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Abstract

We calculate the abelianizations of the level L subgroup of the genus g mapping
class group and the level L congruence subgroup of the 2¢g x 2g symplectic group for
L odd and g > 3.

Historical note. I originally wrote this paper in March of 2008. Towards the end of
that month, I gave a master class on the Torelli group at the University of Aarhus. That
master class ended in a conference, and I had intended to speak about this paper at that
conference. However, I learned that both Bernard Perron and Masatoshi Sato had proven
similar theorems and intended to speak about them at the same conference! Sato was a
graduate student and had actually proved somewhat better results (in particular, he could
deal with L = 2), so I decided not to publish this paper. Sato’s work appeared in [19], and
Perron’s work was sketched in [14]. See my later paper [18] for results for L not divisible
by 4. Dealing with the case where L is divisible by 4 is still open.

1 Introduction

Let X, , be an orientable genus g surface with n boundary components and let Mod, ,, be
its mapping class group, that is, the group m(Diff ™ (X, ,,0%,,)). This is the (orbifold)
fundamental group of the moduli space of Riemann surfaces and has been intensely studied
by many authors. For n € {0, 1}, the action of Mod, , on Hy (3, ;Z) induces a surjective
representation of Mody ;, into the symplectic group whose kernel Z, ;, is known as the Torelli
group. This is summarized by the exact sequence

1 — Zyn — Mody,, — Spy,(Z) — 1.

For L > 2, let Spy,(Z, L) denote the level L congruence subgroup of Spa,(Z), that is, the
subgroup of matrices that are equal to the identity modulo L. The pull-back of Spy, (Z, L)
to Mody ,, is known as the level L subgroup of Mod, , and is denoted by Modg,,(L). The
group Mody (L) can also be described as the group of mapping classes that act trivially
on Hy(3yn;Z/LZ). It fits into an exact sequence

1 —74, — Modgn(L) — SpQg(Z,L) — 1.
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In [6], Hain proved that the abelianization of Mod,,, (L) consists entirely of torsion for
g > 3 (an alternate proof was given by McCarthy in [12]). In this note, we compute this
torsion for L odd.

To state our theorem, we need some notation. Denoting the nxn zero matrix by Q,, and

the n x n identity matrix by I, let {25 be the matrix (gfg é" ) (we will abuse notation and
g

let the entries of {2 lie in whatever ring we are considering at the moment). By definition,
the group Spy,(Z) consists of 2g x 2g integral matrices X that satisfy X', X = Q4. We
will denote by sp,, (L) the additive group of all 2g x 2g matrices A with entries in Z/LZ
that satisfy A'Q, + Q,4 = 0.

Our main theorem is as follows, and is proven in §4.

Theorem 1.1 (Integral Hy of level L subgroups). For g > 3, n € {0,1}, and L odd, set
H(L) =H1(3gn;Z/LZ). We then have an exact sequence

0 — K — Hi(Mody,,(L); Z) — spg,(L) — 0,
where K = N3H(L) if n =1 and K = (N3H(L))/H(L) if n = 0.

Remark. The condition g > 3 is necessary, since in [12] McCarthy proves that if 2 or 3
divides L, then Mody(L) surjects onto Z. A computation of H;(Mods,(L);Z) (or even
H;(Mods »(L); Q)) would be very interesting.

We now describe the sources for the terms in the exact sequence of Theorem 1.1. The
kernel K comes from the relative Johnson homomorphisms of Broaddus-Farb-Putman [4].
For Modg (L), these are surjective homomorphisms

741(L) : Mod, 1 (L) — A*H(L)

and
74(L) : Mody(L) — (A*H(L))/H(L)

which are related to the celebrated Johnson homomorphisms on the Torelli group (see §3
and §4).
The cokernel spy, (L) is the abelianization of Spy,(Z, L). Now, the isomorphism

Hl(sp2g(Zv L)a Z) = 5p2g(L)

can be deduced from general theorems of Borel on arithmetic groups (see [3, §2.5]); however,
Borel’s results are much more general than we need and it takes some work to derive the
desired result from them. We instead imitate a beautiful argument of Lee-Szczarba [11],
who prove that

H:(SL,,(Z, L); Z) = sl,(L)

for n > 3. Here SL,(Z, L) is the level L congruence subgroup of SL,,(Z) and s, (L) is the
additive group of n x n matrices with coefficients in Z/LZ and trace 0. The proof of the
following theorem is contained in §2.



