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ESSAY A

Review of point-set topology

This essay is a rapid review of some basic facts about point-set topology. Our goal is to emphasize
definitions and examples that are important for algebraic topology, and also to explain a few things
at a slightly more sophisticated level than the usual undergraduate textbooks. Since we expect that
our readers have seen this material before, our coverage is selective and we do not attempt to prove
(or even state) all the results that would necessarily be included in a basic course. I first learned this
material from Munkres’s undergraduate textbook [8]. See [1, 2, 7] for more advanced references.

A.1. From Euclidean space to metric spaces

We first describe the naive notion of a space. We then make an initial attempt to formalize this
via metric spaces and discuss the ways in which this is unsatisfactory.

A.1.1. Spaces. The most familiar spaces are R™ and its subspaces. Indeed, since we live in R?
our drawings necessarily lie in R3. For instance:
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We can imagine subspaces of R” for n > 4 by analogy with R3. These are the geometric objects
studied by mathematicians going back to the ancient Greeks.

Modern formalizations of the notion of “space” give a precise language for talking about these
spaces and extending our geometric imagination to spaces that are less easily visualized. However, it
is important to keep in mind that mathematicians have been studying geometry for thousands of
years. The formal language might change and the scope of the field might expand, but it is still the
same subject.

A.1.2. Metric spaces. Perhaps the easiest modern formalization is the notion of a metric
space, which was introduced by Hausdorff [5]. A metric space is a pair (M,0d) where M is a set and
0 is a distance function 9: M x M — R such that:

e For all p,q € M, we have 0(p, q) > 0 with equality if and ounly if p = ¢.
e For all p,q € M, we have ?(p,q) = 0(q,p).
e For all p,q,r € M, we have the triangle inequality 2(p, q) < d(p,r) + 0(r, q).

Sometimes we will not mention 0 and just say that M is a metric space. Subspaces of R" fit into
this framework as follows:

ExAMPLE A.1.1. Let ||-|| be the usual norm on R™:

(@1, 2n)|| = /22 + -+ 22 forall (z1,...,2,) € R™.
Consider M C R™. For z,y € M, define [0(x,y) = ||z — y||. This makes M into a metric space. [
Spaces of functions provide other important examples. For instance:

ExAMPLE A.1.2. Let I = [0, 1] be the closed interval and let C(I,R) be the set of all continuous
functions f: I — R. Define a metric on C(I,R) as follows:

o(f,9) =max{|f(z) —g(z)| | x € I} for all continuous f,g: I — R.

Since I is compact, this maximum makes sense. This makes C(I,R) into a metric space. O
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2 A. REVIEW OF POINT-SET TOPOLOGY

A.1.3. Continuity. Once we have defined metric spaces, we can define continuity by imitating
the classical definition from real analysis. Let (M,05) and (N,0n) be metric spaces and let
f: M — N be a function. Then:

e f is continuous at p € M if for all € > 0, there exists a 6 > 0 such that for all ¢ € M with

s (p, q) < & we have dn(f(p), f(q)) <e.
e f is continuous if it is continuous at all p € M.

A.1.4. Topology. Ordinary geometry concerns distances, angles, etc. At least for distances,
metric spaces are a natural context for this. Topology is a primitive kind of geometry where distances
are ignored. Instead, topology focuses on tools for studying continuous function between spaces.
Here are two examples of the kinds of questions it might ask:

QUESTION A.1.3. For metric spaces M and N, we say that M and N are homeomorphic if there
exists a bijection f: M — N such that f and f~! are continuous. Can we classify metric spaces up
to homeomorphism? O

QUESTION A.1.4. Fix metric spaces M and N. An embedding of M into N is a continuous
injective function f: M — N that is a homeomorphism onto its image. Can we determine whether
M can be embedded into N? |

General metric spaces are far too wild for questions like these to have reasonable answers.
Typically topologists restrict to classes of spaces like those drawn at the beginning of this chapter.

A.1.5. Downsides of metric spaces. The geometric meaning of the definition of a metric
space is easily grasped. However, for topology they have downsides:
e Though continuity is defined in terms of a metric, there are many metrics on a given space
that give the same notion of continuity (see Exercise A.1). In other words, continuity is a
more primitive notion than a metric.
e There are many geometric operations one would like to perform on spaces (gluing them
together, taking quotients, etc). However, these operations do not always interact well with
a metric and often result in “spaces” that are not metric spaces.

Here is an example of this second pathology:
EXAMPLE A.1.5. For each integer n > 1, let I, be a copy of the interval I = [0,1]. Let M be
the “space” obtained by identifying the points 0 € I,, all together to a single point zg:

14 5 I(i I7

Each I,, is a subspace of M, so each p € M lies in some I,,. This I,, is unique unless p = xg. There
is a natural choice of a metric on M:
e Consider p,q € M. If there is some n > 1 such that p,q € I, = [0, 1], define ?(p,q) = |[p—q|.
Otherwise, if p € I, and ¢ € I,, with n # m, then define 9(p,q) = p + q.
For an explanation of this formula, see here:

I,~_P I
ptq 4

X0
Define a function f: M — R via the formula f(p) = np for p € I,,. This formula makes sense since
the map p — np takes 0 to 0 for all n, so the resulting function f satisfies f(xg) = 0. The restriction
of f to each I,, is continuous; however, f itself is not continuous (see Exercise A.2). O

In this example, it is inconvenient that continuous functions on the I,, do not “glue together” to
a continuous function on M. Once we have defined topological spaces, we will be able to turn M
into a topological space where this kind of gluing works.
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A.1.6. Open sets and continuity. To give a hint for how to discuss continuity without a
metric, we review some other facts about metric spaces. Fix a metric space (M, ). For p € M and
r >0, let

B.(p)={¢e M |d(p,q) <r}.

This is called the open ball of radius r around p. A set U C M is open if for all p € U, there exists
some r > 0 such that B,(r) C U. We then have:

LEMMA A.1.6. Let My and My be metric spaces and let f: My — Ms be a function. Then f is
continuous if and only if for all U C My open we have f~*(U) C My open.

PRrROOF. See Exercise A.3. O

A.2. Topological spaces

Since continuity for metric spaces can be described entirely in terms of open sets, it is natural to
abstract the notion of “open sets”.

A.2.1. Definition of topological space. A topological space is a set X equipped with a
collection of subsets of X called the open sets. These open sets should satisfy the following three
properties:

e The whole space X and the empty set () are both open.

e The collection of open sets is closed under arbitrary unions: if {U;};c; is any collection of
open sets, then U;cU; is open.

e The collection of open sets is closed under finite intersections: if Uy, ..., U, are open sets,
then Uy N---NU, is open.

We call the collection of open sets on X a topology on X. A key example is:

ExaMPLE A.2.1. If M is a metric space, then the collection of open sets in M makes M into a
topological space (see Exercise A.4). |

CONVENTION A.2.2. Whenever we draw a figure in R™, we give it the topology it inherits as a
metric space via the Euclidean metric on R™ discussed in Example A.1.1. |

REMARK A.2.3. The notion of a topological space has a long pre-history. The definition we gave
above first appeared in Bourbaki [1], but earlier Hausdorff [5] defined something very close to it. We
recommend the historical notes in [1] for a more thorough discussion of its history. O

A.2.2. Continuity. A map f: X — Y between topological spaces is continuous if for al U C Y
open, its preimage f~*(U) C X is open. By Lemma A.1.6, this is equivalent to the usual e-§ definition
if X and Y are metric spaces. We say that f: X — Y is a homeomorphism if f is a bijection and
both f and f~! are continuous.

REMARK A.2.4. For metric spaces, another way to characterize continuity is to use limits:

o If (M,9) is a metric space, then a sequence of points {x,},>1 of M converges to y € M
if for all € > 0, there exists some N > 1 such that ?(z,,y) < € for n > N. We write
this as lim,, 00 n = y, and if we do not want to specify y we simply say that {x,},>1 is
convergent.

e A map f: M — N between metric spaces is continuous if and only if for all sequences
{zn}n>1 of points in M converging to y € M, the sequence {f(x,)},>1 converges to f(y).
In other words, for a convergent sequence {x,}n,>1 in M we require f(limy, oo zn) =

This definition could also be generalized to topological spaces, though with some subtleties (for
instance, limits of sequences need not be unique). However, without some additional assumptions it
would give a different notion of continuity. See §A.5.2 below for more about this. ]
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A.2.3. Gluing intervals. We now return to Example A.1.5 and explain how the notion of a
topological space fixes its pathological behavior.

ExaMPLE A.2.5. For each integer n > 1, let I,, be a copy of the interval I = [0,1]. Let M be
the topological space obtained by identifying the points 0 € I,, all together to a single point xg:
1
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Each I,, is a subspace of M, so each p € M lies in some I,,. This I, is unique unless p = zy. Endow
M with the following topology:

e A set U C M is open if and only if U N [, is open for all n > 1.
It is immediate from this definition that a function f: M — R is continuous if and only if f|7, : I, = R
is continuous for all n > 1. In particular, the function f: M — R from Example A.1.5 defined via
the formula f(p) = np for p € I,, is continuous. O

REMARK A.2.6. The topology we imposed on the space M in Example A.2.5 is an example of
an identification space topology. See §A.3 below for more details about this. (]

A.2.4. Conventions. Henceforth, we will use the word “space” as a synonym for “topological
space”. Also, unless otherwise specified all maps between spaces are assumed to be continuous.

A.2.5. Subspaces. Before giving more examples, we introduce some terminology. Let X be
a space and let Y C X be a subset. We would like to make Y into a space. Letting ¢: ¥ — X be
the inclusion, the topology we impose on Y should make ¢ into a continuous function. For an open
set U C X, we therefore need :+=1(U) = U NY to be open in Y. This suggests the following: the
subspace topology on Y is the topology whose open sets V' C Y are the sets of the form V =UNY
for an open set U C X. Unless we say otherwise, all subspaces are given the subspace topology.

A.2.6. Embeddings. An embedding if a map f: X — Z that is a homeomorphism onto its
image. In other words, f is a continuous injection onto a subspace f(X) of Z, and the inverse map
f~1: f(X) — X is continuous. For a subspace Y of X, the inclusion ¢: Y — X is an embedding.

A.2.7. Closed sets. If X is a space, then a set C C X is closed if X \ C' is open. The collection
of closed sets is closed under finite unions and arbitrary intersections. The whole subject could be
developed using closed sets instead of open ones.

A.2.8. Interior, closure, and neighborhoods. If X is a space and A C X is a subset, we
define the interior Int(A) and the closure A as follows:
e The interior Int(A) is the union of all open sets U with U C A. In other words, Int(A) is
the largest open set contained in A.
e The closure A is the intersection of all closed sets C' with A C C. In other words, A is the
smallest closed set containing A.
For p € X, a neighborhood of p is a set A with p € Int(A). More generally, for a set B C X, a
neighborhood of B is a set A with B C Int(A). The most important special case of this terminology
is an open neighborhood of B C X, which is an open set U with B C U = Int(U).

A.2.9. Basis for a topology. A basis for a topology on a set X consists of a set B of subsets
of X such that:
e all points of X lie in some U € 9B; and
e for all U,V € B, the intersection U NV can be written as a union of sets in B3.
Given such a basis, the corresponding topology is the one where a set U C X is open if and only if U
is a union of sets in B. For instance, the topology on a metric space M has for a basis the set of
open balls in M.

REMARK A.2.7. There is a also the weaker notion of a subbasis; see §A.11.1 below. O
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A.2.10. Other examples. The notion of a topological space is extremely general. Here are a
few more examples.

ExAMPLE A.2.8. Let X be a set. The discrete topology on X is the one where all sets are open.
The trivial topology on X is the one where the only open sets are ) and X. Another topology that
can be put on an arbitrary set X is the cofinite topology whose open sets are those of the form X \ F’
with F finite. The fact that this is a topology follows from the fact that finite sets are closed under
finite unions and arbitrary intersections. O

ExXAaMPLE A.2.9. Let k be a field; for instance, k might be C or R. For a polynomial f €
k[z1,..., zy], define the vanishing and non-vanishing loci of f to be

V(f)={(z1,...,2,) €K™ | f(z1,...,2,) =0} CKk™ and NV(f)=k"\V(f).

The Zariski topology on k™ is the topology whose open sets are the nonvanishing loci NV (f) as f
ranges over elements of k[z1, ..., z,] (see Exercise A.5). The closed sets are thus the vanishing loci
Z(f). For n = 1, the vanishing locus of a polynomial in k[z;] can be any finite subset of k!, so the
Zariski topology on k! is the cofinite topology. ([l

REMARK A.2.10. For k equal to C or R, we have now seen two topologies on k”:

e the classical topology obtained by regarding k™ as a metric space; and
e the Zariski topology.

Every open set in the Zariski topology is open in the classical topology. We say that the classical
topology is finer or stronger than the Zariski topology, and that the Zariski topology is coarser or
weaker than the classical topology. (]

A.2.11. Rest of essay. Because the notion of a topological space is so general, there is almost
nothing nontrivial that can be said about an arbitrary topological space. They are thus almost never
studied for their own sake. Rather, they provide a minimal framework and language for studying
continuity as it appears throughout mathematics.

The tools of algebraic topology are most useful for spaces that have some kind of geometric
origin. In the rest of this essay, we introduce language to allow us to work with the kinds of spaces
that appear in the rest of this book. We try to include enough examples and sample results to make
reading this essay more interesting than reading a dictionary, but we apologize if at some points
it does seem merely like a compendium of definitions. We close with a discussion of topological
manifolds, which illustrate most of our tools and play a basic role in the subject.

REMARK A.2.11. Ultimately, the most natural class of spaces for algebraic topology are CW
complexes. These are best introduced as part of a course in algebraic topology. O

A.3. Identification spaces and the quotient topology

We now explain how to construct a new space from a collection of existing ones by identifying
certain points together. This generalizes the construction we gave in Example A.2.5.

A.3.1. Identification spaces. Let {X;};cr be a collection of spaces. An identification space is
a topological space Y equipped with maps f;: X; — Y for each ¢ € I such that:

e each y € Y is in the image of some f;; and
e aset U CY is open if and only if f;'(U) C X; is open for all i € I.

The second condition ensures that each f;: X; — Y is continuous. It also ensures that for a space Z
a map of sets ¢: Y — Z if continuous if and only if ¢ o f;: X; — Z is continuous for all i € T (we
will say more about this in §A.3.4 below).

In general, if Y is a set obtained by taking the X; and identifying some points together, then
letting f;: X; — Y be the projections we can turn Y into an identification space by imposing the
topology discussed above. We will call this the identification space topology on Y. If we have a
construction of a purported “space” from the points of the X;, then this gives a canonical way of
turning our purported “space” into a topological space.
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A.3.2. Examples. The above discussion is a little abstract. Here are some examples.

ExAMPLE A.3.1 (Gluing). Let X; and X5 be spaces. Assume that A C X; is a subspace and
¢: A — X5 is a map. As a set, let Y be the disjoint union of X; and X, modulo the equivalence
relation that identifies each a € A C X; with ¢(a) € Xs. There are natural maps f1: X; — Y and
f2: X9 — Y, and we give Y the identification space topology. We call Y the space obtained by gluing
X1 to X5 via the gluing map ¢.

Here is one easy example of this with X; and X5 surfaces with one boundary component and
A = S! the boundary component of X; glued to the boundary component of X5 to form Y

b glue
L DY — Y| = N DY
X1 ; X9

Two open sets on Y are drawn together with their preimages in X; and Xs. In this example, ¢ is a
homeomorphism onto its image and both X; and X, are subspaces of Y. However, in the definition
¢ is not required to be injective. For an example where the gluing map is not injective, consider the
following where X; and X, are rectangles and ¢ identifies the two blue vertical edges of X; with a
single segment in the left-hand vertical edge of Xo:

O
Y

- -
S ——-——

A A X 9

In general, we will use informal language to describe how we are gluing spaces together, but we
always mean this topology. O

ExAMPLE A.3.2 (Wedge product). Let {X;};cr be a collection of topological spaces. Assume
that each X; has a distinguished basepoint x; € X;. The wedge product of the X;, denoted V;c5X;,
is the space obtained by identifying all the x; together to a single point py. There are inclusions
fi: Xi = Vier X, and we give V1 X; the identification space topology. Here is an example, with an
open neighborhood of py together with its preimage in the X; indicated:

wedge
X, ® X; Po

Example A.2.5 is the special case of this where we are taking the wedge product of countably many
intervals I,, = I equipped with the basepoints 0 € I,,. Here is a picture of this, with an open
neighborhood py together with its preimage in the I,, indicated:

I I

: 6

/ "
wedge \ \ /
([ J
IZ . . . . / _: \
° [ J

I

! ¢ .Po
Note that the length of the portion of this open set in I, is shrinking to 0 at n increases, which
would not be possible if we were using the topology coming from a metric. O

ExaMPLE A.3.3 (Collapsing subspace). In an identification space, we allow there to only be a
single space X. As an example of this, let X be a space and let A C X be a subspace. Denote by
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X/A the result of collapsing A to a single point. The points of X/A are thus the points of X \ A
together with a single point [A] corresponding to A. Letting f: X — X/A be the projection, we can
endow X/A with the identification space topology.

