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Abstract
We give a classically flavored introduction to the theory of one-relator groups. Topics

include Magnus’s Freiheitsatz, the solution of the word problem, the classification of
torsion, Newman’s Spelling Theorem together with the hyperbolicity (and thus solution
to the conjugacy problem) for one-relator groups with torsion, and Lyndon’s Identity
Theorem together with the fact that the presentation 2-complex for a torsion-free one-
relator group is aspherical.

1 Introduction
A one-relator group is a group with a presentation of the form ⟨S ∣ r⟩, where r is a single
element in the free group F (S) on the generating set S. One fundamental example is
a surface group ⟨a1, b1, . . . , ag, bg ∣ [a1, b1]⋯[ag, bg]⟩. These groups are basic examples in
combinatorial/geometric group theory and possess an extensive literature. In these notes,
we will discuss several important classical results about them. The outline is as follows.

• We begin in §2 by discussing Magnus’s Freiheitsatz [Ma1], which he proved in his 1931
thesis. This theorem says that certain subgroups of one-relator groups are free. The
techniques introduced in its proof ended up playing a decisive role in all subsequent
work on the subject.

• In §3, we will show how to solve the word problem in one-relator groups. This was
proved by Magnus [Ma2] soon after the Freiheitsatz.

• In §4, we will prove a theorem of Karrass, Magnus, and Solitar [KMaSo] that says
that the only torsion in a one-relator group is the “obvious” torsion. In particular, if
the relator r cannot be written as a proper power, then the group is torsion-free.

• In §5, we will prove Newman’s Spelling Theorem [N], which implies that one-relator
groups that contain torsion are hyperbolic. In particular, they have a solvable conju-
gacy problem. Whether or not torsion-free one-relator groups have a solvable conju-
gacy problem is a famous and difficult open question.

• In §6, we will prove a theorem of Cohen and Lyndon [CohL] that gives a basis for
the relations in a one-relator group. A consequence is Lyndon’s Identity Theorem [L],
which says that the “relation module” of a one-relator group is cyclic.

• In §7, we will prove that the presentation 2-complex of a torsion-free one-relator group
is aspherical. This is an important consequence of Lyndon’s Identity Theorem and is
implicit in Lyndon’s work, though it was first noticed by Cockcroft [Coc].

Remark. Our exposition in §2–§5 is heavily influenced by the McCool and Schupp’s elegant
reworking of the theory in [McSchup].

Notation 1.1. Most of the time, we will confuse words in the generators of a group with
the associated elements of the group. However, sometimes this will lead to confusion, so
occasionally if w is a word in the generators of a group, then we will write w for the
associated element of the group.
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2 Magnus’s Freiheitsatz
If G = ⟨a1, b1, . . . , ag, bg ∣ [a1, b1]⋯[ag, bg]⟩ is a surface group and H ⊂ G is the subgroup
generated by a proper subset of {a1, b1, . . . , ag, bg}, then H is the fundamental group of
an infinite cover of a genus g surface. This infinite cover is a noncompact surface. Every
non-compact smooth n-manifold deformation retracts onto an (n−1)-dimensional spine, so
H is the fundamental group of a 1-dimensional CW complex, i.e. a graph. In other words H
is a free group. The first important result about one-relator groups is the following theorem
of Magnus [Ma1], which generalizes this.

Theorem 2.1 (Freiheitsatz). Let G = ⟨S ∣ r⟩ be a one-relator group and let T ⊂ S be such
that r cannot be written as a word in T . Then T is a basis for a free subgroup of G.

This theorem appeared in Magnus’s 1931 PhD thesis, which was supervised by Dehn.
Though it might appear to be of specialized interest, the techniques introduced in its proof
played a fundamental role in future work on one-relator groups and we will use them in
all subsequent topics discussed in these notes. These proof techniques are algebraic and
combinatorial, which displeased the geometer Dehn. In fact, Magnus relates the following
anecdote in [Ma3]: “When told that the proof was purely algebraic, Dehn said: Da sind Sie
also blind gegangen (So you proceeded with a blindfold over your eyes).”

Proof of Theorem 2.1. The proof will be by induction on the length of r. The base cases
where r has length 0 or 1 are trivial, so assume that r has length at least 2 and that the
theorem is true for all shorter relators. We now make several reductions:

• Without loss of generality, we can assume that r is cyclically reduced.

• Letting S′ ⊂ S be the set of letters that appear in r and S′′ = S ∖ S′, we have

G = ⟨S ∣ r⟩ = ⟨S′ ∣ r⟩ ∗ F (S′′).

Letting T ′ = T ∩ S′ and T ′′ = T ∩ S′′, the subgroup of G generated by T is the free
product of the subgroups generated by T ′ and T ′′. It follows that it is enough to
prove the theorem for T ′ ⊂ ⟨S′ ∣ r⟩. In other words, we can assume without loss of
generality that every element of S appears in r.

• If ∣S∣ = 1, then T = ∅ and the theorem is trivial. We thus can assume without loss of
generality that ∣S∣ > 1. Since every element of S appears in r, this implies that r is
not simply a power of a single generator.

For t ∈ S, define a homomorphism σt∶F (S)→ Z via the formula

σt(s) =
⎧⎪⎪⎨⎪⎪⎩

1 if s = t,
0 if s ≠ t

(s ∈ S).

The proof divides into two cases.

Case 1. There exists some t ∈ S such that σt(r) = 0.
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If t ∈ T , then pick some x ∈ S ∖T . If t ∉ T , then choose x ∈ S ∖ {t} arbitrarily. Cyclically
conjugating r if necessary, we can assume that r begins with either x or x−1.

We will show that G can be expressed as an HNN extension of a one-relator group
G′ = ⟨S′ ∣ r′⟩ whose relator r′ is shorter than r. The letter t will be the stable letter
of this HNN extension and the letter x will play an essential role to be described later.
Define S′′ to be the set of formal symbols {si ∣ s ∈ S ∖ {t}, i ∈ Z}. There is an isomorphism
ζ ∶F (S′′)→ ker(σt) defined via the formula

ζ(si) = tist−i (s ∈ S ∖ {t}, i ∈ Z).

Define r′ = ζ−1(r) ∈ F (S′′). Since t appears in r, the word r′ is shorter than r. Recall
that we have chosen a special letter x above. Let a ∈ Z (resp. b ∈ Z) be the smallest (resp.
largest) integer such that xa appears in r′. Since either x or x−1 is the first letter of r, we
have a ≤ 0 ≤ b. Define

S′ = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a ≤ i ≤ b if s = x} ⊂ S′′

and G′ = ⟨S′ ∣ r′⟩. The restriction of the isomorphism ζ ∶F (S′′)→ ker(σt) to F (S′) descends
to a homomorphism η∶G′ → G. Set

A = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a ≤ i ≤ b − 1 if s = x}

and
B = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a + 1 ≤ i ≤ b if s = x}.

Since r′ is shorter than r, our inductive hypothesis says that the inclusion maps F (A) ↪
F (S′) and F (B) ↪ F (S′) descend to injective maps F (A) ↪ G′ and F (B) ↪ G′. There is
an isomorphism ϕ∶F (A) → F (B) that takes si ∈ A to si+1 ∈ B. We can therefore form the
HNN extension

Ĝ ∶= G′ ∗ϕ .