Theorem 1.2 (Integral Hy of Spy,(Z, L)). For g > 3 and L odd, we have

Hl(SPQQ(Z7 L)a Z) = 5p2g(L)'
Moreover, [Spy,(Z, L), Spa,(Z, L)] = Spy,(Z, L?).

Remark. It is unclear whether the hypothesis that L is odd is necessary for Theorems 1.1
or 1.2, but it is definitely used in both proofs.

Acknowledgments. 1 wish to thank Nate Broaddus and Benson Farb, as portions of this
paper came out of conversations arising from our joint work [4]. I also wish to thank Tom
Church for several useful comments and suggestions.

2 The abelianization of Sp,,(Z, L)

We will need the following notation.

Definition 2.1. For 1 < 4,5 < n, let £';(r) be the n x n matrix with an r at position
(4,7) and 0’s elsewhere. Similarly, let SE7';(r) be the n X n matrix with an r at positions
(7,7) and (j,7) and 0’s elsewhere.

(O)g
I

g9

- . , I
Definition 2.2. For 1 < i,5 < g, denote by Xig’j(r) the matrix (Ss-;?j.(r) ), by yzj(r)

I+ ,(r) O,
0, Ig—E€7,(r)

I, ng,j(r)

0, I

the matrix ( >, and by Z(r) the matrix (

g9

Observe that ng(L),yf,j(L) € Spgy(Z,L) for all 1 < 4,5 < g and that Z‘i]’j(L) €
Spey(Z, L) for 1 <i,j < g with i # j. The following theorem forms part of Bass-Milnor-
Serre’s solution to the congruence subgroup problem for the symplectic group.

Theorem 2.3 (Bass-Milnor-Serre [1, Theorem 12.4, Corollary 12.5)). Forg > 2 and L > 1,
the group Spy,(Z, L) is normally generated by
{X7,(0) [1<i,5 <ghU{Y{;,(L) | 1<i,5<g}.

Remark. We emphasize that the matrices Z¢ ;(L) are not needed — the proof of [1, Lemma
13.1] contains an explicit formula for them in terms of the X i ; and the yﬁ I

Using this, we can prove the following.
Lemma 2.4. For g >3 and L odd, we have Spy,(Z, L?) < [Spy,(Z, L), Spey(Z, L)].

Proof. We must show that each normal generator of Spy,(Z, L?) given by Theorem 2.3 is
contained in [Spy,(Z, L), Spey(Z, L)]. We will do the case of Xﬁj(LQ); the other case is
similar. Assume first that ¢ # j. Since g > 3, there is some 1 < k < g so that k #£ 4, 5. The
following matrix identity then proves the desired claim:

X1 (L%) = [Xi(L), 2 (D))
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Now assume that ¢ = j. Again, there exists some 1 < ky < kg < g so that ky, ko # . Also,
since L is odd there exists some integer N so that 2N + L = 1. We thus have

2 2 2 3
Xﬁi(L ) = Xﬁi((ZN +L)L%) = Xfyi(ZNL ) 'ng,i(L ),
so the following matrix identities complete the proof:

X{,(2NL?) = [X], (NL), 2] (L)),
X7 (L) = (X7, 1, (L), 21, (D)) - (2, ,(L), X, (D], O

Proof of Theorem 1.2. We begin by defining a function ¢ : Spy,(Z, L) — spy,(L). Consider
any matrix X € Spy,(Z, L). Write X = Iy + LA, and define

p(X)=A (mod L).

We claim that ¢(X) € spy,(L). Indeed, by the definition of the symplectic group we have
X', X = Qg Writing X = Iy, + LA and expanding out, we have

Qg + L(A'Q + QA) + L?(A'Q,A) = Q.