Here is an example of this with X = S? and A two points on X:

As another example, consider the boundary dD" = S"~1. As the following shows, D"/9D" = S",
with the blue D™ mapping to the north pole of S™:

collapse
—
oD?
As this figure shows, a neighborhood of the north pole in S™ lifts to a neighborhood of 0D". O

REMARK A.3.4. Collapsing a subspace can turn a nice space into a pathological one. For instance,
collapsing the subspace Q of R gives a terrible space R/Q. O

ExAMPLE A.3.5 (Quotienting by group action). Let X be a space and let G be a group acting
on X. As a set, X/G consists of the orbits of X under the action of G. Letting f: X — X/G be the
quotient map, we endow X/G with the identification space topology. For example, let the group
72 act on R? by translations. As the following shows, the quotient R?/Z? is homeomorphic to the
2-torus:

* 6 ¢ o o
*—0—0—0 ¢

quotient
@ L L 4 -
@ L L L @-

R*/Z?
0 o o
R2
The orange and blue loops on R?/Z? lift to the orange and blue parallel lines on R2. O

A.3.3. Disjoint unions and the quotient topology. A map f: X — Y is a quotient map
if f is surjective and U C Y is open if and only if f~1(U) C X is open. Given a space X and a
surjection of sets f: X — Y, the quotient topology on Y is the topology making f: X — Y a quotient
map. We call Y a quotient space of X.

Of course, this is a special case of an identification space. Moreover, given a collection of spaces
{X;}ic and an identification space Y of the X; with maps f;: X; — Y, we can realize Y as a quotient
space in the following way. Let Li;c; X; be the disjoint union of the X;. Topologize U;c;X; by letting
a set U C L;erX; be open if and only if U N X; is open for all ¢ € I. The maps f;: X; — Y then
assemble to a quotient map F': L,y X; — Y.
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REMARK A.3.6. Many treatments of point-set topology only talk about quotient spaces, but we
find it convenient to use the slightly more general notion of identification spaces since like in the
examples from earlier in this section, we often use them to build a space out of several spaces, not
just one. O

A.3.4. Universal mapping property. Let f: X — Y be a quotient map. Let ~ be the
equivalence relation on the set X where p ~ ¢ if and only if f(p) = f(¢q). The equivalence classes of
~ are the fibers f~1(y) for y € Y. Letting Z be another space and ¢: Y — Z be a continuous map,
the composition ® = ¢ o f is a continuous map ®: X — Z is ~-invariant, i.e., ®(p) = ®(¢q) whenever
p ~ q. Conversely, if &: X — Z is a continuous ~-invariant map, then there is a set map ¢: ¥ — Z
such that ® = ¢ o f and the quotient topology on Y is set up to ensure that ¢ is continuous.

The above discussion shows that composition with f gives a bijection between continuous maps
¢:Y — Z and ~-invariant continuous maps ®: X — Z. This is an example of a universal mapping
property, and we will describe it informally by saying that a map ¢: Y — Z is the same as a
~-invariant map ®: X — Z. This universal mapping property characterizes quotient spaces (see
Exercise A.7). Here are several examples of it:

EXAMPLE A.3.7 (Wedge product). Let {X;};cr be a collection of topological spaces. Assume
that each X; has a distinguished basepoint z; € X;. For a space Z, maps ¢: V;c; X; — Z are the
same as collections of maps ®;: X; — Z such that ®;(z;) = ®;(z,) for all ¢,j € I. In particular, this
explains why the quotient topology is the right one to ensure the real-valued function in Example
A.2.5 is continuous. O

ExaMPLE A.3.8 (Collapsing subspace). Let X be a space and let A C X be a subspace. For a
space Z, maps ¢: X/A — Z are the same as maps ®: X — Z such that ®(A) is a single point. [

ExaMPLE A.3.9 (Quotienting by group action). Let X be a space and let G be a group acting
on X. For a space Z, maps ¢: X/G — Z are the same as maps &: X — Z that are G-invariant in
the sense that ®(g-x) = ®(z) for all z € X and g € G. O

A.4. Connectivity properties
Our next topic is connectivity and path connectivity.

A.4.1. Path connectivity. Recall that I =[0,1]. A pathin a space X from p € X to ¢ € X is
amap v: I - X with y(0) =p and y(1) = ¢
q
Y
p
The space X is path connected if for all p, ¢ € X there exists a path in X from p to ¢. The geometric
meaning of this is hopefully clear.

A.4.2. Connectivity. We now turn to connectivity. It is easier to say what it means for a
space to be disconnected. A space X is disconnected if we can write X = U UV with U,V € X
disjoint nonempty open subsets of X. Since X \U =V and X \ V = U, the sets U and V are
necessarily closed as well as open. Sets that are both open and closed are called clopen sets.!

A space X is connected if it is not disconnected. Another way of saying this is that X is connected
if whenever X = U UV with U,V C X open we have U NV # (). Here are some basic properties of
this (see Exercise A.8):

e The space I = [0, 1] is connected.
e If X is connected and f: X — Y is a map, then f(X) is connected.
e Let X be a space and let {Y;};cr be a collection of subspaces of X. Assume that:
— each Y; is connected; and
— for all ¢,5 € I, the space Y; NY; is nonempty; and
— X = UjerYs.
Then X is connected.

IThis is a terrible term, but is the standard word for this.
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Together, these three properties imply the following:
LEMMA A.4.1. Let X be a path connected space. Then X is connected.

PROOF. This is trivial if X = (3, so assume that X # ). Fix a point p € X. For each ¢ € X, pick
a path v4: I — X from p to ¢q. Set Y, = ~,(I). Since I is connected, so is Y. The space X is the
union of the Yy, and for ¢,¢' € X we have p € Y, NY. It follows that X is connected. (]

The converse of Lemma A.4.1 is not true:

EXAMPLE A.4.2. Let X be the following subset of R?:
X ={(0,y) | -1 <y <1}U{(z,sin(l/z) | z > 0}.

This is a closed subset of R? that is often called the topologist’s sine-curve:

The space X is not path connected; indeed, there is no path connecting (0,0) and (z,sin(1/z)) for
any = > 0 (see Exercise A.9). However, X is connected (see also Exercise A.9). O

A.4.3. Path components. Let X be a space. Say that p,q € X are equivalent if there is a
path in X from p to ¢. This is an equivalence relation on the points of X (see Exercise A.10), and
the equivalence classes are the path components of X. It is immediate from the definition that the
path components of X are path connected and that X is the disjoint union of its path components.

ExXAMPLE A.4.3. Let X be the topologist’s sine-curve from Example A.4.2. The path components
of X are as follows (see Exercise A.9):

X1 ={0y) | -1=y<1},
X = {(x,sin(1/x) | x > 0} . O

A.4.4. Connected components. Continue to let X be a space. Now say that points p,q € X
are equivalent if there is a connected subspace Y C X with p,q € Y. This is an equivalence relation
on the points of X (see Exercise A.10), and the equivalence classes are the connected components of
X. The connected components of X are connected (see Exercise A.11), and X is the disjoint union
of its connected components. Since path connected spaces are connected, each connected component
of X is the union of a collection of path components.

A.4.5. Local connectivity. Since a space X is disconnected if we can write X = U UV with
U,V C X disjoint nonempty clopen subsets, it is natural to hope that the connected components of
X are clopen. Unfortunately, this need not hold:

EXAMPLE A.4.4. Let X = Q. The connected components of X and the path components of X
both consist of the one-points sets {¢} for ¢ € Q. a

As this example suggests, the cause of this is pathological local behavior. A space X is locally
connected at p € X if for all open neighborhoods U of p, there is a connected open neighborhood V'
of p with V C U. The space X is locally connected if it is locally connected at all p € X. Similarly,
a space X is locally path connected at p € X if for all open neighborhoods U of p, there is a path
connected open neighborhood V of p with V' C U. The space X is locally path connected if it is
locally path connected at all p € X. We then have:

LEMMA A.4.5. Let X be a space. Then:
o If X is locally connected, then all connected components of X are clopen.

o If X is locally path connected, then all path components of X are clopen.

PROOF. The two conclusions have similar proofs, so we will prove the first. Assume that X is
locally connected. Let Y be a connected component of X. For p € Y, since X is locally connected
we can find a connected open neighborhood V' of p. Since Y and V' are connected and p e Y NV,



10 A. REVIEW OF POINT-SET TOPOLOGY

the union Y UV is connected (see Exercise A.8). This implies that Y =Y UV, i.e., that V C Y.
We deduce that Y is open. Since X \ Y is the union of connected components and these connected
components are open, it follows that X \ Y is open. Thus Y is closed and hence clopen, as desired. [

COROLLARY A.4.6. Let X be a locally path connected space. Then the connected components
and path components of X coincide.

PROOF. Let Y be a connected component of X. The subspace Y is the disjoint union of a
collection of path components. To prove that it is actually a path component, it is enough to prove
that Y is path connected. Assume otherwise. We can then write Y = Y; UY5 with each Y; a nonempty
union of path components and Y1 N Y5 = (. Lemma A.4.5 implies that each path component is
clopen, so both Y; and Ys are also clopen. Since Y = Y; U Y3, we deduce that Y is disconnected,
contradicting the fact that it is connected. (|

REMARK A.4.7. As our examples show, not all metric spaces (or even subspaces of R™) are
locally connected or locally path connected. However, most spaces that appear in algebraic topology
are locally path connected. In particular, CW complexes are always locally path connected. O

A.5. Countability properties

This section discussed properties that ensure a topological space is not “too large”.

A.5.1. First countability. Let X be a space. A neighborhood basis for X at a point p € X is
a collection B, of open neighborhoods of p such that:

e For all open neighborhoods V' of p, we have U C V for some U € B,,.

The space X is first countable if it has a countable neighborhood basis at each point p € X. All
metric spaces have this property:

LEMMA A.5.1. Let M be a metric space. Then M is first countable.

PROOF. Recall that B,.(p) is the open ball of radius » > 0 around p € M. For p € M, the set
{B;(p) | » > 0 rational} is a countable neighborhood basis for X at p. O

A.5.2. Sequences. Let X be a space. If X is first countable, then we will show that limits of
sequences can be used in X in a manner analogous to the way sequences are used in real analysis. A
sequence in X is an ordered collection {z,},>1 of points of X. Given such a sequence, a point y € X
is its limit if for all open neighborhoods U of y there is some N > 1 such that x, € U for n > N. If
y is a limit of {x,, }nex, then we write lim,,,oc z,, = y and say that {z, },>1 converges to y. If such
a y exists, then we say that {z,},>1 is a convergent sequence.

REMARK A.5.2. Be warned that a sequence can have multiple distinct limits. This only happens
for fairly pathological spaces. In the next section, we introduce a property of spaces called being
Hausdorff that forces convergent sequences to have unique limits. O

A.5.3. Closure. If X is first countable, then for A C X we can construct the closure A using
limits:

LEMMA A.5.3. Let X be a first countable space and let A C X. Then A is the set of ally € A
such that there ezists a sequence {anp}n>1 of points of A such that limy, o0 a, = y.

PROOF. Let B be the set of limits of sequences of points of A. We first prove that B C A. Let
b€ B and let C C X be a closed set with A C C'. We must prove that b € C. Indeed, if b ¢ C then
we can find an open neighborhood U of b such that U C X \ C. However, since b € B there must
exist points of A C C in U, contradicting the fact that U is disjoint from C.

We next prove that A C B. This uses first countability. Consider a point p € A. Each open
neighborhood V' of p must contain a point of A. Let B, = {U1,Us, ...} be a countable neighborhood
basis at p. For each n > 1, choose z,, € U,, with z,, € A. We then have lim,, ,oc £, = p,sop € B. 0O
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REMARK A.5.4. Though metric spaces are first countable, not all spaces that appear in algebraic
topology are first countable. In particular, not all CW complexes are first countable. This is why
arguments using limits are mostly avoided in this book. There are generalizations of sequences and
limits (nets, filters, etc.) that work for spaces that are not first countable (see [7]), but in practice
they do not simplify arguments in algebraic topology. O

A.5.4. Second countability. A space X is second countable if there is a countable basis for
its topology. It is clear that all second countable spaces are first countable. It is not true that all
metric spaces are second countable, but all subspaces of R™ are second countable:

LEMMA A.5.5. Let X be a subspace of R™. Then X is second countable.

PROOF. For all p € R" and r > 0, let B,.(p) C R™ be the open ball around p. Then X has the
countable basis {B,(p) N X | p € Q" and r > 0 rational}. O

REMARK A.5.6. Since CW complexes need not be first countable, they definitely do not need to
be second countable. The main reason we introduce second countability is that it appears in the
definition of a manifold; see §A.12 below. ]

A.5.5. Separability. There is one further countability condition that occasionally shows up.
For a space X, a set A C X is dense if its closure A equals X. The space X is separable if X has a
countable dense subset. This is slightly weaker than second countability:

LEMMA A.5.7. Let X be a second countable space. Then X is separable.

PROOF. Let B = {U;,Us, ..., } be a countable basis for the topology of X. Pick x,, € U,. Then
the set {z,, | n > 1} is a countable dense set in X. O

For metric spaces, these two notions coincide:
LEMMA A.5.8. Let M be a separable metric space. Then M is second countable.

PROOF. The proof is similar to that of Lemma A.5.5: if A C M is a countable dense set, then
{Bi/n(a) | a € A, n>1} is a countable basis for the topology on M. O

A.6. Separation properties and the Tietze extension theorem

This section discusses properties that are necessary to ensure that continuous functions have the
properties one would expect.

A.6.1. Pathology. Consider maps f,g: X =Y. If A C X is dense and f|4 = g|a, then it is
natural to expect that f = ¢g. Unfortunately, this need not hold:

EXAMPLE A.6.1 (Line with two origins). As a set, let Y = (R\ {0}) U{01,02}. For i = 1,2, let
fi: R =Y be the map defined by f;(z) =« for x € R\ {0} and f;(0) = 0;. Give Y the identification
space topology, so:

e aset U CY is open if and only if f;'(U) and f; '(U) are open in R.

With this topology, the subspaces Y \ {02} = f1(R) and Y \ {0;} = f2(R) are both homeomorphic to
R. The maps f1, fo: R — Y are continuous and agree on the dense set R\ {0}. However, fi # fo. O

A.6.2. Hausdorff spaces. The issue with the line with two origins from Example A.6.1 is that
the points 0; and 02 do not have disjoint open neighborhoods. To rule this out, say that a space X
is Hausdorff if for all distinct points p, g € X, there are open neighborhoods U of p and V' of ¢ with
U NV ={. This has a number of nice consequences (see Exercise A.13):
e All points in X are closed, i.e., for all p € X the one-point set {p} is closed.
e If Z is another space and f,g: Z — X are two maps, then the subset {z € Z | f(2) = g(2)}
of points in Z where f and g are equal is closed. In particular, if f and g agree on a dense
subset of Z, then f = g.
e Limits in X are unique in the following sense. Let {z,},>1 be a sequence in X and let
y1,Y2 € X be such that lim,, . x, = y1 and lim,, oo ©, = y2. Then y; = yso.

Most geometrically natural spaces are Hausdorff. In particular:
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LEMMA A.6.2. Let (M,0) be a metric space. Then M is Hausdorff.

ProoF. Consider distinct p,q € M. Set € = 9(p,q). Then the open balls B, 5(p) and B/2(q)
are disjoint. O

REMARK A.6.3. For an infinite field k, an important non-example is given by the Zariski topology
on k™. See Exercise A.14. |

A.6.3. Continuity. For first countable Hausdorff spaces, we can characterize continuity with
sequences:
LEMMA A.6.4. Let X be a first countable Hausdorff space, let Y be a Hausdorff space, and let
f: X =Y be a map of sets. Then f is continuous if and only if the following holds:>
o Let {xp}n>1 be a convergent sequence in X. Then {f(x,)}n>1 s a convergent sequence in
Y and limy,y oo f(2) = flimy,— oo z0).

PROOF. See Exercise A.12. O

A.6.4. Normal spaces. In fact, most geometrically natural spaces have even stronger separation
properties. A space X is normal if it satisfies the following two conditions:
o for all disjoint closed sets C, D C X, there exist open neighborhoods U of C' and V of D
with U NV = (; and
e all points in X are closed.?
All normal spaces are Hausdorff. The key example is:

LEMMA A.6.5. Let (M,0) be a metric space. Then M is normal.

