m$ and $x \in [a_i, a_{i+1}]$ we have $|f(x) - f(a_i)| < \epsilon/4$. Let $h: I \to \mathbb{R}$ be the piecewise-linear continuous function that is linear on each $[a_i, a_{i+1}]$ and satisfies $h(a_i) = f(a_i)$ for $0 \le i \le m$. For $x \in [a_i, a_{i+1}]$, we therefore have

$$|h(x) - f(x)| = \left| \frac{f(a_{i+1}) - f(a_i)}{a_{i+1} - a_i} (x - a_i) + f(a_i) - f(x) \right|$$

$$\leq \left| \frac{f(a_{i+1}) - f(a_i)}{a_{i+1} - a_i} \right| |x - a_i| + |f(a_i) - f(x)|$$

$$\leq |f(a_{i+1}) - f(a_i)| + |f(a_i) - f(x)| < \epsilon/4 + \epsilon/4 = \epsilon/2.$$

It follows that $\mathfrak{d}(f,h) < \epsilon/2$. As in the following figure, we can find a piecewise-linear continuous function $g \colon I \to \mathbb{R}$ with $\mathfrak{d}(g,h) < \epsilon/2$ and |g'(x)| > n for all $x \in I$ where g is differentiable by changing h on each interval $[a_i, a_{i+1}]$ to a function whose graph is a rapidly osculating sawtooth:



We have $\mathfrak{d}(f,g) \leq \mathfrak{d}(f,h) + \mathfrak{d}(h,g) < \epsilon$, and by Step 2 we have $g \in U_n$.

A.9. Paracompactness and partitions of unity

We now turn to paracompactness, which is a condition that ensure the existence of what are called partitions of unity. These play a basic role in algebraic topology, especially in the theory of manifolds.

A.9.1. Locally finite collections of subsets. Let X be a space and let \mathfrak{Z} be a collection of subsets X. We say that \mathfrak{Z} is *locally finite* if for all $p \in X$, there are only finitely many $Z \in \mathfrak{Z}$ such that $p \in Z$. One nice property of locally finite collections of open sets is:

LEMMA A.9.1. Let X be a space and let \mathfrak{Z} be a locally finite collection of subsets of X. Then

$$\overline{\bigcup_{Z \in \mathfrak{Z}} Z} = \bigcup_{Z \in \mathfrak{Z}} \overline{Z}.$$

PROOF. See Exercise A.24. In that exercise, you will also show that this is false without the local finiteness assumption. \Box

A.9.2. Paracompactness. Now let \mathfrak{U} be an open cover of X. A refinement of \mathfrak{U} is an open cover \mathfrak{V} such that for all $V \in \mathfrak{V}$, there exists some $U \in \mathfrak{U}$ with $V \subset U$. A space X is paracompact if it is Hausdorff and every open cover of X admits a locally finite refinement. We will prove that this has strong consequences for the topology of X. In particular, X must be normal (see Lemma A.9.5).

Remark A.9.2. Most spaces that appear in algebraic topology are paracompact. In particular, CW complexes are paracompact. $\hfill\Box$

A.9.3. Paracompactness criterion. The easiest examples of paracompact spaces are compact Hausdorff spaces, where every open cover admits a finite cover (not just a locally finite one). Our next goal is to prove the following generalization of this:

Theorem A.9.3. Let X be a locally compact Hausdorff space that is σ -compact. Then X is paracompact.

Before we prove this, we note that in light of Lemma A.8.4 it implies:

COROLLARY A.9.4. Let X be a locally compact Hausdorff space that is second countable. Then X is paracompact. In particular, both open and closed subspaces of \mathbb{R}^n are paracompact.

We remark that Stone [12] proved that every metric space is paracompact. We omit the proof, but good references for it include [2, Theorem IX.5.3] and [7, Corollary 5.35] and [10].

PROOF OF THEOREM A.9.3. We start by proving:

CLAIM. There exists a countable open cover $\{W_1, W_2, \ldots\}$ of X such that for all $n \ge 1$ the set \overline{W}_n is compact and satisfies $\overline{W}_n \subset W_{n+1}$.

PROOF OF CLAIM. Since X is σ -compact, we can write $X = \bigcup_{n \geq 1} K_n$ with K_n compact. We will inductively construct open sets W_n of X such that $W_0 = \emptyset$ and for all $n \geq 0$ we have:

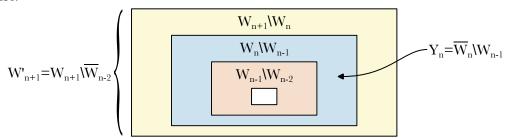
- \overline{W}_n is compact; and
- W_{n+1} contains $\overline{W}_n \cup K_{n+1}$.

Since $X=\cup_{n\geq 1}K_n$, this will be a open open cover of X with the properties indicated in the claim. Start by setting $W_0=\emptyset$, and assume we have constructed W_0,\ldots,W_n . For $p\in\overline{W}_n\cup K_{n+1}$, local compactness gives an open neighborhood $W_{n+1}(p)$ of p with $\overline{W}_{n+1}(p)$ compact. Since $\overline{W}_n\cup K_{n+1}$ is compact, we can find $p_1,\ldots,p_m\in\overline{W}_n\cup K_{n+1}$ such that $\{W_{n+1}(p_1),\ldots,W_{n+1}(p_m)\}$ covers $\overline{W}_n\cup K_{n+1}$. We can then define $W_{n+1}=W_{n+1}(p_1)\cup\cdots\cup W_{n+1}(p_m)$. The set \overline{W}_{n+1} is compact since $\overline{W}_{n+1}=\overline{W}_{n+1}(p_1)\cup\cdots\cup\overline{W}_{n+1}(p_m)$ (see Lemma A.9.1).

We now prove that X is paracompact. Let \mathfrak{U} be an open cover of X. Let $\{W_n\}_{n\geq 1}$ be as in the claim. Set $W_m=\emptyset$ for $m\leq 0$. For $n\in\mathbb{Z}$, define $Y_n=\overline{W}_n\setminus W_{n-1}$ and $W'_{n+1}=W_{n+1}\setminus \overline{W}_{n-2}$. These satisfy:

- (i) Y_n is a compact subset of the open set W'_{n+1} ; and
- (ii) $X = \bigcup_{n=1}^{\infty} Y_n$; and
- (iii) $W'_{n_1} \cap W'_{n_2} = \emptyset$ whenever $|n_1 n_2| \ge 3$.

See here:



For each $n \geq 1$, the set $\{U \cap W'_{n+1} \mid U \in \mathfrak{U}\}$ is an open cover of compact set Y_n , so there is a finite subset $\mathfrak{U}(n) \subset \mathfrak{U}$ such that $\{U \cap W'_{n+1} \mid U \in \mathfrak{U}(n)\}$ covers Y_n . Let

$$\mathfrak{V} = \left\{ U \cap W'_{n+1} \mid n \ge 1 \text{ and } U \in \mathfrak{U}(n) \right\}.$$

The set $\mathfrak V$ is an open cover of each Y_n , so by (ii) it follows that $\mathfrak V$ is an open cover of X. By construction, $\mathfrak V$ refines $\mathfrak U$. Using (iii) together with the fact that only finitely many $V \in \mathfrak V$ are contained in each W'_n , the open cover $\mathfrak V$ is locally finite. The theorem follows.

A.9.4. Normality. Our next goal is to prove that paracompact spaces are normal:

Lemma A.9.5. Let X be a paracompact space. Then X is normal.

PROOF. Recall that paracompact spaces are assumed to be Hausdorff. We start by proving the following weakening of normality which is often called being *regular*:

Claim. For $p \in X$ and $C \subset X$ closed with $p \notin C$, there exist disjoint open neighborhoods of p and C.

PROOF OF CLAIM. For each $q \in C$, since X is Hausdorff there exist open neighborhoods U_{qp} of q and U'_{qp} of p such that $U_{qp} \cap U'_{qp} = \emptyset$. Since X is paracompact, the open cover $\{X \setminus C\} \cup \{U_{qp} \mid q \in C\}$ admits a locally finite refinement. Let $\mathfrak V$ be the open sets in this locally finite refinement that are not contained in $X \setminus C$. For each $V \in \mathfrak V$, there is some $q \in C$ such that $V \subset U_{qp}$. Since U'_{qp} is an open

neighborhood of p that is disjoint from U_{qp} , we deduce that $p \notin \overline{V}$ for all $V \in \mathfrak{V}$. Set $W = \bigcup_{V \in \mathfrak{V}} V$. The set W is an open neighborhood of C, and by local finiteness and Lemma A.9.1 we have

$$\overline{W} = \bigcup_{V \in \mathfrak{V}} \overline{V}.$$

Since $p \notin \overline{V}$ for all $V \in \mathfrak{V}$, we deduce that $p \notin \overline{W}$. It follows that $X \setminus \overline{W}$ and W are disjoint open neighborhoods of p and C.

To prove that X is normal, let C and D be disjoint closed subsets of X. We can find disjoint open neighborhoods of C and D by the same argument we used to prove the above claim. Simply substitute the above claim for X being Hausdorff and replace every occurrence of the point p by the closed set D.

A.9.5. Strong refinements. Let \mathfrak{U} be an open cover of a space X. Enumerate \mathfrak{U} as $\mathfrak{U} = \{U_i\}_{i \in I}$. A strong refinement of \mathfrak{U} consists of an open cover $\{V_i\}_{i \in I}$ such that $\overline{V}_i \subset U_i$ for all $i \in I$. We have:

LEMMA A.9.6. Let X be a paracompact space and let $\mathfrak U$ be an open cover of X. Then there exists a locally finite strong refinement of $\mathfrak U$.

PROOF. Enumerate \mathfrak{U} as $\mathfrak{U} = \{U_i\}_{i \in I}$. Let

$$\mathfrak{W}' = \left\{ W' \mid W' \text{ open set with } \overline{W}' \subset U_i \text{ for some } i \in I \right\}.$$

The set \mathfrak{W}' is an open cover of X; indeed, since X is normal for all $p \in X$ and all $i \in I$ with $p \in U_i$ we can find an open neighborhood W' of p with $\overline{W}' \subset U_i$. Since X is paracompact, we can find a locally finite refinement \mathfrak{W} of \mathfrak{W}' . For each $W \in \mathfrak{W}$, there is some $i \in I$ with $\overline{W} \subset U_i$. For $i \in I$, let $\mathfrak{W}(i) = \{W \in \mathfrak{W} \mid \overline{W} \subset U_i\}$ and $V_i = \bigcup_{W \in \mathfrak{W}(i)} W$. Since $\mathfrak{W}(i)$ is a locally finite collection of open sets, Lemma A.9.1 implies that

$$\overline{V}_i = \bigcup_{W \in \mathfrak{W}(i)} \overline{W} \subset U_i.$$

The open cover $\mathfrak{V} = \{V_i\}_{i \in I}$ is thus a locally finite strong refinement of $\mathfrak{U} = \{U_i\}_{i \in I}$.

- **A.9.6.** Partitions of unity. We now come to the most important property of paracompact spaces. Let X be a space. Recall that for a continuous function $f: X \to \mathbb{R}$, the support of f is $\operatorname{supp}(f) = \{p \in X \mid f(p) \neq 0\}$. A partition of unity subordinate to an open cover \mathfrak{U} of X consists of continuous functions $f_U: X \to [0,1]$ for each $U \in \mathfrak{U}$ satisfying the following three conditions:
 - (a) For all $U \in \mathfrak{U}$, we have $\operatorname{supp}(f) \subset U$.
 - (b) The set $\{\operatorname{supp}(f_U) \mid U \in \mathfrak{U}\}\$ is locally finite.
 - (c) For all $p \in X$, we have $\sum_{U \in \mathfrak{U}} f_U(p) = 1$. Note that (b) implies that only finitely many terms of this sum are nonzero, so this sum makes sense.

We have:

Theorem A.9.7. Let X be a paracompact space and let $\mathfrak U$ be an open cover of X. Then there exists a partition of unity subordinate to $\mathfrak U$.

PROOF. Enumerate $\mathfrak U$ as $\mathfrak U=\{U_i\}_{i\in I}$. By Lemma A.9.6, we can find a locally finite strong refinement $\{V_i\}_{i\in I}$ of $\{U_i\}_{i\in I}$. Applying this lemma again, we obtain a locally finite strong refinement $\{W_i\}_{i\in I}$ of $\{V_i\}_{i\in I}$. Lemma A.9.5 says that X is normal, so we can apply Urysohn's Lemma (Theorem A.6.7) to X. For $i\in I$, since $\overline{W}_i\subset V_i$ Urysohn's Lemma (Theorem A.6.7) implies that there is a continuous function $f_i'\colon X\to [0,1]$ such that $f_i'|_{\overline{W}_i}=1$ and $\operatorname{supp}(f_i')\subset V_i$. Since $\{V_i\}_{i\in I}$ is locally finite and $\operatorname{supp}(f_i')\subset \overline{W}_i\subset V_i$ for each $i\in I$, we can define $g\colon X\to [0,\infty)$ via the formula

$$g(p) = \sum_{i \in I} f'_i(p)$$
 for $p \in X$.