Letting t be the stable letter of Ĝ, we can define homomorphisms η̂∶ Ĝ → G and θ∶G → Ĝ
as follows.

• The homomorphism η∶G′ → G extends to a homomorphism η̂∶ Ĝ→ G with η̂(t) = t.

• The homomorphism θ is defined via the formula

θ(s) =
⎧⎪⎪⎨⎪⎪⎩

t if s = t,
s0 if s ≠ t

(s ∈ S).

It is clear that η ○ θ = id and θ ○ η = id, so G is isomorphic to Ĝ, as claimed.
The proof of Case 1 now divides into two subcases.

Subcase 1.1. We have t ∉ T .

This implies that θ(T ) is a subset of the generating set S′ for G′ ⊂ Ĝ and r′ cannot
be written as a word in θ(T ). By our induction hypothesis, θ(T ) is the basis for a free
subgroup of G′. This completes the proof of Subcase 1.1.

Subcase 1.2. We have t ∈ T .
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Consider w ∈ F (T ) with w ≠ 1. Our goal is to show that w ≠ 1. If σt(w) ≠ 0, then
we are done; indeed, the fact that σt(r) = 0 implies that σt∶F (S) → Z descends to a
homomorphism G → Z. We can therefore assume that σt(w) = 0. Recalling that ζ is the
isomorphism between F (S′′) and ker(σt), define w′ = ζ−1(w). Since x ∈ S ∖ T , the element
w′ is a non-identity element of the free group on

C ∶= {si ∣ s ∈ S ∖ {x, t}, i ∈ Z} ⊂ S′.

Since either x or x−1 appears in r, the word r′ does not lie in F (C). Our inductive hypothesis
therefore implies that C is a basis for a free subgroup of G′. In particular, the image of w′
in G′ is nontrivial. This implies that θ(w) ≠ 1, so w ≠ 1, as desired. This completes the
proof of Subcase 1.2 and thus also of Case 1.

Case 2. We have σt(r) ≠ 0 for all t ∈ S.

Pick t ∈ T and x ∈ S ∖T . Set α = σt(r) and β = σx(r), so α,β ≠ 0. Set S1 = S and define
a homomorphism ψ∶F (S)→ F (S1) via the formula

ψ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tβ if s = t,
xt−α if s = x,
s otherwise

(s ∈ S).

Let r1 be the result of cyclically reducing ψ(r) and G1 = ⟨S1 ∣ r1⟩ and T1 = T . The
homomorphism ψ descends to a homomorphism ψ∶G→ G′. By construction, we have

σt(r1) = αβ − βα = 0.

The only problem is that r1 is not shorter than r, but this only occurs because r1 has some
extra copies of the letter t. Apply the argument in Case 1 to G1 = ⟨S1 ∣ r1⟩ and T1 ⊂ S1
(using our already-made choice of t and x, which are compatible with the requirements at
the beginning of that case). The extra t-generators in r1 disappear in the relator r′1 that
appears in the HNN extension in that case, and thus r′1 is shorter than r and the induction
goes through. We deduce that T1 is a basis for a free subgroup of G1. This implies that the
set T2 ∶= {tβ, xt−α}∪(T1∖{x, t} is also a basis for a free subgroup of G1. The homomorphism
ψ∶G→ G′ takes T to T2, so we conclude that T is a basis for a free subgroup of G, as desired.
This completes the proof of Case 2 and thus also of Theorem 2.1.

Throughout the rest of these notes, the homomorphisms σt will be defined like in the
proof of Theorem 2.1. Almost all of our subsequent results will be proved following the
outline of the proof above:

• First, will will prove them for relators r such that there exists some t ∈ S such that
σt(r) = 0. These arguments will use an HNN extension like in Case 1 above.

• Next, we will use a homomorphism like that used in Case 2 above to reduce the general
case to the case where there exists some t ∈ S such that σt(r) = 0.

To execute the second step, we will need the following lemma.
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Lemma 2.2. Let G = ⟨S ∣ r⟩ be a one-relator group, let t, x ∈ S be distinct elements, and
let α,β ∈ Z be nonzero. Set S1 = S and define a homomorphism ψ∶F (S) → F (S1) via the
formula

ψ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tβ if s = t,
xt−α if s = x,
s otherwise

(s ∈ S).

Finally, set r1 = ψ(r) and G1 = ⟨S1 ∣ r1⟩. Then the homomorphism ψ∶G→ G1 induced by ψ
is injective.

Proof. Set S2 = S and define ψ2∶F (S)→ F (S2) and ψ1∶F (S2)→ F (S1) via the formulas

ψ2(s) =
⎧⎪⎪⎨⎪⎪⎩

tβ if s = t,
s otherwise

(s ∈ S)

and

ψ1(s) =
⎧⎪⎪⎨⎪⎪⎩

xt−α if s = x,
s otherwise

(s ∈ S2).

We thus have ψ = ψ1 ○ ψ2. Define r2 = ψ2(r) and G2 = ⟨S2 ∣ r⟩, so ψ2 and ψ1 induce
homomorphisms ψ2∶G → G2 and ψ1∶G2 → G1 such that ψ = ψ1 ○ ψ2. Since ψ1 is an
isomorphism, it follows that ψ1 is an isomorphism, so it is enough to prove that ψ2 is
injective. The Freiheitsatz (Theorem 2.1) implies that t is an infinite-order element of G
and G2. Using this, it is clear that G2 equals the free product of G and Z amalgamated
along the subgroups ⟨t⟩ ⊂ G and β ⋅Z ⊂ Z. The homomorphism ψ2 is the inclusion of G into
this amalgamated free product, which is necessarily injective.

3 The word problem
Our next goal is to prove the following theorem of Magnus [Ma2].

Theorem 3.1. The word problem is solvable in all one-relator groups.

For surface groups, this was originally proved by Dehn. The modern understanding of
Dehn’s proof is that it exploits the fact that surface groups are hyperbolic. No such proof
is available for general one-relator groups since they can be very far from hyperbolic. For
example, Z2 = ⟨x, y ∣ [x, y]⟩ is not hyperbolic. Even worse things than this can happen;
indeed, hyperbolic groups can be characterized as those having linear isoperimetric inequal-
ities, and it is known that one-relator groups can have isoperimetric inequalities that are
even worse than exponential; see [P]. However, in §5 we will prove Newman’s Spelling
Theorem, which implies that one-relator groups with torsion are hyperbolic and possess a
“Dehn-type” algorithm for solving the word problem.

Proof of Theorem 3.1. Let G = ⟨S ∣ r⟩ be a one-relator group. We will prove that the word
problem for G is solvable by induction on the length of r. Actually, to make our induction
work we will have to prove a stronger theorem, namely that for all recursive subsets T ⊂ S the
generalized word problem for G with respect to T is solvable, i.e. there exists an algorithm
to determine whether or not a word w lies in the subgroup generated by T . The ordinary
word problem corresponds to the case where T = ∅.

