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Abstract

We calculate the abelianizations of the level L subgroup of the genus g mapping
class group and the level L congruence subgroup of the 2g × 2g symplectic group for
L odd and g ≥ 3.

Historical note. I originally wrote this paper in March of 2008. Towards the end of
that month, I gave a master class on the Torelli group at the University of Aarhus. That
master class ended in a conference, and I had intended to speak about this paper at that
conference. However, I learned that both Bernard Perron and Masatoshi Sato had proven
similar theorems and intended to speak about them at the same conference! Sato was a
graduate student and had actually proved somewhat better results (in particular, he could
deal with L = 2), so I decided not to publish this paper. Sato’s work appeared in [19], and
Perron’s work was sketched in [14]. See my later paper [18] for results for L not divisible
by 4. Dealing with the case where L is divisible by 4 is still open.

1 Introduction

Let Σg,n be an orientable genus g surface with n boundary components and let Modg,n be
its mapping class group, that is, the group π0(Diff+(Σg,n, ∂Σg,n)). This is the (orbifold)
fundamental group of the moduli space of Riemann surfaces and has been intensely studied
by many authors. For n ∈ {0, 1}, the action of Modg,n on H1(Σg,n;Z) induces a surjective
representation of Modg,n into the symplectic group whose kernel Ig,n is known as the Torelli
group. This is summarized by the exact sequence

1 −→ Ig,n −→ Modg,n −→ Sp2g(Z) −→ 1.

For L ≥ 2, let Sp2g(Z, L) denote the level L congruence subgroup of Sp2g(Z), that is, the
subgroup of matrices that are equal to the identity modulo L. The pull-back of Sp2g(Z, L)
to Modg,n is known as the level L subgroup of Modg,n and is denoted by Modg,n(L). The
group Modg,n(L) can also be described as the group of mapping classes that act trivially
on H1(Σg,n;Z/LZ). It fits into an exact sequence

1 −→ Ig,n −→ Modg,n(L) −→ Sp2g(Z, L) −→ 1.
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In [6], Hain proved that the abelianization of Modg,n(L) consists entirely of torsion for
g ≥ 3 (an alternate proof was given by McCarthy in [12]). In this note, we compute this
torsion for L odd.

To state our theorem, we need some notation. Denoting the n×n zero matrix by On and

the n×n identity matrix by In, let Ωg be the matrix
(

Og Ig
−Ig Og

)
(we will abuse notation and

let the entries of Ωg lie in whatever ring we are considering at the moment). By definition,
the group Sp2g(Z) consists of 2g × 2g integral matrices X that satisfy XtΩgX = Ωg. We
will denote by sp2g(L) the additive group of all 2g × 2g matrices A with entries in Z/LZ
that satisfy AtΩg +ΩgA = 0.

Our main theorem is as follows, and is proven in §4.

Theorem 1.1 (Integral H1 of level L subgroups). For g ≥ 3, n ∈ {0, 1}, and L odd, set
H(L) = H1(Σg,n;Z/LZ). We then have an exact sequence

0 −→ K −→ H1(Modg,n(L);Z) −→ sp2g(L) −→ 0,

where K = ∧3H(L) if n = 1 and K = (∧3H(L))/H(L) if n = 0.

Remark. The condition g ≥ 3 is necessary, since in [12] McCarthy proves that if 2 or 3
divides L, then Mod2(L) surjects onto Z. A computation of H1(Mod2,n(L);Z) (or even
H1(Mod2,n(L);Q)) would be very interesting.

We now describe the sources for the terms in the exact sequence of Theorem 1.1. The
kernel K comes from the relative Johnson homomorphisms of Broaddus-Farb-Putman [4].
For Modg,n(L), these are surjective homomorphisms

τg,1(L) : Modg,1(L) −→ ∧3H(L)

and
τg(L) : Modg(L) −→ (∧3H(L))/H(L)

which are related to the celebrated Johnson homomorphisms on the Torelli group (see §3
and §4).

The cokernel sp2g(L) is the abelianization of Sp2g(Z, L). Now, the isomorphism

H1(Sp2g(Z, L);Z) ∼= sp2g(L)

can be deduced from general theorems of Borel on arithmetic groups (see [3, §2.5]); however,
Borel’s results are much more general than we need and it takes some work to derive the
desired result from them. We instead imitate a beautiful argument of Lee-Szczarba [11],
who prove that

H1(SLn(Z, L);Z) ∼= sln(L)

for n ≥ 3. Here SLn(Z, L) is the level L congruence subgroup of SLn(Z) and sln(L) is the
additive group of n × n matrices with coefficients in Z/LZ and trace 0. The proof of the
following theorem is contained in §2.
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Theorem 1.2 (Integral H1 of Sp2g(Z, L)). For g ≥ 3 and L odd, we have

H1(Sp2g(Z, L);Z) ∼= sp2g(L).