PROOF. Since M is Hausdorff, all points in M are closed. Consider disjoint closed sets C, D C M.
For z € M, let

r(z) =inf {9(z,¢) | c€ C} and s(z) =inf{0(z,d)|d € D}.
Since C and D are disjoint closed sets, we have r(d) > 0 for d € D and s(c¢) > 0 for ¢ € C. Define

U= U By(eyy3(c) and V= U By (ay/3(d).
ceC deD
The sets U and V are open, and C' C U and D C V. To prove the lemma, it is enough to show that
UNV =({. Assume this is false, and let z € U N'V. We can therefore find ¢y € C' and dy € D such
that 9(co, z) < s(cp)/3 and ?(do, z) < r(dp)/3. We either have s(cg) < r(dp) or r(dy) < s(cg). Both
cases lead to a similar contradiction, so we will give the details for s(cg) < r(dp). This implies that

2
0(co, dp) < 0(cg,x) +0(z,do) < s(co)/3 +1(do)/3 < r(do)/3+7(dp)/3 = gr(do).
However, we also have 9(cg,dg) > inf {0(dp, ) | ¢ € C} = r(dp), a contradiction. O

The following characterization of normality is often useful. Recall that V is the closure of V.

LEMMA A.6.6. A space X is normal if and only if all points in X are closed and:

(#) For all closed sets C C X and all open neighborhoods U of C, there exists an open
neighborhood V' of C with V C U.

PROOF. Assume first that X is normal. To verify (#), let C C X be closed and let U be an
open neighborhood of C. The set D = X \ U is then a closed set that is disjoint from C, so by
normality there exist disjoint open neighborhoods V' and W of C and D. Since X \ W is a closed
subset of U containing V, it follows that V C U.

Assume now that all points in X are closed and (#) holds. To verify normality, let C, D C X be
disjoint closed sets. Applying (#) to the open neighborhood U = X \ D of C, we obtain an open
neighborhood V of C with V' C U. It follows that V and W = X \ V are disjoint open neighborhoods
of C'and D. ]

2There is a version of this result that is true without the Hausdorff assumption, but it is awkward to state since
in non-Hausdorff spaces limits need not be unique.
3This is not always included in the definition of normality, but it ensures that normal spaces are Hausdorff.
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A.6.5. Urysohn’s Lemma. A key feature of normal spaces is that they have a rich supply of
continuous real-valued functions. For our first example of this, we need a definition. The support of a
function f: X — R, denoted supp(f), is the closure of the set {p € X | f(p) # 0}. We then have:

THEOREM A.6.7 (Urysohn’s Lemma). Let X be a normal space, let C C X be closed, and let
U C X be an open neighborhood of C. Then there exists a map f: X — [0,1] such that flc =1 and

supp(f) C U.

PrOOF. We must use the open sets provided by normality to construct f. The key is:

CrAaM. There exist open sets Vo, for all o € Q with the following properties:

(i) For rational v < s, we have VsCV,.
(ZZ) CcViandVyCU.
(iii) Voo =0 for a > 1 and V, = X for a < 0.

PROOF OF cLAIM. The picture is as follows:

Define V,, for @ > 1 and o < 0 as in (iii). Next, using Lemma A.6.6 choose an open neighborhood
Vo of C with Vo C U and an open neighborhood Vi of C with V; C V. Conditions (ii) and (iii)
hold, and we inductively construct the remaining V,, satisfying (i) as follows. Enumerate the rational
numbers in [0, 1] as {ag, a1, ...} with g = 0 and a3 = 1. We have already constructed V; and V4, so
assume that n > 2 and that we have constructed V,,, for 0 < m < n — 1 satisfying (i). We construct
V., as follows. Let

r=max{a, | 0<m<n—1 a, <a,} and s=min{a, |0<m<n—-1 a, > a,}.

We thus have r < a,, <'s, and by (iii) we have Vs C V. Using Lemma A.6.6, we can then find an
open neighborhood V,,, of V such that V,, C V,. O

We now define a set map f: X — R via the formula

f(p) =sup{acQ|peV,}.

By (iii) we have f(p) € [0,1] for all p € X. Also, by (ii) we have f(p) = 1 for p € C and supp(f) C U.
All that remains is to check that f is continuous.

Let W C R be open. We must prove that f~!(W) is open. Consider p € f~1(W). Choose
rational r < s such that [r,s] C W and f(p) € [r,s]. By (iii), we have V; C V,.. To prove that
f~1(W) is open, it is enough to prove that the open set V,.\ V is contained in f~1(W). To do this,
it is enough to prove that f maps V,.\ V into [r, s] € W. This follows from the following two facts,
both of which are immediate from (iii):

e for g € V,., we have f(q) > r; and
e for ¢ ¢ V5, we have f(q) < s. O

A.6.6. Converse to Urysohn. The following lemma shows that the conclusion of Urysohn’s
lemma characterizes normality:

LEMMA A.6.8. Let X be a space such that all points in X are closed. For every closed C C X
and every neighborhood U of C, assume that there exists a continuous map* f: X — R with f|lc =1
and supp(f) C U. Then X is normal.

4In Urysohn’s lemma, the target of f is [0,1]. Here we relax this.
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PRrROOF. Let C' and D be disjoint closed sets in X. By assumption, there is a continuous map
f: X — R with f|c =1 and supp(f) C X \ D. The sets U = f~1((1/2,00)) and V = X \ supp(f)
are then disjoint open neighborhoods of C' and D. O

A.6.7. Strengthening Urysohn. Say that a space X is perfectly normal if points in X are
closed and for all closed C' C X and all open neighborhoods U of C, there exists a continuous map
f: X —[0,1] such that f~%(1) = C and supp(f) C U. Lemma A.6.8 implies that perfectly normal
spaces are normal.

The definition of a perfectly normal space resembles the conclusion of Urysohn’s lemma, but
there is a small difference: in a perfectly normal space we have f~1(1) = C, while in the conclusion of
Urysohn’s lemma we only have C' C f~1(1). Most geometrically natural spaces are perfectly normal.
In particular:

LEMMA A.6.9. Let (M,0) be a metric space. Then M is perfectly normal.

PrOOF. Lemma A.6.5 implies that M is normal, and in particular points are closed. Consider
C C X closed and U an open neighborhood of C. By Urysohn’s Lemma, there exists a continuous
map f: X — [0,1] such that f|c = 1 and supp(f) C U. We want to modify f to ensure it is less
than 1 at all points that do not lie in C. Let g: X — R be the function

g(p) =inf {o(p,c) | ce C} forpe X
and let h: X — [0, 1] be the function
h(p) = min(g(p),1) forpe X.

Both g and h are continuous and satisfy g=1(0) = h=1(0) = C. The function f': X — [0,1] defined
by

f'(p) =1 —=h(p)flp) foralpeM
then satisfies (f/)~1(1) = C and supp(f’) C U. O

REMARK A.6.10. We have introduced the notion of a space being Hausdorff, being normal, and
being perfectly normal. These are called separation azioms. It is common to call a Hausdorff space a
Ts-space, a normal space a Ty-space, and a perfectly normal space a Tg-space. As this terminology
suggests, there are many other separation axioms as well.’

The vast majority of spaces considered in algebraic topology are perfectly normal. In fact, as we
mentioned in Remark A.2.11 the most natural spaces from the viewpoint of algebraic topology are
the so-called CW complexes, and CW complexes are perfectly normal. |

A.6.8. Uniform limits of functions. Our next goal is to prove the Tietze extension theorem,
which says that continuous real-valued functions on closed subsets of normal spaces can be extended to
the whole space. The extension we construct will be a limit of functions constructed using Urysohn’s
Lemma. We therefore need a way to certify that such functions are continuous.

Let X be a space. A sequence of functions f, : X — R is said to converge uniformly to a function
f+ X — R if the following holds:

e for all € > 0, there exists some N > 1 such that |f(p) — fn(p)| < eforalln > N andp € X.

We then have the following, which generalizes a familiar fact from real analysis:

LEMMA A.6.11. Let X be a space and let f,: X — R be a sequence of continuous functions
converging uniformly to a function f: X — R. Then f is continuous.

ProOOF. This can be proved using an argument similar to the one used to prove the analogous
fact for functions defined on X = R. See Exercise A.15. ]

SIn fact, not only are there Ty-spaces for 0 < k£ < 6, but there are even T» 5-spaces and T3 5-spaces.
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A.6.9. Tietze Extension Theorem. We can now prove the Tietze Extension Theorem:

THEOREM A.6.12 (Tietze Extension Theorem). Let X be a normal space, let C C X be closed,
and let f: C — R be a continuous function. Then f can be extended to a continuous function
F: X — R. Moreover, if the image of f lies in a closed interval [a,b] then F can be chosen such
that its image also lies in [a,b).

PROOF. We first prove the case where f is bounded, and then derive the unbounded case.
CASE 1. The theorem holds if the image of f lies in a closed interval [a, b).

Since [a, b] 2 [—1, 1], we can assume without loss of generality that [a,b] = [—1,1]. For n > 1, we
will construct continuous functions G,,: X — R such that letting F;, = G1; + - - - + G,,, we have:
(i) The function F,, satisfies |f(p) — Fi.(p)| < (2/3)™ for all p € C.
(ii) The function G, satisfies |G,,(p)| < (1/3)(2/3)"~! for all p € X.
Condition (ii) will imply that the functions F,, = G + - - - + G, converge uniformly to a function F'
such that

1 1 1
Fip)l<=(1+(2/3)+(2/3)2+---)==—==)=1 forallpec X.
FOI< 5 () + @32+ ) =g () =1 foralipe

Lemma A.6.11 implies that F': X — [—1,1] is continuous, and condition (i) implies that F|c = f.
It remains to construct the G,. Assume that n > 1 and we have constructed G1,...,Gp_1

satisfying (ii) such that letting F,,_1 = G1 + -+ + G,,—1, we have

(A6.1) F(5) — Faca ()] < (2/3)"" forall pe C.

This is vacuous for n = 1. We will construct G,, as follows. Let
L={peC| flp)— Folp) <—(1/3)(2/3)" "}
R={peC| f(p) = Farl(p) > (1/3)(2/3)" '}

The sets L and R are disjoint closed sets. Using Urysohn’s lemma, we can find:

e a continuous map hy: X — [0,1] with hr|r =1 and supp(hr) C X \ R; and
e a continuous map hr: X — [0,1] with hr|g =1 and supp(hr) C X \ L.

Let Gn: X — [—(1/3)(2/3)"1, (1/3)(2/3)"!] be the map
Gn = 7(1/3)(2/3)7171}1,[/ + (1/3)(2/3)n71hR.

By construction, G, satisfies (ii). To show that F,, = F,,_; + G,, satisfies (i), consider some p € C.
There are three cases:

e If p € L, then by (A.6.1) we have

[F(p) = Fa()l = £ (p) = Fuea(p) + (1/3)(2/3)" 71 < (2/3)" 71 = (1/3)(2/3)" 1 = (2/3)".
e If p € R, then by (A.6.1) we have

[f() = Fup)| = |£(p) = Faz1(p) — (1/3)(2/3)" 71 < (2/3)" 7" = (1/3)(2/3)" 1 = (2/3)".
o If p ¢ L UR, then by definition we have |f(p) — Fn_1(p)| < (1/3)(2/3)"1, so since
|Gn(p)] < (1/3)(2/3)"! we have

[f(0) = Fup)| = £ (p) = Faz1(p) — Gulp)| < (1/3)(2/3)" 7 + (1/3)(2/3)" " = (2/3)".

In all three cases, (ii) is satisfied. The theorem follows.
CASE 2. The theorem holds in general.

Since R 2 (—1,1), it is enough to prove that every continuous function f: C' — (—1,1) can be
extended to a continuous function F': X — (—1,1). By Case 1, we can extend f to a continuous
function F’: X — [—1,1]. Our goal is to modify F’ such that its image does not contain —1 or 1.
Set U = (F')~*((—1,1)). Applying Urysohn’s Lemma (Theorem A.6.7), there exists a continuous
function g: X — [0, 1] with g|¢ = 1 and supp(g) C U. The product F = g-F"' then still extends f
and satisfies F'(X) C (—1,1). O
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A.7. Compactness and the Heine—Borel theorem

We now introduce the key concept of compactness, which generalizes the notion of compactness
for subsets of R and R™ from real analysis.

A.7.1. Compactness. Let X be a space and let K C X. An open cover of K is a collection il
of open sets in X such that
KclJu
Ued

The open cover U is finite if it consists of finitely many open sets. A subcover of an open cover 4l is a
subset U’ C 4 that is still a cover. The subspace K is compact if every open cover of K has a finite
subcover. In particular, X itself is compact if every open cover of X has a finite subcover.

A.7.2. Closed sets. Compactness behaves best for Hausdorff spaces. In fact, in some treatments
of point-set topology a space is said to be quasi-compact if each open cover has a finite subcover,
and a compact space is a space that is Hausdorff and quasi-compact. For Hausdorff spaces, we have:

LEMMA A.7.1. Let X be a Hausdorff space and let K C X be compact. Then K is closed.

ProOF. We must prove that X \ K is open. Consider p € X \ K. Since X is Hausdorff, for
each k € K there are disjoint open neighborhoods Uy and Vj of p and k. Since K is compact, we
can find finitely many points ki, ..., k, € K such that {Vj,,..., Vs } is an open cover of K. Letting
U=Ug N---NUy,, the set U is an open neighborhood of p that is disjoint from K, as desired. [

n?
For all spaces, we have:

LEMMA A.7.2. Let X be a space, let K C X be compact, and let C be a closed subset of X with
C C K. Then C is compact.

PROOF. Let 4l be an open cover of C' C X. The set {X \ C} Ullis an open cover of K. Since K
is compact, it has a finite subcover. Removing X \ C' from this finite subcover if necessary, we obtain
a finite subcover of . O

As another indication of how strong an assumption being compact Hausdorff is, we have:
LEMMA A.7.3. Let X be a compact Hausdorff space. Then X is normal.

PROOF. See Exercise A.16. O

A.7.3. Compactness and functions. Continuous maps take compact sets to compact sets:

LEMMA A.7.4. Let f: X — Y be a map of spaces and let K C X be compact. Then f(K) is
compact.

PROOF. See Exercise A.18 O

Another important property of compact sets is that real-valued functions on them are bounded
and attain maximum and minimum values:

LEMMA A.7.5. Let X be a compact space and let f: X — R be a map. Then there exist real
numbers m < M such that:

e forallp € X, we have m < f(p) < M; and
e there exists pg,qo € X such that m = f(pg) and M = f(qo).

PROOF. By Lemma A.7.4, the image K = f(X) is a compact subset of R. The lemma now
follows from the following standard fact about compact subsets of R: there exist m, M € K such
that m < k < M for all k € K (see Exercise A.19). O
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A.7.4. Injective maps are embeddings. For general spaces X and Y, an injective map
f: X — Y need not be an embedding, i.e., a homeomorphism onto its image. Here is an example:

EXAMPLE A.7.6. Consider the injective map f: (0,1) — R? whose image X is as follows:

Po

This is not an embedding; indeed, for every p € (0,1) the space (0,1) \ {p} is disconnected but for
the indicated point py € X we have X \ {po} connected. O

However, if X is compact and Y is Hausdorff this pathology does not occur:

LEMMA A.7.7. Let X be a compact space, let Y be a Hausdorff space, and let f: X — Y be an
injective map. Then f is an embedding.

PROOF. Replacing Y with f(X), we can assume that f is bijective. We must prove that
f~11Y — X is continuous. Letting U C X be open, we must prove that (f~1)"1(U) = f(U) is
open. Equivalently, letting C' = X \ U we must prove that f(C) is closed. Since C' is closed and X is
compact, C' is compact. It follows that f(C) is compact, so since Y is Hausdorfl f(C) is closed. O

A.7.5. Heine—Borel Theorem. Let (M,0) be a metric space. A subset K C M is bounded
if there is some R > 0 such that 9(p,q) < R for all p,q € K. The following theorem gives a large
supply of compact spaces:

THEOREM A.7.8 (Heine-Borel Theorem). Let K C R™ be closed and bounded. Then K is
compact.