The base cases where r has length 0 and 1 are trivial, so assume that r has length at least
2 and that the theorem is true for all shorter relators. We now make several reductions:
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• Without loss of generality, we can assume that r is cyclically reduced.

• Letting S′ ⊂ S be the set of letters that appear in r and S′′ = S ∖ S′, we have

G = ⟨S ∣ r⟩ = ⟨S′ ∣ r⟩ ∗ F (S′′).

Letting T ′ = T ∩ S′, it is enough to prove the theorem for T ′ ⊂ ⟨S′ ∣ r⟩. We can thus
assume without loss of generality that every element of S appears in r.

• If ∣S∣ = 1, then r must be a nontrivial power of that generator and thus G must be a
finite cyclic group. The theorem is trivial in this case, so we can assume without loss
of generality that ∣S∣ > 1. Since every element of S appears in r, this implies that r is
not simply a power of a single generator.

As in the proof of the Freiheitsatz (Theorem 2.1), the proof divides into two cases.

Case 1. There exists some t ∈ S such that σt(r) = 0.

Just as in the proof of the Freiheitsatz (Theorem 2.1), this implies that the following
exist:

• a one-relator group G′ = ⟨S′ ∣ r′⟩ with r′ shorter than r, and

• sets A,B ⊂ S′ that form bases for free subgroups F (A), F (B) ⊂ G′, and

• an isomorphism ϕ∶F (A)→ F (B), and

• an isomorphism θ∶G→ Ĝ, where Ĝ = G′∗ϕ.

The image θ(T ) ⊂ Ĝ consists of a recursive subset of S′ together with possibly the stable
letter. Our inductive hypothesis implies that the generalized word problem for G′ with
respect to A and B is solvable. Using the usual normal form for elements of an HNN
extension, this implies that the generalized word problem for Ĝ with respect to θ(T ) is
solvable, and thus that the generalized word problem for G with respect to T is solvable, as
desired. This completes the proof of Case 1.

Case 2. We have σt(r) ≠ 0 for all t ∈ S.

The case where T = S is trivial, so we can assume that T ≠ S. We can thus choose
x ∈ S ∖T and t ∈ S ∖{x}. Set α = σt(r) and β = σx(r), so α,β ≠ 0. As in the proof of Case 2
of the Freiheitsatz (Theorem 2.1), set S1 = S and define a homomorphism ψ∶F (S)→ F (S1)
via the formula

ψ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tβ if s = t,
xt−α if s = x,
s otherwise

(s ∈ S).

Also, set r1 = ψ(r) and G1 = ⟨S1 ∣ r1⟩. We thus have σt(r) = 0, and by an argument
similar to that in the proof of Case 2 of the Freiheitsatz (Theorem 2.1) we can use our
inductive hypothesis to show that the theorem holds for G1. The homomorphism ψ induces
a homomorphism ψ∶G→ G1 which Lemma 2.2 says is injective.

The proof of Case 2 now divides into two subcases.

Subcase 2.1. We have t ∉ T .
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This implies that ψ(T ) is a recursive subset of S1, so we can solve the generalized word
problem for G1 with respect to ψ(T ). Since ψ is injective, this implies that we can solve
the generalized word problem for G with respect to T , as desired. This completes the proof
of Subcase 2.1.

Subcase 2.2. We have t ∈ T .

This implies that ψ(T ) = T1 ∪ {tβ}, where T1 is a recursive subset of S1. We can solve
the generalized word problem for G1 with respect to T1 ∪ {t}. Also, by the Freiheitsatz
(Theorem 2.1) the set T1 ∪ {t} is the basis for a free subgroup of G1. We can solve the
generalized word problem for F (T1 ∪ {t}) with respect to T1 ∪ {tβ}. We deduce that we
can solve the generalized word problem for G1 with respect to ψ(T ) = T1 ∪ {tβ}. Since ψ is
injective, this implies that we can solve the generalized word problem for G with respect to
T , as desired. This completes the proof of Subcase 2.2 and thus the proof of Case 2, which
itself completes the proof of Theorem 3.1.

4 Torsion
Our next goal is prove the following theorem of Karrass, Magnus, and Solitar [KMaSo]
which characterizes the torsion in a one-relator group.

Theorem 4.1. For some k ≥ 1, let G = ⟨S ∣ rk⟩ be a one-relator group such that r ∈ F (S)
is not a proper power. Then r ∈ G has order k and every torsion element of G is conjugate
to a power of r.

The following is an immediate corollary.

Corollary 4.2. Let G = ⟨S ∣ r⟩ be a one-relator group such that r ∈ F (S) is not a proper
power. Then G is torsion free.

This implies in particular that surface groups are torsion-free. Probably the easiest way
to see that surface groups are torsion-free is to observe that surfaces of positive genus are
aspherical, so surface groups have finite cohomological dimension and hence are torsion-
free. Generalizing the fact that surfaces of positive genus are aspherical, we will prove in §7
below that the presentation 2-complexes of one-relator groups whose relators are not proper
powers are aspherical. This will provide an alternate proof of Corollary 4.2.

Proof of Theorem 4.1. We will prove this by induction on the length of r. The base cases
where r has length 0 and 1 are trivial, so assume that r has length at least 2 and that the
theorem is true for all shorter r. We now make several reductions:

• Without loss of generality, we can assume that r is cyclically reduced.

• Letting S′ ⊂ S be the set of letters that appear in r and S′′ = S ∖ S′, we have

G = ⟨S ∣ r⟩ = ⟨S′ ∣ r⟩ ∗ F (S′′).

All torsion elements of G must be conjugate to torsion elements of ⟨S′ ∣ r⟩. It is thus
enough to prove the theorem for ⟨S′ ∣ r⟩. In other words, we can assume without loss
of generality that every element of S appears in r.

7



• If ∣S∣ = 1, then r must be a nontrivial power of that generator and thus G must be a
finite cyclic group. The theorem is trivial in this case, so we can assume without loss
of generality that ∣S∣ > 1. Since every element of S appears in r, this implies that r is
not simply a power of a single generator.

As in the proof of the Freiheitsatz (Theorem 2.1), the proof divides into two cases.

Case 1. There exists some t ∈ S such that σt(r) = 0.

Just as in the proof of the Freiheitsatz (Theorem 2.1), this implies that the following
exist:

• a one-relator group G′ = ⟨S′ ∣ (r′)k⟩ with r′ shorter than r and r′ not a proper power,
and

• sets A,B ⊂ S′ that form bases for free subgroups F (A), F (B) ⊂ G′, and

• an isomorphism ϕ∶F (A)→ F (B), and

• an isomorphism θ∶G→ Ĝ, where Ĝ = G′∗ϕ. This isomorphism takes r to r′.

By induction, r′ ∈ G′ has order k and every torsion element of G′ is conjugate to a power
of r. Standard results about HNN extensions (proved, for instance, with Bass-Serre theory)
show that every torsion element of Ĝ is conjugate to a torsion element of G′. Case 1 follows.

Case 2. We have σt(r) ≠ 0 for all t ∈ S.

Choose distinct x, t ∈ S and set α = σt(r) and β = σx(r), so α,β ≠ 0. As in the
proof of Case 2 of the Freiheitsatz (Theorem 2.1), set S1 = S and define a homomorphism
ψ∶F (S)→ F (S1) via the formula

ψ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tβ if s = t,
xt−α if s = x,
s otherwise

(s ∈ S).