The function $g: X \to [0, \infty)$ is continuous (see Exercise A.26). Each $p \in X$ lies in some W_i , so since $f'_i|_{\overline{W}_i} = 1$ it follows that g(p) > 0 for all $p \in X$. For $i \in I$, we can therefore define $f_i: X \to [0, \infty)$ via the formula

$$f_i(p) = \frac{1}{g(p)} f_i'(p)$$
 for $p \in X$.

For $p \in X$, we have

$$\sum_{i \in I} f_i(p) = \frac{1}{g(p)} \sum_{i \in I} f'_i(p) = \frac{1}{g(p)} g(p) = 1.$$

Since $f_i(p) \in [0, \infty)$ for all $i \in I$, this implies that the image of each f_i lies in [0, 1] and that the f_i form a partition of unity subordinate to $\mathfrak{U} = \{U_i\}_{i \in I}$.

A.9.7. Application: extending functions. Here is a typical application of partitions of unity:

LEMMA A.9.8. Let X be a paracompact space, let $A \subset X$ be a subspace, and let $f: A \to \mathbb{R}$ be continuous. For all $a \in A$, assume that there is a neighborhood U_a of a and an extension of $f|_{U_a \cap A}$ to $F_a: U_a \to \mathbb{R}$. Set $U = \bigcup_{a \in A} U_a$. Then f can be extended to a continuous function $F: U \to \mathbb{R}$.

Remark A.9.9. If A is closed, then the Tietze extension theorem (Theorem A.6.12) says that f can be extended to the whole space X. This can fail for non-closed subspaces. For instance, consider the subspace \mathbb{Q} of \mathbb{R} . The function $f: \mathbb{Q} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} -1 & \text{if } x < \sqrt{2}, \\ 1 & \text{if } x > \sqrt{2} \end{cases} \text{ for } x \in \mathbb{Q}.$$

can be extended to a continuous function on the open set $\mathbb{R} \setminus \{\sqrt{2}\}$, but cannot be extended to a continuous function on \mathbb{R} .

PROOF. Replacing X by U, we can assume that $\mathfrak{U} = \{U_a \mid a \in A\}$ is an open cover of X. Let $\{\phi_{U_a} \colon X \to \mathbb{R} \mid a \in A\}$ be a partition of unity subordinate to \mathfrak{U} . Since $\operatorname{supp}(\phi_{U_a}) \subset U_a$, the function $F_a\phi_{U_a} \colon U_a \to \mathbb{R}$ can be extended to a continuous function $G_a \colon X \to \mathbb{R}$ by letting $G_a(x) = 0$ for $x \in X \setminus U_a$. We have $\operatorname{supp}(G_a) \subset \operatorname{supp}(\phi_a)$ for $a \in A$, so since the set of supports of the ϕ_a are locally finite we can define $F \colon X \to \mathbb{R}$ via the formula $F = \sum_{a \in A} G_a$. For $a \in A$, we have

$$F(a) = \sum_{a \in A} F_a(a)\phi_{U_a}(a) = f(a) \sum_{a \in A} \phi_{U_a}(a) = f(a),$$

so F is an extension of f.

A.10. Products and Tychonoff's theorem

We now discuss products of spaces.

A.10.1. Finite products. Let X_1, \ldots, X_n be spaces. As a set, $X_1 \times \cdots \times X_n$ consists of tuples (x_1, \ldots, x_n) with $x_i \in X_i$ for $1 \le i \le n$. Give this the topology with the basis consisting of products $U_1 \times \cdots \times U_n$ with $U_i \subset X_i$ open for $1 \le i \le n$. We will call these the *basic open sets* of the product. A general open set $V \subset X_1 \times \cdots \times X_n$ can therefore be written a union of basic open sets. Equivalently, $V \subset X_1 \times \cdots \times X_n$ is open if and only if for all $(p_1, \ldots, p_n) \in V$, there exist open neighborhoods $U_i \subset X_i$ of each p_i such that $U_1 \times \cdots \times U_n \subset V$.

EXAMPLE A.10.1. This gives the usual topology on $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ (see Exercise A.27). \square

A.10.2. Finite universal property. Let $\pi_i: X_1 \times \cdots \times X_n \to X_i$ be the projection. The map π_i is continuous; indeed, if $U_i \subset X_i$ is open, then

$$\pi_i^{-1}(U_i) = X_1 \times \cdots \times X_{i-1} \times U_i \times X_{i+1} \times \cdots \times X_n.$$

Now let Y be another space, and for $1 \leq i \leq n$ let $f_i \colon Y \to X_i$ be a continuous map. Let $f_1 \times \cdots \times f_n \colon Y \to X_1 \times \cdots \times X_n$ be the map where $f_1 \times \cdots \times f_n(y) = (f_1(y), \dots, f_n(y))$ for $y \in Y$. This is continuous; indeed, if $U_i \subset X_i$ is open for $1 \leq i \leq n$ then

$$(f_1 \times \cdots \times f_n)^{-1}(U_1 \times \cdots \times U_n) = U_1 \cap \cdots \cap U_n.$$

Conversely, if $F: Y \to X_1 \times \cdots \times X_n$ is a continuous map, then letting $f_i = \pi_i \circ F$ we have $F = f_1 \times \cdots \times f_n$. We summarize this informally as:

• A continuous map $F: Y \to X_1 \times \cdots \times X_n$ is the same thing as a collection of continuous maps $f_i: Y \to X_i$ for all $1 \le i \le n$.

Just like for quotient spaces in §A.3.4, this is an example of a universal mapping property and it characterizes product spaces (see Exercise A.29).

A.10.3. Homotopies, products, and quotient maps. One place where products show up in algebraic topology is in the definition of a homotopy. Roughly speaking, a homotopy is a continuous deformation of a map. The precise definition is as follows. Let $f_0, f_1: Y \to Z$ be maps. A homotopy from f_0 to f_1 is a map $H: Y \times I \to Z$ such that $H(y,0) = f_0(y)$ and $H(y,1) = f_1(y)$ for $y \in Y$. If such a homotopy exists, we say that f_0 and f_1 are homotopic

For $t \in I$, we can let $f_t \colon Y \to Z$ be the map defined by $f_t(y) = H(y,t)$ for $y \in Y$. The maps $f_t \colon Y \to Z$ can be viewed informally as a continuous family of maps connecting f_0 to f_1 . See §A.11.7 for how to topologize the space of maps $Y \to Z$ and make this precise.

EXAMPLE A.10.2. Any two maps $f_0, f_1: Y \to \mathbb{R}^n$ are homotopic via the homotopy $H: Y \times I \to \mathbb{R}^n$ defined by $H(y,t) = (1-t)f_0(y) + tf_1(y)$.

EXAMPLE A.10.3. Let $Y = \{*\}$ be a one-point space. Two maps $f_0, f_1 : Y \to Z$ are homotopic if and only if $f_0(*)$ and $f_1(*)$ lie in the same path component of Z.

Now assume that $q: X \to Y$ is a quotient map (see §A.3.3), so q is surjective and $U \subset Y$ is open if and only if $q^{-1}(U) \subset X$ is open. Given $f_0, f_1: Y \to Z$, it is natural to try to construct a homotopy from f_0 to f_1 as follows:

- Define $g_0 = f_0 \circ q$ and $g_1 = f_1 \circ q$. Construct a homotopy $H: X \times I \to Z$ from g_0 to g_1 .
- Next, use the universal property of the quotient map from §A.3.3 to show that H descends to a homotopy $H: Y \times I \to Z$.

Here are an example of how this might work:

EXAMPLE A.10.4. We have $\mathbb{D}^n/\partial\mathbb{D}^n\cong\mathbb{S}^n$ (see Example A.3.3). A map $f\colon\mathbb{S}^n\to Z$ is thus the same as a map $g\colon\mathbb{D}^n\to Z$ such that $g|_{\partial\mathbb{D}^n}$ is constant. Given $f_0,f_1\colon\mathbb{S}^n\to Z$, let $g_0,g_1\colon\mathbb{D}^n\to Z$ be the corresponding maps. To construct a homotopy from f_0 to f_1 , it is natural to instead try to construct a homotopy g_t from g_0 to g_1 such that $g_t|_{\partial\mathbb{D}^n}$ is constant for all t.

However, there is a flaw in the above reasoning: if $q: X \to Y$ is a quotient map, it not clear that $q \times 1: X \times I \to Y \times I$ is a quotient map. Indeed, there are counterexamples if I is replaced by a more complicated space. However, for nice spaces like I this is not a problem. More generally:

LEMMA A.10.5. Let $q: X \to Y$ be a quotient map and let Z be a locally compact space. Then the map $q \times 1: X \times Z \to Y \times Z$ is a quotient map.

PROOF. The map $q \times 1: X \times Z \to Y \times Z$ is continuous, so for every open set $U \subset Y \times Z$ we have $q^{-1}(U)$ open. We must prove the converse. In other words, letting $U \subset Y \times Z$ be a set such that $q^{-1}(U)$ is open, we must prove that U is open. Letting $(y,z) \in U$, it is enough to find an open neighborhood of (y,z) that is contained in U.

Pick $x \in X$ with q(x) = y. We have $(x, z) \in q^{-1}(U)$. Since $q^{-1}(U) \subset X \times Z$ is open and Z is locally compact, we can find an open neighborhood $V_1 \subset X$ of x and a compact neighborhood $K \subset Z$ of z such that $V_1 \times K \subset q^{-1}(U)$. We have

$$(y,z) \in q(V_1 \times \operatorname{Int}(K)) = q(V_1) \times \operatorname{Int}(K) \subset U.$$

If $q(V_1) \subset Y$ were open, then $q(V_1) \times \text{Int}(K)$ would be an open neighborhood of (y, z) contained in U and we would be done.

Unfortunately, $q(V_1)$ might not be open since $q^{-1}(q(V_1))$ might be larger than V_1 . We do have $q^{-1}(q(V_1)) \times K \subset q^{-1}(U)$. Since K is compact and $q^{-1}(U)$ is open, we can find an open neighborhood V_2 of $q^{-1}(q(V_1))$ with $V_2 \times K \subset q^{-1}(U)$ (see Exercise A.28; this is often called the "tube lemma"). Just like for V_1 , there is no reason to expect $q(V_2) \subset Y$ to be open since $q^{-1}(q(V_2))$ might be larger than V_2 . However, we can iterate the procedure we used to find V_2 . The result is an increasing sequence $V_1 \subset V_2 \subset \cdots$ of open subsets of Y such that for all $n \geq 1$ we have:

• $V_n \times K \subset q^{-1}(U)$ and $q^{-1}(q(V_n)) \subset V_{n+1}$.

The set $V = \bigcup_{n \geq 1} V_n$ is then an open subset of X with $V \times K \subset q^{-1}(U)$ and $q^{-1}(q(V)) = V$. It follows that q(V) is an open subset of Y, so $q(V) \times \text{Int}(K)$ is an open neighborhood of (y, z) with $q(V) \times \text{Int}(K) \subset U$, as desired.

A.10.4. Tychonoff's theorem, finite case. We have the following basic result:

THEOREM A.10.6 (Tychonoff's theorem, finite case). Let X_1, \ldots, X_n be compact spaces. Then $X_1 \times \cdots \times X_n$ is compact.

PROOF. By induction, it is enough to prove this for n=2. Let $\mathfrak U$ be an open cover of $X_1\times X_2$. We must prove that $\mathfrak U$ has a finite subcover. In fact, it is enough to prove that some refinement of $\mathfrak U$ has a finite subcover (see Exercise A.25). Each element of $\mathfrak U$ is a union of basic open sets. Letting $\mathfrak V$ be the set of all basic open sets V such that there exists some $U\in \mathfrak U$ with $V\subset U$, it is therefore enough to prove that $\mathfrak V$ has a finite subcover.

