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Abstract
We prove a theorem of Whitehead that says that a smooth noncompact n-manifold
deformation retracts onto an (n − 1)-dimensional spine. As a consequence, we deduce
a theorem of Johansson that says that the fundamental group of a noncompact surface
is free.

If M is a manifold, then a spine of M is a CW-complex X contained in M such that
M deformation retracts to X. The goal of this note is to prove the following theorem of
Whitehead.

Theorem 0.1 (Whitehead, [W, Lemma 2.1]). Let Mn be a connected noncompact smooth
n-manifold. Then Mn has an (n− 1)-dimensional spine.

Remark 0.2. This strengthens the familiar fact that Hn(Mn;Z) = 0.

Theorem 0.1 has the following corollary.

Corollary 0.3 (Johansson, [J]). The fundamental group of a noncompact surface is free.

Remark 0.4. Of course, this is elementary for the surfaces of finite type obtained by
puncturing closed surfaces in finitely many places, but noncompact surfaces can be far
wilder than this (e.g. a sphere minus a Cantor set).

Proof of Corollary 0.3. If S is a noncompact connected surface, then Theorem 0.1 implies
that S is homotopy equivalent to a one-dimensional CW-complex. In particular, the fun-
damental group of S is free.

Remark 0.5. Here is a tempting but wrong way to prove Corollary 0.3 (but it does lead to
the original proof of this Corollary; see [S, §4.2.2] for the additional ideas needed). Observe
that if S is a connected noncompact surface, then we can write S = ∪∞

k=1Sk, where the Sk

are an increasing sequence
S1 ⊂ S2 ⊂ S3 ⊂ · · ·

of connected compact subsurfaces of S with nonempty boundary. The surfaces Sk have
free fundamental groups, and it is not hard to also ensure that the induced maps π1(Sk)→
π1(Sk+1) are all injective. From this, we see that π1(S) is an increasing union of free groups.
One might think that this implies that π1(S) is free, but alas this is wrong. For instance,
we can write

Q =
∞⋃

k=1
Gk,

where Gk is the subgroup consisting of all rational numbers that can be written as fractions
whose denominators are divisible by the kth power of the product of the first k primes.
Though Q is not free, we have Gk

∼= Z, the free group on one generator.

We now give what is essentially Whitehead’s original proof of Theorem 0.1. For an
alternate more analytic proof, see [NR, Theorem 2.2].
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Figure 1: A component of Y = Mn \ Int(N(X)) containing a component of the forest F . The
subspace N(X) is in bold.

Proof of Theorem 0.1. Fix a smooth triangulation of Mn. Let D be the dual graph to this
triangulation, so D is the graph whose vertices are the n-simplices of Mn and whose edges
connect the vertices associated to n-simplices that share an (n− 1)-dimensional face. The
graph D embeds in Mn in the obvious way. Since Mn is noncompact and connected, the
graph D is infinite and connected.

The proof will now have two steps. For the first, a special tree is a tree T that can
be written as the union of a ray R and a collection of disjoint finite trees each of which
intersects R at a single vertex.

Step 1. There exists a forest F in D containing every vertex of D such that each component
of F is a special tree.

Let F be the set of forests in D each of whose components is an infinite ray. Since D is
connected and infinite, it contains a ray, so F is nonempty. Partially order F by saying that
F1, F2 ∈ F satisfy F1 � F2 when each component of F1 is a component of F2. Applying
Zorn’s lemma, we can choose a maximal element F ′ of F. Let {Yn}n∈I be the components
of the complement of F ′ in D. All the Yn must be finite graphs; indeed, if one of them was
infinite, then it would contain an infinite ray that could be added to F ′, contradicting the
maximality of F ′. For n ∈ I, let Tn be a maximal tree in Yn. We can find a component Cn

of F ′ such that some vertex of Tn is adjacent to Cn along an edge en. Let F be the result
of enlarging the components of F ′ by adding each Tn and en to Cn. The subgraph F of D
clearly contains every vertex of D. Moreover, for each component C of F ′ and each vertex
v of C, at most finitely many finite trees are attached to v when we form F . It follows that
each component of F is a special tree.

Step 2. Let X be the (n− 1)-dimensional subcomplex of Mn obtained by starting with the
(n− 2)-skeleton of Mn and then adding each (n− 1)-simplex that is not crossed by an edge
of F . Then X is a spine of Mn.

LetN(X) be a small closed regular neighborhood ofX. The subspaceN(X) deformation
retracts to X, so it is enough to prove that Mn deformation retracts to N(X). Define
Y = Mn \ Int(N(X)). The components of Y consist of closed regular neighborhoods of the
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components of F (see Figure 1). Since F is a special tree, these closed regular neighborhoods
are homeomorphic to the result Dn \ {p} of removing a single point p from the boundary
of the closed unit disc Dn in Rn. Since Dn \ {p} deformation retracts to Sn \ {p}, we can
deformation retract each component of Y to its boundary Y ∩N(X). This implies that we
can deformation retract Mn to N(X), as desired.
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