PROOF. For some D > 0, the set K is contained in the cube [-D, D]". By Lemma A.7.2, it is
enough to prove that [—D, D]™ is compact. Since all cubes in R™, are homeomorphic, it is actually
enough to prove that the unit cube C; = [0,1]™ is compact. Let & be an open cover of C;. For the
sake of contradiction, assume that it has no finite subcover. Divide C; into 2™ subcubes with side
lengths 1/2:

The cover U is a cover of each of these subcubes. Since no finite subset of L covers Cy, it must the
case that among these 2™ subcubes there is a subcube C5 such that no finite subset of 4 covers Cs.
This process can then be repeated: Cy can be divided into 2" subcubes with side length 1/22, and
there among these there must exist a subcube C3 such that no finite subset of 4 covers it. We then
divide C3 into 2" subcubes with side lengths 1/23, etc. This procedure gives a nested sequence

CiD2C3DC3D---

of cubes with the following properties:

e the cube C), has side lengths 1/2™; and

e 1o finite subset of L covers any of the the C,,.
By the completeness of R, the intersection N2 ;C,, must consist of a single point p. Pick U € 4
such that p € U. Since U is open, for some € > 0 the e-ball around p must be contained in U. This

implies that for n > 0 we have C,, C U, contradicting the fact that no finite subset of Ll covers any
of the the C,,. O

REMARK A.7.9. A metric space in which closed and bounded subsets are compact is called a
proper metric space. O
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A.7.6. Intersections of closed sets. The following is a useful rephrasing of the definition of
compactness:

LEMMA A.7.10. Let X be a space. The X is compact if and only if the following holds for all
sets € of closed subsets of X :

(x) If for all finite subsets € C € we have (\pee C # 0, then Ngee C # 0.

PRrOOF. The condition (x) is equivalent to:

(*) If Neee C =0, then there exists a finite subset ¢’ C € such that (oee C = 0.
There is a bijection between sets of closed subsets of X and sets of open subsets of X taking a set €
of closed subsets to U(€) = {X \ C | C € €}. A set € of closed subsets of X has empty intersection
exactly when $4(€) covers X. It follows (+') is equivalent to saying that if {{(€) is a cover of X, then
$1(€) has a finite subcover. O

This has the following immediate corollary:

COROLLARY A.7.11. Let X be a space and let C1 D Co D -+ be a nested sequence of nonempty
compact subspaces of X. Then Np>1Cy, # 0.

A.7.7. Lebesgue number. If M is a metric space and 4l is an open cover of M, then a Lebesgue
number for 4 is an € > 0 such that for all p € M there exists some U € il such that the e-ball B.(p)
is contained in U. The following basic result shows that these always exist if M is compact:

LEMMA A.7.12 (Lebesgue number lemma). Let M be a compact metric space and let 4 be an
open cover of M. Then \ has a Lebesgue number.

PROOF. Since M is compact, we can write M as
M =B, (p1)U---UB, (pn) forsomep,...,p, € M and eq,...,€, >0

such that for each 1 < i < n there is some U € Y with Ba., (p;) C U. Set ¢ = min(ey,...,¢€,), and
consider p € M. We have p € B, (p;) for some 1 < i < n. By assumption, there is some U € 4 with
Bse.(p;) C U. The triangle inequality implies that B.(p) C Bac,(z;) and thus B.(p) C U. O

A.7.8. Compactness and limits. If X is a space and {z,},>1 is a sequence in X, then a
subsequence of {x,}n>1 is a sequence of the form {z,, };>1 with ny < ng < --- a strictly increasing
sequence of natural numbers. A subspace K C X is sequentially compact if every sequence in K has
a subsequence that converges to a point of K. With appropriate countability assumptions, this is
equivalent to compactness. We divide this into two results:

LEMMA A.7.13. Let X be a first countable space and let K C X be compact. Then K is
sequentially compact.

PROOF. See Exercise A.17. O

LEMMA A.7.14. Let X be a second countable space and let K C X be sequentially compact. Then
K is compact.

PRrROOF. See Exercise A.17. O

Similarly, for metric spaces compactness and sequential compactness are the same:

LEMMA A.7.15. Let (M,0) be a metric space and let K C X. Then K is compact if and only if
K is sequentially compact.

PROOF. Since M is first first countable, Lemma A.7.13 implies that compact subsets of M are
sequentially compact. For the converse, we can replace M by the subspace in question and prove
that if M is sequentially compact, then M is compact. By Lemma A.7.14 it is enough to prove that
M is second countable, which by Lemma A.5.8 is equivalent to proving that M is separable, i.e., that
M has a countable dense subset.

Since M is sequentially compact, it cannot contain an infinite discrete subspace. In particular,
for each n > 1 there does not exist an infinite subset T C M with 9(¢1,t2) > 1/n for all distinct
t1,to € T. For each n > 1, we can therefore find a finite set S,, such that for all p € M there exists
some s € S, with 3(p,s) < 1/n. The set U,>15, is then a countable dense subset of M. O



A.8. LOCAL COMPACTNESS AND THE BAIRE CATEGORY THEOREM 19

A.8. Local compactness and the Baire category theorem
Let X be a space. Recall that a general neighborhood of p € X is a set Z C X with p € Int(Z).

A.8.1. Local compactness. A space X is locally compact if the following holds for all p € X:

e For all open neighborhoods U of p, there exists a compact neighborhood K of p with
KcU.

For Hausdorff spaces, this is much easier to understand:

LEMMA A.8.1. Let X be a Hausdorff space. Then X is locally compact if and only if for all
p € X, there exists a compact neighborhood K of p. In particular, if X is compact then X is locally
compact.

ProoF. See Exercise A.20. O

REMARK A.8.2. Local compactness is poorly behaved for non-Hausdorff spaces, and not all
sources agree on the right definition for non-Hausdorff spaces. O

ExampPLE A.8.3. If X is either an open or a closed subspace of R™, then the Heine-Borel Theorem
(Theorem A.7.8) implies that X is locally compact. a

A.8.2. g-compactness. A space X is o-compact if it is the union of countably many compact
subspaces. This condition will be important in the next section when we discuss paracompactness
and partitions of unity. Here we prove:

LEMMA A.8.4. Let X be a Hausdorff space that is second countable and locally compact. Then
X is o-compact.

PROOF. Let 8 be a countable basis for the topology of X. Set
= {U €B|Uis compact} ,

so 4l is a countable collection of open sets of X. It is enough to prove that 4 covers X. Indeed,
consider p € X. We must find some U € 4 with p € U. By Lemma A.8.1, there is a compact
neighborhood K of p. Since p € Int(K), we can find U € B such that p € U and U C K. Since X is
Hausdorff the compact set K is closed, so U C K. Since U is a closed subset of the compact set K,
it follows that U is compact and U € §l, as desired. O

ExampPLE A.8.5. If X is either an open or a closed subspace of R™, then the Heine-Borel Theorem
(Theorem A.7.8) implies that X is o-compact. O

A.8.3. Baire category theorem. The following is a surprisingly powerful tool for proving
existence theorems:

THEOREM A.8.6 (Baire category theorem). Let X be a locally compact Hausdorff space and let
{Un}n>1 be a collection of open dense subsets of X. Then N,>1U, is dense.

PrOOF. Let Vy C X be a nonempty open set. We must prove that V; intersects N,,>1U,,. Since
U, is open and dense, the set V[yNU; is open and nonempty. Since X is locally compact and Hausdorff,
we can find a nonempty open set Vi with V; compact such that V; C Vo N U;. The same argument
shows that there exists a nonempty open set Vo with V5 compact such that Vo C V; NU,. Repeating
this over and over, we find nonempty open sets {V,, },,>1 with the following property for all n > 1:

e V, is compact and V41 C V,, N Up1.
Applying Corollary A.7.11 to the nested sequence Vi D V3 D V3 D --- of nonempty compact

subspaces of X, we see that their intersection must be nonempty, i.e., there exists some p with p € V,
for all n > 1. By construction, p lies in both Vy and Ny,>1U,, as desired. O

REMARK A.8.7. The word “category” in the Baire category theorem has nothing to do with
category theory. Instead, it refers to the following archaic terminology: a space X is of the first
category if it is the union of countably many nowhere dense® sets, and is of the second category
otherwise. The conclusion of the Baire category theorem then is equivalent to saying that every
nonempty open set in X is of the second category. ([

6A subset A of a topological space is nowhere dense if A contain no nonempty open sets, i.e., if Int(A) = ().
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A.8.4. Complete metric spaces. A space X is a Baire space if all countable intersections
of open dense subsets of X are dense. Theorem A.8.6 says that locally compact Hausdorff spaces
are Baire spaces. For another useful class of such spaces, consider a metric space (M,0). A Cauchy
sequence in M is a sequence {p,},>1 such that for all € > 0 there exists some N > 1 such that
3(pn, pm) < € for all n,m > N. The metric space M is complete if all Cauchy sequences in M have
limits. For instance, R™ is complete (Exercise A.22). We have:

THEOREM A.8.8 (Baire category theorem’). Let M be a complete metric space. Then M is a
Baire space.

PRrROOF. This is similar to the proof of Theorem A.8.6, so we leave it as Exercise A.23. O

A.8.5. Application: nowhere differentiable functions. To illustrate how the Baire category
theorem can be used, we prove the following classic result:

THEOREM A.8.9. Let C(I,R) be the set of continuous functions f: I — R. Let 0(f,g) =
max {|f(z) — g(z)| | = € I} be the standard metric on C(I,R). Then the set of nowhere-differentiable
functions on is dense in C(I, R).

PrROOF. For each n > 1, let U, be the set of all continuous functions f: I — R satisfying:

There exists 0 < § < 1/n and A > 0 such that for all = € I, there exists some

(&) yEIwith5<|x—y|<1/nand‘f@2%£(y)‘>n—|—)\.

In the three steps below, we will prove that U, is open (Step 1), we will construct a family of function
in U, (Step 2), and we will show that U, is dense (Step 3). Since C(I,R) is a complete metric
space, Theorem A.8.8 will then apply and show that A = N,,>1U, is dense in C(I,R). Each f € A is

f(=)=f(y)
=y

nowhere differentiable; indeed, for = € I the condition (#) forces limy,,, to either not exist

or be infinite.
STEP 1. For alln > 1, the set Uy, is open in C(I,R).

Consider f € U,. Let 0 < § < 1/n and A > 0 be the constants for f from (#). Let g € C(I,R)
be such that ?(f, g) < A\d/4. We claim that g € U,,. Indeed, consider = € I. Choose y € I such that
d<|r—y| <1/nand ‘%}J;(y)‘ > n+ A. We then have

’g@)—g@w>wf@)—f@w‘gu)—f@)
Y - r—y

T — -y

|9) = f(y)
r—y
5/4
>(n+/\)—2% —n A2
It follows that g satisfies (#) with the constants § and A\/2, so g € U,,.

STEP 2. For somen > 1, let g: I — R be a piecewise-linear continuous function such that
lg'(z)| > n for all z € T where g is differentiable. Then g € U,.

Let 0 =ap < a; < --- < a,, =1 be a partition of I such that g|[ai,ai+1] is linear for all 0 < i < m.
For each 0 < i < m, let ¢;,d; € R be the constants such that g(z) = ¢;x + d; for all © € [a;, a;11].
By assumption, |¢;| > n for all 0 < i < m. Pick A > 0 such that |¢;] > n+ A for all 0 < i < m.
Also, pick 0 < § < 1/n such that § < (a;41 — a;)/2 for all 0 < ¢ < m. Consider some z € I. We
have = € [a;,, aj+1] for some 0 < 495 < m. Since 0 < § < (ajy4+1 — @iy)/2, We can choose some
Y € [a4y, aig+1]) such that § < | —y| < 1/n. It follows that

(cia? + di) — (ciy + di)
r—=y

‘M@—g@w: = ei| > n+ A,

r—y

proving that g satisfies (#) and thus g € U,.

STEP 3. For allm > 1, the set Uy, is dense in C(I,R).
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Consider f € C(I,R) and € > 0. We must find some g € U,, such that 9(f,g) < e. Since f is
uniformly continuous on I, we can choose a partition 0 = ag < a; < -+ < a,, = 1 of I such that for
all 0 <i<m and z € [a;,a;41] we have |f(x) — f(a;)| < €/4. Let h: I — R be the piecewise-linear
continuous function that is linear on each [a;, a;4+1] and satisfies h(a;) = f(a;) for 0 < i < m. For
x € |a;, a;11], we therefore have

o) - 1)) = [P0 o) b ) - 100)
f ait1) — fla:)

Air1 — G4 | = ai| +[f(ai) = f(2)]

< [flaiva) = flai)| +[f(ai) = f(2)] < e/d+e/4=€/2.

It follows that d(f,h) < €/2. As in the following figure, we can find a piecewise-linear continuous
function g: I — R with 9(g,h) < €/2 and |¢'(z)| > n for all x € I where g is differentiable by
changing h on each interval [a;, a;11] to a function whose graph is a rapidly osculating sawtooth:

(ai+1,h(@s 1))
—
(a;,h(ay)
We have 0(f,g) <0o(f,h) +0(h,g) < ¢, and by Step 2 we have g € U,,. O

A.9. Paracompactness and partitions of unity

We now turn to paracompactness, which is a condition that ensure the existence of what are
called partitions of unity. These play a basic role in algebraic topology, especially in the theory of
manifolds.

A.9.1. Locally finite collections of subsets. Let X be a space and let 3 be a collection of
subsets X. We say that 3 is locally finite if for all p € X, there are only finitely many Z € 3 such
that p € Z. One nice property of locally finite collections of open sets is:

LEMMA A.9.1. Let X be a space and let 3 be a locally finite collection of subsets of X. Then
Uz=U7zZ
Ze3 Ze3

PROOF. See Exercise A.24. In that exercise, you will also show that this is false without the
local finiteness assumption. O

A.9.2. Paracompactness. Now let 4 be an open cover of X. A refinement of Ll is an open
cover U such that for all V' € 9, there exists some U € 4 with V' C U. A space X is paracompact if
it is Hausdorff and every open cover of X admits a locally finite refinement. We will prove that this
has strong consequences for the topology of X. In particular, X must be normal (see Lemma A.9.5).

REMARK A.9.2. Most spaces that appear in algebraic topology are paracompact. In particular,
CW complexes are paracompact. O

A.9.3. Paracompactness criterion. The easiest examples of paracompact spaces are compact
Hausdorff spaces, where every open cover admits a finite cover (not just a locally finite one). Our
next goal is to prove the following generalization of this:

THEOREM A.9.3. Let X be a locally compact Hausdorff space that is o-compact. Then X is
paracompact.

Before we prove this, we note that in light of Lemma A.8.4 it implies:

COROLLARY A.9.4. Let X be a locally compact Hausdorff space that is second countable. Then
X is paracompact. In particular, both open and closed subspaces of R™ are paracompact.
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We remark that Stone [12] proved that every metric space is paracompact. We omit the proof,
but good references for it include [2, Theorem IX.5.3] and [7, Corollary 5.35] and [10].

PRrROOF OF THEOREM A.9.3. We start by proving:

o CLAIM. There exists a c%ntable open cover {Wy1,Wa,...} of X such that for alln > 1 the set
W, is compact and satisfies W, C Wy, 41.

PROOF OF CLAIM. Since X is o-compact, we can write X = U,>1 K, with K,, compact. We

will inductively construct open sets W,, of X such that Wy = ) and for all n > 0 we have:

e W, is compact; and

e W, 41 contains W, U K.
Since X = Up>1K,,, this will be a open open cover of X with the properties indicated in the claim.
Start by setting Wy = (), and assume we have constructed Wy, ..., W,,. For p € W, U K, 1, local
compactness gives an open neighborhood W, +1(p) of p with W,,;1(p) compact. Since W,, U K, 11
is compact, we can find py,...,p,m € W, U K,y such that {W, 1(p1),..., Wni1(pm)} covers
W, UK,.1. We can then define W, ;1 = W, 1 1(p1) U---UW,41(pym). The set W, is compact
since W11 = Woi1(p1) U+~ UW,11(pm) (see Lemma A.9.1). O

We now prove that X is paracompact. Let 4 be an open cover of X. Let {W,},>1 be as in
the claim. Set W, = () for m < 0. For n € Z, define Y,, = W,, \ W,,_; and Wi =W \ W, _o.
These satisfy:

(i) Y, is a compact subset of the open set W ,;; and
(il) X =U22,Y,; and
(iii) W), NW,_ =0 whenever |n; —ny| > 3.

See here:
( W, \W,
WW, Y EWAW,
W =W, W, { W, \W, ——

[ ]

\

For each n > 1, the set {U NWy | Ue Ll} is an open cover of compact set Y}, so there is a finite
subset U(n) C U such that {UNW/_, | U € t(n)} covers Y,,. Let

V={UNW,, |n>1and U € U(n)}.

The set U is an open cover of each Y,,, so by (ii) it follows that U is an open cover of X. By
construction, U refines il. Using (iii) together with the fact that only finitely many V € U are
contained in each W/, the open cover 9 is locally finite. The theorem follows. O

A.9.4. Normality. Our next goal is to prove that paracompact spaces are normal:
LEMMA A.9.5. Let X be a paracompact space. Then X is normal.