Moreover, [Sp2g(Z, L), Sp2g(Z, L)] = Sp2g(Z, L2).

Remark. It is unclear whether the hypothesis that L is odd is necessary for Theorems 1.1
or 1.2, but it is definitely used in both proofs.

Acknowledgments. I wish to thank Nate Broaddus and Benson Farb, as portions of this
paper came out of conversations arising from our joint work [4]. I also wish to thank Tom
Church for several useful comments and suggestions.

2 The abelianization of Sp2g(Z, L)

We will need the following notation.

Definition 2.1. For 1 ≤ i, j ≤ n, let En
i,j(r) be the n × n matrix with an r at position

(i, j) and 0’s elsewhere. Similarly, let SEn
i,j(r) be the n× n matrix with an r at positions

(i, j) and (j, i) and 0’s elsewhere.

Definition 2.2. For 1 ≤ i, j ≤ g, denote by X g
i,j(r) the matrix

( Ig Og

SEg
i,j(r) Ig

)
, by Yg

i,j(r)

the matrix
(

Ig SEg
i,j(r)

Og Ig

)
, and by Zg

i,j(r) the matrix

(
Ig+Eg

i,j(r) Og

Og Ig−Eg
j,i(r)

)
.

Observe that X g
i,j(L),Y

g
i,j(L) ∈ Sp2g(Z, L) for all 1 ≤ i, j ≤ g and that Zg

i,j(L) ∈
Sp2g(Z, L) for 1 ≤ i, j ≤ g with i ̸= j. The following theorem forms part of Bass-Milnor-
Serre’s solution to the congruence subgroup problem for the symplectic group.

Theorem 2.3 (Bass-Milnor-Serre [1, Theorem 12.4, Corollary 12.5]). For g ≥ 2 and L ≥ 1,
the group Sp2g(Z, L) is normally generated by

{X g
i,j(L) | 1 ≤ i, j ≤ g} ∪ {Yg

i,j(L) | 1 ≤ i, j ≤ g}.

Remark. We emphasize that the matrices Zg
i,j(L) are not needed – the proof of [1, Lemma

13.1] contains an explicit formula for them in terms of the X g
i,j and the Yg

i,j .

Using this, we can prove the following.

Lemma 2.4. For g ≥ 3 and L odd, we have Sp2g(Z, L2) < [Sp2g(Z, L), Sp2g(Z, L)].

Proof. We must show that each normal generator of Sp2g(Z, L2) given by Theorem 2.3 is
contained in [Sp2g(Z, L), Sp2g(Z, L)]. We will do the case of X g

i,j(L
2); the other case is

similar. Assume first that i ̸= j. Since g ≥ 3, there is some 1 ≤ k ≤ g so that k ̸= i, j. The
following matrix identity then proves the desired claim:

X g
i,j(L

2) = [X g
i,k(L),Z

g
k,j(L)].
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Now assume that i = j. Again, there exists some 1 ≤ k1 < k2 ≤ g so that k1, k2 ̸= i. Also,
since L is odd there exists some integer N so that 2N + L = 1. We thus have

X g
i,i(L

2) = X g
i,i((2N + L)L2) = X g

i,i(2NL2) · X g
i,i(L

3),

so the following matrix identities complete the proof:

X g
i,i(2NL2) = [X g

i,k1
(NL),Zg

k1,i
(L)],

X g
i,i(L

3) = [X g
k1,k1

(L),Zg
k1,i

(L)] · [Zg
k2,i

(L),X g
k1,k2

(L)].

Proof of Theorem 1.2. We begin by defining a function ϕ : Sp2g(Z, L) → sp2g(L). Consider
any matrix X ∈ Sp2g(Z, L). Write X = I2g + LA, and define

ϕ(X) = A (mod L).

We claim that ϕ(X) ∈ sp2g(L). Indeed, by the definition of the symplectic group we have
XtΩgX = Ωg. Writing X = I2g + LA and expanding out, we have

Ωg + L(AtΩg +ΩgA) + L2(AtΩgA) = Ωg.

We conclude that modulo L we have AtΩg +ΩgA = 0, as desired.
Next, we prove that ϕ is a homomorphism. Consider X,Y ∈ Sp2g(Z, L) with X =

I2g + LA and Y = I2g + LB. Thus XY = I2g + L(A+ B) + L2AB, so modulo L we have
ϕ(XY ) = A+B, as desired.

