The isoperimetric inequality in the plane
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Let y be a simple closed curve in R?. Choose a parameterization f : [0,1] —
R? of v and define

length(y) = sup > dw(f(tir). f(t) ERU{o0};  (0.1)

O=to<t1<--<trp=1 i=1

here the supremum is taken over all partitions of [0, 1]. This does not depend on
the choice of parameterization. By the Jordan curve theorem, the simple closed
curve 7 encloses a bounded region in R?; define area(y) to be the Lebesgue
measure of this bounded region. The classical isoperimetric inequality is as
follows.

Isoperimetric Inequality. If~y is a simple closed curve in R?, then area(y) <
+ length(v)? with equality if and only if ~ is a round circle.

This inequality was stated by Greeks but was first rigorously proved by Weier-
strass in the 19*" century. In this note, we will give a simple and elementary
proof based on geometric ideas of Steiner. For a discussion of the history of
the isoperimetric inequality and a sample of the enormous number of known
proofs of it, see [1] and [3].

Our proof will require three lemmas. The first is a sort of “discrete” version
of the isoperimetric inequality. A polygon in R? is cyclic if it can be inscribed
in a circle.

Lemma 1. Let P be a noncyclic polygon in R?. Then there exists a cyclic
polygon P’ in R? with the same cyclically ordered side lengths as P satisfying
area(P) < area(P’).

Proof. All triangles are cyclic, so P has at least 4 sides. The set of all polygons
in R? with the same cyclically ordered side lengths as P and with one vertex
at the origin is compact. It follows that there exists a polygon P’ in R? with
the same cyclically ordered side lengths as P whose area is maximal among
all such polygons. We will prove that P’ is cyclic. It is clear that P’ is convex.
There are now two cases.

Case 1. The polygon P has 4 sides.

We remark that this case could be deduced immediately from Bretschnei-
der’s formula for the area of a convex quadrilateral (see [2]), but we will give
a self-contained proof.

Let a, b, ¢, and d be the side lengths of P (cyclically ordered). Consider
a convex polygon () with the same cyclically ordered side lengths as P. Let



Figure 1: The quadrilateral Q) in Step 1 of the proof of Lemma 1.

q1,---,qs be the vertices and let #; and 6, be the angles labeled in Figure
1. Since any three non-colinear points determine a circle, there are circles
containing {q1,q2,q4} and {g2,q3,q}. These circles will be the same (and
hence @) will be cyclic) exactly when 6; + 0y = 7.

It is clear that the isometry class of () is determined by 6, and 6,. However,
not all pairs of angles are possible; indeed, computing the length of the diagonal
from g5 to ¢4 using the law of cosines in two ways, we see that

a® +b* — 2abcos(6) = ¢ + d* — 2cd cos(6s). (0.2)

Conversely, any angles #; and 6y satisfying (0.2) and 0 < 6;,0; < 7 can be
realized by some convex polygon as above. The area of @) is %ab sin(f;) +
sedsin(f,). Letting f(01,605) = absin(6;) + cdsin(f;) and g(01,6;) = o 4 b* —
2abcos(6y) — ¢ — d? + 2cd cos(6), our goal therefore is to show that among
all angles satisfying 0 < 6;,0 < 7 and ¢(6y,6,) = 0, the function f(6;,02) is
maximized when 6 + 6, = .

It is clear that this maximum will occur when 0 < 61,6, < 7, so using
Lagrange multipliers we see that at this maximum, there will exist some A\ € R
such that Vf = AVg, i.e. such that

abcos(fy) = 2abAsin(fy) and cdcos(fy) = —2cdsin(6y).

Since 0 < 61,05 < 7, we have sin(6;) # 0 and sin(f2) # 0, so we can manipulate
the above formulas and see that cot(6;) = — cot(f). This implies that 6;+6, =
7, as desired.

Case 2. The polygon P has more than 4 sides.

Assume that P’ is not cyclic. This implies that there exist four vertices
q1,--.,qq of P’ that do not lie on a circle. Let ) be the quadrilateral with
these four vertices. Using Case 1, there exist a cyclic quadrilateral " with
the same side lengths as ) but with area(Q) < area(Q’). Let Xi,..., X4 be
the components of P\ @) adjacent to the four sides of of () (possibly some of
the X; are empty), so area(P’) = area(()) + area(X;) + - - - + area(Xy). As is
shown in Figure 2, we can attach the X; to @’ to form a polygon P” whose
cyclically ordered side lengths are the same as those of P’ but whose area equals
area(Q’)+area(X;)+- - -+area(Xy). But this implies that area(P"”) > area(P’),
contradicting the maximality of the area of P’. O
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Figure 2: Changing the quadrilateral Q in P to Q' (without changing the side
lengths of P) increases the area since area(Q)) < area(Q’) but the four pieces
X1, ..., Xy making up the rest of P just are rotated without their area changing.

