HALF LIVES, HALF DIES AND THE SIGNATURES OF
BOUNDARIES

ANDREW PUTMAN

In this note we prove the well-known “half lives, half dies” theorem,
and as an application prove that the signatures of boundaries are 0.
Throughout, we fix a field k of characteristic not equal to 2.

0.1. Easy example. Consider a closed genus g surface ¥, embedded
in R? in the usual way:
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The surface X, forms the boundary of a genus g handlebody H, em-
bedded in R?. The kernel L of the map H;(X,;k) — H;(H,; k) satis-
fies L = kY with basis the curves {ay,...,a,} indicated above. The
subspace L is a half-dimensional subspace on which the algebraic in-
tersection pairing vanishes. The general half lives, half dies theorem
generalizes this to boundaries of arbitrary odd-dimensional manifolds.

~——
~——

0.2. Nondegenerate forms. Its statement requires some preliminaries.
Let V' be a finite-dimensional vector space over k. In this note, a form on
V is a bilinear form w(—, —) that is either symmetric or antisymmetric.
Such an w induces a map V' — V* taking v € V' to the map w(v, —)
from V' to k, and we say that w is nondegenerate if this map V. — V*
is an isomorphism.

Example 0.1. If M?" is a closed oriented 2n-dimensional manifold, then
by Poincaré duality the algebraic intersection pairing on V' = H,,(M?"; k)
is a nondegenerate form. 0

0.3. Lagrangians. Let V be a finite-dimensional vector space over k
equipped with a nondegenerate form w. For a subspace W of V', define

W ={veV|ww,v) =0 forall & € W}.

We say that W is a Lagrangian in V if W+ = W. We have the following
lemma:
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Lemma 0.2. Let V be a finite-dimensional vector space over k equipped
with a nondegenerate form w. Let L be a Lagrangian in V. Then there
is a basis {dy, b, ... , Ay, l;g} for V' with the following properties:

(i) {d,...,d,} is a basis for L.

(i) For all 1 <i,j < g, we have

w(c_ii, EL}) == w(l_);-, gj) =0 and w(d}, l_);) == 52]
Proof. Pick a basis {d,...,d,} for L. Since w is nondegenerate, we
can find some b; € V with w(c?i,l;l) =dpforall 1 <i<g Ifwis

antisymmetric, then we have w(gl, 51) = 0. If instead w is symmetric,
then this might not hold. However, for ¢ € k we have

W(gl + cc_il, 51 + cc?l) = W(gl, 51) + 2c.

Since k does not have characteristic 2, we can replace 51 with 51 + cd;y
for an appropriate value of ¢ and ensure that w(gl, 51) = 0.

It is clear that {dy,...,d,, l;l} is linearly independent. Again using
the nondegeneracy of w, we can find some gg € V with w(a,, gg) = 0iy
for all 1 < i < g and with w(gl, l;g) = 0. Just like above, we can add an
appropriate multiple of @y to 52 and ensure that w(I;Q, 52) =0 as well.

Repeating this process, we obtain a set of vectors {a;, by, ... ,dg, Eg}
satisfying (i) and (ii). It is clear that these vectors are linearly inde-
pendent, so all that remains is to prove that they span V. Consider
some U € V. By adding a linear combination of the b; to ¥, we can
ensure that w(d@;,v) = 0 for all 1 < i < g. Since the d@; are a basis
for L, this implies that ¥ € L*. But since L is a Lagrangian we have

L+ =L,s0 ¥ € L and we can write ¥ as a linear combination of the a;,
as desired. [l

Corollary 0.3. Let V' be a finite-dimensional vector space over k
equipped with a nondegenerate form w. Let L be a Lagrangian in V.
Then L is a half-dimensional subspace of V' on which w vanishes.

Proof. Immediate from Lemma 0.2. U

0.4. Half-lives, half dies. We now come to our main result.

Theorem 0.4 (Half-lives, half dies). Let M*"™! be a compact oriented
(2n 4+ 1)-dimensional manifold with boundary and let L be the kernel
of the map H,(OM*"*1; k) — H,(M?*"*'; k). Then L is a Lagrangian
with respect to the algebraic intersection form on H, (OM**+1; k).