For $p \in X_1$, let $Z(p) = p \times X_2$. By assumption, $Z(p) \cong X_2$ is compact. We can therefore find a finite subset $\mathfrak{V}(p)$ of \mathfrak{V} that covers Z(p). Since \mathfrak{V} consists of basic open sets, we can write

$$\mathfrak{V}(p) = \{ V_1(p) \times V_1'(p), \dots, V_{m_p}(p) \times V_{m_p}'(p) \}$$

with $V_i(p) \subset X_1$ and $V_i'(p) \subset X_2$ for $1 \le i \le m_p$. Discarding unneeded terms if necessary, we can assume that $p \in V_i(p)$ for all $1 \le i \le m_p$. Letting

$$V(p) = V_1(p) \cap \cdots \cap V_{m_n}(p),$$

it follows that V(p) is an open neighborhood of p and $\mathfrak{V}(p)$ covers $V(p) \times X_2$.

The set $\{V(p) \mid p \in X_1\}$ is an open cover of the compact space X_1 , so we can find $p_1, \ldots, p_d \in X_1$ such that $X_1 = V(p_1) \cup \cdots \cup V(p_d)$. Since $\mathfrak{V}(p_i)$ is a finite cover of $V(p_i) \times X_2$ for $1 \leq i \leq d$, we conclude that $\mathfrak{V}(p_1) \cup \cdots \mathfrak{V}(p_d)$ is a finite subset of \mathfrak{V} that covers $X_1 \times X_2$.

A.10.5. Infinite products. Now let $\{X_i\}_{i\in I}$ be an arbitrary collection of spaces. As a set, the product $\prod_{i\in I} X_i$ consists of tuples $(x_i)_{i\in I}$ with $x_i\in X_i$ for $i\in I$. The obvious first guess for a topology on $\prod_{i\in I} X_i$ is the one with basis the collection of products $\prod_{i\in I} U_i$ with $U_i\subset X_i$ open for all $i\in I$. However, this topology turns out to be pathological. The issue is that it has too many open sets, and there are maps into it that should be continuous but are not. Here is a key example:

EXAMPLE A.10.7. Let X be a space and let I be an infinite indexing set. Consider the diagonal map $\Delta \colon X \to \prod_{i \in I} X$, so $\Delta(x) = (x)_{i \in I}$ for all $x \in X$. If $U_i \subset X$ is an open set for all $i \in I$, then

$$\Delta^{-1}(\prod_{i\in I} U_i) = \bigcap_{i\in I} U_i.$$

Since the collection of open sets is *not* closed under infinite intersections, this is not always an open set. It follows that Δ will generally not be continuous if each set of the form $\prod_{i \in I} U_i$ with $U_i \subset X$ for $i \in I$ is open.

To eliminate this pathology, we must avoid infinite intersections of open sets. This can be done as follows. A basic open set in $\prod_{i \in I} X_i$ is a product $\prod_{i \in I} U_i$ such that:

- $U_i \subset X_i$ is open for all $i \in I$; and
- $U_i = X_i$ for all but finitely many $i \in I$.

The product topology on $\prod_{i \in I} X_i$ is the topology with basis the basic open sets, so a subset of $\prod_{i \in I} X_i$ is open if and only if it is a union of basic open sets. To simplify our notation when talking about these infinite products, we introduce the following convention:

Convention A.10.8. We regard the indexing set I as being unordered, and thus if $I = J \sqcup K$ we identify

$$\left(\prod_{j\in J} X_j\right) \times \left(\prod_{k\in K} X_k\right)$$
 and $\prod_{i\in I} X_i$

in the obvious way.

With this notational convention, the basic open sets in $\prod_{i \in I} X_i$ are those that for some distinct $j_1, \ldots, j_n \in I$ can be written as

$$U_{j_1} \times \cdots \times U_{j_n} \times \prod_{i \in I \setminus \{j_1, \dots, j_n\}} X_i$$

with $U_{j_k} \subset X_{j_k}$ open for $1 \leq k \leq n$.

REMARK A.10.9. The topology on $\prod_{i \in I} X_i$ with basis arbitrary products $\prod_{i \in I} U_i$ with $U_i \subset X_i$ open is sometimes called the *box topology*. It is rarely useful.

A.10.6. Infinite universal property. Continue to let $\{X_i\}_{i\in I}$ be an arbitrary collection of spaces. For $j \in I$, let $\pi_j \colon \prod_{i \in I} X_i \to X_j$ be the projection. The map π_j is continuous; indeed, if $U_j \subset X_i$ is open, then

$$\pi_j^{-1}(U_j) = U_j \times \prod_{i \in I \setminus \{j\}} X_i.$$

Now let Y be another space, and for $i \in I$ let $f_i \colon Y \to X_i$ be a continuous map. Let $\prod_{i \in I} f_i \colon Y \to \prod_{i \in I} X_i$ be the map

$$\left(\prod_{i\in I} f_i\right)(y) = (f_i(y))_{i\in I} \quad \text{for } y\in Y.$$

This map is continuous; indeed, if $\prod_{i \in I} U_i$ is a basic open set then

$$\left(\left(\prod_{i\in I} f_i\right)^{-1} \left(\prod_{i\in I} U_i\right) = \bigcap_{i\in I} f_i^{-1}(U_i).$$

This is open since $f_i^{-1}(U_i) = f_i^{-1}(X_i) = Y$ for all but finitely many $i \in I$, so this intersection is actually a finite intersection. Conversely, if $F: Y \to \prod_{i \in I} X_i$ is a continuous map, then letting $f_i = \pi_i \circ F$ we have $F = \prod_{i \in I} f_i$. We summarize this informally as:

• A continuous map $F: Y \to \prod_{i \in I} X_i$ is the same thing as a collection of continuous maps $f_i: Y \to X_i$ for all $i \in I$.

This universal property characterizes product spaces (see Exercise A.29), and having it is one of the reasons we defined the product topology like we did.

REMARK A.10.10. In more categorical language, what the above shows is that $\prod_{i \in I} X_i$ is the product of the X_i in the category of topological spaces. There is also a notion of a sum of objects in a category, and it turns out that the disjoint union $\sqcup_{i \in I} X_i$ with the disjoint union topology discussed in §A.3.3 is the categorical sum of the X_i . See Exercise A.30 for a precise statement of what this means and Exercise A.31 for related constructions in the category of abelian group.

A.10.7. Metrics on countable products. Arbitrary products of metric spaces need not be metric spaces. However, it turns out that countable products of metric spaces can be given metrics. This would not be true if we used the box topology.

LEMMA A.10.11. For each $n \geq 1$, let (M_n, \mathfrak{d}_n) be a metric space. There is then a metric on $\prod_{n=1}^{\infty} M_n$ inducing the product topology.

PROOF. Let \mathfrak{d}'_n be the metric on M_n defined by $\mathfrak{d}'_n(p,q) = \min\{\mathfrak{d}_n(p,q),1\}$. This induces the same topology on M_n as \mathfrak{d}_n (see Exercise A.1). We can then define a two-variable real-valued function on $\prod_{n=1}^{\infty} M_n$ via the formula

$$\mathfrak{d}((p_n)_{n\geq 1}, (q_n)_{n\geq 1}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \, \mathfrak{d}'_n(p_n, q_n).$$

This is a metric on $\prod_{n=1}^{\infty} M_n$ that induces the product topology (see Exercise A.33).

A.10.8. Sequences in infinite products. Another nice property of the product topology is the following, which would also not be true if we used the box topology:

LEMMA A.10.12. Let $\{X_i\}_{i\in I}$ be a collection of spaces. For each $i\in I$, let $\{p(i)_n\}_{n\geq 1}$ be a sequence of points in X_i that converges to $p(i)\in X_i$. For $n\geq 1$, let $p_n=(p(i)_n)_{i\in I}\in \prod_{i\in I} X_i$. Then $\{p_n\}_{n\geq 1}$ converges to $(p(i))_{i\in I}\in \prod_{i\in I} X_i$.

Proof. See Exercise A.32.
$$\Box$$

EXAMPLE A.10.13. For $n \geq 1$, let $p_n \in \prod_{i \geq 1} \mathbb{Z}$ be the tuple of integers $p_n = (1, \dots, 1, 0, \dots)$ with n initial 1's and then 0's. Let $p_{\infty} = (1, 1, 1, \dots)$ be the tuple all of whose entries are 1. Then $\lim_{n \to \infty} p_n = p_{\infty}$.

A.10.9. Tychonoff's theorem, countable case. Tychonoff's theorem generalizes to arbitrary products of compact spaces. We start by proving this for countable products. The proof of the general case is similar, but requires more set theoretic technology.

THEOREM A.10.14 (Tychonoff's theorem, countable case). Let $\{X_i\}_{i\geq 1}$ be a countable collection of compact spaces. Then $\prod_{i>1} X_i$ is compact.

PROOF. Unlike in the finite case, we cannot prove this by induction. However, we will see that the argument we gave in the finite case is almost enough. Only one new idea is needed. Let $\mathfrak U$ be an open cover of $\prod_{i\geq 1} X_i$. We must prove that $\mathfrak U$ has a finite subcover. In fact, it is enough to prove that some refinement of $\mathfrak U$ has a finite subcover (see Exercise A.25). Each element of $\mathfrak U$ is a union of basic open sets. Letting $\mathfrak V$ be the set of all basic open sets V such that there exists some $U\in \mathfrak U$ with $V\subset U$, it is therefore enough to prove that $\mathfrak V$ has a finite subcover.

Assume for the sake of contradiction that $\mathfrak V$ has no finite subcover. The proof now has two steps:

Step 1. For all $i \geq 1$, there exists some $p_i \in X_i$ such that no finite subset of \mathfrak{V} covers $p_1 \times \cdots \times p_n \times \prod_{i \geq n+1} X_i$ for any $n \geq 1$.

We construct the p_i inductively. Assume that for some $n \geq 1$ we have found $p_i \in X_i$ for $1 \leq i \leq n-1$ such that no finite subset of $\mathfrak V$ covers $p_1 \times \cdots \times p_{n-1} \times \prod_{i \geq n} X_i$. For n=1, this is simply our assumption that the open cover $\mathfrak V$ of $\prod_{i \geq 1} X_i$ has no finite subcover. We find $p_n \in X_n$ as follows. For $p \in X_n$, let

$$Z(p) = p_1 \times \cdots \times p_{n-1} \times p \times \prod_{i \ge n+1} X_i.$$

Assume for the sake of contradiction that for all $p \in X_n$, there exists a finite subset $\mathfrak{V}(p)$ of \mathfrak{V} that covers Z(p). Since \mathfrak{V} consists of basic open sets, we can write

$$\mathfrak{V}(p) = \left\{ \prod_{i \ge 1} V_{i,j}(p) \mid 1 \le j \le m_p \right\}$$

with $V_{i,j}(p) \subset X_i$ for all $i \geq 1$ and $1 \leq j \leq m_p$. Discarding unneeded terms if necessary, we can assume that $p_i \in V_{i,j}(p)$ for all $1 \leq i \leq n-1$ and $1 \leq j \leq m_p$, and also that $p \in V_{n,j}(p)$ for all $1 \leq j \leq m_p$. Define

$$V_i(p) = \bigcap_{j=1}^{m_p} V_{i,j}(p) \quad \text{for } 1 \le i \le n,$$

$$V(p) = V_1(p) \times \dots \times V_n(p).$$

It follows that V(p) is an open neighborhood of $(p_1, \ldots, p_{n-1}, p) \in X_1 \times \cdots \times X_n$ and that $\mathfrak{V}(p)$ covers $V(p) \times \prod_{i \ge n+1} X_i$.

The set $\{V(p) \mid p \in X_n\}$ is an open cover of the compact space $p_1 \times \cdots \times p_{n-1} \times X_n$, so we can find $q_1, \ldots, q_d \in X_n$ such that

$$p_1 \times \cdots \times p_{n-1} \times X_n \subset V(q_1) \cup \cdots \cup V(q_d).$$

Since $\mathfrak{V}(q_k)$ is a finite cover of $V(q_k) \times \prod_{i \geq n+1} X_i$ for $1 \leq k \leq d$, we conclude that $\mathfrak{V}(q_1) \cup \cdots \mathfrak{V}(q_d)$ is a finite subset of \mathfrak{V} that covers $p_1 \times \cdots \times p_{n-1} \times \prod_{i \geq n} X_i$, contradicting the fact that no such finite cover exists.

STEP 2. No finite subset of \mathfrak{V} covers $\prod_{i>1} X_i$.

Pick $V \in \mathfrak{V}$ such that $(p_i)_{i \geq 1} \in V$. Since \mathfrak{V} consists of basic open sets, we can write $V = \prod_{i \geq 1} V_i$ with $V_i \subset X_i$ open for all $i \geq 1$. Moreover, we have $V_i = X_i$ for all but finitely many $i \geq 1$. This implies that there exists some $n \geq 1$ such that $V_i = X_i$ for $i \geq n+1$. It follows that

$$p_1 \times \cdots \times p_n \times \prod_{i \ge n+1} X_i \subset V \in \mathfrak{V}.$$

This contradicts the fact that no finite subset of \mathfrak{V} covers $p_1 \times \cdots \times p_n \times \prod_{i \geq n+1} X_i$.