PRrROOF. Recall that paracompact spaces are assumed to be Hausdorff. We start by proving the
following weakening of normality which is often called being regular:

CrAM. Forp e X and C C X closed with p ¢ C, there exist disjoint open neighborhoods of p
and C.

PROOF OF CLAIM. For each ¢ € C, since X is Hausdorff there exist open neighborhoods Uy, of ¢
and U/, of p such that Uy, NU;, = . Since X is paracompact, the open cover { X \C}U{U,, | ¢ € C}
admits a locally finite refinement. Let U be the open sets in this locally finite refinement that are not
contained in X \ C'. For each V' € 9, there is some g € C such that V' C Ug,. Since Uy, is an open
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neighborhood of p that is disjoint from U,,, we deduce that p ¢ V for all V € U. Set W = Uy egV.
The set W is an open neighborhood of C, and by local finiteness and Lemma A.9.1 we have
W=V
Vey

Since p ¢ V for all V € U, we deduce that p ¢ W. It follows that X \ W and W are disjoint open
neighborhoods of p and C. (]

To prove that X is normal, let C and D be disjoint closed subsets of X. We can find disjoint
open neighborhoods of C' and D by the same argument we used to prove the above claim. Simply

substitute the above claim for X being Hausdorff and replace every occurrence of the point p by the
closed set D. O

A.9.5. Strong refinements. Let i be an open cover of a space X. Enumerate { as il = {U:}ier-
A strong refinement of 4 consists of an open cover {V;};er such that V,; C U; for all ¢ € I. We have:

LEMMA A.9.6. Let X be a paracompact space and let 3L be an open cover of X. Then there exists
a locally finite strong refinement of Ll.

PROOF. Enumerate 4 as 8 = {U; }ier. Let
W = {W’ | W open set with W' C U; for some i € I} .

The set 20’ is an open cover of X; indeed, since X is normal for all p € X and all i € I with p € U;
we can find an open neighborhood W’ of p with W c U;. Since X is paracompact, we can find a
locally finite refinement 20 of 20’. For each W € 20, there is some i € I with W C U;. For i € I, let
W(i)={W eW | W CU;} and V; = UpyeanyW. Since 20(i) is a locally finite collection of open
sets, Lemma A.9.1 implies that

W e (i)
The open cover U = {V;};¢cr is thus a locally finite strong refinement of Ul = {U, };¢7. O

A.9.6. Partitions of unity. We now come to the most important property of paracompact
spaces. Let X be a space. Recall that for a continuous function f: X — R, the support of f is
supp(f) ={p € X | f(p) # 0}. A partition of unity subordinate to an open cover $ of X consists of
continuous functions fy: X — [0, 1] for each U € 4 satisfying the following three conditions:

(a) For all U € 4, we have supp(f) C U.

(b) The set {supp(fu) | U € U} is locally finite.

(c) For all p € X, we have ) ;. fu(p) = 1. Note that (b) implies that only finitely many
terms of this sum are nonzero, so this sum makes sense.

We have:

THEOREM A.9.7. Let X be a paracompact space and let 3L be an open cover of X. Then there
exists a partition of unity subordinate to L.

PROOF. Enumerate il as 8 = {U;};c;. By Lemma A.9.6, we can find a locally finite strong
refinement {V;};er of {U;}icr. Applying this lemma again, we obtain a locally finite strong refinement
{Wi}tier of {V;}ier. Lemma A.9.5 says that X is normal, so we can apply Urysohn’s Lemma (Theorem
A.6.7) to X. For i € I, since W; C V; Urysohn’s Lemma (Theorem A.6.7) implies that there is a
continuous function f;: X — [0,1] such that f/[z, = 1 and supp(f;) C Vi. Since {V;}ies is locally
finite and supp(f/) C W; C V; for each i € I, we can define g: X — [0, 00) via the formula

9(p) =D fi(p) forpeX.
iel
The function g: X — [0, 00) is continuous (see Exercise A.26). Each p € X lies in some W;, so since
filsz, = 1 it follows that g(p) > 0 for all p € X. For i € I, we can therefore define f;: X — [0, 00)
via the formula

1 !
filp) = @fi(p) for p e X.
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For p € X, we have

1 IS TP
> filp) = @;fi(p) = i =1

i€l
Since f;(p) € [0,00) for all ¢ € I, this implies that the image of each f; lies in [0, 1] and that the f;
form a partition of unity subordinate to i = {U; }ier. O

A.9.7. Application: extending functions. Here is a typical application of partitions of
unity:

LEMMA A.9.8. Let X be a paracompact space, let A C X be a subspace, and let f: A — R be
continuous. For all a € A, assume that there is a neighborhood U, of a and an extension of f|u,na
to Fo: Uy = R. Set U =UgecalU,. Then f can be extended to a continuous function F: U — R.

REMARK A.9.9. If A is closed, then the Tietze extension theorem (Theorem A.6.12) says that f
can be extended to the whole space X. This can fail for non-closed subspaces. For instance, consider
the subspace Q of R. The function f: Q — R defined by

—1 ifz <2,
f(fﬂ)z{l ) for z € Q.

can be extended to a continuous function on the open set R\ {y/2}, but cannot be extended to a
continuous function on R. ]

PRrROOF. Replacing X by U, we can assume that 4 = {U, | a € A} is an open cover of X. Let
{¢v,: X = R | a € A} be a partition of unity subordinate to (. Since supp(¢wu,) C U,, the function
F.¢u,: Uy — R can be extended to a continuous function G,: X — R by letting G,(x) = 0 for
xz € X\ U,. We have supp(G,) C supp(¢,) for a € A, so since the set of supports of the ¢, are
locally finite we can define F': X — R via the formula F' =} _, G,. For a € A, we have

F(a) =) Fa(a)¢u,(a) = f(a) ) du,(a) = f(a),

acA a€A
so F' is an extension of f. |

A.10. Products and Tychonoff’s theorem
We now discuss products of spaces.

A.10.1. Finite products. Let Xi,...,X,, be spaces. As a set, X; x --- x X, consists of
tuples (x1,...,2,) with z; € X; for 1 <i < n. Give this the topology with the basis consisting of
products Uy x --- x U,, with U; C X; open for 1 < i < n. We will call these the basic open sets of
the product. A general open set V C X; x .-+ x X,, can therefore be written a union of basic open
sets. Equivalently, V' C X; x -+ x X,, is open if and only if for all (p1,...,p,) € V, there exist open
neighborhoods U; C X; of each p; such that Uy x --- x U, C V.

EXAMPLE A.10.1. This gives the usual topology on R™ =R X --- x R (see Exercise A.27). O

A.10.2. Finite universal property. Let m;: X7 x --- x X;, = X, be the projection. The map
m; is continuous; indeed, if U; C X; is open, then
7T‘_1(Ui) =X1 Xoee XXi_l X Uz XXi—i—l Xoeee XX»,L.

K2

Now let Y be another space, and for 1 < ¢ < n let f;: Y — X; be a continuous map. Let
fix-o X fo: Y = X5 x -+ x X, be the map where f1 x -+ x fo(y) = (f1(y),..., fu(y)) fory € Y.
This is continuous; indeed, if U; C X; is open for 1 <+¢ < n then

(fy x - xfn)*l(Ul X oo xUpy)=UN---NU,.
Conversely, if F:' Y — X; x --- x X, is a continuous map, then letting f; = m; o F' we have
F=f; x---x f,. We summarize this informally as:

e A continuous map F: Y — X; x --- x X, is the same thing as a collection of continuous
maps f;: Y — X, forall 1 <i<n.
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Just like for quotient spaces in §A.3.4, this is an example of a universal mapping property and it
characterizes product spaces (see Exercise A.29).

A.10.3. Homotopies, products, and quotient maps. One place where products show up in
algebraic topology is in the definition of a homotopy. Roughly speaking, a homotopy is a continuous
deformation of a map. The precise definition is as follows. Let fy, f1: Y — Z be maps. A homotopy
from fy to f1 isamap H:Y x I — Z such that H(y,0) = fo(y) and H(y,1) = f1(y) for y € Y. If
such a homotopy exists, we say that fy and f; are homotopic

For t € I, we can let f;: Y — Z be the map defined by fi(y) = H(y,t) for y € Y. The maps
fi: Y — Z can be viewed informally as a continuous family of maps connecting fy to fi. See §A.11.7
for how to topologize the space of maps ¥ — Z and make this precise.

ExXAMPLE A.10.2. Any two maps fo, f1: ¥ — R"™ are homotopic via the homotopy H: Y xI — R"

defined by H(y,t) = (1 —t)fo(y) + tf1(y). O
ExAMPLE A.10.3. Let Y = {*} be a one-point space. Two maps fo, f1: Y — Z are homotopic if
and only if fo(*) and fi(x) lie in the same path component of Z. O

Now assume that ¢: X — Y is a quotient map (see §A.3.3), so ¢ is surjective and U C Y is open
if and only if ¢~ *(U) C X is open. Given fo, fi: Y — Z, it is natural to try to construct a homotopy
from fy to fi as follows:

e Define g9 = fo o q and g; = f1 0 q. Construct a homotopy H: XxI—Z from go to g1.
e Next, use the universal property of the quotient map from §A.3.3 to show that H descends
to a homotopy H: Y x I — Z.

Here are an example of how this might work:

EXAMPLE A.10.4. We have D"/0D"™ = S™ (see Example A.3.3). A map f: S™ — Z is thus the
same as a map g: D™ — Z such that g|gp» is constant. Given fo, f1: S" — Z, let go,91: D" — Z
be the corresponding maps. To construct a homotopy from fy to f1, it is natural to instead try to
construct a homotopy g; from gg to g; such that g;|sp~ is constant for all . O

However, there is a flaw in the above reasoning: if ¢: X — Y is a quotient map, it not clear that
gx1l: X xI—=Y x1Iisa quotient map. Indeed, there are counterexamples if I is replaced by a
more complicated space. However, for nice spaces like I this is not a problem. More generally:

LEMMA A.10.5. Let q: X — Y be a quotient map and let Z be a locally compact space. Then the
map g x1: X x Z =Y X Z is a quotient map.

PROOF. The map g x 1: X x Z — Y X Z is continuous, so for every open set U C Y X Z we
have ¢~1(U) open. We must prove the converse. In other words, letting U C Y x Z be a set such
that ¢~!(U) is open, we must prove that U is open. Letting (y, z) € U, it is enough to find an open
neighborhood of (y, z) that is contained in U.

Pick z € X with ¢(x) = y. We have (z,z) € ¢~ }(U). Since ¢~ }(U) C X x Z is open and Z
is locally compact, we can find an open neighborhood Vi C X of z and a compact neighborhood
K C Z of z such that Vi x K C ¢~ '(U). We have

(y,2) € q(Vi x Int(K)) = q(V1) x Int(K) C U.

If ¢(V1) C Y were open, then ¢(V1) x Int(K) would be an open neighborhood of (y, z) contained in
U and we would be done.

Unfortunately, ¢(V;1) might not be open since ¢~*(¢q(V;)) might be larger than V3. We do have
q Y (qV1))x K € ¢ (U). Since K is compact and ¢~*(U) is open, we can find an open neighborhood
Vo of ¢71(q(V1)) with Vo x K C ¢~ 1(U) (see Exercise A.28; this is often called the “tube lemma”).
Just like for V;, there is no reason to expect q(Va) C Y to be open since ¢~!(g(V2)) might be larger
than V5. However, we can iterate the procedure we used to find V5. The result is an increasing
sequence Vi3 C Vo C --- of open subsets of Y such that for all n > 1 we have:

o Vux K Cq ' (U) and ¢~ (q(Va)) C Vi1
The set V = U,>1V,, is then an open subset of X with V x K C ¢7*(U) and ¢ *(¢(V)) = V. It
follows that ¢(V') is an open subset of Y, so ¢(V') x Int(K) is an open neighborhood of (y, z) with
q(V) x Int(K) C U, as desired. O
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A.10.4. Tychonoff’s theorem, finite case. We have the following basic result:

THEOREM A.10.6 (Tychonofl’s theorem, finite case). Let Xi,...,X,, be compact spaces. Then
X1 x - x X, is compact.

PROOF. By induction, it is enough to prove this for n = 2. Let 4 be an open cover of X; x Xs.
We must prove that &l has a finite subcover. In fact, it is enough to prove that some refinement of £l
has a finite subcover (see Exercise A.25). Each element of { is a union of basic open sets. Letting U
be the set of all basic open sets V' such that there exists some U € i with V' C U, it is therefore
enough to prove that 20 has a finite subcover.

For p € Xy, let Z(p) = p x X2. By assumption, Z(p) = X, is compact. We can therefore find a
finite subset U(p) of Y that covers Z(p). Since Y consists of basic open sets, we can write

B(p) = {Vi(p) x VI(D), -, Vin, (p) X Vyr, (D)}

with V;(p) C X7 and V/(p) C X, for 1 <4 < m,. Discarding unneeded terms if necessary, we can
assume that p € V;(p) for all 1 <14 < m,,. Letting

Vip)=Vilp) NN Vi, (p),

it follows that V'(p) is an open neighborhood of p and U(p) covers V(p) x Xs.

The set {V(p) | p € X1} is an open cover of the compact space X1, so we can find py,...,ps € X
such that X7 = V(p1) U--- UV (pg). Since Y(p;) is a finite cover of V(p;) x Xo for 1 < i < d, we
conclude that U(p1) U---V(py) is a finite subset of Y that covers X; x Xo. O

A.10.5. Infinite products. Now let {X;};c; be an arbitrary collection of spaces. As a set,
the product Hiel X; consists of tuples (x;);er with x; € X; for i € I. The obvious first guess for a
topology on J],.; X; is the one with basis the collection of products [],.; U; with U; C X; open for
all © € I. However, this topology turns out to be pathological. The issue is that it has too many
open sets, and there are maps into it that should be continuous but are not. Here is a key example:

EXAMPLE A.10.7. Let X be a space and let I be an infinite indexing set. Consider the diagonal
map A: X = [[..; X, so A(z) = (z)¢er for all z € X. If U; C X is an open set for all ¢ € I, then

Ao =Us.

i€l i€l

iel

Since the collection of open sets is not closed under infinite intersections, this is not always an open
set. It follows that A will generally not be continuous if each set of the form [],.; U; with U; C X
for ¢ € I is open. O

To eliminate this pathology, we must avoid infinite intersections of open sets. This can be done
as follows. A basic open set in [[,.; X; is a product [[;.; U; such that:
e U; C X, is open for all ¢ € I; and
e U, = X; for all but finitely many ¢ € I.
The product topology on [],.; X; is the topology with basis the basic open sets, so a subset of [[;.; X;
is open if and only if it is a union of basic open sets. To simplify our notation when talking about
these infinite products, we introduce the following convention:

iel

CONVENTION A.10.8. We regard the indexing set I as being unordered, and thus if 7 = J U K
we identify

HXj X (H Xk> and HXl
J€T keK i€l
in the obvious way. |

With this notational convention, the basic open sets in J[,.; X; are those that for some distinct
J1s---5Jn € I can be written as

Uj X---XanX H Xz
ie]\{jlv-“vjn}

with Uj, C Xj, open for 1 <k < n.
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REMARK A.10.9. The topology on [],.; X; with basis arbitrary products [],.; U; with U; C X
open is sometimes called the box topology. It is rarely useful. (|

A.10.6. Infinite universal property. Continue to let {X;};c; be an arbitrary collection of
spaces. For j € I, let m;: J[,c; Xis — X; be the projection. The map 7; is continuous; indeed, if
U; C X, is open, then

Trj_l(Uj) = Uj X H Xz

Now let Y be another space, and for i € I let f;: Y — X; be a continuous map. Let [[,o; fi: Y —
[I;c; Xi be the map

(H fi) (y) = (fi(y))ier foryeY.

This map is continuous; indeed, if [],.; U; is a basic open set then

i€l
(<Hfz‘> JTva=N#"
el el iel

This is open since f; YUy = fi '(X;) = Y for all but finitely many i € I, so this intersection is
actually a finite intersection. Conversely, if F':' Y — [],.; X; is a continuous map, then letting
fi = mi o F we have F' = [],.; fi. We summarize this informally as:
e A continuous map F': Y — [[,.; X; is the same thing as a collection of continuous maps
fi:Y > X, foralliel.
This universal property characterizes product spaces (see Exercise A.29), and having it is one of the
reasons we defined the product topology like we did.