The fact that ϕ is surjective is a fun exercise.
Observe now that ker(ϕ) = Sp2g(Z, L2). Since sp2g(L) is abelian, this implies that

[Sp2g(Z, L), Sp2g(Z, L)] < Sp2g(Z, L2). Lemma 2.4 then allows us to conclude that ker(ϕ) =
Sp2g(Z, L2) = [Sp2g(Z, L), Sp2g(Z, L)], and the theorem follows.

3 The Torelli group

We now review some facts about Ig,n.

Definition 3.1. Let n ∈ {0, 1}. A bounding pair on Σg,n is a pair {x1, x2} of disjoint
nonhomotopic nonseparating curves on Σg,n so that x1 ∪ x2 separates Σg,n. Letting Tγ

denote the Dehn twist about a simple closed curve γ, the bounding pair map associated to
a bounding pair {x1, x2} is Tx1T

−1
x2

.

Observe that if {x1, x2} is a bounding pair, then Tx1T
−1
x2

∈ Ig,n. Building on work of
Birman [2] and Powell [15], Johnson proved the following.

Theorem 3.2 (Johnson, [7]). For g ≥ 3 and n ∈ {0, 1}, the group Ig,n is generated by
bounding pair maps.
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Remark. In fact, under the hypotheses of this theorem Johnson later proved that finitely
many bounding pair maps suffice [9]. This should be contrasted with work of McCullough-
Miller [13] that says that for n ∈ {0, 1}, the group I2,n is not finitely generated.

We will also need Johnson’s computation of the abelianization of Ig,n.

Theorem 3.3 (Johnson, [10]). Let g ≥ 3, and set H = H1(Σg;Z) ∼= H1(Σg,1;Z). Then

H1(Ig,1;Z) ∼= ∧3H ⊕ (2-torsion)

and
H1(Ig;Z) ∼= ((∧3H)/H)⊕ (2-torsion).

The maps
τg,1 : Ig,1 −→ H1(Ig,1;Z)/(2-torsion) ∼= ∧3H

and
τg : Ig −→ H1(Ig;Z)/(2-torsion) ∼= (∧3H)/H

are known as the Johnson homomorphisms and have many remarkable properties. For a
survey, see [8].

4 The abelianization of Modg,n(L)

Partly to establish notation, we begin by recalling the statement of the 5-term exact se-
quence in group homology.

Theorem 4.1 (see, e.g., [5, Corollary VII.6.4]). Let

1 −→ K −→ G −→ Q −→ 1

be a short exact sequence of groups and let R be a ring. There is then an exact sequence

H2(G;R) −→ H2(Q;R) −→ H1(K;R)Q −→ H1(G;R) −→ H1(Q;R) −→ 0,

where H1(K;R)Q is the ring of co-invariants of H1(K;R) under the natural action of Q,
that is, the quotient of H1(K;R) by the ideal generated by {q(k)− k | q ∈ Q and k ∈ K}.

We will need a special case of a theorem of Broaddus-Farb-Putman that gives “relative”
versions of the Johnson homomorphisms on certain “homologically defined” subgroups of
Modg,b. In our situation, the result can be stated as follows.

Theorem 4.2 (Broaddus-Farb-Putman, [4, Example 5.3 and Theorem 5.8]). Fix L ≥ 2,
g ≥ 3, and n ∈ {0, 1}. Set H = H1(Σg,n;Z) and H(L) = H1(Σg,n;Z/LZ), and define
X and X(L) to equal H and H(L) if n = 0 and to equal 0 if n = 1. Hence (∧3H)/X
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x1

x2

y2

y1

z2

z1

Figure 1: The crossed lantern relation (Ty1T
−1
y2

)(Tx1T
−1
x2

) = (Tz1T
−1
z2 )

is the target for the Johnson homomorphism on Ig,n. Then there exist homomorphisms
τg,n(L) : Modg,1(L) → (∧3H(L))/X(L) that fit into the commutative diagram

Ig,n
τg,n−−−−→ (∧3H)/Xy y

Modg,n(L)
τg,n(L)−−−−→ (∧3H(L))/X(L)

Here the right hand vertical arrow is reduction mod L.

We preface the proof of Theorem 1.1 with two lemmas. Our first lemma was originally
proven by McCarthy [12, proof of Theorem 1.1]. We give an alternate proof. If G is a
group and g ∈ G, then denote by [g] the corresponding element of H1(G;Z).