A.10.10. Well-ordered sets. To generalize the above proof of Tychonoff's theorem to arbitrary products, we need some set-theoretic technology. A well-ordered set is a set I equipped with a total ordering \leq such that every nonempty subset $S \subset I$ has a minimal element. The canonical example is $\mathbb{N} = \{1, 2, \ldots\}$ with the usual ordering. A remarkable consequence of the axiom of choice is that every set can be equipped with a well-ordering.

If I is a well-ordered set with ordering \leq , then an *initial segment* of I is a subset $J \subset I$ such that for all $j \in J$ and $i \in I$ with $i \leq j$ we have $i \in J$. If $J_1, J_2 \subset I$ are initial segments, then either $J_1 \subset J_2$ or $J_2 \subset J_1$. Indeed, assume that J_1 is *not* a subset of J_2 and pick $j_1 \in J_1 \setminus J_2$. For $j_2 \in J_2$, we cannot have $j_1 \leq j_2$ since $j_1 \notin J_2$. It follows that $j_2 \leq j_1$, so $j_2 \in J_1$ and thus $J_2 \subset J_1$. The initial segments of I are thus totally ordered under inclusion. They fall into three classes:

- The empty set \emptyset , which is the unique initial segment that is contained in all initial segments.
- The successor segments, which are initial segments $J \subset I$ of the form $J = J' \sqcup \{n\}$ for some initial segment $J' \subsetneq J$ and some $n \in J \setminus J'$.
- The *limit segments*, which are nonempty initial segments $J \subset I$ that are not successor segments. These J are the union of the initial segments $J' \subseteq J$.

For instance, for \mathbb{N} the successor segments are subsets of the form $\{1, \ldots, n\}$ and the whole set \mathbb{N} is the only limit segment.

A.10.11. Transfinite induction. Assume now that I is a well-ordered set and for each $i \in I$ we have a set X_i . Our goal is to construct some $p_i \in X_i$ for all $i \in I$. For each initial segment $J \subset I$, we want some property $\mathcal{P}(J)$ to hold that only refers to the $p_i \in X_i$ for $i \in J$. To simplify our exposition, assume that if $\mathcal{P}(J)$ holds then so does $\mathcal{P}(J')$ for all initial segments $J' \subset J$.

We can construct the $p_i \in X_i$ by transfinite induction.⁷ For this, we must prove three things:

- (0) The property $\mathcal{P}(\emptyset)$ holds. Note that this makes sense since by assumption $\mathcal{P}(\emptyset)$ makes no reference to any p_i .
- (1) Let J be a successor segment of the form $J = J' \sqcup \{n\}$ for some initial segment $J' \subsetneq J$. Assume that we have already constructed $p_i \in X_i$ for all $i \in J'$ such that $\mathcal{P}(J')$ holds. We must show how to construct $p_n \in X_n$ such that $\mathcal{P}(J)$ holds.
- (2) Let J be a limit segment. Assume that we have constructed $p_i \in X_i$ for all $i \in J$ such that $\mathcal{P}(J')$ holds for all initial segments $J' \subsetneq J$. We must prove that $\mathcal{P}(J)$ holds.

We can then construct $p_i \in X_i$ for all $i \in I$ such that $\mathcal{P}(J)$ holds for all initial segments $J \subset I$. Indeed, let \mathfrak{J} be the set of all initial segments $J \subset I$ for which we can construct $p_i \in X_i$ for each $i \in J$ such that $\mathcal{P}(J)$ holds. The set \mathfrak{J} is linearly ordered by inclusion and nonempty since $\emptyset \in \mathfrak{J}$. Let $J_0 = \cup_{J \in \mathfrak{J}} J$. By (1) and (2), we have $J_0 \in \mathfrak{J}$. We must prove that $J_0 = I$. Indeed, assume that $J_0 \subseteq I$. Since I is well-ordered, there is a minimal $n \in I \setminus J_0$. It follows that $J_0 \sqcup \{n\}$ is an initial segment, and by (1) we have $J_0 \sqcup \{n\} \in \mathfrak{J}$, contradicting the fact that $J \subset J_0$ for all $J \in \mathfrak{J}$.

REMARK A.10.15. Isomorphism classes of well-ordered sets are called *ordinals*. Any set of ordinals has a well-ordering where $\mathcal{O}_1 \leq \mathcal{O}_2$ when \mathcal{O}_1 is isomorphic to an initial segment of \mathcal{O}_2 . Transfinite induction is typically discussed using ordinals.

A.10.12. Tychonoff's theorem, general case. The above was a little abstract. We now use it to prove the general case of Tychonoff's theorem:

THEOREM A.10.16 (Tychonoff's theorem). Let $\{X_i\}_{i\in I}$ be a collection of compact spaces. Then $\prod_{i\in I} X_i$ is compact.

PROOF. The proof will be almost identical to proof in the countable case, but with some small complications due to the need for transfinite induction. Let $\mathfrak U$ be an open cover of $\prod_{i\in I} X_i$. We must prove that $\mathfrak U$ has a finite subcover. In fact, it is enough to prove that some refinement of $\mathfrak U$ has a finite subcover (see Exercise A.25). Each element of $\mathfrak U$ is a union of basic open sets. Letting $\mathfrak V$ be the set of all basic open sets V such that there exists some $U \in \mathfrak U$ with $V \subset U$, it is therefore enough to prove that $\mathfrak V$ has a finite subcover.

⁷Since we constructing things, this is sometimes called *transfinite recursion*.

Assume for the sake of contradiction that \mathfrak{V} has no finite subcover. Choose a well-ordering on the indexing set I. By transfinite induction, for each $i \in I$ we will construct some $p_i \in X_i$ such that the following holds for all initial segments $J \subset I$:

$$(\spadesuit_J)$$
 No finite subset of \mathfrak{V} covers $Y(J) = \prod_{i \in J} p_i \times \prod_{i \in I \setminus J} X_i$.

The special case (\spadesuit_I) says that no finite subset of \mathfrak{V} covers the one-point set $Y(I) = \prod_{i \in I} p_i$, which will be our contradiction. We have (\spadesuit_{\emptyset}) from our assumption that no finite subset of \mathfrak{V} covers $Y(\emptyset) = \prod_{i \in I} X_i$. According to the transfinite induction scheme discussed in §A.10.11, to prove that (\spadesuit_J) holds for all initial segments $J \subset I$ we must prove:

STEP 1. Let $J \subset I$ be a successor segment, so $J = J' \sqcup \{n\}$ for some initial segment $J' \subset J$ and $n \in J \setminus J'$. Assume that we have constructed $p_i \in X_i$ for all $i \in J'$ such that $(\spadesuit_{J'})$ holds. We can then construct $p_n \in X_n$ such that (\spadesuit_J) holds.

For $p \in X_n$, let

$$Z(p) = p \times \prod_{j' \in J'} p_{j'} \times \prod_{i \in I \setminus J} X_i.$$

Assume for the sake of contradiction that for all $p \in X_n$, there exists a finite subset $\mathfrak{V}(p)$ of \mathfrak{V} that covers Z(p). Since \mathfrak{V} consists of basic open sets, we can write

$$\mathfrak{V}(p) = \left\{ \prod_{i \in I} V_{i,k}(p) \mid 1 \le k \le m_p \right\}$$

with $V_{i,k}(p) \subset X_i$ for all $i \in I$ and $1 \le k \le m_p$. Discarding unneeded terms if necessary, we can assume that $p_{j'} \in V_{j',k}(p)$ for all $j' \in J'$ and $1 \le k \le m_p$, and also that $p \in V_{n,k}(p)$ for all $1 \le k \le m_p$. Keeping in mind that $J = J' \sqcup \{n\}$, define

$$V_j(p) = \bigcap_{k=1}^{m_p} V_{j,k}(p) \quad \text{for } j \in J,$$

$$V(p) = V_n(p) \times \prod_{j' \in J'} V_{j'}(p).$$

It follows that V(p) is an open neighborhood of $p \times \prod_{j' \in J} p_{j'}$ and that $\mathfrak{V}(p)$ covers $V(p) \times \prod_{i \geq I \setminus J} X_i$. The set $\{V(p) \mid p \in X_n\}$ is an open cover of the compact space $X_n \times \prod_{j' \in J'} p_{j'}$, so we can find $q_1, \ldots, q_d \in X_n$ such that

$$X_n \times \prod_{j' \in J'} p_{j'} \subset V(q_1) \cup \cdots \cup V(q_d).$$

Since $\mathfrak{V}(q_{\ell})$ is a finite cover of $V(q_{\ell}) \times \prod_{i \in I \setminus J} X_i$ for $1 \leq \ell \leq d$, we conclude that $\mathfrak{V}(q_1) \cup \cdots \mathfrak{V}(q_d)$ is a finite subset of \mathfrak{V} that covers

$$X_n \times \prod_{j' \in J'} p_{j'} \times \prod_{i \in I \setminus J} X_i = \prod_{j' \in J'} p_{j'} \times \prod_{i \in I \setminus J'} X_i = Y(J'),$$

contradicting the fact that no such finite cover exists

STEP 2. Let $J \subset I$ be a limit segment. Assume that we have constructed p_i for all $i \in J$ such that $(\spadesuit_{J'})$ holds for all initial segments $J' \subsetneq J$. Then (\spadesuit_J) holds.

Assume for the sake of contradiction that a finite subset $\{V_1, \ldots, V_d\}$ of \mathfrak{V} covers Y(J). Each V_k is a basic open set, so we can write

$$V_k = \prod_{i \in I} V_{k,i}$$
 with $V_{k,i} \subset X_i$ open for all $i \in I$.

Moreover, we have $V_{k,i} = X_i$ for all but finitely many $i \in I$. For $1 \le k \le d$, let $J(k) = \{j \in J \mid V_{k,j} \ne X_j\}$. Set $\widehat{J} = J(1) \cup \cdots \cup J(d)$. Let J' be the smallest initial segment containing \widehat{J} . Since \widehat{J} is a finite subset of J, we have $J' \subsetneq J$. Since $V_{k,j} = X_j$ for all $1 \le k \le d$ and $j \in J \setminus J'$, the fact that $\{V_1, \ldots, V_d\}$ covers Y(J) implies that it also covers Y(J'). This contradicts the fact that no finite subset of \mathfrak{V} covers Y(J').

A.11. Function spaces and the compact-open topology

Let X and Y be spaces and let⁸ $\mathcal{C}(X,Y)$ be the set of all continuous maps $f: X \to Y$. In this section we explain how to turn $\mathcal{C}(X,Y)$ into a space.

A.11.1. Subbasis. Let X be a set and let \mathfrak{B} be a set of subsets of X. We would like to topologize X with the smallest collection of open sets possible to make each $U \in \mathfrak{B}$ open. If for all $U, V \in \mathfrak{B}$ the intersection $U \cap V$ could be written as a union of sets in \mathfrak{B} , then \mathfrak{B} would be a basis for a topology as in §A.2.9. In that case, we could topologize X by saying that $U \subset X$ is open precisely when U is the union of sets in \mathfrak{B} .

However, if \mathfrak{B} does not form a basis then this does not work since in the resulting "topology" the collection of open sets is not closed under finite intersections. To fix this, let \mathfrak{B}' be the set of all finite intersections of elements of \mathfrak{B} . Here we interpret the intersection of zero sets as X, so $X \in \mathfrak{B}'$. The set \mathfrak{B}' does form a basis for a topology on X. In this case, we say that \mathfrak{B} is a *subbasis* for this topology.

A.11.2. Compact-open topology. For sets $A, B \subset X$, define

$$B(A,B) = \{ f \colon X \to Y \mid f(K) \subset U \} \subset \mathcal{C}(X,Y).$$

The compact-open topology on C(X,Y) is the topology with subbasis the collection of all B(K,U) with $K \subset X$ compact and $U \subset Y$ open. In other words, a set $V \subset C(X,Y)$ is open if for all $f \in V$ there exist $K_1, \ldots, K_n \subset X$ compact and $U_1, \ldots, U_n \subset Y$ open such that

$$f \in B(K_1, U_1) \cap \cdots \cap B(K_n, U_n) \subset V$$
.