For the second lemma, say that a simple closed curve in R? is convexz if it
encloses a convex region.

Lemma 2. Let vy be a simple closed curve in R? and let v be the boundary of
the convex hull of the closed region enclosed by ~v. Then ~' is a convex simple
closed curve satisfying length(v') < length(~).

Proof. Parameterize v as f : [0,1] — R? and define A = f~!(y N +/). Choose
f such that f(0) € 4/, and hence 0,1 € A. The set A is nonempty and
closed, so its complement consists of at most countably many disjoint open
intervals {/,}aca. For a € A write 01, = {xa,ya} C A with z, < y,. Define
f":[0,1] — R? to equal f on A and to parameterize a straight line from
f(za) to f(ya) on I, for all « € A. The function f is then a parameterization
of 7/. Let P be the set of all partitions of [0,1]. For P € P written as
0:t0<t1<--~<tk:1,deﬁne

((f, P)= ;dR2(f(ti—l)vf(ti)) and ((f', P) = ;dRQ(f,(ti—1)7f,(ti>)-

Our goal is to show that suppcp ((f', P) < suppep U(f, P).

Define P; to be the set of partitions P of [0,1] such that if a point of I,
appears in P for some a € A, then both z, and y, appear in P. Since every
partition can be refined to a partition in P;, we have

sup {(f', P) = sup (f', P). (0.3)
pPepP PePy

Next, define P, to be the set of partitions P of [0, 1] that contain no points of
I, for any @ € A. For P € Py, define P € P, to be the result of deleting all
points that lie in [, for some a € A. The key observation is that

Uf,P)=Lf.P)=LfP) (PeP).
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This implies that

sup ((f', P) = sup L(f', P) = sup L(f, P) < sup {(f, P). (0.4)
pPeP PePs PeP; pPeP

Combining (0.3) and (0.4), the lemma follows. O

Lemma 3. Let v be a convex simple closed curve in R?. Then for all € > 0,
there exists a polygon P inscribed in 7 satisfying area(P) > area(y) — €.

Proof. Translating v, we can assume that 0 lies in its interior. For 0 < ¢ < 1,
define 75 = {d -« | € v}. Then ~; is a convex simple closed curve contained
in the interior of the region bounded by ~ satisfying

area(vs) = 0% - area(y).

Choose ¢ sufficiently close to 1 such that area(vs) > area(y) —e. We can then
find a polygon P inscribed in v such that s lies in the interior of P, and hence
area(P) > area(vs) > area(y) — e. O

Proof of the isoperimetric inequality. The theorem is trivial if length(y) = oo,
so assume without loss of generality that length(y) < oco. Assume first that
~ is not convex. Let 7’ be the boundary of the convex hull of the region
bounded by 7. Lemma 2 says that length(y’) < length(y), and it is clear
that area(y’) > area(vy). It is therefore enough to prove the theorem for +'.
Replacing ~ with 4/, we can therefore assume that 7 is convex.

Fix some € > 0. Use Lemma 3 to find a polygon P inscribed in ~ such
that area(P) > area(y) — €. Since P is inscribed in 7, we have length(P) <
length(vy). Lemma 1 ensures that there exists a cyclic polygon P’ with the
same cyclically ordered side lengths as P satisfying area(P’) > area(P). Let
C be the circle in which P’ is inscribed. Since P’ is inscribed in C, we
have area(P’) < area(C'). Adding more vertices to P, we can ensure that
length(P’) > length(C) — e. We now combine all of the our estimates to
deduce that

area(y) < area(P) + ¢ < area(P’) + € < area(C) + €

1 1
=—1 h(C)? —(1 h(P’ 2
1 lenet (C)Y +e< 47T(engt (P')+e) +e

= i(length(P) +e)? +e< i(length(’y) +€)? +e

47 4dm
Since area(7y) < = (length(v)+€)?+e€ for all € > 0, we conclude that area(y) <
1= length(y), as desired.

To finish the proof, we must show that area(y) < ;=length(y) when ~
(still assumed to be convex) is not a round circle. Since v is not a round circle,
we can find four points q,...,q4 € v that do not lie on a circle. Let @ be
the quadrilateral inscribed in + with the vertices qq,...,qs. By Lemma 1, we
can find a cyclic quadrilateral @)’ with the same side lengths as @ but with
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Figure 3: Just like in the second step of the proof of Lemma 1, we change Q to Q'
without changing the length of v; each of the four shaded regions is merely rotated
and glued onto Q'.

area()’) > area(®). Just like in Case 2 of the proof of Lemma 1, we can
use @' to find a simple closed curve 4" with length(v') = length(+) but with
area(y’) > area(y) (see Figure 3). This implies that

1 1
area(7y) < area(y’) < y length(vy')* = 1 length(v)?,
7T

as desired. O
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