REMARK A.10.10. In more categorical language, what the above shows is that [],.; X; is the
product of the X; in the category of topological spaces. There is also a notion of a sum of objects in
a category, and it turns out that the disjoint union U;c; X; with the disjoint union topology discussed
in §A.3.3 is the categorical sum of the X;. See Exercise A.30 for a precise statement of what this
means and Exercise A.31 for related constructions in the category of abelian group. O

A.10.7. Metrics on countable products. Arbitrary products of metric spaces need not be
metric spaces. However, it turns out that countable products of metric spaces can be given metrics.
This would not be true if we used the box topology.

LEMMA A.10.11. For each n > 1, let (M,,0,) be a metric space. There is then a metric on
[172, M, inducing the product topology.

PROOF. Let d/, be the metric on M,, defined by 0/,(p, q) = min{d,(p,q),1}. This induces the
same topology on M, as 0, (see Exercise A.1). We can then define a two-variable real-valued function
on [, M, via the formula

o0

1
0((pn)n217 qn n>1 Z 7 Pan

This is a metric on ]2 | M,, that induces the product topology (see Exercise A.33). O

A.10.8. Sequences in infinite products. Another nice property of the product topology is
the following, which would also not be true if we used the box topology:

LEMMA A.10.12. Let {X;}ier be a collection of spaces. For each i € I, let {p(i)p}tn>1 be a
sequence of points in X; that converges to p(i) € X;. Forn > 1, let p, = (p(i)n)ier € [l;c; Xi- Then
{Pn}tn>1 converges to (p(i))icr € Hie] X;.

PROOF. See Exercise A.32. O

ExAMPLE A.10.13. For n > 1, let p, € [[;5, Z be the tuple of integers p, = (1,...,1,0,...)

with n initial 1’s and then 0’s. Let po = (1,1,1,...) be the tuple all of whose entries are 1. Then
limy s 00 P = Poo- O
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A.10.9. Tychonoff’s theorem, countable case. Tychonofl’s theorem generalizes to arbitrary
products of compact spaces. We start by proving this for countable products. The proof of the
general case is similar, but requires more set theoretic technology.

THEOREM A.10.14 (Tychonoff’s theorem, countable case). Let {X;}i>1 be a countable collection
of compact spaces. Then ], X; is compact.

PRrROOF. Unlike in the finite case, we cannot prove this by induction. However, we will see that
the argument we gave in the finite case is almost enough. Only one new idea is needed. Let 4l be an
open cover of [[,~; X;. We must prove that & has a finite subcover. In fact, it is enough to prove
that some refinement of 4 has a finite subcover (see Exercise A.25). Each element of  is a union of
basic open sets. Letting U be the set of all basic open sets V' such that there exists some U € i with
V C U, it is therefore enough to prove that 2J has a finite subcover.

Assume for the sake of contradiction that U has no finite subcover. The proof now has two steps:

STEP 1. For all i > 1, there exists some p; € X; such that no finite subset of U covers
b1 X o X pp X Hi2n+1Xi for any n > 1.

We construct the p; inductively. Assume that for some n > 1 we have found p; € X; for
1 <i < n—1 such that no finite subset of U covers p; X -+ X pp_1 X [[,5,, X;. For n = 1, this is
simply our assumption that the open cover U of [[,-; X; has no finite subcover. We find p,, € X,, as
follows. For p € X,,, let

Z(p) =p1 X X Ppo1 XPpX H X;.
i>n+1

Assume for the sake of contradiction that for all p € X,,, there exists a finite subset U(p) of UV that
covers Z(p). Since U consists of basic open sets, we can write

V(p) = [[Visp) | 1 <G <my

i>1

with V; j(p) C X; for all i > 1 and 1 < j < m,,. Discarding unneeded terms if necessary, we can
assume that p; € V; ;(p) forall 1 <i<n—1and 1< j <m,, and also that p € V, ;(p) for all
1 < j < myp. Define

my

Vi(p) = m Vii(p) forl1<i<n,
j=1

V(p) = VZ(p) X - X Va(p).

It follows that V(p) is an open neighborhood of (p1,...,pn—1,p) € X1 X --- x X,, and that U(p)
covers V(p) X [[isnq1 Xi-

The set {V(p) | p € X,,} is an open cover of the compact space p; X --- X pp_1 X Xy, 50 we can
find q1,...,qq4 € X, such that

PLX X a1 X X CV (@) U--- UV (qq).

Since U(gy) is a finite cover of V(gy) x [[;5,,, Xi for 1 <k < d, we conclude that U(q1) U---V(qa)
is a finite subset of ¥ that covers p; X -+ X pp—1 X [[,,, Xi, contradicting the fact that no such
finite cover exists. -

STEP 2. No finite subset of U covers H¢21 X;.

Pick V' € 9 such that (p;);>1 € V. Since U consists of basic open sets, we can write V'
with V; C X; open for all ¢ > 1. Moreover, we have V; = X; for all but finitely many ¢
implies that there exists some n > 1 such that V; = X; for ¢ > n + 1. It follows that

P1 X e X Pp X H X, CcV ey
i>n+1

HiZI Vi
1. This

AVANI

This contradicts the fact that no finite subset of U covers p; X -+ X p, X Hi>n+1 X;. O
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A.10.10. Well-ordered sets. To generalize the above proof of Tychonoff’s theorem to arbitrary
products, we need some set-theoretic technology. A well-ordered set is a set I equipped with a total
ordering < such that every nonempty subset S C I has a minimal element. The canonical example
is N={1,2,...} with the usual ordering. A remarkable consequence of the axiom of choice is that
every set can be equipped with a well-ordering.

If I is a well-ordered set with ordering <, then an initial segment of I is a subset J C I such
that for all j € J and 7 € I with i < j we have ¢ € J. If Jy,Jo C I are initial segments, then either
J1 C Jp or Jy C Jp. Indeed, assume that Jy is not a subset of Jy and pick j; € Jy \ Ja. For ja € Ja,
we cannot have j; < jo since j; ¢ Jo. It follows that jo < ji, so jo € Ji and thus Jy C J;. The
initial segments of I are thus totally ordered under inclusion. They fall into three classes:

e The empty set (), which is the unique initial segment that is contained in all initial segments.

e The successor segments, which are initial segments J C I of the form J = J' U {n} for some
initial segment J' C J and some n € J\ J'.

e The limit segments, which are nonempty initial segments J C I that are not successor
segments. These J are the union of the initial segments J' C J.

For instance, for N the successor segments are subsets of the form {1,...,n} and the whole set N is
the only limit segment.

A.10.11. Transfinite induction. Assume now that I is a well-ordered set and for each i € I
we have a set X;. Our goal is to construct some p; € X; for all i € I. For each initial segment J C I,
we want some property P(J) to hold that only refers to the p; € X; for ¢ € J. To simplify our
exposition, assume that if P(J) holds then so does P(J’) for all initial segments J' C J.

We can construct the p; € X; by transfinite induction.” For this, we must prove three things:

(0) The property P(f) holds. Note that this makes sense since by assumption P (@) makes no
reference to any p;.

(1) Let J be a successor segment of the form J = J' U {n} for some initial segment J" C J.
Assume that we have already constructed p; € X; for all ¢ € J’ such that P(J’) holds. We
must show how to construct p,, € X,, such that P(J) holds.

(2) Let J be a limit segment. Assume that we have constructed p; € X; for all ¢ € J such that
P(J’) holds for all initial segments J' C J. We must prove that P(J) holds.

We can then construct p; € X; for all ¢ € I such that P(J) holds for all initial segments J C I.
Indeed, let J be the set of all initial segments J C I for which we can construct p; € X; for each
i € J such that P(J) holds. The set J is linearly ordered by inclusion and nonempty since () € J.
Let Jy = UjezJ. By (1) and (2), we have Jy € J. We must prove that Jy = I. Indeed, assume that
Jo C I. Since I is well-ordered, there is a minimal n € I\ Jy. It follows that Jy U {n} is an initial
segment, and by (1) we have Jy U {n} € J, contradicting the fact that J C Jy for all J € J.

REMARK A.10.15. Isomorphism classes of well-ordered sets are called ordinals. Any set of
ordinals has a well-ordering where O; < Oy when O; is isomorphic to an initial segment of Os.
Transfinite induction is typically discussed using ordinals. O

A.10.12. Tychonoff’s theorem, general case. The above was a little abstract. We now use
it to prove the general case of Tychonoff’s theorem:

THEOREM A.10.16 (Tychonoft’s theorem). Let {X;}icr be a collection of compact spaces. Then
[Lic; Xi is compact.

PROOF. The proof will be almost identical to proof in the countable case, but with some small
complications due to the need for transfinite induction. Let L be an open cover of J[,.; X;. We must
prove that 4 has a finite subcover. In fact, it is enough to prove that some refinement of i has a
finite subcover (see Exercise A.25). Each element of 4l is a union of basic open sets. Letting U be
the set of all basic open sets V' such that there exists some U € { with V' C U, it is therefore enough
to prove that U has a finite subcover.

Since we constructing things, this is sometimes called transfinite recursion.
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Assume for the sake of contradiction that 2 has no finite subcover. Choose a well-ordering on
the indexing set I. By transfinite induction, for each i € I we will construct some p; € X; such that
the following holds for all initial segments J C I:

(&) No finite subset of U covers Y (J) = [[;c;pj X [Liep s Xi-

The special case (#;) says that no finite subset of U covers the one-point set Y () = [[,.; p:, which
will be our contradiction. We have (#y) from our assumption that no finite subset of U covers
Y(0) = [I;c; Xi- According to the transfinite induction scheme discussed in §A.10.11, to prove that
(&) holds for all initial segments J C I we must prove:

STEP 1. Let J C I be a successor segment, so J = J' U{n} for some initial segment J' C J and
ne J\J'. Assume that we have constructed p; € X; for all i € J' such that (# ;) holds. We can
then construct p, € X, such that (#;) holds.

Z(p):px Hpj/x H Xz

JjeJ’ ieI\J
Assume for the sake of contradiction that for all p € X,,, there exists a finite subset B(p) of U that
covers Z(p). Since U cousists of basic open sets, we can write

B(p) = {HVi,k(p) |1<k< mp}

iel

For p € X,,, let

with V; x(p) C X, for all i € I and 1 < k < m,,. Discarding unneeded terms if necessary, we can
assume that p; € Vjr 1 (p) for all i € J' and 1 < k < m,, and also that p € V,, x(p) forall 1 <k < m,,.
Keeping in mind that J = J' U {n}, define

Vi(p) = () Viwlp) forjeJ,
k=1

V(p)=Valp) x [[ Virw.
jleJ’

It follows that V(p) is an open neighborhood of p x [] ;. ; pj and that U(p) covers V(p) x [[;> 1\ ; Xi-

The set {V(p) | p € X,,} is an open cover of the compact space X, X [[; ¢ pj, so we can find
q1;---,q4 € Xy, such that

X x ] py V(@) U+ UV (qa).
Jj'e’
Since U(qe) is a finite cover of V(ge) x [];cp\ ; Xi for 1 < £ < d, we conclude that B(q1) U - - B(ga)
is a finite subset of U that covers

XnX Hpj/X H XZ: Hpj/X H X,L:Y(Jl),

jrer iel\J jlet’ iel\J’
contradicting the fact that no such finite cover exists.

STEP 2. Let J C I be a limit segment. Assume that we have constructed p; for alli € J such
that (#:) holds for all initial segments J' C J. Then (#;) holds.

Assume for the sake of contradiction that a finite subset {V7,..., Vy} of U covers Y (J). Each V}
is a basic open set, so we can write

Vi =[] Vi with Vi; C X; open for all i € I.

iel
Moreover, we have Vi ; = X; for all but finitely many ¢ € I. For 1 < k < d, let J(k) =
{jedJ|Vi; #X,}. Set J =JA)U------ U J(d). Let J' be the smallest initial segment con-

taining J. Since J is a finite subset of J, we have J' C J. Since V;, ; = X for all 1 < k < d and
j € J\J', the fact that {Vi,...,Vy} covers Y(J) implies that it also covers Y (J). This contradicts
the fact that no finite subset of U covers Y (J'). O
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A.11. Function spaces and the compact-open topology

Let X and Y be spaces and let® C(X,Y) be the set of all continuous maps f: X — Y. In this
section we explain how to turn C(X,Y) into a space.

A.11.1. Subbasis. Let X be a set and let B be a set of subsets of X. We would like to
topologize X with the smallest collection of open sets possible to make each U € 9% open. If for
all U,V € B the intersection U NV could be written as a union of sets in 9, then 8 would be a
basis for a topology as in §A.2.9. In that case, we could topologize X by saying that U C X is open
precisely when U is the union of sets in 5.

However, if 8 does not form a basis then this does not work since in the resulting “topology”
the collection of open sets is not closed under finite intersections. To fix this, let 9’ be the set of all
finite intersections of elements of B. Here we interpret the intersection of zero sets as X, so X € B’.
The set B’ does form a basis for a topology on X. In this case, we say that 28 is a subbasis for this
topology.

A.11.2. Compact-open topology. For sets A, B C X, define
BAB)={f: X—>Y | f(K)CcU} CC(X,Y).

The compact-open topology on C(X,Y) is the topology with subbasis the collection of all B(K,U)
with K C X compact and U C Y open. In other words, a set V C C(X,Y) is open if for all f € V
there exist K1,..., K, C X compact and Uy,...,U, CY open such that

feB(K,U)N--NB(Ky,Uy) C V.

A.11.3. Metrics. If (Y,0) is a metric space, then it is also natural to try to topologize C(X,Y)
using 9. This is easiest for X compact, in which case we can define a metric ® on C(X,Y) by letting
(A.11.1) D(f,g) = max{o(f(z1), f(z1)) | ®1,22 € X} for f,g: X - Y.

This makes sense since X is compact, which implies that f(X) and g(X) are compact subsets of the
metric space Y and thus that the above maximum is finite and realized. We have:

LEMMA A.11.1. Let X be a compact space and let (Y,0) be a metric space. The compact-open
topology on C(X,Y) and the metric topology on C(X,Y) coming from (A.11.1) are the same.

PRrROOF. We divide the proof into two steps:
STEP 1. Ewvery open set in the compact-open topology is open in the metric topology.

Let K C X be compact and U C Y be open. We must prove that B(K,U) is open in the metric
topology. Indeed, consider f € B(K,U), so f(K) C U. Since f(K) is a compact subset of U, we
can find some € > 0 such that the e-neighborhood of f(K) is contained in U. For g € C(X,Y)
with D(f,g) < €, since d(g(k), f(k)) < e for all k € K it follows that g(K) is contained in the
e-neighborhood of f(K). We thus have g(K) C U, so g € B(K,U). We conclude that the e-ball
around f is contained in B(K,U), so B(K,U) is open in the metric topology.

STEP 2. Every open set in the metric topology is open in the compact-open topology.
Let f € C(X,Y) and let € > 0. Let
Be(f) ={g € C(X,Y) | d(g(x), f(z)) < € for all z € X}

be the open ball around f in the metric topology. It is enough to find compact sets Kq,..., K, C X
and open sets Uy,...,U, C Y such that

fe B(Kl,Ul) n---N B(Kn, Un) C Be(f>
Since f(X) is a compact subset of Y, we can find z1,...,2, € X such that
(A11.2) F(X) € Buys(F(21)) U-+ U Beys(f(@0)):

81t is also common to call this space YX | but we think the notation C(X,Y) is easier to understand.
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For 1 <i < n,let K; = f~*(Bes3(f(2i))) and U; = Bejo(f(2;)). Since K; is a closed subset of
the compact space X, it follows that K; is closed. By (A.11.2), the sets K; cover X. Finally, by
construction

fe B(Kl, Ul) n---N B(Kn, Un>
Now consider some g € B(K1,U;) N---N B(K,,U,). We must prove that g € B.(f). In other
words, letting € X we must prove that ?(f(z), g(z)) < e. We have x € K; for some 1 <4 <n, so
f(x),g(x) € U;. It follows that o(f(z), g(x)) is at most the diameter € of U; = B /o(f(x:)). O

REMARK A.11.2. If (Y,0) is a metric space but X is not compact, then the metric 9 induces a
topology on C(X,Y) as follows. For f € C(X,Y) and a compact subset K C X and € > 0, let

B(f.K,e) = {g € C(X,Y) | 2(f(),g(x)) < e for all 2,y € K}

These sets form the basis for a topology on C(X,Y") called the topology of compact convergence, and
this is the same as the compact-open topology (see Exercise A.34). |

A.11.4. Composition. For spaces X and Y and Z, there is a composition map ¢: C(Y, Z) x
C(X,Y) = C(X, Z) defined by ¢(g, f) =go f for g€ C(Y,Z) and f € C(X, Z). It is natural to hope
that this is continuous. Unfortunately, this does not hold in general. However, it does hold if Y is
locally compact:

LEMMA A.11.3. Let X and Y and Z be spaces with Y locally compact. Then the composition
map ¢: C(Y,Z) x C(X,Y) = C(X, Z) is continuous.