A.11.3. Metrics. If (Y, \mathfrak{d}) is a metric space, then it is also natural to try to topologize $\mathcal{C}(X, Y)$ using \mathfrak{d} . This is easiest for X compact, in which case we can define a metric \mathfrak{D} on $\mathcal{C}(X, Y)$ by letting

(A.11.1)
$$\mathfrak{D}(f,g) = \max \{ \mathfrak{d}(f(x_1), f(x_1)) \mid x_1, x_2 \in X \} \text{ for } f, g \colon X \to Y.$$

This makes sense since X is compact, which implies that f(X) and g(X) are compact subsets of the metric space Y and thus that the above maximum is finite and realized. We have:

LEMMA A.11.1. Let X be a compact space and let (Y, \mathfrak{d}) be a metric space. The compact-open topology on $\mathcal{C}(X,Y)$ and the metric topology on $\mathcal{C}(X,Y)$ coming from (A.11.1) are the same.

PROOF. We divide the proof into two steps:

STEP 1. Every open set in the compact-open topology is open in the metric topology.

Let $K \subset X$ be compact and $U \subset Y$ be open. We must prove that B(K,U) is open in the metric topology. Indeed, consider $f \in B(K,U)$, so $f(K) \subset U$. Since f(K) is a compact subset of U, we can find some $\epsilon > 0$ such that the ϵ -neighborhood of f(K) is contained in U. For $g \in \mathcal{C}(X,Y)$ with $\mathfrak{D}(f,g) < \epsilon$, since $\mathfrak{d}(g(k),f(k)) < \epsilon$ for all $k \in K$ it follows that g(K) is contained in the ϵ -neighborhood of f(K). We thus have $g(K) \subset U$, so $g \in B(K,U)$. We conclude that the ϵ -ball around f is contained in B(K,U), so B(K,U) is open in the metric topology.

Step 2. Every open set in the metric topology is open in the compact-open topology.

Let
$$f \in \mathcal{C}(X,Y)$$
 and let $\epsilon > 0$. Let

$$B_{\epsilon}(f) = \{ g \in \mathcal{C}(X,Y) \mid d(g(x), f(x)) < \epsilon \text{ for all } x \in X \}$$

be the open ball around f in the metric topology. It is enough to find compact sets $K_1, \ldots, K_n \subset X$ and open sets $U_1, \ldots, U_n \subset Y$ such that

$$f \in B(K_1, U_1) \cap \cdots \cap B(K_n, U_n) \subset B_{\epsilon}(f).$$

Since f(X) is a compact subset of Y, we can find $x_1, \ldots, x_n \in X$ such that

$$(A.11.2) f(X) \subset B_{\epsilon/3}(f(x_1)) \cup \cdots \cup B_{\epsilon/3}(f(x_n)).$$

⁸It is also common to call this space Y^X , but we think the notation $\mathcal{C}(X,Y)$ is easier to understand.

For $1 \leq i \leq n$, let $K_i = f^{-1}(\overline{B_{\epsilon/3}(f(x_i))})$ and $U_i = B_{\epsilon/2}(f(x_i))$. Since K_i is a closed subset of the compact space X, it follows that K_i is closed. By (A.11.2), the sets K_i cover X. Finally, by construction

$$f \in B(K_1, U_1) \cap \cdots \cap B(K_n, U_n).$$

Now consider some $g \in B(K_1, U_1) \cap \cdots \cap B(K_n, U_n)$. We must prove that $g \in B_{\epsilon}(f)$. In other words, letting $x \in X$ we must prove that $\mathfrak{d}(f(x), g(x)) < \epsilon$. We have $x \in K_i$ for some $1 \le i \le n$, so $f(x), g(x) \in U_i$. It follows that $\mathfrak{d}(f(x), g(x))$ is at most the diameter ϵ of $U_i = B_{\epsilon/2}(f(x_i))$.

REMARK A.11.2. If (Y, \mathfrak{d}) is a metric space but X is not compact, then the metric \mathfrak{d} induces a topology on $\mathcal{C}(X,Y)$ as follows. For $f \in \mathcal{C}(X,Y)$ and a compact subset $K \subset X$ and $\epsilon > 0$, let

$$B(f, K, \epsilon) = \{ g \in \mathcal{C}(X, Y) \mid \mathfrak{d}(f(x), g(x)) < \epsilon \text{ for all } x, y \in K \}.$$

These sets form the basis for a topology on C(X,Y) called the topology of compact convergence, and this is the same as the compact-open topology (see Exercise A.34).

A.11.4. Composition. For spaces X and Y and Z, there is a composition map $\mathfrak{c} \colon \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$ defined by $\mathfrak{c}(g,f) = g \circ f$ for $g \in \mathcal{C}(Y,Z)$ and $f \in \mathcal{C}(X,Z)$. It is natural to hope that this is continuous. Unfortunately, this does not hold in general. However, it does hold if Y is locally compact:

LEMMA A.11.3. Let X and Y and Z be spaces with Y locally compact. Then the composition map $\mathfrak{c}: \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$ is continuous.

PROOF. Let $K \subset X$ be compact and $U \subset Z$ be open. We must prove that $\mathfrak{c}^{-1}(B(K,U))$ is open. Let $(g,f) \in \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y)$ satisfy $\mathfrak{c}(g,f) \in B(K,U)$. It is enough to find an open neighborhood of (g,f) that is mapped by \mathfrak{c} into B(K,U). Since $g \circ f \in B(K,U)$, we have $f(K) \subset g^{-1}(U)$. Since f(K) is a compact subset of the open subset $g^{-1}(U) \subset Y$ and Y is locally compact, there is a compact neighborhood L of f(K) with $L \subset g^{-1}(U)$ (see Exercise A.21). It follows that \mathfrak{c} takes the open neighborhood $B(L,U) \times B(K,g^{-1}(U))$ of (g,f) into B(K,U), as desired.

A.11.5. Evaluation. For spaces X and Y, there is an evaluation map $\mathfrak{e} \colon \mathcal{C}(X,Y) \times X \to Y$ defined by $\mathfrak{e}(f,x) = f(x)$ for $f \in \mathcal{C}(X,y)$ and $x \in X$. Just like for the composition map, to ensure this is continuous we need to assume that X is locally compact:

LEMMA A.11.4. Let X and Y be spaces with X locally compact. Then the evaluation map $e: \mathcal{C}(X,Y) \times X \to Y$ is continuous.

PROOF. Let p_0 be a one-point space. We have $\mathcal{C}(p_0,X)=X$ and $\mathcal{C}(p_0,Y)=Y$. Applying these identities, the evaluation map becomes the composition map $\mathcal{C}(X,Y)\times\mathcal{C}(p_0,X)\to\mathcal{C}(p_0,Y)$, which is continuous by Lemma A.11.3.

A.11.6. Parameterized maps. Let X and Y and Z be spaces. It is natural to expect maps $\phi \colon X \times Z \to Y$ and $\Phi \colon Z \to \mathcal{C}(X,Y)$ to be closely related. Indeed, if we were working with sets rather than spaces then such maps would be in bijection with each other: a map $\Phi \colon Z \to \mathcal{C}(X,Y)$ would correspond to the map $\phi \colon X \times Z \to Y$ defined by $\phi(x,z) = \Phi(z)(x)$. The following shows that this holds topologically if X is locally compact:

Lemma A.11.5. Let X and Y and Z be spaces. The following holds:

- (i) Let $\phi: X \times Z \to Y$ be continuous. Define $\Phi: Z \to \mathcal{C}(X,Y)$ to be the map that takes $z \in Z$ to the map $X \to Y$ taking $x \in X$ to $\phi(x,z) \in Y$. Then Φ is continuous.
- (ii) Assume that X is locally compact. Let $\Psi \colon Z \to \mathcal{C}(X,Y)$ be continuous. Define $\psi \colon X \times Z \to Y$ to be the map taking $(x,z) \in X \times Z$ to $\Psi(z)(x) \in Y$. Then ψ is continuous.

PROOF. For (i), let $\phi: X \times Z \to Y$ be continuous and define $\Phi: Z \to \mathcal{C}(X,Y)$ as in (i). Let $K \subset X$ be compact and $U \subset Y$ be open. We must prove that $\Phi^{-1}(B(K,U)) \subset Z$ is open. Let $z_0 \in \Phi^{-1}(B(K,U))$, so $K \times z_0 \subset \phi^{-1}(U)$. Since $K \subset X$ is compact and $\phi^{-1}(U)$ is an open neighborhood of $K \times z_0$, Exercise A.28 (the "tube lemma") gives an open neighborhood $V \subset Z$ of z_0 with $X \in X \subset X$ is compact and $X \subset X$ of $X \subset X$ with $X \subset X$ is compact and $X \subset X$ of $X \subset X$ is compact and $X \subset X$ of $X \subset X$ is compact and $X \subset X$ of $X \subset X$ is compact and $X \subset X$ is compact and

We now prove (ii). Assume that X is locally compact and that $\Psi \colon Z \to \mathcal{C}(X,Y)$ is continuous. The map $\psi \colon X \times Z \to Y$ defined in (ii) is the composition

$$X \times Z \xrightarrow{\mathbb{1} \times \Psi} X \times \mathcal{C}(X, Y) \xrightarrow{\mathfrak{e}} Y,$$

where $\mathfrak{e} \colon X \times \mathcal{C}(X,Y) \to Y$ is the evaluation map $\mathfrak{e}(x,f) = f(x)$. Lemma A.11.4 implies that \mathfrak{e} is continuous, so we conclude that ψ is continuous.

A.11.7. Homotopies and the compact-open topology. Let $f_0, f_1: X \to Y$ be maps. Recall that a homotopy from f_0 to f_1 is a continuous map $H: X \times I \to Y$ with $H(x,0) = f_0(x)$ and $H(x,1) = f_1(x)$ for all $x \in X$. Lemma A.11.5 implies that such a homotopy gives a map $h: I \to \mathcal{C}(X,Y)$. This map h can be viewed as a path from $h(0) = f_0$ to $h(1) = f_1$. Conversely, if X is locally compact then Lemma A.11.5 implies that a path in $\mathcal{C}(X,Y)$ from f_0 to f_1 gives a homotopy from f_0 to f_1 .

A.11.8. Parameterized maps, II. Let X and Y and Z be spaces with X locally compact. Lemma A.11.5 gives a bijection between $\mathcal{C}(X \times Z, Y)$ and $\mathcal{C}(Z, \mathcal{C}(X, Y))$. The following lemma says that this bijection is a homeomorphism if X and Z are Hausdorff:

LEMMA A.11.6. Let X and Y and Z be spaces with X locally compact Hausdorff and Z Hausdorff. Let $\lambda \colon \mathcal{C}(X \times Z, Y) \to \mathcal{C}(Z, \mathcal{C}(X, Y))$ be the map taking $\phi \colon X \times Z \to Y$ to the map $\Phi \colon Z \to \mathcal{C}(X, Y)$ defined by

$$\Phi(z)(x) = \phi(x, z) \in Y$$
 for all $z \in Z$ and $x \in X$.

Then λ is a homeomorphism.

PROOF. Lemma A.11.5 says that λ is a bijection. For $K \subset X$ and $L \subset Z$ compact and $U \subset Y$ open the map λ restricts to a bijection between $B(K \times L, U)$ and B(L, B(K, U)). To prove the lemma, it is enough to prove that open sets of these forms are subbases for the topologies on $C(X \times Z, Y)$ and C(Z, C(X, Y)):

- For $C(X \times Z, Y)$, we prove this in Lemma A.11.7 below.
- For $\mathcal{C}(Z,\mathcal{C}(X,Y))$, in Lemma A.11.8 below we prove more generally that if \mathcal{B} is any subbasis for the topology on a space W, then sets of the form B(L,V) with $L \subset Z$ compact and $V \in \mathcal{B}$ form a subbasis for $\mathcal{C}(Z,W)$.

The above proof used the following two results:

LEMMA A.11.7. Let X and Y and Z be spaces with X and Z Hausdorff. Then the set of all $B(K \times L, U)$ with $K \subset X$ compact and $L \subset Z$ compact and $U \subset Y$ open forms a subbasis for the compact-open topology on $C(X \times Z, Y)$.

PROOF. Let $C \subset X \times Z$ be compact and $U \subset Y$ be open. We must prove that B(C,U) is open in the topology with the indicated subbasis. Consider $f \in B(C,U)$. It is enough to find $K_1, \ldots, K_n \subset X$ compact and $L_1, \ldots, L_n \subset Z$ compact such that

$$f \in B(K_1 \times L_1, U) \cap \cdots \cap B(K_n \times L_n, U) \subset B(C, U).$$

Unwrapping this, we need the K_i and L_i to satisfy the following:

- $C \subset \bigcup_{i=1}^n K_i \times L_i$; and
- $K_i \times L_i \subset f^{-1}(U)$ for all $1 \le i \le n$.

Let $C(X) \subset X$ and $C(Z) \subset Z$ be the projections of $C \subset X \times Z$. Both C(X) and C(Z) are compact Hausdorff spaces, and $C \subset C(X) \times C(Z)$. Replacing X with C(X) and Z with C(Z), we can therefore assume without loss of generality that X and Z are compact Hausdorff spaces. The space $X \times Z$ is thus also a compact Hausdorff space, and in particular is normal (see Lemma A.7.3).