Also, set r1 = ψ(r) and G1 = ⟨S1 ∣ r1⟩. We thus have σt(r) = 0, and by an argument
similar to that in the proof of Case 2 of the Freiheitsatz (Theorem 2.1) we can use our
inductive hypothesis to show that the theorem holds for G1. The homomorphism ψ induces
a homomorphism ψ∶G→ G1 which Lemma 2.2 says is injective.

This almost implies the theorem. The only thing we must verify is that if g1, g2 ∈ G
are such that ψ(g1) is G1-conjugate to ψ(g2), then g1 is G-conjugate to g2. As in the
proof of Lemma 2.2, we can find a group G2 together with homomorphisms ψ2∶G→ G2 and
ψ1∶G2 → G1 such that the following hold.

• ψ = ψ1 ○ ψ2.

• ψ1 is an isomorphism.

• G2 equals the free product of G and Z amalgamated along the subgroups ⟨t⟩ ⊂ G and
β ⋅Z ⊂ Z, and the homomorphism ψ2 is the inclusion of G into this amalgamated free
product.

Since ψ(g1) is conjugate to ψ(g2) and ψ1 is an isomorphism, it follows that ψ2(g1) is
conjugate to ψ(g2). The usual structure theorems for HNN extensions then imply that g1
is conjugate to g2, as desired. This completes the proof of Case 2 and thus of Theorem
4.1.
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5 Newman’s Spelling Theorem
Our next goal is to prove the following theorem of Newman [N].

Theorem 5.1 (Spelling Theorem). For some k ≥ 1, let G = ⟨S ∣ rk⟩ be a one-relator group.
Assume that r is cyclically reduced. Let w ∈ F (S) be a freely reduced word such that w = 1.
Then w contains a subword u such that either u or u−1 is a subword of rk and such that the
length of u is strictly more than k−1

k times the length of rk.

Of course, this only has content when k > 1, i.e. when G has torsion. In that case,
Theorem 5.1 leads to a simple and elegant algorithm to solve the word problem. Consider
a freely reduced word w ∈ F (S).

Step 1. Check to see if w contains a subword u such that either u or u−1 is a subword
of rk and the length of u is more than k−1

k times the length of rk. If it does
not, then w ≠ 1.

Step 2. If such a u is found, then we can rewrite the relation rk = 1 in the form
u = u′. Replace the subword u of w with u′ and freely reduce the result. If
this results in the trivial word, then w = 1. Otherwise, go back to Step 1.

This terminates since k−1
k ≥ 1

2 , so in Step 2 the word u′ is strictly shorter than u and
replacing the subword u of w by u′ shortens w. This is exactly the kind of algorithm that
Dehn discovered for surface groups. Its importance goes far beyond showing that the word
problem can be solved quickly: one of the fundamental theorems concerning hyperbolic
groups says that a group is hyperbolic if and only if it has an algorithm for solving the word
problem that is similar to the one above. We therefore deduce the following.

Corollary 5.2. All one-relator groups with torsion are hyperbolic.

The conjugacy problem is solvable in hyperbolic groups, so we deduce the following.

Corollary 5.3. All one-relator groups with torsion have solvable conjugacy problem.

Remark. It is unknown whether or not general one-relator groups have solvable conjugacy
problem.

Proof of Theorem 5.1. For the sake of our induction, we will prove that the conclusion of
the theorem holds more generally for words w such that w = v for some word v ∈ F (S) that
omits a letter appearing in w.

A bit of reflection shows that the following claim is equivalent to the desired conclusion:

• w contains a subword of the form ρk−1ρ′, where ρ is a cyclic conjugate of r and ρ′ is
a nontrivial initial segment of ρ.

We will prove this claim by induction on the length of r. The case where r has length 1 is
trivial. We remark that in this case the claim is that w contains rk or r−k as a subword; it
is instructive to meditate on where in the induction we “lose” part of the final r factor in
rk. We can thus assume that r has length at least 2 and that the theorem is true for all
shorter relators. We now make several reductions:
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• Letting S′ ⊂ S be the set of letters that appear in r and S′′ = S ∖ S′, we have

G = ⟨S ∣ r⟩ = ⟨S′ ∣ r⟩ ∗ F (S′′).

The word w thus cannot contain any letters from S′′. We can thus restrict our
attention to ⟨S′ ∣ r⟩. In other words, we can assume without loss of generality that
every element of S appears in r.

• If ∣S∣ = 1, then r must be a nontrivial power of that generator and thus G must be a
finite cyclic group. The theorem is trivial in this case, so we can assume without loss
of generality that ∣S∣ > 1. Since every element of S appears in r, this implies that r is
not simply a power of a single generator.

As in the proof of the Freiheitsatz (Theorem 2.1), the proof now divides into two cases.

Case 1. There exists some t ∈ S that appears in r such that σt(r) = 0.

Just as in the proof of the Freiheitsatz (Theorem 2.1), this implies that we can decompose
G as an HNN extension Ĝ = G′∗ϕ of a one-relator group G′ = ⟨S′ ∣ (r′)k⟩ such that r′ is
cyclically reduced and shorter than r′. Recall from the proof of Theorem 2.1 that G′ has
the following properties.

• For a distinguished element x ∈ S ∖ {t} and some a ≤ 0 ≤ b, the generating set S′
consists of formal symbols

{si ∣ s ∈ S ∖ {t}, i ∈ Z, and a ≤ i ≤ b if s = x}.

For our proof, we choose the distinguished element x as follows. If t is the letter of w
that is omitted in v, then choose x arbitrarily. Otherwise, choose x to be the letter
of w that is omitted in v.

• Set
A = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a ≤ i ≤ b − 1 if s = x}

and
B = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a + 1 ≤ i ≤ b if s = x}.

Then A and B are bases for free subgroups of G′. The isomorphism used to define the
HNN extension Ĝ is the isomorphism ϕ∶F (A)→ F (B) that takes si ∈ A to si+1 ∈ B.

• Let t be the stable letter of Ĝ. Define ζ ∶F (S′ ∪ {t})→ F (S) via the formulas ζ(t) = t
and

ζ(si) = tist−i (si ∈ S′).

Also, define ι∶F (S)→ F (S′ ∪ {t}) via the formulas ι(t) = t and

ι(s) = s0 (s ∈ S ∖ {t}).

Then ζ and ι descend to isomorphisms η̂∶ Ĝ→ G and θ∶G→ Ĝ satisfying θ ○ η̂ = id and
η̂ ○ θ = id. Moreover, ζ(r′) = r.

Define w0 = ι(w) and v0 = ι(v), so w0 = v0. The proof of Claim 1 now divides into two
subcases.

Subcase 1.1. The letter of w that is omitted in v is t.
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This implies that t appears in w0 but not in v0. The usual normal form for HNN
extensions implies that w0 either contains a subword of the form tw′0t

−1 such that w′0 lies
in the subgroup generated by A or a subword of the form t−1w′0t such that w′0 lies in the
subgroup generated by B, and moreover in both cases the letter t±1 does not appear in w′0.
Of course, the word w′0 need not be itself a word in A or B; however, we will want to deal
with this simple situation first.