Lemma 4.3. For n ∈ {0, 1}, let {x1, x2} be a bounding pair on Σg,n. Then L[Tx1T
−1
x2

] = 0
in H1(Modg,n(L);Z).

Proof. Embed {x1, x2} in a 2-holed torus as in Figure 1. We will make use of the crossed
lantern relation from [17]. Letting {y1, y2} and {z1, z2} be the other bounding pair maps
depicted in Figure 1, this relation says that

(Ty1T
−1
y2 )(Tx1T

−1
x2

) = (Tz1T
−1
z2 ).

Observe that for i = 1, 2 we have zi = Tx2(yi). The key observation is that for all n ≥ 0
we have another crossed lantern relation

(TTn
x2

(y1)T
−1
Tn
x2

(y2)
)(Tx1T

−1
x2

) = (TTn+1
x2

(y1)
T−1

Tn+1
x2

(y2)
).
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Since TL
x2

∈ Modg,n(L), we conclude that in H1(Modg,n(L);Z) we have

[Ty1T
−1
y2 ] = [TL

x2
] + [Ty1T

−1
y2 ]− [TL

x2
] = [TL

x2
(Ty1T

−1
y2 )T−L

x2
] = [(TTL

x2
(y1)T

−1
TL
x2

(y2)
)]

= [Tx1T
−1
x2

] + [(TTL−1
x2

(y1)
T−1

TL−1
x2

(y2)
)]

= 2[Tx1T
−1
x2

] + [(TTL−2
x2

(y1)
T−1

TL−2
x2

(y2)
)]

...

= L[Tx1T
−1
x2

] + [Ty1T
−1
y2 ],

so L[Tx1T
−1
x2

] = 0, as desired.

For the statement of the following lemma, recall that if a group G acts on a ring R, then
the coinvariants of that action are denoted RG.

Lemma 4.4. For L ≥ 2, define H = H1(Σg;Z) and H(L) = H1(Σg;Z/LZ). Then

(∧3H)Sp2g(Z,L)
∼= ∧3H(L)

and
((∧3H)/H)Sp2g(Z,L)

∼= (∧3H(L))/H(L).

Proof. Letting S = {a1, b1, . . . , ag, bg} be a symplectic basis for H, the groups ∧3H and
(∧3H)/H are generated by T := {x ∧ y ∧ z | x, y, z ∈ S distinct}. Consider x ∧ y ∧ z ∈ T .
It is enough to show that in the indicated rings of coinvariants we have L(x ∧ y ∧ z) = 0.
Now, one of x, y, and z must have algebraic intersection number 0 with the other two
terms. Assume that x = a1 and y, z ∈ {a2, b2, . . . , ag, bg} (the other cases are similar).
There is then some ϕ ∈ Sp2g(Z, L) so that ϕ(b1) = b1 + La1 = b1 + Lx and so that
ϕ(y) = y and ϕ(z) = z. We conclude that in the indicated ring of coinvariants we have
b1 ∧ y ∧ z = (b1 + Lx) ∧ y ∧ z, so L(x ∧ y ∧ z) = 0, as desired.

Remark. Lemma 4.4 would not be true if ∧3H were replaced by ∧2H, as ∧2H contains a
copy of the trivial representation of Sp2g(Z).

Proof of Theorem 1.1. We will do the proof for Modg,1(L); the other case is similar. Let
H and H(L) be as in Theorem 4.2. Associated to the short exact sequence

1 −→ Ig,1 −→ Modg,1 −→ Sp2g(Z, L) −→ 1

is the 5-term exact sequence in homology given by Theorem 4.1. Theorem 3.3 says that

H1(Ig,1;Z) ∼= ∧3H ⊕ (2-torsion)
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and Theorem 1.2 says that H1(Sp2g(Z, L);Z) ∼= sp2g(Z/LZ). The last 3 terms of our 5-term
exact sequence are thus

(∧3H ⊕ (2-torsion))Sp2g(Z,L)
i−→ H1(Modg,1(L);Z) −→ sp2g(Z/LZ) −→ 0.

Since L is odd, Lemma 4.3 together with Theorem 3.2 say that if

x ∈ (∧3H ⊕ (2-torsion))Sp2g(Z,L)

is 2-torsion then i(x) = 0. Moreover, Lemma 4.4 says that

(∧3H)Sp2g(Z,L)
∼= ∧3H(L).

We thus obtain an exact sequence

∧3H(L)
j−→ H1(Modg,1(L);Z) −→ sp2g(Z/LZ) −→ 0.

Theorem 4.2 then implies that j is an injection, and the proof is complete.
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