The set $f^{-1}(U)$ is an open neighborhood of C. Since $X \times Z$ is normal, for each $c \in C$ we can find open sets $V_c \subset X$ and $W_c \subset Z$ such that $c \in V_c \times W_c$ and $\overline{V}_c \times \overline{W}_c \subset f^{-1}(U)$. Since C is compact, we can find c_1, \ldots, c_n such that $C \subset \bigcup_{i=1}^n V_{c_i} \times W_{c_i}$. Let $K_i = \overline{V}_{c_i} \subset X$ and $L_i = \overline{W}_{c_i} \subset Z$, so $K_i \times L_i \subset f^{-1}(U)$. Since X and Z are compact, the closed sets K_i and L_i are also compact. By construction we have $C \subset \bigcup_{i=1}^n K_i \times L_i$, as desired.

LEMMA A.11.8. Let Z and W be spaces with Z Hausdorff and let \mathcal{B} be a subbasis for the topology on W. Then the set of all B(K,V) with $K \subset Z$ compact and $V \in \mathcal{B}$ forms a subbasis for the compact-open topology on $\mathcal{C}(Z,W)$.

Proof. See Exercise A.35. \Box

Remark A.11.9. It is a little annoying that the above results require local compactness. Unfortunately, they are false in general. There is a way around this using the theory of compactly generated spaces. Rather than try to describe this, we refer the interested reader to Steenrod's classic paper [11], where he describes conditions that make a category of spaces a "convenient category" for homotopy theory. A nice textbook reference is [3, Chapter 8].

A.12. Manifolds

In this final section, we use the tools we have developed to study manifolds, which are perhaps the most important class of spaces in algebraic topology.

- **A.12.1. Basic definitions.** An *n*-dimensional manifold (or simply an *n*-manifold) is a second countable Hausdorff space M^n that is locally homeomorphic to \mathbb{R}^n in the following sense:
 - For all $p \in M^n$, there exists an open neighborhood U of p that is homeomorphic to an open subset of \mathbb{R}^n .

A chart on M^n is a homeomorphism $\phi \colon U \to V$ with $U \subset M^n$ and $V \subset \mathbb{R}^n$ open sets. If U is an open neighborhood of $p \in M^n$, we call this chart $\phi \colon U \to V$ a chart around p. An atlas for M^n is a collection of charts $\{\phi_i \colon U_i \to V_i\}_{i \in I}$ such that the U_i cover M^n .

A.12.2. Basic examples. Here are several basic examples:

EXAMPLE A.12.1. The whole space \mathbb{R}^n is an *n*-manifold with an atlas consisting of a single chart $\mathbb{1} \colon \mathbb{R}^n \to \mathbb{R}^n$. More generally, an open set $U \subset \mathbb{R}^n$ is an *n*-manifold, again with an atlas consisting of a single chart $\mathbb{1} \colon U \to U$.

EXAMPLE A.12.2. More generally, if M^n is an n-manifold and $W \subset M^n$ is open, then W is an n-manifold. Indeed, for $p \in W$ let $\phi \colon U \to V$ be a chart around p for M^n . Letting $U' = U \cap W$ and $V' = \phi(U')$, the homeomorphism $\phi|_{U'} \colon U' \to V'$ is a chart around p for W.

EXAMPLE A.12.3. Let \mathbb{S}^n be the *n*-sphere, so

$$\mathbb{S}^n = \left\{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1 \right\}.$$

This is an *n*-manifold. Indeed, for $1 \le k \le n+1$ let

$$U_{x_k>0} = \{(x_1, \dots, x_{n+1}) \in \mathbb{S}^n \mid x_k > 0\},\$$

$$U_{x_k<0} = \{(x_1, \dots, x_{n+1}) \in \mathbb{S}^n \mid x_k < 0\}.$$

Letting $B = B_1(0) \subset \mathbb{R}^n$ be the open unit ball, we have homeomorphisms $\phi_{x_k>0} \colon U_{x_k>0} \to B$ and $\phi_{x_k<0} \colon U_{x_k<0} \to B$ taking a point (x_1,\ldots,x_{n+1}) to $(x_1,\ldots,\widehat{x_k},\ldots,x_{n+1}) \in B$, where the hat in $\widehat{x_j}$ indicates that this coordinate is being omitted. The set

$$\{\phi_{x_k>0}: U_{x_k>0} \to B, \, \phi_{x_k<0}: U_{x_k<0} \to B \mid 1 \le k \le n+1\}$$

is an atlas for \mathbb{S}^n .

EXAMPLE A.12.4. Let \mathbb{RP}^n be the set of lines though the origin in \mathbb{R}^{n+1} . There is a projection map $q \colon \mathbb{R}^{n+1} \setminus 0 \to \mathbb{RP}^n$ taking $x \in \mathbb{R}^{n+1} \setminus 0$ to the line through 0 and x. We endow \mathbb{RP}^n with the quotient topology from this projection, so $U \subset \mathbb{RP}^n$ is open if and only if $q^{-1}(U) \subset \mathbb{R}^{n+1} \setminus 0$ is open. The space \mathbb{RP}^n is known as the n-dimensional real projective space. As notation, for $(x_1,\ldots,x_{n+1}) \in \mathbb{R}^{n+1} \setminus 0$ we write $[x_1,\ldots,x_{n+1}]$ for the corresponding point of \mathbb{RP}^n , so for $\lambda \in \mathbb{R}$ nonzero we have $[\lambda x_1,\ldots,\lambda x_{n+1}] = [x_1,\ldots,x_{n+1}]$.

The space \mathbb{RP}^n is an *n*-manifold. Unlike our previous examples, it is not totally obvious that it is second countable and Hausdorff, so we leave this as an exercise (Exercise A.36). We

prove it is locally Euclidean by exhibiting an atlas as follows. For $1 \le k \le n+1$, let $U_k = \{[x_1, \dots, x_{n+1}] \in \mathbb{RP}^n \mid x_k \ne 0\}$. This set is well-defined, and the map $\phi_k \colon U_k \to \mathbb{R}^n$ defined by

$$\phi_k([x_1, \dots, x_{n+1}]) = (x_1/x_k, \dots, \widehat{x_k/x_k}, \dots, x_{n+1}/x_k)$$
 for $[x_1, \dots, x_{n+1}] \in \mathbb{RP}^n$

is a well-defined homeomorphism (see Exercise A.36). The set $\{\phi_k \colon U_k \to \mathbb{R}^n \mid 1 \le k \le n+1\}$ is an atlas for \mathbb{RP}^n .

Remark A.12.5. It is clear that the only connected 0-dimensional manifold is a single point. It turns out that \mathbb{R} and \mathbb{S}^1 are the only connected 1-dimensional manifolds. There is also a very beautiful classification of compact connected 2-dimensional manifolds. Here are two examples of such 2-manifolds:

We describe the classification of 2-manifolds in our essay [9]. The exercises in that essay also outline a proof of the classification of 1-dimensional manifolds. In higher dimensions, things are much more complicated. \Box

Remark A.12.6. The requirement that manifolds be second countable and Hausdorff is needed to rule out various pathological examples. Without them, even 1-manifolds would not have a simple classification. We describe some of these pathological examples later in this section. \Box

A.12.3. Basic properties. The following summarizes some of the basic point-set topological properties of manifolds:

Lemma A.12.7. Let M^n be an n-dimensional manifold. Then:

- M^n is normal.
- M^n is locally compact.
- M^n is paracompact.
- M^n is locally path connected, so its path components and connected components coincide and are clopen.

PROOF. Since M^n is locally homeomorphic to \mathbb{R}^n , the fact that M^n is locally compact and locally path connected follows immediately from the fact that \mathbb{R}^n is locally compact and locally path connected. Since M^n is second countable, Hausdorff, and locally compact, it follows that M^n is paracompact (see Corollary A.9.4). This implies that M^n is normal (see Lemma A.9.5).

Remark A.12.8. One basic property of manifolds we do not list above is that their dimension is well-defined. In fact, it is true that if M is both an n-manifold and an m-manifold then n=m, but this is a difficult theorem called the *invariance of domain*. The most natural proof of invariance of domain uses homology.

A.12.4. Embedding manifolds into Euclidean space. Many n-manifolds are constructed as subspaces of some \mathbb{R}^d , but some manifolds like \mathbb{RP}^n do not have obvious embeddings into any Euclidean space. However, it turns out that all manifolds can be embedded in some \mathbb{R}^d :

Theorem A.12.9. Let M^n be an n-dimensional manifold. Then for some $d \gg 0$ there exists an embedding $\iota \colon M^n \hookrightarrow \mathbb{R}^d$.

We remark that using dimension theory, one can embed M^n into \mathbb{R}^{2n+1} . See [6, Theorem V3]. To avoid technical complications, we only prove Theorem A.12.9 when M^n is compact. See the remark after the proof for how to extend our argument to the non-compact case.

PROOF OF THEOREM A.12.9 FOR M^n COMPACT. Since M^n is compact, it has a finite atlas $\{\phi_k \colon U_k \to V_k \mid 1 \le k \le m\}$. Since M^n is paracompact, there is a partition of unity $\{f_1, \ldots, f_m\}$ subordinate to $\{U_1, \ldots, U_n\}$. Recall that this means that each f_k is a function $f_k \colon M^n \to [0, 1]$ with $\sup(f_k) \subset U_k$, and $f_1(p) + \cdots + f_m(p) = 1$ for all $p \in M^n$. Multiplying ϕ_k by f_k , we get a

map $f_k\phi_k\colon U_k\to\mathbb{R}^n$. Since $\mathrm{supp}(f_k)\subset U_k$, we can extend $f_k\phi_k\colon U_k\to\mathbb{R}^n$ to a continuous map $G_k\colon M^n\to\mathbb{R}^n$ with $G_k(p)=0$ for $p\notin U_k$. Let $\iota\colon M^n\to\mathbb{R}^{nm+m}$ be the map defined by

$$\iota(p) = (G_1(p), f_1(p), \dots, G_m(p), f_m(p)) \in (\mathbb{R}^n \times \mathbb{R}^1)^{\times m} = \mathbb{R}^{nm+m} \quad \text{for } p \in M^n.$$

Since M^n is compact, to prove that ι is an embedding it is enough to prove that ι is injective (see Lemma A.7.7). For this, consider $p, q \in M^n$ with $\iota(p) = \iota(q)$. Since $f_1(p) + \cdots + f_m(p) = 1$, there is some $1 \le k \le m$ with $f_k(p) > 0$. Since $\iota(p) = \iota(q)$, we have $f_k(q) = f_k(p)$. This implies that $p, q \in \text{supp}(f_k) \subset U_k$. Since $\iota(p) = \iota(q)$, the points

$$G_k(p) = f_k(p)\phi_k(p)$$
 and $G_k(q) = f_k(q)\phi_k(q)$

must be equal, so $\phi_k(p) = \phi_k(q)$. Since $\phi_k : U_k \to V_k$ is a homeomorphism, it follows that p = q. \square

REMARK A.12.10. One way to extend Theorem A.12.9 to noncompact manifolds M^n is to prove that there is still a finite atlas $\{\phi_k \colon U_k \to V_k \mid 1 \le k \le m\}$, which allows you to run the above proof (though with a little more care since injective maps need not be embeddings in the noncompact setting). That a finite atlas exists might sound surprising, but the key insight is that the U_k need not be connected, and in fact can have countably many components. We omit the details.

A.12.5. Metrics. Theorem A.12.9 implies the following:

COROLLARY A.12.11. Let M^n be an n-dimensional manifold. Then M^n can be given the structure of a metric space.