This requires introducing some terminology. For words u0, u1 ∈ F (S′), say that u1 is
obtained from u0 by shifting subscripts if u1 can be obtained from u0 by performing a
sequence of the following two moves:

• replacing a subword tu′0t
−1 of u0 such that u′0 ∈ F (A) by the word u′′0 obtained by

replacing each letter si in u0 by si+1, and

• replacing a subword t−1u′0t of u0 such that u′0 ∈ F (B) by the word u′′0 obtained by
replacing each letter si in u0 by si−1.

These two moves are special cases of the relations in our HNN extension, so if u1 is obtained
from u0 by shifting subscripts, then u0 = u1. In fact, something even stronger holds: recalling
that ζ ∶F (S′ ∪ {t})→ F (S) is the homomorphism defined above, we have ζ(u0) = ζ(u1).

We now return to the above situation. Let w1 ∈ F (S′) be the word obtained by shifting
subscripts in w0 as many times as possible (since each such shift deletes a t, this process
has to stop). We thus have w1 = w0 = v0 and ζ(w0) = ζ(w1). The proof of Subcase 1.1 now
divides into two further sub-subcases.

Sub-Subcase 1.1.1. The letter t does not appear in w1.

This implies that w1 lies in the subgroup G′ of Ĝ = G′∗ϕ. Our standing assumption in
Subcase 1.1 is that t does not appear in v, so v0 also lies in G′. Finally, some letter si with
i ≠ 0 must appear in w1; since such a letter cannot appear in v0, we see in particular that
v0 omits some letter appearing in w1.

Since G′ is a one-relator group whose defining relation is shorter than that of G, we can
thus apply our inductive hypothesis to the identity w1 = v0 to deduce that w1 contains a
subword of the form ρk−1

1 ρ′1, where ρ1 is a cyclic conjugate of r′ and ρ′1 is a nontrivial initial
segment of ρ1. The word ζ(ρ1) is a cyclic conjugate of r and ζ(ρ′1) is a nontrivial initial
segment of ζ(ρ1). Moreover, the fact that r is cyclically reduced implies that ζ(ρ1)k−1ζ(ρ′1)
is a word of the form that we are looking for (i.e. that no cancellation occurs between the
various factors in it).

Unfortunately, it is not necessarily the case that ζ(ρ1)k−1ζ(ρ′1) is a subword of w = ζ(w1).
The problem is that some t±1 that the beginning or end of ζ(ρ1)k−1ζ(ρ′1) might cancel in w.
This can be solved as follows. Let ρ be the result of cyclically conjugating ζ(ρ1) so as to
move all the t±1 at the beginning of ζ(ρ1) to the end and let ρ′ be the result of deleting all
t±1 from the beginning and end of ζ(ρ′1). Since ζ(ρ′1) must contain letters other than t±1,
the word ρ′ is a nontrivial initial segment of ρ. Moreover, a moment of thought shows that
ρk−1ρ′ is a subword of w. This is the subword we are looking for; for future use, observe
that t±1 is not the initial or final letter of ρk−1ρ′. This completes the proof of Sub-Subcase
1.1.1.

Sub-Subcase 1.1.2. The letter t does appear in w1.

The usual normal form for HNN extensions implies that w1 either contains a subword of
the form tw′1t

−1 such that w′1 lies in the subgroup generated by A or a subword of the form
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t−1w′1t such that w′1 lies in the subgroup generated by B, and moreover in both cases the
letter t±1 does not appear in w′1. Both of these cases are similar; for concreteness, we will
assume that w1 contains a subword of the form tw′1t

−1 such that w′1 lies in the subgroup
generated by A and such that t±1 does not appear in w′1. Since we cannot shift subscripts
in w1, it must be the case that w′1 is not a word in the letters A. We can find a word v′1 in
the letters A such that w′1 = v′1. Both w′1 and v′1 are words in S′, so w′1 = v′1 is an identity
in G′. Since w′1 contains a letter that is not in A, we see that v′1 omits some letter that
appears in w′1.

Just as in Sub-Subcase 1.1.1, we can now apply our inductive hypothesis to the identity
w′1 = v′1. Following the proof in that case, we find the desired subword ρk−1ρ′ of w1, and
thus of w. Moreover, just as in that case we can arrange for t±1 to not be the initial or final
letter of ρk−1ρ′. This completes the proof of Sub-Subcase 1.1.2, and thus of Subcase 1.1.

Subcase 1.2. The letter of w that is omitted in v is different from t.

Recall from above that in this case the distinguished letter x that goes into the con-
struction of G′ is the letter of w that is omitted from v. The equation w = v implies
that σt(w) = σt(v); let this common value be α ∈ Z. We then have w0t−α = v0t−α. Since
σt(vt−α) = 0 and the letter x does not appear in v, it follows that we can shift subscripts in
v0t
−α repeatedly to obtain a word v1 in which the letter t±1 does not appear. We now apply

the argument in Subcase 1.2 to the identity w0t−α = v1. The result is a subword ρk−1ρ′ of
wt−α of the desired form. We now use the fact highlighted at the end of both sub-subcases
of Subcase 1.2 that t±1 does not appear at the beginning or end of ρk−1ρ′ to deduce that
in fact ρk−1ρ′ is a subword of w, as desired. This completes the proof of Subcase 1.2, and
thus of Case 1.

Case 2. We have σt(r) ≠ 0 for all t ∈ S that appear in r.

Choose distinct x, t ∈ S and set α = σt(r) and β = σx(r), so α,β ≠ 0. As in the
proof of Case 2 of the Freiheitsatz (Theorem 2.1), set S1 = S and define a homomorphism
ψ∶F (S)→ F (S1) via the formula

ψ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tβ if s = t,
xt−α if s = x,
s otherwise

(s ∈ S).

Also, set r1 = ψ(r) and G1 = ⟨S1 ∣ r1⟩. We thus have σt(r) = 0, and by an argument
similar to that in the proof of Case 2 of the Freiheitsatz (Theorem 2.1) we can use our
inductive hypothesis to show that the theorem holds for G1. This immediately implies that
the theorem holds for G as well, completing the proof of Case 2 and thus also completing
the proof of Theorem 5.1.

6 Lyndon’s Identity Theorem
We now turn to a theorem of Cohen and Lyndon [CohL] that identifies the “relations
between relations” in a one-relator group. Fix a set S, some nontrivial r ∈ F (S) that is not
a proper power, and some k ≥ 1. The set of relations in the one-relator group ⟨S ∣ rk⟩ is
the normal closure ⟪rk⟫ of rk in the free group F (S). We wish to identify a basis for the
free group ⟪rk⟫. The most naive thing to hope for is that there is a set Λ ⊂ F (S) such that
{xrkx−1 ∣ x ∈ Λ} is a basis for ⟪rk⟫. If such a Λ existed, then it would have two properties.
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• For x ∈ Λ, we have xrℓ ∉ Λ for all nonzero ℓ ∈ Z. Indeed, xrkx−1 = (xrℓ)rk(xrℓ)−1.