PROOF. Let K C X be compact and U C Z be open. We must prove that ¢~} (B(K, U)) is open.
Let (g,f) € C(Y,Z) x C(X,Y) satisfy c(g, f) € B(K,U). It is enough to find an open neighborhood
of (g, f) that is mapped by ¢ into B(K,U). Since go f € B(K,U), we have f(K) C g~ *(U). Since
f(K) is a compact subset of the open subset g~ 1(U) C Y and Y is locally compact, there is a
compact neighborhood L of f(K) with L C g=*(U) (see Exercise A.21). It follows that ¢ takes the
open neighborhood B(L,U) x B(K, g~ (U)) of (g, f) into B(K,U), as desired. O

A.11.5. Evaluation. For spaces X and Y, there is an evaluation map ¢: C(X,Y) x X =Y
defined by e(f,z) = f(x) for f € C(X,y) and = € X. Just like for the composition map, to ensure
this is continuous we need to assume that X is locally compact:

LEMMA A.114. Let X and Y be spaces with X locally compact. Then the evaluation map
¢: C(X,Y) x X =Y is continuous.

PROOF. Let pg be a one-point space. We have C(pg, X) = X and C(pg,Y) =Y. Applying these
identities, the evaluation map becomes the composition map C(X,Y") x C(pg, X) — C(po,Y’), which
is continuous by Lemma A.11.3. (]

A.11.6. Parameterized maps. Let X and Y and Z be spaces. It is natural to expect maps
¢p: X xZ =Y and ®: Z — C(X,Y) to be closely related. Indeed, if we were working with sets
rather than spaces then such maps would be in bijection with each other: a map ®: Z — C(X,Y)
would correspond to the map ¢: X x Z — Y defined by ¢(z, z) = ®(z)(z). The following shows that
this holds topologically if X is locally compact:

LEMMA A.11.5. Let X and Y and Z be spaces. The following holds:
(i) Let ¢: X x Z =Y be continuous. Define ®: Z — C(X,Y) to be the map that takes z € Z
to the map X — 'Y taking x € X to ¢(x,2) €Y. Then ® is continuous.
(i) Assume that X is locally compact. Let V: Z — C(X,Y) be continuous. Define: XxZ =Y
to be the map taking (x,z) € X x Z to ¥(2)(z) € Y. Then 1 is continuous.

PRrROOF. For (i), let ¢: X x Z — Y be continuous and define ®: Z — C(X,Y) as in (i). Let
K C X be compact and U C Y be open. We must prove that ®~1(B(K,U)) C Z is open. Let
2z € ®7Y(B(K,U)), so K x 29 C ¢ 1(U). Since K C X is compact and ¢~ 1(U) is an open
neighborhood of K X zy, Exercise A.28 (the “tube lemma”) gives an open neighborhood V' C Z of z
with K x V C ¢~ 1(U). It follows that V is an open neighborhood of zy with V' C ®~1(B(K,U)), as
desired.
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We now prove (ii). Assume that X is locally compact and that U: Z — C(X,Y) is continuous.
The map ¢: X x Z — Y defined in (ii) is the composition

Xx2Z 2% X xC(X,)Y) —— Y,
where e: X x C(X,Y) — Y is the evaluation map e(x, f) = f(x). Lemma A.11.4 implies that e is
continuous, so we conclude that 1 is continuous. O

A.11.7. Homotopies and the compact-open topology. Let fy, fi: X — Y be maps.
Recall that a homotopy from fy to f1 is a continuous map H: X x I — Y with H(z,0) = fo(x)
and H(z,1) = fi(z) for all x € X. Lemma A.11.5 implies that such a homotopy gives a map
h: I — C(X,Y). This map h can be viewed as a path from h(0) = fy to h(1) = f;. Conversely, if X
is locally compact then Lemma A.11.5 implies that a path in C(X,Y) from fy to f; gives a homotopy
from f() to f1~

A.11.8. Parameterized maps, II. Let X and Y and Z be spaces with X locally compact.
Lemma A.11.5 gives a bijection between C(X x Z,Y) and C(Z,C(X,Y)). The following lemma says
that this bijection is a homeomorphism if X and Z are Hausdorff:

LEMMA A.11.6. Let X andY and Z be spaces with X locally compact Hausdorff and Z Hausdorff.
Let \: C(X x Z,Y) = C(Z,C(X,Y)) be the map taking ¢: X X Z =Y to the map ®: Z — C(X,Y)
defined by
O(z)(x) =d(x,2) €Y forallze Z and x € X.

Then X\ is a homeomorphism.

PrOOF. Lemma A.11.5 says that A is a bijection. For K C X and L C Z compact and U C Y
open the map A restricts to a bijection between B(K x L,U) and B(L, B(K,U)). To prove the lemma,
it is enough to prove that open sets of these forms are subbases for the topologies on C(X x Z,Y)
and C(Z,C(X,Y)):

e For C(X x Z,Y), we prove this in Lemma A.11.7 below.

e For C(Z,C(X,Y)), in Lemma A.11.8 below we prove more generally that if B is any subbasis
for the topology on a space W, then sets of the form B(L,V) with L C Z compact and
V € B form a subbasis for C(Z, W). O

The above proof used the following two results:

LEMMA A.11.7. Let X and Y and Z be spaces with X and Z Hausdorff. Then the set of all
B(K x L,U) with K C X compact and L C Z compact and U C'Y open forms a subbasis for the
compact-open topology on C(X x Z,Y).

PROOF. Let C C X x Z be compact and U C Y be open. We must prove that B(C,U) is
open in the topology with the indicated subbasis. Consider f € B(C,U). It is enough to find
Ki,...,K, C X compact and Ly,...,L, C Z compact such that

feB(K, x L1, U)n---NB(K, x L,,U) C B(C,U).

Unwrapping this, we need the K; and L; to satisfy the following:

e CC U;L=1Ki X L;; and

o K;xL; C f~YU) forall1<i<n.
Let C(X) C X and C(Z) C Z be the projections of C C X x Z. Both C(X) and C(Z) are compact
Hausdorff spaces, and C C C(X) x C(Z). Replacing X with C(X) and Z with C(Z), we can therefore
assume without loss of generality that X and Z are compact Hausdorff spaces. The space X x Z is
thus also a compact Hausdorff space, and in particular is normal (see Lemma A.7.3).

The set f~1(U) is an open neighborhood of C. Since X x Z is normal, for each ¢ € C' we can
find open sets V. C X and W, C Z such that ¢ € V, x W, and V. x W, C f~1(U). Since C is
compact, we can find ci, ..., ¢, such that C C Ul V., x W,,. Let K; =V, C X and L, = W,, C Z,
so K; x Ly C f~1(U). Since X and Z are compact, the closed sets K; and L; are also compact. By
construction we have C' C U_, K; x L;, as desired. [l
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LEMMA A.11.8. Let Z and W be spaces with Z Hausdorff and let B be a subbasis for the topology
on W. Then the set of all B(K,V) with K C Z compact and V € B forms a subbasis for the
compact-open topology on C(Z, W).

PROOF. See Exercise A.35. O

REMARK A.11.9. It is a little annoying that the above results require local compactness. Un-
fortunately, they are false in general. There is a way around this using the theory of compactly
generated spaces. Rather than try to describe this, we refer the interested reader to Steenrod’s classic
paper [11], where he describes conditions that make a category of spaces a “convenient category” for
homotopy theory. A nice textbook reference is [3, Chapter 8]. (]

A.12. Manifolds

In this final section, we use the tools we have developed to study manifolds, which are perhaps
the most important class of spaces in algebraic topology.

A.12.1. Basic definitions. An n-dimensional manifold (or simply an n-manifold) is a second
countable Hausdorff space M™ that is locally homeomorphic to R™ in the following sense:

e For all p € M", there exists an open neighborhood U of p that is homeomorphic to an open
subset of R™.

A chart on M™ is a homeomorphism ¢: U — V with U C M™ and V C R" open sets. If U is an
open neighborhood of p € M™, we call this chart ¢: U — V a chart around p. An atlas for M™ is a
collection of charts {¢;: U; — V;}ier such that the U; cover M™.

A.12.2. Basic examples. Here are several basic examples:

ExAMPLE A.12.1. The whole space R™ is an n-manifold with an atlas consisting of a single chart
1: R™ — R™. More generally, an open set U C R™ is an n-manifold, again with an atlas consisting of
a single chart 1: U — U. ]

EXAMPLE A.12.2. More generally, if M™ is an n-manifold and W C M™ is open, then W is an
n-manifold. Indeed, for p € W let ¢p: U — V be a chart around p for M™. Letting U’ = U N W and
V' = ¢(U’), the homeomorphism ¢|y.: U' — V' is a chart around p for W. O

ExXaMPLE A.12.3. Let S™ be the n-sphere, so
Sn: {(.Tl,...,l'n_;,_l) ERTH_l | x%++xfl+1 = 1}
This is an n-manifold. Indeed, for 1 <k <n+1 let

Umk>0 = {(1[,’17. .. ,$n+1) e S” | Tp > 0},
Uzk<0 = {(J,'l,. . >$n+1) es” | T < 0} .

Letting B = B1(0) C R™ be the open unit ball, we have homeomorphisms ¢, >0: Uz, >0 — B and
Gzp<0: Ugp<co — B taking a point (21,...,2n41) to (21,...,Zk, ..., Tny1) € B, where the hat in z;
indicates that this coordinate is being omitted. The set

{bz,>0: Uzpy>0 = B, ¢zp<0: Uppco > B |1 <kE<n+1}
is an atlas for S™. O

EXAMPLE A.12.4. Let RP" be the set of lines though the origin in R**!. There is a projection
map ¢: R"*1\ 0 — RP" taking z € R"™! \ 0 to the line through 0 and . We endow RP" with
the quotient topology from this projection, so U C RP" is open if and only if ¢~1(U) Cc R**1\ 0
is open. The space RP" is known as the n-dimensional real projective space. As notation, for
(21, Tny1) € RPN 0 we write [z1,...,2,41] for the corresponding point of RP™, so for A € R
nonzero we have [Az1,..., \&p41] = [T1,. -, Tny1].

The space RP"™ is an m-manifold. Unlike our previous examples, it is not totally obvious
that it is second countable and Hausdorff, so we leave this as an exercise (Exercise A.36). We
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prove it is locally Euclidean by exhibiting an atlas as follows. For 1 < k < n+ 1, let Uy =
{[z1,...,Zpnt1] € RP™ | & # 0}. This set is well-defined, and the map ¢ : Uy, — R™ defined by

dr([r1, .- xnt1]) = (@1/2k, s T/ They -« Tpa/zx)  fOr [21,...,Zpg1] € RP™
is a well-defined homeomorphism (see Exercise A.36). The set {¢y: Uy > R" | 1<k <n+1}isan
atlas for RP". 0

REMARK A.12.5. It is clear that the only connected 0-dimensional manifold is a single point.
It turns out that R and S! are the only connected 1-dimensional manifolds. There is also a very
beautiful classification of compact connected 2-dimensional manifolds. Here are two examples of such
2-manifolds:

Y Y Y Yy oy
3, 3,

We describe the classification of 2-manifolds in our essay [9]. The exercises in that essay also outline
a proof of the classification of 1-dimensional manifolds. In higher dimensions, things are much more
complicated. O

REMARK A.12.6. The requirement that manifolds be second countable and Hausdorff is needed
to rule out various pathological examples. Without them, even 1-manifolds would not have a simple
classification. We describe some of these pathological examples later in this section. O

A.12.3. Basic properties. The following summarizes some of the basic point-set topological
properties of manifolds:

LEMMA A.12.7. Let M™ be an n-dimensional manifold. Then:

e M™ is normal.

M™ is locally compact.

M™ is paracompact.

M™ is locally path connected, so its path components and connected components coincide
and are clopen.

PROOF. Since M™ is locally homeomorphic to R", the fact that M™ is locally compact and
locally path connected follows immediately from the fact that R™ is locally compact and locally path
connected. Since M™ is second countable, Hausdorff, and locally compact, it follows that M™ is
paracompact (see Corollary A.9.4). This implies that M™ is normal (see Lemma A.9.5). O

REMARK A.12.8. One basic property of manifolds we do not list above is that their dimension is
well-defined. In fact, it is true that if M is both an n-manifold and an m-manifold then n = m, but
this is a difficult theorem called the invariance of domain. The most natural proof of invariance of
domain uses homology. O

A.12.4. Embedding manifolds into Euclidean space. Many n-manifolds are constructed
as subspaces of some R?, but some manifolds like RP" do not have obvious embeddings into any
Euclidean space. However, it turns out that all manifolds can be embedded in some R¢:

THEOREM A.12.9. Let M™ be an n-dimensional manifold. Then for some d > 0 there exists an
embedding v: M™ — R?,

We remark that using dimension theory, one can embed M™ into R?"*!. See [6, Theorem V3].
To avoid technical complications, we only prove Theorem A.12.9 when M™ is compact. See the
remark after the proof for how to extend our argument to the non-compact case.

PROOF OF THEOREM A.12.9 FOR M™ COMPACT. Since M™ is compact, it has a finite atlas
{br: Uy = Vi | 1 <k <m}. Since M™ is paracompact, there is a partition of unity {f1,..., fm}
subordinate to {Uy,...,U,}. Recall that this means that each fi is a function fi: M™ — [0,1]
with supp(fx) C Uy, and f1(p) + - -+ fm(p) = 1 for all p € M™. Multiplying ¢x by fi, we get a
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map frér: Uy — R™. Since supp(fr) C Uk, we can extend fr¢r: Uy — R™ to a continuous map
Gr: M™ — R™ with Gi(p) = 0 for p ¢ Uy. Let v: M™ — R"™ ™ be the map defined by

t(p) = (G1(p), f1(D), -+, G (D), fm(p)) € (R x RY)*™ = R™™ ™ for p e M™.

Since M™ is compact, to prove that ¢ is an embedding it is enough to prove that ¢ is injective (see
Lemma A.7.7). For this, consider p,q € M™ with «(p) = ¢(q). Since fi(p) + -+ fm(p) = 1, there
is some 1 < k < m with fr(p) > 0. Since t(p) = ¢(q), we have fi(¢) = fr(p). This implies that
p,q € supp(fr) C Ug. Since ¢(p) = t(g), the points

Gi(p) = fr(P)or(p) and Gilq) = fu(q)or(q)
must be equal, so ¢ (p) = ¢dr(q). Since ¢ : Uy — Vi is a homeomorphism, it follows that p =¢. O

REMARK A.12.10. One way to extend Theorem A.12.9 to noncompact manifolds M™ is to prove
that there is still a finite atlas {¢r: Uy — Vi | 1 < k < m}, which allows you to run the above proof
(though with a little more care since injective maps need not be embeddings in the noncompact
setting). That a finite atlas exists might sound surprising, but the key insight is that the Uy need
not be connected, and in fact can have countably many components. We omit the details. (]

A.12.5. Metrics. Theorem A.12.9 implies the following:

COROLLARY A.12.11. Let M™ be an n-dimensional manifold. Then M™ can be given the structure
of a metric space.

Since we did not prove Theorem A.12.9 for noncompact manifolds, we give a proof of Corollary
A.12.11 that works in general:

PROOF OF COROLLARY A.12.11. Since [[;-, R™ x R! can be given the structure of a metric
space (see Lemma A.10.11), it is enough to embed M™ into this countable product. Since M™ is
second countable, it has a countable atlas {¢y: Up — Vi | k > 1}. Since M™ is paracompact, there
is a partition of unity {fx: M™ — [0,1] | kK > 1} subordinate to {Uj, | k > 1}. Multiplying ¢ by f%,
we get a map frdr: Uy — R™. Since supp(fx) C Uk, we can extend frdr: Up — R™ to a continuous
map Gi: M™ — R"™ with Gy(p) =0 for p ¢ Uy. Let t: M™ — [[,=; R™ x R! be the map defined by

o0
u(p) = (Gx(p), fu(P))r>1 € H R" x RY  for p e M™.
k=1
The proof that ¢ is injective is the same as in the proof of Theorem A.12.9, so we omit it. Letting
X = Im(v), to prove that ¢ is an embedding we must prove that :=1: X — M" is continuous.
Consider some pg € M™. We prove that :~! is continuous at ¢(pg) as follows. Choose d > 1 such
that fq(po) > 0. Let

Ug={p€Us| falp) >0} and V;=pa(Uy).
Set
W=Xn {((Ek,Ak)k>1 S HR” x R | Ad >0},
k=1
so W is an open neighborhood of ¢(pg) in X. The map ¢! takes W to Ul. On W, the map t~1 can
be written as a composition of a sequence of continuous maps:

e First, the projection
W —— [[ie; R" xRl ——— R" x R!

onto the d*® factor, whose image is contained in {(Av,\) | A >0 and v € V}.
e Next, the map
{Qv,A\) | A>0and v e Vj} —— V}
that takes (Av, ) to v.
e Finally, the inverse of the map ¢4: U), — V.