Since we did not prove Theorem A.12.9 for noncompact manifolds, we give a proof of Corollary A.12.11 that works in general:

PROOF OF COROLLARY A.12.11. Since $\prod_{k=1}^{\infty} \mathbb{R}^n \times \mathbb{R}^1$ can be given the structure of a metric space (see Lemma A.10.11), it is enough to embed M^n into this countable product. Since M^n is second countable, it has a countable atlas $\{\phi_k \colon U_k \to V_k \mid k \ge 1\}$. Since M^n is paracompact, there is a partition of unity $\{f_k \colon M^n \to [0,1] \mid k \ge 1\}$ subordinate to $\{U_k \mid k \ge 1\}$. Multiplying ϕ_k by f_k , we get a map $f_k \phi_k \colon U_k \to \mathbb{R}^n$. Since $\sup(f_k) \subset U_k$, we can extend $f_k \phi_k \colon U_k \to \mathbb{R}^n$ to a continuous map $G_k \colon M^n \to \mathbb{R}^n$ with $G_k(p) = 0$ for $p \notin U_k$. Let $\iota \colon M^n \to \prod_{k=1}^{\infty} \mathbb{R}^n \times \mathbb{R}^1$ be the map defined by

$$\iota(p) = (G_k(p), f_k(p))_{k \ge 1} \in \prod_{k=1}^{\infty} \mathbb{R}^n \times \mathbb{R}^1 \text{ for } p \in M^n.$$

The proof that ι is injective is the same as in the proof of Theorem A.12.9, so we omit it. Letting $X = \operatorname{Im}(\iota)$, to prove that ι is an embedding we must prove that $\iota^{-1}: X \to M^n$ is continuous. Consider some $p_0 \in M^n$. We prove that ι^{-1} is continuous at $\iota(p_0)$ as follows. Choose $d \ge 1$ such that $f_d(p_0) > 0$. Let

$$U'_d = \{ p \in U_d \mid f_d(p) > 0 \}$$
 and $V'_d = \phi_d(U'_d)$.

Set

$$W = X \cap \left\{ (x_k, \lambda_k)_{k \ge 1} \in \prod_{k=1}^{\infty} \mathbb{R}^n \times \mathbb{R}^1 \mid \lambda_d > 0 \right\},\,$$

so W is an open neighborhood of $\iota(p_0)$ in X. The map ι^{-1} takes W to U'_d . On W, the map ι^{-1} can be written as a composition of a sequence of continuous maps:

• First, the projection

$$W \hookrightarrow \prod_{k=1}^{\infty} \mathbb{R}^n \times \mathbb{R}^1 \xrightarrow{\pi} \mathbb{R}^n \times \mathbb{R}^1$$

onto the d^{th} factor, whose image is contained in $\{(\lambda v, \lambda) \mid \lambda > 0 \text{ and } v \in V'_d\}$.

• Next, the map

$$\{(\lambda v, \lambda) \mid \lambda > 0 \text{ and } v \in V_d'\} \longrightarrow V_d'$$

that takes $(\lambda v, \lambda)$ to v.

• Finally, the inverse of the map $\phi_d \colon U'_d \to V'_d$.

We deduce that the restriction of ι^{-1} to W is continuous, and thus that ι^{-1} is continuous at $\iota(p_0)$. \square

Remark A.12.12. There are various metrization theorems giving conditions that imply that a topological space can be given a metric. Most of them are proved using arguments related to the one we gave for Corollary A.12.11. See [8, Chapter 6] for a discussion of this.

A.12.6. Non-Hausdorff manifolds. Recall that we require manifolds to be Hausdorff and second countable. Removing these hypotheses gives many exotic generalized manifolds, even in dimension 1. We have already seen one example of a non-Hausdorff 1-manifold, namely the line with two origins from Example A.6.1. We recall the construction:

EXAMPLE A.12.13. As a set, let $Y = (\mathbb{R} \setminus \{0\}) \sqcup \{0_1, 0_2\}$. For i = 1, 2, let $f_i : \mathbb{R} \to Y$ be the map defined by $f_i(x) = x$ for $x \in \mathbb{R} \setminus \{0\}$ and $f_i(0) = 0_i$. Give Y the identification space topology, so:

• a set $U \subset Y$ is open if and only if $f_1^{-1}(U)$ and $f_2^{-1}(U)$ are open in \mathbb{R} .

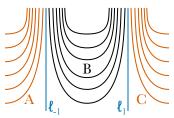
With this topology, the subspaces $Y \setminus \{0_2\} = f_1(\mathbb{R})$ and $Y \setminus \{0_1\} = f_2(\mathbb{R})$ are open subsets of Y that are both homeomorphic to \mathbb{R} . It follows that Y a second-countable non-Hausdorff 1-manifold. \square

This example might not seem very geometrically interesting. The theory of foliations of the plane gives non-Hausdorff 1-manifolds with a closer connection to geometry. See [4] for a beautiful discussion of this. We content ourselves here with one example:

Example A.12.14. For
$$c \in \mathbb{R}$$
, let $X_c = \{(x,y) \mid (x^2 - 1)e^y = c\} \subset \mathbb{R}^2$. Define

$$\mathfrak{F} = \{L \mid L \text{ is a connected component of } X_c \text{ for some } c \in \mathbb{R}\}.$$

The set \mathfrak{F} is what is called a foliation of \mathbb{R}^2 . Each $L \in \mathfrak{L}$ is called a *leaf* of the foliation. Here is a picture of \mathfrak{F} :

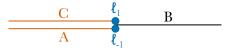


Each leaf L is homeomorphic to \mathbb{R} , and \mathbb{R}^2 is the disjoint union of the $L \in \mathfrak{F}$. The set X_0 consists of two vertical lines ℓ_{-1} and ℓ_1 where $x=\pm 1$. For c>0, the set X_c consists of two arcs, one lying in the region to the left of ℓ_{-1} labeled A and one lying in the region to the right of ℓ_1 labeled C. For c<0, the set X_c consists of a single arc in the region between ℓ_{-1} and ℓ_1 labeled C.

Let \mathcal{L} be the quotient space of \mathbb{R}^2 obtained by collapsing each $L \in \mathfrak{F}$ to a point. This is called the leaf space of the foliation \mathfrak{F} . The space \mathcal{L} is a non-Hausdorff 1-manifold. To describe it, let R_1 and R_1 be copies of \mathbb{R} . The space \mathcal{L} is obtained by gluing R_1 to R_2 so as to identify each $t \in R_1$ with t > 0 with the corresponding $t \in R_2$. The various types of leaves correspond to the following points:

- The points $0 \in R_1$ and $0 \in R_2$ correspond to ℓ_{-1} and ℓ_1 .
- The points $t \in R_1$ with t < 0 correspond to the arcs in the region A.
- The points $t \in R_2$ with t < 0 correspond to the arcs in the region C.
- The points $t \in R_1$ and $t \in R_2$ with t > 0 are glued together and correspond to the arcs in the region B.

The picture is as follows:



This space is non-Hausdorff since the points corresponding to ℓ_{-1} and ℓ_1 do not have disjoint neighborhoods. You will verify all of this in Exercise A.37.

- **A.12.7.** Long line. The theory of non-second countable manifolds has a set-theoretic flavor. It turns out that in dimension one there is a single example of a connected non-second countable Hausdorff 1-manifold called the *long line L*. We close this essay with a brief discussion of it. The space L has the following seemingly paradoxical properties:
 - L is a path-connected Hausdorff non-second-countable 1-manifold.

- Like \mathbb{R} , the points of L are endowed with a total ordering.
- For $x, y \in L$ with x < y, the "interval"

$$[x,y] = \{z \in L \mid x \le z \le y\}$$

is homeomorphic to the closed interval I = [0, 1]. This accounts for L being path connected.

• On the other hand, since L is not second countable it contains uncountably many subspaces homeomorphic to the open interval (0,1).

Before we can construct L, we need to discuss some more details about well-ordered sets, which we introduced in $\S A.10.10$ to set up the process of transfinite induction.

A.12.8. Minimal uncountable well-ordered set. Let S be an uncountable set. Pick a well-ordering on S. Let \mathfrak{C} be the set of all initial segments of S that are either finite or countably infinite. The set \mathfrak{C} is nonempty since $\emptyset \in \mathfrak{C}$. In fact, by starting with \emptyset and repeatedly adding the minimal element we have not yet chosen we see that there exists a countably infinite set in \mathfrak{C} . As we discussed in §A.10.10, the initial segments of S are totally ordered under inclusion. Let

$$S_{\Omega} = \bigcup_{J \in \mathfrak{C}} J.$$

The set S_{Ω} is an initial segment of S. By construction, all initial segments J with $J \subsetneq S_{\Omega}$ are countable. We claim that S_{Ω} is not countable. Indeed, let s_0 be the minimal element of $S \setminus S_{\Omega}$. The initial segment $S_{\Omega} \sqcup \{s_0\}$ cannot lie in \mathfrak{C} , so $S_{\Omega} \sqcup \{s_0\}$ is uncountable. This implies that S_{Ω} is uncountable. The totally ordered set S_{Ω} is called the *minimal uncountable well-ordered set*. It is unique up to isomorphism, but we will not need this. All we need to know about S_{Ω} is that it is uncountable but all proper initial segments of S_{Ω} are finite or countably infinite.

A.12.9. Constructing the long line. Let $\widehat{L} = S_{\Omega} \times [0,1)$. Both S_{Ω} and [0,1) have total orderings. Give \widehat{L} the dictionary ordering, so $(s,x) \leq (s',x')$ if s < s' or if s = s' and x < x'. An open interval in \widehat{L} is a set of the form $(\theta_1,\theta_2) = \{\nu \mid \theta_1 < \nu < \theta_2\}$ for some $\theta_1,\theta_2 \in \widehat{L}$ with $\theta_1 < \theta_2$. This is a basis for a topology (see Exercise A.6) called the *order topology*. We endow \widehat{L} with the order topology.

To form the long line L, let $s_0 \in S_\omega$ be the minimal element. It follows that $(s_0, 0) \in \widehat{L}$ is the minimal element of \widehat{L} . Define $L = \widehat{L} \setminus \{(s_0, 0)\}$. As you will verify in Exercise A.38, this has the properties claimed in §A.12.7.

A.13. Exercises

Exercise A.1. Prove the following:

- (a) Let (M, \mathfrak{d}) be a metric space. Define $\mathfrak{d}' \colon M \times M \to \mathbb{R}$ via the formula $\mathfrak{d}'(p, q) = \min\{\mathfrak{d}(p, q), 1\}$. Prove that \mathfrak{d}' is a metric on M that induces the same topology on M that \mathfrak{d} does
- (b) Let $\|-\|$ be the following standard norm on \mathbb{R}^n :

$$\|(x_1, \dots, x_n)\| = \sqrt{x_1^2 + \dots + x_n^2}$$
 for all $(x_1, \dots, x_n) \in \mathbb{R}^n$.

This induces the metric $\mathfrak{d}(p,q) = \|p-q\|$ on \mathbb{R}^n . Now let $\|-\|'$ be an arbitrary norm on the vector space \mathbb{R}^n . Define a function $\mathfrak{d}' \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ via the formula

$$\mathfrak{d}'(p,q) = \|p - q\|' \text{ for } p, q \in \mathbb{R}^n.$$

Prove that \mathfrak{d}' is a metric on \mathbb{R}^n and that \mathfrak{d}' induces the same topology on \mathbb{R}^n as \mathfrak{d} .

EXERCISE A.2. Prove that the function $f: M \to \mathbb{R}$ from Example A.1.5 is not continuous. \square

EXERCISE A.3. Let M_1 and M_2 be metric spaces. Let $f: M_1 \to M_2$ be a function. Prove that f is continuous (defined using the ϵ - δ definition) if and only if for all $U \subset M_2$ open we have $f^{-1}(U) \subset M_1$ open.

⁹Or the minimal uncountable ordinal, but we have chosen not to use that terminology.

EXERCISE A.4. Let M be a metric space. Prove that the collection of open sets in M makes M into a topological space.

EXERCISE A.5. Let **k** be a field. Prove that the Zariski topology on \mathbf{k}^n described in Example A.2.9 is a topology.

EXERCISE A.6. Let S be a set with a total ordering \leq . For $s_1, s_2 \in S$ with $s_1 < s_2$, let $(s_1, s_2) = \{s \in S \mid s_1 < s < s_2\}$. Prove that the collection of all sets of the form (s_1, s_2) forms a basis for a topology on S. For instance, if $S = \mathbb{R}$ with its usual ordering this is the usual basis for the topology on \mathbb{R} .

EXERCISE A.7. Let X be a space and let \sim be an equivalence relation on X. As a set, let $Y = X/\sim$ and let $f\colon X\to Y$ be the projection. Endow Y with the quotient topology, so $f\colon X\to Y$ is a quotient map. Let Y' be another space and let $f'\colon X\to Y'$ be a map such that the following holds:

• For all spaces Z, composition with f' gives a bijection between continuous maps $\phi \colon Y' \to Z$ and \sim -invariant continuous maps $\Phi \colon X \to Z$.

Prove that there is a homeomorphism $g: Y \to Y'$ such that $f' = g \circ f$. In other words, the above universal mapping property characterizes the quotient space Y.

Exercise A.8. Prove the following basic properties of connected spaces:

- (a) The space I = [0, 1] is connected.
- (b) If X is connected and $f: X \to Y$ is a map, then f(X) is connected.
- (c) Let X be a space and let $\{Y_i\}_{i\in I}$ be a collection of subspaces of X. Assume that:
 - each Y_i is connected; and
 - for all $i, j \in I$, the space $Y_i \cap Y_j$ is nonempty; and
 - $\bullet \ X = \cup_{i \in I} Y_i.$

Then X is connected.