• For distinct x, y ∈ Λ, we have xy−1 ∉ ⟪rk⟫. Indeed, if xy−1 ∈ ⟪rk⟫, then the purported
basis elements xrkx−1 and yrky−1 would be conjugate.

Cohen and Lyndon proved that such a Λ exists, and moreover it is maximal with respect
to the above two properties.

Theorem 6.1 (Cohen–Lyndon, [CohL]). For some k ≥ 1, let G = ⟨S ∣ rk⟩ be a one-relator
group such that r ∈ F (S) is not a proper power. Then there exists a set Λ of (⟪rk⟫, ⟨r⟩)-
double coset representatives for F (S) such that {xrkx−1 ∣ x ∈ Λ} is a basis for ⟪rk⟫.

Remark. If k = 1, then ⟨r⟩ ⊂ ⟪rk⟫ and thus the set Λ given by Theorem 6.1 consists of a
single element of F (S) representing each element of G.

Before we prove this, we point out one important consequence. The relation module of
a group G with a fixed presentation G = ⟨S ∣ R⟩ is the abelian group ⟪R⟫

[⟪R⟫,⟪R⟫] . The action
of F (S) on ⟪R⟫ by conjugation descends to an action of G on the relation module, making
it into a module over the group ring Z[G]. The following theorem of Lyndon [L] identifies
the relation module of a one-relator group. It will play an important role in our proof that
the presentation 2-complex of a torsion-free one-relator group is aspherical.

Theorem 6.2 (Identity Theorem). For some k ≥ 1, let G = ⟨S ∣ rk⟩ be a one-relator group
such that r ∈ F (S) is not a proper power. Then the relation module of G is isomorphic as a
Z[G]-module to the coset representation Z[G/⟨r⟩]. In particular, if k = 1 then the relation
module is isomorphic to Z[G].

Proof. Immediate from Theorem 6.1.

We now prove Theorem 6.1. Our proof is not the original one; it is inspired by a later
proof of Karrass–Solitar [KSo].

Proof of Theorem 6.1. We will prove this by induction on the length of r. The base case is
already nontrivial, so we separate it out as a claim.

Claim. The theorem holds when r has length 1.

Proof of claim. Replacing r by its inverse if necessary, we can assume that r ∈ S. Define
S′ = S ∖ {r}, so we have a decomposition F (S) = F (S′) ∗ ⟨r⟩. The Bass–Serre tree T
associated to this decomposition of F (S) has two kinds of vertices:

• those with stabilizer a conjugate of F (S′), and

• those with stabilizer a conjugate of ⟨r⟩.

The vertices of the quotient of T by the subgroup ⟪rk⟫ are thus of two kinds:

• the images of the first kind of vertices, which are in bijection with the (⟪rk⟫, F (S′))-
double cosets for F (S), and

• the image of the second kind of vertices, which are in bijection with the (⟪rk⟫,⟪r⟫)-
double cosets for F (S).
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The subgroup ⟪rk⟫ intersects all conjugates of F (S′) trivially and is generated by its inter-
section with the conjugates of ⟨r⟩. Bass–Serre theory thus tells us that there is a set Λ of
(⟪rk⟫,⟪r⟫)-double cosets representatives for F (S) such that

⟪rk⟫ =∗
x∈Λ
⟨xrkx−1⟩,

as desired.

Now assume that r has length at least 2 and that the theorem is true for all shorter
relators. We make several reductions:

• Without loss of generality, we can assume that r is cyclically reduced.

• If ∣S∣ = 1, then r must be a nontrivial power of that generator and thus G must be a
finite cyclic group. The theorem is trivial in this case, so we can assume without loss
of generality that ∣S∣ > 1.

As in the proof of the Freiheitsatz (Theorem 2.1), the proof now divides into two cases,
though we modify things slightly since we are not assuming that every element of S appears
in r.

Case 1. There exists some t ∈ S that appears in r such that σt(r) = 0.

Just as in the proof of the Freiheitsatz (Theorem 2.1), this implies that we can decompose
G as an HNN extension Ĝ = G′∗ϕ of a one-relator group G′ = ⟨S′ ∣ (r′)k⟩ such that r′ is
cyclically reduced and shorter than r′. Recall from the proof of Theorem 2.1 that G′ has
the following properties.

• For a distinguished element x ∈ S ∖ {t} (which in this proof we can choose arbitrarily)
and some a ≤ 0 ≤ b, the generating set S′ consists of formal symbols

{si ∣ s ∈ S ∖ {t}, i ∈ Z, and a ≤ i ≤ b if s = x}.

• Set
A = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a ≤ i ≤ b − 1 if s = x}

and
B = {si ∣ s ∈ S ∖ {t}, i ∈ Z, and a + 1 ≤ i ≤ b if s = x}.

Then A and B are bases for free subgroups of G′. The isomorphism used to define the
HNN extension Ĝ is the isomorphism ϕ∶F (A)→ F (B) that takes si ∈ A to si+1 ∈ B.

• Let t be the stable letter of Ĝ. Define ζ ∶F (S′ ∪ {t})→ F (S) via the formulas ζ(t) = t
and

ζ(si) = tist−i (si ∈ S′).

Then ζ(r′) = r, and hence ζ descends to a homomorphism η̂∶ Ĝ → G. In fact, η̂ is an
isomorphism.

Of course, F (A) and F (B) are also subgroups of F (S′), so we can also form the HNN
extension F̂ ∶= F (S′)∗ϕ. The generating set for F (S′) is F (S′∪{t}) and the homomorphism
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ζ respects the relations in F̂ , so ζ descends to a homomorphism ζ̂ ∶ F̂ → F (S) that is easily
seen to be an isomorphism. Summing up, we have a commutative diagram

F̂
ζ̂

ÐÐÐ→
≅

F (S)
×××Ö

×××Ö
Ĝ

η̂
ÐÐÐ→
≅

G.

We can thus work entirely in F̂ . Writing ⟪(r′)k⟫F̂ for the normal closure of (r′)k in F̂ ,
our goal is to find a set Λ of (⟪(r′)k⟫F̂ , ⟨r

′⟩)-double coset representatives for F̂ such that
{x(r′)kx−1 ∣ x ∈ Λ′} is a basis for ⟪(r′)k⟫F̂ .

To keep our notation straight, we will write ⟪(r′)k⟫F (S′) for the normal closure of (r′)k

in F (S′). By induction, we know that there exists a set Λ′ of (⟪(r′)k⟫F (S′), ⟨r′⟩)-double
coset representatives for F (S′) such that {x(r′)kx−1 ∣ x ∈ Λ′} is a basis for ⟪(r′)k⟫F (S′).
The vertices of the Bass–Serre tree for the HNN extension F̂ can be identified with the
cosets F̂ /F (S′). Examining the action of ⟪(r′)k⟫F̂ on this Bass–Serre tree, we see that
there exists a set Ω ⊂ F̂ of (⟪(r′)k⟫F̂ , F (S

′))-double coset representatives such that

⟪(r′)k⟫F̂ =∗x∈Ωx⟪(r′)k⟫F (S′)x
−1. (6.1)

This is an ordinary free product with no amalgamation because ⟪(r′)k⟫F (S′) intersects the
subgroup F (A) of F̂ used to construct the HNN extension trivially (a consequence of the
fact that F (A) injects into the quotient group G′ = F (S′)/⟪(r′)k⟫F (S′)). Combining (6.1)
with the defining property of Λ′ above, we see that {(xy)(r′)k(xy)−1 ∣ x ∈ Ω, y ∈ Λ′} is a
basis for ⟪(r′)k⟫F̂ . Setting Λ ∶= {xy ∣ x ∈ Ω, y ∈ Λ′}, it remains to prove the following claim.