We conclude that modulo L we have A'Q, + Q4A = 0, as desired.

Next, we prove that ¢ is a homomorphism. Consider X,Y € SpQQ(Z,L) with X =
Iog+ LA and Y =y, + LB. Thus XY =1y, + L(A+ B) + L?AB, so modulo L we have
»(XY)= A+ B, as desired.

The fact that ¢ is surjective is a fun exercise.

Observe now that ker(¢) = SpQQ(Z,LQ). Since spy,(L) is abelian, this implies that
[Spoy(Z, L), Spyy(Z, L)] < Spy,(Z, L?). Lemma 2.4 then allows us to conclude that ker(¢) =
Spay(Z, L?) = [Spag(Z, L), Spay(Z, L)], and the theorem follows. O

3 The Torelli group

We now review some facts about Z .

Definition 3.1. Let n € {0,1}. A bounding pair on ¥4, is a pair {z1,x2} of disjoint
nonhomotopic nonseparating curves on X, so that xy U zy separates X, ,. Letting T,
denote the Dehn twist about a simple closed curve ~y, the bounding pair map associated to
a bounding pair {x1, x5} is Ty, Tt

T1+xo

Observe that if {x1,22} is a bounding pair, then T}, 7,.! € Z,,. Building on work of

T1+xo

Birman [2] and Powell [15], Johnson proved the following.

Theorem 3.2 (Johnson, [7]). For g > 3 and n € {0,1}, the group Z,,, is generated by
bounding pair maps.



Remark. In fact, under the hypotheses of this theorem Johnson later proved that finitely
many bounding pair maps suffice [9]. This should be contrasted with work of McCullough-
Miller [13] that says that for n € {0, 1}, the group Z ,, is not finitely generated.

We will also need Johnson’s computation of the abelianization of Z,,.
Theorem 3.3 (Johnson, [10]). Let g > 3, and set H = Hy(X4;Z) = H1(X41;Z). Then

H1(Z,1;7) = A3 H @ (2-torsion)

and
Hi(Z,;Z) = (N*H)/H) & (2-torsion).
The maps
Tg1: Ly1 — Hi1(Zy1;7)/(2-torsion) = AP H
and

74 Ly — H1(Z,;7)/(2-torsion) = (A*H)/H

are known as the Johnson homomorphisms and have many remarkable properties. For a
survey, see [8].

4 The abelianization of Mod, (L)

Partly to establish notation, we begin by recalling the statement of the 5-term exact se-
quence in group homology.

Theorem 4.1 (see, e.g., [5, Corollary VII.6.4]). Let
l—K—G—Q—1

be a short exact sequence of groups and let R be a ring. There is then an exact sequence
HQ(G; R) — HQ(Q; R) — Hl(K; R)Q — Hl(G; R) — Hl(Q; R) — O,

where Hi(K; R)q is the ring of co-invariants of Hi(K; R) under the natural action of Q,
that is, the quotient of Hi(K; R) by the ideal generated by {q(k) —k | ¢ € Q and k € K}.

We will need a special case of a theorem of Broaddus-Farb-Putman that gives “relative”
versions of the Johnson homomorphisms on certain “homologically defined” subgroups of
Modg . In our situation, the result can be stated as follows.

Theorem 4.2 (Broaddus-Farb-Putman, [4, Example 5.3 and Theorem 5.8]). Fix L > 2,
g >3, and n € {0,1}. Set H = Hi(X¢gn;Z) and H(L) = Hi(Xgn;Z/LZ), and define
X and X(L) to equal H and H(L) if n = 0 and to equal 0 if n = 1. Hence (N3H)/X
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Figure 1: The crossed lantern relation (T}, T,.1)(Ty, T;.0) = (T, T..0)

Y1—-yo 1+ o Z1+ zo

is the target for the Johnson homomorphism on L, ,. Then there exist homomorphisms
Tgn(L) : Modg 1 (L) — (A3H(L))/X (L) that fit into the commutative diagram

Iyn —=  (NH)/X

l !

