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Abstract

We discuss conditions under with the group ring of a group is and isn’t Noetherian.
There are two main results. The first is a folklore theorem that says that if a group
contains a non-finitely-generated subgroup, then its group ring is not Noetherian. The
second is a theorem of Phillip Hall that says that group rings of virtually polycyclic
groups are Noetherian.

Let G be a group. One basic question about G is whether or not its group ring Z[G] is
(left) Noetherian, i.e. whether or not all submodules of finitely generated left Z[G]-modules
are themselves finitely generated. This is trivially true for finite G, but is quite subtle for
infinite G. The first main result about this is the following folklore result.

Theorem 0.1. Let G be a group that contains a non-finitely-generated subgroup. Then
Z[G] is not Noetherian.

Most infinite groups that one encounters satisfy the hypotheses of Theorem 0.1. For in-
stance, any group that contains a nonabelian free subgroup satisfies the hypotheses of this
theorem. This includes nonelementary hyperbolic groups, mapping class groups, automor-
phism groups of free groups, lattices in semisimple Lie groups, etc.

Remark 0.2. A group all of whose subgroups are finitely generated is called a Noetherian
group. Theorem 0.1 implies that if the group ring Z[G] of G is Noetherian, then G is
Noetherian. As far as I know, the converse is open. Interesting examples here are the
Tarski monster groups constructed by Olshanskii [O] all of whose proper subgroups are
cyclic. Though these groups are trivially Noetherian, I believe it is still open whether or
not their group rings are Noetherian.

Proof of Theorem 0.1. Since G contains a non-finitely-generated subgroup, there exists a
strictly increasing chain

G1 ( G2 ( G3 ( · · · (0.1)

of subgroups of G. For k ≥ 1, define Ik to be the kernel of the natural map Z[G]→ Z[G/Gk]
of left Z[G]-modules. From (0.1), we see that the increasing sequence

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

of Z[G]-submodules of Z[G] is strictly increasing, so Z[G] is not Noetherian.

The second main result is a theorem of Phillip Hall. Recall that a group G is polycyclic
if there exists a subnormal sequence

G = G1 B G2 B · · ·B Gn = 1

such that Gk/Gk+1 is cyclic for all 1 ≤ k < n. The minimal length of such a subnormal
sequence is the Hirsch length of G. A group is virtually polycyclic if it has a polycyclic
subgroup of finite index. Hall’s theorem is as follows.
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Theorem 0.3 (Hall, [H]). Let G be a virtually polycyclic group. Then the group ring Z[G]
is Noetherian.

The proof of Theorem 0.3 uses ideas that are reminiscent of the theory of Gröbner bases.

Proof of Theorem 0.3. Since having a Noetherian group ring is preserved when you pass to
a finite-index subgroup, we can assume that G is polycyclic. The proof will be by induction
on the Hirsch length of G. The base case is where the Hirsch length is 0, so G = 1 and
the result is trivial. Assume, therefore, that the Hirsch length of G is positive and that the
theorem is true whenever it is smaller. Let M be a finitely generated Z[G]-module and let
N ⊂M be a submodule. Our goal is to prove that N is finitely generated. Let S be a finite
generating set for M .

Let H be a normal subgroup of G such that G/H is cyclic and the Hirsch length of H is
smaller than G. Our inductive hypothesis thus says that Z[H] is Noetherian. Let x ∈ G be
an element that projects to a generator for G/H ∼= Z. Define MH to be the Z[H]-submodule
of M spanned by S (which we recall generates M as a Z[G]-module). Every element m ∈M
can be written as

m =
∞∑

i=−∞
xici

with ci ∈ MH and only finitely many ci nonzero. Of course, this expression is far from
unique. If ci = 0 for all i < 0, then we will say that this is a polynomial expression. For
such a polynomial expression, the value d = max{i | ci 6= 0} is the degree of the expression
and cd is the expression’s leading coefficient.

Let LN,k ⊂MH be the union of {0} and the set of leading coefficients of elements of N
that can be expressed as polynomials of degree k. I claim that LN,k is a Z[H]-submodule
of MH . We must check two things:
• It is closed under sums. This is obvious.
• It is closed under multiplication by elements of Z[H]. Consider some h ∈ Z[H] together

with an element

n =
k∑

i=0
xici

of N satisfying ck 6= 0, so ck is an arbitrary element of LN,k. We want to show that
hck ∈ LN,k. This is trivial if hck = 0, so assume that it is nonzero. We have

xkhx−kn =
k∑

i=0
xi
(
xk−ihx−k+ici

)
.

Since H is a normal subgroup of G, we have xk−ihx−k+i ∈ Z[H], so xk−ihx−k+ici ∈
MH . This is thus a polynomial expression. Its leading term is xk−khx−k+kck = hck 6=
0, so this polynomial expression has degree k. It follows that hck ∈ LN,k, as desired.

It now follows from our induction hypothesis that each LN,k is a finitely generated Z[H]-
module. Moreover, since a polynomial expression of degree k can be multiplied by x to get
a polynomial expression of degree k + 1, we see that

LN,0 ⊂ LN,1 ⊂ LN,2 ⊂ · · · ⊂MH .

Again using our induction hypothesis, this increasing sequence of Z[H]-submodules of MH

must stabilize. We can thus choose a finite set {f1, f2, . . . , fr} of elements of N that for
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all i ≥ 0 contains a subset that can be expressed as polynomials of degree at most i whose
leading terms generate LN,i. Let N ′ be the Z[G]-submodule of N generated by the fi. We
claim that N ′ = N . Indeed, consider n ∈ N . For some ` ∈ Z, we can write

x`n =
k∑

i=0
xici

with each ci ∈MH . By subtracting appropriate multiples of the fi to first kill off the terms
of degree k, then the terms of degree k − 1, etc., we can reduce this to 0. It follows that
x`n ∈ N ′, and thus that n ∈ N ′, as desired.
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