By Corollary 0.3, this implies in particular that H, (OM?""!; k) is even-
dimensional and that L is a half-dimensional subspace of H, (9M?*"*!; k)
on which the algebraic intersection form vanishes.
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Proof of Theorem 0.4. To simplify our notation, we will omit the co-
efficients k from all our homology groups. Let ¢: H,(OM**1) —
H,, (M?*"*1) be the map induced by the inclusion and let wy(—, —) be
the algebraic intersection form on H, (9M?* ). There is also an alge-
braic intersection pairing

war: Hy (M) x Hyppo (M oMY — k.

Poincaré—Lefschetz duality implies that w,, is a perfect pairing between
H, (M?"1) and H,, 1 (M* 1 9M?* 1) ie., it identifies one with the
dual of the other. There is a boundary map 9: H,, . (M?** gM?"+1) —
H, (0M?*"1), and our two algebraic intersection forms are related as
follows: for all a € H,(OM?** ™) and B € H,,((M*" T, OM?** 1), we
have

wy(t(a), B) = wapr(a, d(B))

This can be proved by carefully examining the definitions of the pairings,
but to make it at least plausible note that it is obvious if a and B are
represented by manifolds intersecting transversely.

Recall that L = ker(:). Our goal is to prove that L+ = L, and we
start by proving that L C L. Consider z,y € L. We must show that
ws(z,y) = 0. Since y € H,(OM?>") satisfies ¢(y) = 0, we can find
some Y € H, . (M* 1 oM ) with 9(Y') = y. We then have

wy(x,y) =wp(e(z),Y) =wn(0,Y) =0,

as desired.

We next prove that L+ C L. Consider some z with z ¢ L. Our goal is
to prove that z ¢ Lt. Since 2z ¢ L, we have «(z) # 0, so since wyr(—, —)
is a perfect pairing, we can find some W € H, 1 (M?*"*1 9M?"t1) with
war(e(z), W) # 0. We then have

(0.1) won (2, 0(W)) = wpr(e(z), W) # 0.

However, since (1) is a boundary in M?*"*1 we have «(0(W)) = 0, so
O(W) € L. The equation (0.1) then implies that z ¢ L', as desired. [

0.5. Signatures of boundaries. Let V' be a finite-dimensional vector
space over R equipped with a symmetric form w. We can diagonalize the
matrix representing w, and the signature of w is the number of positive
eigenvalues minus the number of negative eigenvalues. If M*" is a closed
oriented 4n-dimensional manifold, then the algebraic intersection form
on Hy, (M;R) is symmetric, and its signature is called the signature of
M. We then have the following fundamental result:



4 ANDREW PUTMAN

Theorem 0.5. Let M*" is a closed oriented 4n-dimensional manifold.
Assume that M*™ = OW*" L for a compact oriented (4n+1)-dimensional
manifold W4, Then the signature of M*™ is 0.

Remark 0.6. One reason that this is important is that since the signature
is clearly additive under disjoint unions, it implies that the signature is
a homomorphism from the oriented 4n-dimensional bordism group to
Z. This is one of the easiest ways of seeing that this bordism group is

not trivial. U
Proof of Theorem (0.5. Theorem 0.4 implies that Hs,(M*";R) has a
Lagrangian, so this follows immediate from Lemma 0.7 below. U

Lemma 0.7. Let V be a finite-dimensional vector space over R equipped
with a nondegenerate symmetric bilinear form w(—,—). Assume that
there exists a Lagrangian L in V. Then the signature of w s 0.

Proof. Lemma 0.2 implies that V' is the orthogonal direct sum of 2-
dimensional subspaces on which the form w is represented by the matrix

(1 o)

These are often called “hyperbolic planes”. Since their signature is 0 and
the signature is additive under orthogonal direct sums, the signature of
w is 0. U
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