Modg (L) 2225 (ASH(L)/X(L)
Here the right hand vertical arrow s reduction mod L.

We preface the proof of Theorem 1.1 with two lemmas. Our first lemma was originally
proven by McCarthy [12, proof of Theorem 1.1]. We give an alternate proof. If G is a
group and g € G, then denote by [g] the corresponding element of H;(G;Z).

Lemma 4.3. Forn € {0,1}, let {x1,x2} be a bounding pair on Xg,. Then LTy, T, =0
in Hi(Modyn(L); Z).

Proof. Embed {z1,z2} in a 2-holed torus as in Figure 1. We will make use of the crossed

lantern relation from [17]. Letting {y1,y2} and {z1, 22} be the other bounding pair maps
depicted in Figure 1, this relation says that

(T, T )T, T4 = (T, TY).

Yi1-yo 1+ 2o 217 29

Observe that for ¢ = 1,2 we have z; = Ty, (y;). The key observation is that for all n > 0
we have another crossed lantern relation

-1 -1 —1
(Trz, 00 T, ) T Ty ) = (T ) T )



Since T'%, € Mody,,(L), we conclude that in Hy(Mody,,(L); Z) we have

(1,731 = (5] + [T Ty = (5] = (T4 (T T VT = (T Tk )

= [To, T,,'] + [(TTng—l(yl)ngé-l(yg))]

= 2T T 1+ (Tt Tria )

= LT, TN + [T, T,

T1+xo Y1-ya

so LTy, T;;!] = 0, as desired. O

T1+x9

For the statement of the following lemma, recall that if a group G acts on a ring R, then
the coinvariants of that action are denoted R.

Lemma 4.4. For L > 2, define H =H(X,;Z) and H(L) = H,(X4;Z/LZ). Then
(/\3H)Sp29(Z,L) ~ A*H(L)

and
(NH)/H)sp, z,1) = (NH(L))/H(L).

Proof. Letting S = {a1,b1,...,a4,bs} be a symplectic basis for H, the groups A3H and
(A3H)/H are generated by T := {zx Ay Az | x,y,2z € S distinct}. Consider t Ay Az e T.
It is enough to show that in the indicated rings of coinvariants we have L(z Ay A z) = 0.
Now, one of x, y, and z must have algebraic intersection number 0 with the other two
terms. Assume that = a; and y,z € {as,b2,...,a4,b5} (the other cases are similar).
There is then some ¢ € Spyy(Z,L) so that ¢(b1) = b1 + La; = b1 + Lz and so that
#(y) = y and ¢(z) = z. We conclude that in the indicated ring of coinvariants we have
biANyANz= (b1 +Lz)ANyAz soLlxAyAz) =0, as desired. O

Remark. Lemma 4.4 would not be true if A3H were replaced by A?H, as A>H contains a
copy of the trivial representation of Spy,(Z).

Proof of Theorem 1.1. We will do the proof for Modg 1(L); the other case is similar. Let
H and H(L) be as in Theorem 4.2. Associated to the short exact sequence

1 — Ty1 — Mody,1 — Spgy(Z,L) — 1
is the 5-term exact sequence in homology given by Theorem 4.1. Theorem 3.3 says that

H1(Z,1;7) = A*H @ (2-torsion)



and Theorem 1.2 says that Hy (Spay(Z, L); Z) = spy,(Z/LZ). The last 3 terms of our 5-term
exact sequence are thus

(A*H & (2-torsion))sy, (z,2) — Hi(Modg 1(L); Z) — spay(Z/LZ) — 0.
Since L is odd, Lemma 4.3 together with Theorem 3.2 say that if
re(NH (2—t0rsion))sp2g(Z7L)
is 2-torsion then i(z) = 0. Moreover, Lemma 4.4 says that
(N H)sp, (z.0) = N H(L).
We thus obtain an exact sequence
N¥H (L) —L5 Hy(Mody,1 (L); Z) — $pay(Z/LZ) —> 0.

Theorem 4.2 then implies that j is an injection, and the proof is complete. O
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