EXERCISE A.9. Let X be the topologist's sine curve:

$$X = \{(0, y) \mid -1 \le y \le 1\} \cup \{(x, \sin(1/x) \mid x > 0\} \subset \mathbb{R}^2.$$

Prove that X is connected but not path connected. Also, prove that its path components are

$$X_1 = \{(0, y) \mid -1 \le y \le 1\},\$$

 $X_2 = \{(x, \sin(1/x) \mid x > 0\}.$

EXERCISE A.10. Let X be a space. Prove that the following are equivalence relations on the points of X:

- (a) For $p, q \in X$, the relation where p is equivalent to q if there is a path in X from p to q.
- (b) For $p, q \in X$, the relation where p is equivalent to q if there is a connected subspace $Y \subset X$ with $p, q \in X$.

EXERCISE A.11. Let X be a space and let Y be a path component of X. Prove that Y is connected. \Box

EXERCISE A.12. Let X be a first countable Hausdorff space, let Y be a Hausdorff space, and let $f: X \to Y$ be a map of sets. Then f is continuous if and only if the following holds:

• Let $\{x_n\}_{n\geq 1}$ be a convergent sequence in X. Then $\{f(x_n)\}_{n\geq 1}$ is a convergent sequence in Y and $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

EXERCISE A.13. Let X be a Hausdorff space. Prove the following:

(a) All points in X are closed, i.e., for all $p \in X$ the one-point set $\{p\}$ is closed.

- (b) If Z is another space and $f, g: Z \to X$ are two maps, then the subset $\{z \in Z \mid f(z) = g(z)\}$ of points in Z where f and g are equal is closed. In particular, if f and g agree on a dense subset of Z, then f = g.
- (c) Let $\{x_n\}_{n\geq 1}$ be a sequence in X and let $y_1, y_2 \in X$ be such that $\lim_{n\to\infty} x_n = y_1$ and $\lim_{n\to\infty} x_n = y_2$. Then $y_1 = y_2$.

EXERCISE A.14. Let \mathbf{k} be a field. Prove that the Zariski topology on \mathbf{k}^n described in Example A.2.9 is Hausdorff if and only if \mathbf{k} is a finite field.

EXERCISE A.15. Let X be a space and let $f_n: X \to \mathbb{R}$ be a sequence of continuous functions converging uniformly to a function $f: X \to \mathbb{R}$. Prove that f is continuous.

EXERCISE A.16. Let X be a compact Hausdorff space. Prove that X is normal. \Box

EXERCISE A.17. Let X be a space and $K \subset X$ be a subspace. Prove:

- (a) If X is first countable and K is compact, then K is sequentially compact.
- (b) If X is second countable and K is sequentially compact, then K is compact. \Box

EXERCISE A.18. Let $f: X \to Y$ be a map of spaces and let $K \subset X$ be compact. Prove that f(K) is compact.

EXERCISE A.19. Let $K \subset \mathbb{R}$ be compact. Prove that there exist $m, M \in K$ such that $m \leq k \leq M$ for all $k \in K$.

EXERCISE A.20. Let X be a Hausdorff space. Prove that X is locally compact if and only if for all $p \in X$, there exists a compact neighborhood K of p.

EXERCISE A.21. Let X be a locally compact space. Let $K \subset X$ be compact and $U \subset X$ be open with $K \subset U$. Prove that there is a compact neighborhood L of K with $L \subset U$.

EXERCISE A.22. Prove that \mathbb{R}^n with it standard metric is complete, i.e., that all Cauchy sequences in \mathbb{R}^n have limits.

EXERCISE A.23. Let M be a complete metric space. Prove that M is a Baire space, i.e., that the following holds. Let $\{U_n\}_{n\geq 1}$ be a collection of open dense subsets of X. Then $\cap_{n\geq 1}U_n$ is dense. \square

EXERCISE A.24. Let X be a space and let \mathfrak{Z} be a collection of subsets of X.

(a) If 3 is locally finite, prove that

$$\overline{\bigcup_{Z \in \mathfrak{Z}} Z} = \bigcup_{Z \in \mathfrak{Z}} \overline{Z}.$$

(b) Give an example to show that local finiteness is needed in the previous part. \Box

EXERCISE A.25. Let X be a space, let $\mathfrak U$ be an open cover of X, and let $\mathfrak V$ be an open cover of X that refines $\mathfrak U$. Assume that $\mathfrak V$ has a finite subcover. Prove that $\mathfrak U$ has a finite subcover. \square

EXERCISE A.26. Let X be a space and let $\{V_i\}_{i\in I}$ be a locally finite collection of open subsets of X. For each $i\in I$, let $h_i\colon X\to\mathbb{R}$ be a continuous function such that $\mathrm{supp}(h_i)\subset V_i$. Define $h\colon X\to\mathbb{R}$ via the formula

$$h(p) = \sum_{i \in I} h_i(p)$$
 for $p \in X$.

Prove that $h: X \to \mathbb{R}$ is continuous.

EXERCISE A.27. Prove that the product topology on $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ is the same as the metric space topology.

EXERCISE A.28. Let X and Y be spaces and let $U \subset X \times Y$ be open. Let $A \subset X$ and $K \subset Y$ be such that $A \subset K \subset U$. Assume that K is compact. Prove that there exists an open neighborhood V of A such that $A \times K \subset U$.

EXERCISE A.29. Let $\{X_i\}_{i\in I}$ be a collection of spaces. Let $Y = \prod_{i\in I} X_i$ and for $i\in I$ let $\pi_i\colon Y\to X_i$ be the projection. Let Y' be a space equipped with continuous maps $\pi'_i\colon Y'\to X_i$ for each $i\in I$ such that the following holds:

• For all spaces Z and all collections of continuous maps $f_i \colon Z \to X_i$ for $i \in I$, there exists a unique continuous map $F \colon Z \to Y'$ such that $f_i = \pi'_i \circ F$ for all $i \in I$.

Prove that there is a homeomorphism $g: Y \to Y'$ such that $\pi_i = \pi_i' \circ g$ for all $i \in I$. In other words, the above universal mapping property characterizes the product space. In category theory, a product in a category is something satisfying a universal property of the above form. A category theorist would therefore say that $\prod_{i \in I} X_i$ is the product of the X_i in the category of topological spaces. \square

EXERCISE A.30. Let $\{X_i\}_{i\in I}$ be a collection of spaces. Let $Y = \bigsqcup_{i\in I} X_i$ with the disjoint union topology discussed in $\S A.3.3$. For $i\in I$, let $\iota\colon X_i\to Y$ be the inclusion. Let Y' be a space equipped with continuous maps $\iota'_i\colon X_i\to Y'$ for each $i\in I$ such that the following holds:

• For all spaces Z and all collections of continuous maps $f_i: X_i \to Z$ for $i \in I$, there exists a unique continuous map $F: Y' \to Z$ such that $f_i = F \circ \iota'_i$ for all $i \in I$.

Prove that there is a homeomorphism $g: Y \to Y'$ such that $\iota'_i = g \circ \iota_i$ for all $i \in I$. In other words, the above universal mapping property characterizes the disjoint union. In category theory, a sum in a category is something satisfying a universal property of the above form. A category theorist would therefore say that $\sqcup_{i \in I} X_i$ is the sum of the X_i in the category of topological spaces.

EXERCISE A.31. Let $\{A_i\}_{i\in I}$ be a collection of abelian groups. Let $\prod_{i\in I} A_i$ be the product of the A_i and let $\bigoplus_{i\in I} A_i$ be the sum of the A_i , so

$$\bigoplus_{i \in I} A_i = \left\{ (a_i)_{i \in I} \in \prod_{i \in I} A_i \mid a_i = 0 \text{ for all but finitely many } i \in I \right\}.$$

Imitate the definitions from Exercises A.29 and A.30 to formulate what it should mean to have a product and a sum in the category of abelian groups, and prove that $\prod_{i \in I} A_i$ and $\bigoplus_{i \in I} A_i$ are the product and sum of the A_i . We remark that unlike for topological spaces, the product and sum coincide for finite collections of abelian group.

EXERCISE A.32. Let $\{X_i\}_{i\in I}$ be a collection of spaces. For each $i\in I$, let $\{p(i)_n\}_{n\geq 1}$ be a sequence of points in X_i that converges to $p(i)\in X_i$. For $n\geq 1$, let $p_n=(p(i)_n)_{i\in I}\in\prod_{i\in I}X_i$.

EXERCISE A.33. For each $n \ge 1$, let (M_n, \mathfrak{d}_n) be a metric space. For each $n \ge 1$, assume that $\mathfrak{d}_n(p,q) \le 1$ for all $p,q \in M_n$. Define a two-variable real-valued function on $\prod_{n=1}^{\infty} M_n$ via the formula

$$\mathfrak{d}((p_n)_{n\geq 1}, (q_n)_{n\geq 1}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \, \mathfrak{d}'_n(p_n, q_n).$$

Prove that this is a metric on $\prod_{n=1}^{\infty} M_n$ that induces the product topology.

EXERCISE A.34. Let X be a space and let (Y, \mathfrak{d}) be a metric space. For $f \in Y^X$ and a compact subset $K \subset X$ and $\epsilon > 0$, let

$$B(f,K,\epsilon) = \left\{g \in Y^X \ | \ \mathfrak{d}(f(x),g(x)) < \epsilon \text{ for all } x,y \in K \right\}.$$

Prove that these sets form the basis for a topology on Y^X , and this topology is the same as the compact-open topology.

EXERCISE A.35. Let Z and W be spaces with Z Hausdorff and let \mathcal{B} be a subbasis for the topology on W. Prove that the set of all B(K,V) with $K \subset Z$ compact and $V \in \mathcal{B}$ forms a subbasis for the compact-open topology on $\mathcal{C}(Z,W)$.

Exercise A.36. Prove the following:

- (a) The space \mathbb{RP}^n is Hausdorff and second countable.
- (b) Letting $U_k = \{[x_1, \dots, x_{n+1}] \in \mathbb{RP}^n \mid x_k \neq 0\}$, the map $\phi_k \colon U_k \to \mathbb{R}^n$ defined by

$$\phi_k([x_1, \dots, x_{n+1}]) = (x_1/x_k, \dots, \widehat{x_k/x_k}, \dots, x_{n+1}/x_k)$$
 for $[x_1, \dots, x_{n+1}] \in \mathbb{RP}^n$

is a well-defined homeomorphism.

EXERCISE A.37. Verify the description of \mathcal{L} in Example A.12.14.

EXERCISE A.38. Let L be the long line constructed in §A.12.9. Prove the following:

(a) For $x, y \in L$ with x < y, the closed interval

$$[x,y] = \{ z \in L \mid x \le z \le y \}$$

is homeomorphic to the closed interval I = [0, 1].

- (b) The space L is path-connected.
- (c) The space L contains uncountably many subspaces homeomorphic to the open interval (0,1).

(d) The space L is a Hausdorff non-second-countable 1-manifold.

Bibliography

- [1] N. Bourbaki, General topology. Chapters 1-4, translated from the French Reprint of the 1989 English translation, Elements of Mathematics (Berlin), Springer, Berlin, 1998. (Cited on pages 1 and 3.)
- $[2]\,$ J. Dugundji, Topology, Allyn & Bacon, Boston, MA, 1966. (Cited on pages 1 and 22.)
- [3] B. Gray, Homotopy theory: an introduction to algebraic topology, Academic Press, New York-London, 1975. (Cited on page 34.)
- [4] A. Haefliger & G. Reeb, One dimensional non-Hausdorff manifolds and foliations of the plane, in Geometric methods in group theory—papers dedicated to Ruth Charney, 225–241, Sémin. Congr., 34, Soc. Math. France, Paris. (Cited on page 37.)
- [5] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig Viet, 1914. (Cited on pages 1 and 3.)
- [6] W. Hurewicz & H. Wallman, Dimension Theory, Princeton University Press, Princeton, NJ, 1941. (Cited on page 35.)
- [7] J. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. (Cited on pages 1, 11, and 22.)
- [8] J. Munkres, Topology, 2nd edition, Prentice Hall, Upper Saddle River, NJ, 2000. (Cited on pages 1 and 37.)
- [9] A. Putman, The classification of surfaces, informal essay. (Cited on page 35.)
- [10] M. Rudin, A new proof that metric spaces are paracompact, Proc. Amer. Math. Soc. 20 (1969), 603. (Cited on page 22.)
- [11] N. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967) 133–152. (Cited on page 34.)
- [12] A. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982. (Cited on page 22.)