Claim. The set Λ is a set of (⟪(r′)k⟫F̂ , ⟨r
′⟩)-double coset representatives for F̂ .

Proof of claim. We first prove that Λ contains a representative of every (⟪(r′)k⟫F̂ , ⟨r
′⟩)-

double coset. Consider z ∈ F̂ . Since Ω is a set of (⟪(r′)k⟫F̂ , F (S
′))-double cosets for F̂ , we

can find x ∈ Ω and a ∈ ⟪(r′)k⟫F̂ and b ∈ F (S′) such that z = axb. Next, since Λ′ is a set
of (⟪(r′)k⟫F (S′), ⟨r′⟩)-double cosets for F (S′), we can find y ∈ Λ′ and c ∈ ⟪(r′)k⟫F (S′) and
d ∈ ⟨r′⟩ such that b = cyd. Combining these facts, we have

z = axcyd = (axcx−1)xy(d).

Since axcx−1 ∈ ⟪(r′)k⟫F̂ , we conclude that z is in the same (⟪(r′)k⟫F̂ , ⟨r
′⟩)-double coset as

xy, as desired.
We now prove that no two distinct elements of Λ are in the same (⟪(r′)k⟫F̂ , ⟨r

′⟩)-
double coset. Consider x1, x2 ∈ Ω and y1, y2 ∈ Λ′ such that x1y1 and x2y2 are in the
same (⟪(r′)k⟫F̂ , ⟨r

′⟩)-double coset. There thus exists e ∈ ⟪(r′)k⟫F̂ and f ∈ ⟨r′⟩ such that
x1y1 = ex2y2f . Rearranging this, we see that

x−1
2 e−1x1 = y2fy

−1
1 ∈ F (S′).

It follows that x1 and x2 are in the same (⟪(r′)k⟫F̂ , F (S
′))-double coset, so x1 = x2. This

implies that x−1
2 x−1x1 ∈ ⟪(r′)k⟫F̂ , so by the previous equation we see that y2fy

−1
1 ∈ F (S′)∩

⟪(r′)k⟫F̂ = ⟪(r
′)k⟫F (S′). Thus y1 and y2 are in the same (⟪(r′)k⟫F (S′), ⟨r′⟩)-double coset,

so y1 = y2, as desired.
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This completes the proof of Case 1.

Case 2. We have σt(r) ≠ 0 for all t ∈ S that appear in r.

As in the proof of Case 2 of the Freiheitsatz (Theorem 2.1), we can embed F (S) into
a free group F (S1) such that the theorem is true for the one-relator group G1 = ⟨S1 ∣ r1⟩.
In fact, examining the proof of Lemma 2.2 we see that F (S1) is the free product of F (S)
and Z amalgamated along a common subgroup, and similarly for G1. We will need one
consequence of this free product with amalgamation description of F (S1) and G1:

• For x ∈ F (S1), the group xF (S)x−1 intersects F (S) nontrivially if and only if x ∈
F (S).

We now proceed with the proof. As notation, we will write ⟪rk⟫F (S) for the normal closure
of rk in F (S) and ⟪rk⟫F (S1) for the normal closure of rk in F (S1). Since the theorem is
true for G1, there exists a set Λ1 of (⟪rk⟫F (S1), ⟨r⟩)-double cosets for F (S1) such that

⟪rk⟫F (S1) = ∗
x∈Λ1
⟨xrkx−1⟩. (6.2)

Let T be the Bass–Serre tree for ⟪rk⟫F (S1) associated to the free product decomposition
6.2. The vertices of T are in bijection with the set

⊔
x∈Λ1

⟪rk⟫F (S1)/⟨xr
kx−1⟩.

The orbits of this under the action of the subgroup ⟪rk⟫F (S) are in in bijection with the set

⊔
x∈Λ1

⟪rk⟫F (S)/⟪rk⟫F (S1)/⟨xr
kx−1⟩.

From the action of this subgroup, we get a free product decomposition of ⟪rk⟫F (S). Namely,
for all x ∈ Λ1 there exists a set Ωx of (⟪rk⟫F (S), ⟨xrkx−1⟩)-double coset representatives for
⟪rk⟫F (S1) such that

⟪rk⟫F (S) = ∗
x∈Λ1,y∈Ωx

(⟪rk⟫F (S) ∩ ⟨(yx)rk(yx)−1⟩).

By the “one consequence” listed above, the intersection ⟪rk⟫F (S) ∩ ⟨(yx)rk(yx)−1⟩ is non-
trivial if and only if yx ∈ ⟪rk⟫F (S). We conclude that

⟪rk⟫F (S) = ∗
x∈Λ1,y∈Ωx

s.t. yx ∈ ⟪rk⟫F (S)

⟨(yx)rk(yx)−1⟩.

It remains to prove the following claim.

Claim. The set Λ ∶= {yx ∣ x ∈ Λ1, y ∈ Ωx, and yx ∈ ⟪rk⟫F (S)} is a set of (⟪rk⟫F (S), ⟨r⟩)-
double cosets for F (S).

Proof of claim. Set Λ′ = {yx ∣ x ∈ Λ1, y ∈ Ωx}. It is enough to prove that Λ′ is a set of
(⟪rk⟫F (S), ⟨r⟩)-double cosets for F (S1). We begin by proving that Λ′ contains a representa-
tive of every double coset. Consider z ∈ F (S1). Since Λ1 is a set of (⟪rk⟫F (S1), ⟨r⟩)-double
cosets for F (S1), we can find x ∈ Λ1 and a ∈ ⟪rk⟫F (S1) and b ∈ ⟨r⟩ such that z = axb. Next,
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since Ωx is a set of (⟪rk⟫F (S), ⟨xrkx−1⟩)-double cosets for ⟪rk⟫F (S1), we can find y ∈ Ωx and
c ∈ ⟪rk⟫F (S) and d ∈ ⟨rk⟩ such that a = cy(xdx−1). Combining our two equalities, we see
that

z = (cyxdx−1)xb = c(yx)(db),

which implies that z and yx ∈ Λ′ are in the same (⟪rk⟫F (S), ⟨r⟩)-double coset, as desired.
We now prove that Λ′ contains at most one representative of every double coset. Con-

sider x1, x2 ∈ Λ1 and y1 ∈ Ωx1 and y2 ∈ Ωx2 such that y1x1 and y2x2 are in the same
(⟪rk⟫F (S), ⟨r⟩)-double coset. We can thus find e ∈ ⟪rk⟫F (S) and f ∈ ⟨r⟩ such that

y1x1 = e(y2x2)f.

Rearranging this, we see that
y−1

2 e−1y1 = x2fx
−1
1 .