We deduce that the restriction of :=! to W is continuous, and thus that ¢ =1 is continuous at ¢(pg). O
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REMARK A.12.12. There are various metrization theorems giving conditions that imply that a
topological space can be given a metric. Most of them are proved using arguments related to the one
we gave for Corollary A.12.11. See [8, Chapter 6] for a discussion of this. O

A.12.6. Non-Hausdorff manifolds. Recall that we require manifolds to be Hausdorff and
second countable. Removing these hypotheses gives many exotic generalized manifolds, even in
dimension 1. We have already seen one example of a non-Hausdorff 1-manifold, namely the line with
two origins from Example A.6.1. We recall the construction:

EXAMPLE A.12.13. Asaset, let Y = (R\ {0})U{01,02}. Fori=1,2,let f;: R = Y be the map
defined by f;(x) = = for x € R\ {0} and f;(0) = 0;. Give Y the identification space topology, so:
e aset U CY is open if and only if f;*(U) and f; ' (U) are open in R.
With this topology, the subspaces Y \ {02} = fi(R) and Y \ {01} = f2(R) are open subsets of Y that
are both homeomorphic to R. It follows that Y a second-countable non-Hausdorff 1-manifold. [

This example might not seem very geometrically interesting. The theory of foliations of the
plane gives non-Hausdorff 1-manifolds with a closer connection to geometry. See [4] for a beautiful
discussion of this. We content ourselves here with one example:

EXAMPLE A.12.14. For c € R, let X, = {(z,y) | (22 — 1)e¥ = ¢} C R?. Define
§={L | L is a connected component of X, for some ¢ € R}.

The set § is what is called a foliation of R2. Each L € £ is called a leaf of the foliation. Here is a

I -

A 3 { @

Each leaf L is homeomorphic to R, and R? is the disjoint union of the L € §. The set X, consists of
two vertical lines /_; and ¢; where x = +1. For ¢ > 0, the set X, consists of two arcs, one lying in
the region to the left of /_; labeled A and one lying in the region to the right of ¢; labeled C. For
c < 0, the set X, consists of a single arc in the region between ¢_; and ¢, labeled B.

Let £ be the quotient space of R? obtained by collapsing each L € § to a point. This is called
the leaf space of the foliation §. The space L is a non-Hausdorff 1-manifold. To describe it, let Ry
and R be copies of R. The space L is obtained by gluing Ry to Rs so as to identify each ¢ € R; with
t > 0 with the corresponding t € R5. The various types of leaves correspond to the following points:

e The points 0 € Ry and 0 € Ry correspond to £_; and /1.

e The points t € R; with ¢ < 0 correspond to the arcs in the region A.

e The points t € Ry with ¢ < 0 correspond to the arcs in the region C.

e The points t € Ry and t € Ry with ¢ > 0 are glued together and correspond to the arcs in
the region B.

The picture is as follows:
C {, B

s
A £,

This space is non-Hausdorff since the points corresponding to /_; and ¢; do not have disjoint
neighborhoods. You will verify all of this in Exercise A.37. ]

A.12.7. Long line. The theory of non-second countable manifolds has a set-theoretic flavor.
It turns out that in dimension one there is a single example of a connected non-second countable
Hausdorff 1-manifold called the long line L. We close this essay with a brief discussion of it. The
space L has the following seemingly paradoxical properties:

e [ is a path-connected Hausdorff non-second-countable 1-manifold.
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e Like R, the points of L are endowed with a total ordering.
e For x,y € L with x < y, the “interval”

[z,yl={:€L |z <2<y}

is homeomorphic to the closed interval I = [0, 1]. This accounts for L being path connected.
e On the other hand, since L is not second countable it contains uncountably many subspaces
homeomorphic to the open interval (0,1).

Before we can construct L, we need to discuss some more details about well-ordered sets, which we
introduced in §A.10.10 to set up the process of transfinite induction.

A.12.8. Minimal uncountable well-ordered set. Let S be an uncountable set. Pick a
well-ordering on S. Let € be the set of all initial segments of S that are either finite or countably
infinite. The set € is nonempty since () € €. In fact, by starting with () and repeatedly adding the
minimal element we have not yet chosen we see that there exists a countably infinite set in €. As we
discussed in §A.10.10, the initial segments of S are totally ordered under inclusion. Let

So=J

Jec

The set Sq is an initial segment of S. By construction, all initial segments J with J C Sq are
countable. We claim that Sq is not countable. Indeed, let sy be the minimal element of S\ Sgq.
The initial segment Sq U {sg} cannot lie in €, so Sq U {sg} is uncountable. This implies that Sq is
uncountable. The totally ordered set Sq is called the minimal uncountable well-ordered set.” Tt is
unique up to isomorphism, but we will not need this. All we need to know about Sgq is that it is
uncountable but all proper initial segments of Sq are finite or countably infinite.

A.12.9. Constructing the long line. Let L = Sq x [0,1). Both Sg and [0,1) have total
orderings. Give L the dictionary ordering, so (s,z) < (s/,2’) if s< s orif s = and z < 2’. An
open interval in L is a set of the form (61,02) ={v | 01 < v < 0} for some 6,05 € L with 01 < 0s.
This is a basis for a topology (see Exercise A.6) called the order topology. We endow L with the
order topology.

To form the long line L, let so € S, be the minimal element. It follows that (sg,0) € L is the
minimal element of L. Define L = L \ {(s0,0)}. As you will verify in Exercise A.38, this has the
properties claimed in §A.12.7.

A.13. Exercises

EXERCISE A.1. Prove the following:

(a) Let (M,d) be a metric space. Define ': M x M — R via the formula d'(p,q) =
min{d(p, q), 1}. Prove that 0 is a metric on M that induces the same topology on M that

0 does.
(b) Let || — || be the following standard norm on R™:
l(@1,. .., @n)|| = /23 4+ -+ 22 forall (z1,...,2,) € R™.
This induces the metric 9(p,q) = ||p — ¢|| on R™. Now let || — || be an arbitrary norm on

the vector space R™. Define a function ?': R™ x R™ — R via the formula

¥(p,q) = llp—q|" for p,q e R".

Prove that 9’ is a metric on R™ and that ?’ induces the same topology on R™ as 0. O
EXERCISE A.2. Prove that the function f: M — R from Example A.1.5 is not continuous. [

EXERCISE A.3. Let M; and Ms be metric spaces. Let f: M; — M, be a function. Prove
that f is continuous (defined using the e-§ definition) if and only if for all U C My open we have
f~1(U) C M; open. O

90r the minimal uncountable ordinal, but we have chosen not to use that terminology.
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EXERCISE A.4. Let M be a metric space. Prove that the collection of open sets in M makes M
into a topological space. O

EXERCISE A.5. Let k be a field. Prove that the Zariski topology on k™ described in Example
A.2.9 is a topology. O

EXERCISE A.6. Let S be a set with a total ordering <. For s1,s5 € S with s1 < s9, let
(s1,82) = {s € 5| s1 <s < sa}. Prove that the collection of all sets of the form (s1, s2) forms a basis
for a topology on S. For instance, if S = R with its usual ordering this is the usual basis for the
topology on R. |

EXERCISE A.7. Let X be a space and let ~ be an equivalence relation on X. As a set, let
Y =X/~ andlet f: X — Y be the projection. Endow Y with the quotient topology, so f: X — Y
is a quotient map. Let Y’ be another space and let f': X — Y’ be a map such that the following
holds:

e Tor all spaces Z, composition with f’ gives a bijection between continuous maps ¢: Y’ — Z
and ~-invariant continuous maps ®: X — Z.

Prove that there is a homeomorphism ¢: Y — Y’ such that f/ = g o f. In other words, the above
universal mapping property characterizes the quotient space Y. O
EXERCISE A.8. Prove the following basic properties of connected spaces:

(a) The space I = [0,1] is connected.
(b) If X is connected and f: X — Y is a map, then f(X) is connected.
(c) Let X be a space and let {Y;},cr be a collection of subspaces of X. Assume that:
e each Y; is connected; and
o for all 4,5 € I, the space Y; NY} is nonempty; and
o X = Uieryi.
Then X is connected. g

EXERCISE A.9. Let X be the topologist’s sine curve:
X ={0,y) | -1 <y <1}uU{(w,sin(l/z) | z >0} C R%

Prove that X is connected but not path connected. Also, prove that its path components are
X1 ={(0,y9) | -1 <y <1},
X = {(x,sin(1/z) | z > 0} . O
EXERCISE A.10. Let X be a space. Prove that the following are equivalence relations on the
points of X:

(a) For p,q € X, the relation where p is equivalent to ¢ if there is a path in X from p to gq.
(b) For p,q € X, the relation where p is equivalent to g if there is a connected subspace Y C X
with p,q € X. (]

EXERCISE A.11. Let X be a space and let Y be a path component of X. Prove that Y is
connected. 0

EXERCISE A.12. Let X be a first countable Hausdorff space, let Y be a Hausdorff space, and let
f: X — Y be amap of sets. Then f is continuous if and only if the following holds:
o Let {z,}n>1 be a convergent sequence in X. Then {f(z,)}n>1 is a convergent sequence in
Y and limy, oo f(2n) = flimpe o0 ). a
EXERCISE A.13. Let X be a Hausdorff space. Prove the following:
(a) All points in X are closed, i.e., for all p € X the one-point set {p} is closed.
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(b) If Z is another space and f,g: Z — X are two maps, then the subset {z € Z | f(2) = g(2)}
of points in Z where f and g are equal is closed. In particular, if f and g agree on a dense
subset of Z, then f = g.

(c) Let {z,}n>1 be a sequence in X and let y1,y2 € X be such that lim,, ,. z, = y1 and

limy,, 00 T = y2. Then y1 = yo. O
EXERCISE A.14. Let k be a field. Prove that the Zariski topology on k™ described in Example
A.2.9 is Hausdorff if and only if k is a finite field. O
EXERCISE A.15. Let X be a space and let f,: X — R be a sequence of continuous functions
converging uniformly to a function f: X — R. Prove that f is continuous. |
EXERCISE A.16. Let X be a compact Hausdorff space. Prove that X is normal. O

EXERCISE A.17. Let X be a space and K C X be a subspace. Prove:
(a) If X is first countable and K is compact, then K is sequentially compact.

(b) If X is second countable and K is sequentially compact, then K is compact. O
EXERCISE A.18. Let f: X — Y be a map of spaces and let K C X be compact. Prove that
f(K) is compact. O
EXERCISE A.19. Let K C R be compact. Prove that there exist m, M € K such that m <k < M

for all k € K. O
EXERCISE A.20. Let X be a Hausdorff space. Prove that X is locally compact if and only if for

all p € X, there exists a compact neighborhood K of p. O

EXERCISE A.21. Let X be a locally compact space. Let K C X be compact and U C X be open
with K C U. Prove that there is a compact neighborhood L of K with L C U. (]

EXERCISE A.22. Prove that R™ with it standard metric is complete, i.e., that all Cauchy sequences
in R™ have limits. (]

EXERCISE A.23. Let M be a complete metric space. Prove that M is a Baire space, i.e., that the
following holds. Let {U, },>1 be a collection of open dense subsets of X. Then N, >1U,, is dense. O

EXERCISE A.24. Let X be a space and let 3 be a collection of subsets of X.
(a) If 3 is locally finite, prove that
Uz=U7zZ
Z€e3 Ze3
(b) Give an example to show that local finiteness is needed in the previous part. ]

EXERCISE A.25. Let X be a space, let 4l be an open cover of X, and let ¥ be an open cover of
X that refines 4. Assume that U has a finite subcover. Prove that i has a finite subcover. O

EXERCISE A.26. Let X be a space and let {V;};cs be a locally finite collection of open subsets
of X. For each ¢ € I, let h;: X — R be a continuous function such that supp(h;) C V;. Define
h: X — R via the formula

h(p) = Zhi(p) for pe X.
iel
Prove that h: X — R is continuous. (]

EXERCISE A.27. Prove that the product topology on R =R X --- X R is the same as the metric

space topology. O

EXERCISE A.28. Let X and Y be spaces and let U C X XY be open. Let AC X and K CY
be such that A C K C U. Assume that K is compact. Prove that there exists an open neighborhood
V of A such that A x K C U. |

EXERCISE A.29. Let {X;};cr be a collection of spaces. Let Y = [],.; X; and for i € I let
m;: Y — X; be the projection. Let Y’ be a space equipped with continuous maps 7}: Y’ — X; for
each ¢ € I such that the following holds:
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e For all spaces Z and all collections of continuous maps f;: Z — X; for i € I, there exists a
unique continuous map F: Z — Y’ such that f; = n, o F for all i € I.

Prove that there is a homeomorphism g: ¥ — Y such that m; = 7} o g for all ¢ € I. In other words,
the above universal mapping property characterizes the product space. In category theory, a product
in a category is something satisfying a universal property of the above form. A category theorist

would therefore say that ], ; X; is the product of the X; in the category of topological spaces. [

EXERCISE A.30. Let {X;}icr be a collection of spaces. Let Y = L;c; X; with the disjoint union

topology discussed in §A.3.3. For i € I, let +: X; — Y be the inclusion. Let Y’ be a space equipped
with continuous maps ¢}: X; — Y for each ¢ € I such that the following holds:

e For all spaces Z and all collections of continuous maps f;: X; — Z for ¢ € I, there exists a
unique continuous map F': Y’ — Z such that f; = F o} for all i € I.

Prove that there is a homeomorphism g: Y — Y’ such that ¢, = g o¢; for all ¢ € I. In other words,
the above universal mapping property characterizes the disjoint union. In category theory, a sum in
a category is something satisfying a universal property of the above form. A category theorist would
therefore say that U;c;X; is the sum of the X; in the category of topological spaces. O

EXERCISE A.31. Let {4;}icr be a collection of abelian groups. Let []..; A; be the product of

the A; and let @;crA; be the sum of the A;, so

el

@Ai = {(ai)iel € HAZ- | a; = 0 for all but finitely many i € I} .
iel i€l

Imitate the definitions from Exercises A.29 and A.30 to formulate what it should mean to have a
product and a sum in the category of abelian groups, and prove that [[,.; A; and @®;crA; are the
product and sum of the A;. We remark that unlike for topological spaces, the product and sum
coincide for finite collections of abelian group. O

EXERCISE A.32. Let {X;}icr be a collection of spaces. For each ¢ € I, let {p(i),}n>1 be a
sequence of points in X; that converges to p(i) € X;. For n > 1, let p, = (p(i)n)icr € [;c; Xi-
Prove that {p,},>1 converges to (p(i))icr € [[;c; Xi- O

EXERCISE A.33. For each n > 1, let (M,,,0,,) be a metric space. For each n > 1, assume that
0,(p,q) < 1forall p,q € M,,. Define a two-variable real-valued function on Hf;l M, via the formula

o0

1
0((Pn)n21, (qn)nzl) = Z on D;L(pna qn)'
n=1
Prove that this is a metric on [] -, M, that induces the product topology. O

EXERCISE A.34. Let X be a space and let (Y,0) be a metric space. For f € YX and a compact
subset K C X and € > 0, let

B(f,K,e)={ge Y™ |o(f(z),9(z)) <eforallz,y € K}.

Prove that these sets form the basis for a topology on Y X, and this topology is the same as the
compact-open topology. O

EXERCISE A.35. Let Z and W be spaces with Z Hausdorff and let B be a subbasis for the
topology on W. Prove that the set of all B(K, V) with K C Z compact and V' € B forms a subbasis
for the compact-open topology on C(Z, W). O

EXERCISE A.36. Prove the following:

(a) The space RP" is Hausdorff and second countable.
(b) Letting Uy = {[z1,...,Znt1] € RP" | 2 # 0}, the map ¢ : Uy — R™ defined by

dr([x1y. s xn1]) = (@1/Tky oo Tk /Ty - ooy Ty /xg)  for [T1,...,2p41] € RPY

is a well-defined homeomorphism. O

EXERCISE A.37. Verify the description of £ in Example A.12.14. a
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EXERCISE A.38. Let L be the long line constructed in §A.12.9. Prove the following:
(a) For z,y € L with x < y, the closed interval

[z,yl={z€L |z <2<y}

is homeomorphic to the closed interval I = [0, 1].

(b) The space L is path-connected.

(¢) The space L contains uncountably many subspaces homeomorphic to the open interval
(0,1).

(d) The space L is a Hausdorff non-second-countable 1-manifold. ]
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