Now, y−1
2 e−1y1 ∈ ⟪rk⟫F (S1), and thus x2fx

−1
1 ∈ ⟪rk⟫F (S1). This implies that x1 and x2 are

in the same (⟪rk⟫F (S1), ⟨r⟩)-double coset, and thus that x1 = x2. Set x = x1 = x2. Our goal
now is to prove that y1 = y2. The first thing to observe is that

f = x−1(y−1
2 e−1y1)x ∈ ⟪rk⟫F (S).

Since we already know that f ∈ ⟨r⟩, we see that we must have f ∈ ⟨rk⟩. This implies that

y−1
2 e−1y1 = xfx−1 ∈ ⟨xrkx−1⟩.

We conclude that y1 and y2 are in the same (⟪rk⟫F (S1), ⟨xr
kx−1⟩)-double coset, and thus

that y1 = y2, as desired.

This completes the proof of Case 2 and thus of Theorem 6.1.

7 Presentation 2-complexes
Let G be a group with a fixed presentation G = ⟨S ∣ R⟩. The presentation 2-complex of G
is the CW complex X whose cells are as follows:

• a single 0-cell ∗, and

• a 1-cell es for each s ∈ S, and

• a 2-cell fr for each r ∈ R attached to the 1-skeleton according to the word r.

We thus have π1(X,∗) ≅ G. If G is a surface group G = ⟨a1, b1, . . . , ag, bg ∣ [a1, b1]⋯[ag, bg]⟩,
then X is the usual CW-complex structure on a genus g surface. A surface of positive genus
is aspherical, and is thus an Eilenberg-MacLane space for a surface group. The following
theorem generalizes this to other one-relator groups.

Theorem 7.1. Let G = ⟨S ∣ r⟩ be a one-relator group such that r ∈ F (S) is not a proper
power. Then the presentation 2-complex for G is aspherical, and thus is an Eilenberg-
MacLane space for G.

The condition that r is not a proper power is necessary; indeed, Theorem 4.1 says that
if r can be expressed as a proper power, then G has nontrivial torsion and thus cannot have
a finite-dimensional Eilenberg-MacLane space. The following is an immediate corollary of
Theorem 7.1.
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Corollary 7.2. Torsion-free one-relator groups have cohomological dimension at most 2.

As we will soon see, Theorem 7.1 is a consequence of the Identity Theorem (Theorem
6.2), and in fact is implicit in Lyndon’s original paper [L]. However, it was first made
explicit by Cockcroft [Coc]. For a more topological proof than the one we give, see [DV]
(which actually derives the Identity Theorem from Theorem 7.1). Also, for a discussion of
what other kinds of groups have aspherical presentation 2-complexes, see [ChColH].

Proof of Theorem 7.1. Let X be the presentation 2-complex for G and let X̃ be its universal
cover. Our goal is to show that X̃ is contractible, i.e. that πk(X̃) = 0 for all k ≥ 1. Since
X̃ is a simply-connected 2-dimensional CW complex, Hurewicz’s theorem implies that it
is enough to prove that H2(X̃;Z) = 0. Let C∗(X̃;Z) be the cellular chain complex of X̃,
which takes the form

0Ð→ C2(X̃;Z) ∂2Ð→ C1(X̃;Z) ∂1Ð→ C0(X̃;Z)Ð→ 0.

We must show that ∂2 is injective.
The action of G on X̃ makes each Ck(X̃;Z) into a Z[G]-module. Fix a basepoint

∗̃ ∈ X̃(0). Since there is exactly one G-orbit of 0-cells of X̃, there is an isomorphism
Z[G] ≅ C0(X̃;Z) that takes ν ∈ Z[G] to ν ⋅ ∗̃. For each s ∈ S, let es ∈X(1) be the associated
oriented loop in X and let ẽs ∈ X̃(1) be the lift of es that starts at ∗̃. Let (Z[G])S be
the set of tuples of Z[G] indexed by elements of S such that only finitely many entries are
nonzero. Just like for C0(X̃;Z), there is an isomorphism (Z[G])S ≅ C1(X̃;Z) that takes
(νs)s∈S ∈ (Z[G])S to ∑s∈S νs ⋅ ẽs.

Let f be the 2-cell of X. Just like for the 0-cells and the 1-cells, there is an isomorphism
Z[G] ≅ C2(X̃;Z) which depends on a choice lift of f . To pin down the lift we want
to choose, we must make a quick digression into the Fox free differential calculus (see
[F] for more details). Recall that for each s ∈ S, there is a uniquely defined function
∂
∂s ∶Z[F (S)]→ Z[F (S)] that satisfies the following conditions.

• The function ∂
∂s is Z-linear.

• For all w1, . . . ,wk ∈ F (S), we have

∂

∂s
(w1⋯wk) =

∂

∂s
(w1) +w1

∂

∂s
(w2) +w1w2

∂

∂s
(w3) +⋯ +w1w2⋯wk−1

∂

∂s
(wk).

• For all t ∈ S, we have
∂

∂s
(t) =

⎧⎪⎪⎨⎪⎪⎩

1 if t = s,
0 if t ≠ s.

These conditions imply that
∂

∂s
(s−1) = −s−1.

Meditating on these rules, we see that the “obvious” lift f̃ of f to X̃ satisfies the following
condition (see Figure 1):

• Under our identification of C1(X̃;Z) with (Z[G])S , the boundary ∂2(f̃) of f̃ has s-
coordinate ∂

∂s(r) ∈ Z[G] for all s ∈ S, where the overline denotes the image of this
element of Z[F (S)] in Z[G].
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Figure 1: For the group Z2 = ⟨a, b ∣ aba−1b−1⟩, this is the lift f̃ of the 2-cell of the presentation
2-complex. Its boundary is ẽa+aẽb−bẽa− ẽb = (1−b)ẽa+(a−1)ẽb = ∂

∂a
(aba−1b−1)ẽa+ ∂

∂b
(aba−1b−1)ẽb.

We now make the connection to the Identity Theorem (Theorem 6.2). Consider ν ∈ ker(∂2).
Write ν = ∑n

i=1 ϵixi, where ϵi = ±1 and xi ∈ F (S). Set

w =
n

∏
i=1
xir

ϵix−1
i ∈ F (S).

Using the fact that xirϵix−1
i = 1 for all i, we then have for all s ∈ S that

∂

∂s
(w) =

n

∑
i=1

∂

∂s
(xirϵix−1

i )

=
n

∑
i=1
( ∂
∂s
(xi) + xi

∂

∂s
(rϵi) − xirϵix−1

i

∂

∂s
(xi))

= (
n

∑
i=1
ϵixi)

∂

∂s
(r)

= ν ∂
∂s
(r).

This is the s-coordinate of ∂2(ν), and thus vanishes. Since ∂
∂s(w) = 0 for all s ∈ S, we

can apply a theorem of Schumann [Schum] and Blanchfield [B] (see [F, Theorem 4.9] for a
modern proof) to deduce that w ∈ [⟪r⟫,⟪r⟫]. The Identity Theorem (Theorem 6.2) thus
implies that the terms of ν must cancel in pairs, i.e. that ν = 0, as desired.
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