
The congruence subgroup problem for SLn(Z)

Andrew Putman

Abstract
Following Bass–Milnor–Serre, we prove that SLn(Z) has the congruence

subgroup property for n ≥ 3. This was originally proved by Mennicke and
Bass–Lazard–Serre.

Let Γn = SLn(Z). The congruence subgroup problem for Γn (solved independently
by Mennicke [Me] and Bass–Lazard–Serre [BLS]) seeks to classify all finite-index
subgroups of Γn. For ℓ ≥ 2, the level ℓ principal congruence subgroup of Γn,
denoted Γn(ℓ), is the kernel of the homomorphism Γn → SLn(Z/ℓ) that reduces the
entries in matrices modulo ℓ. Clearly Γn(ℓ) is finite-index in Γn. A subgroup G of Γn

is a congruence subgroup if there exists some ℓ ≥ 2 such that Γn(ℓ) ⊂ G. Mennicke
and Bass–Lazard–Serre proved the following theorem.

Theorem A. For n ≥ 3, every finite-index subgroup of Γn is a congruence subgroup.

Remark. This is false for n = 2. Indeed, SL2(Z) ≅ (Z/4) ∗Z/2 (Z/6) contains a free
subgroup of finite index, and thus contains a veritable zoo of finite-index subgroups.
Most of these are not congruence subgroups.

Bass–Milnor–Serre [BMiS] later generalized Theorem A to deal with finite-index
subgroups of SLn(O) for number rings O; they proved that SLn(O) satisfies a version
of the congruence subgroup problem if and only if O has a real embedding. In this
note, we will describe Bass–Milnor–Serre’s proof, specialized to just prove Theorem
A.

Acknowledgments. I want to thank Xiyan Zhong for pointing out some small
mistakes in a previous version.

1 Reduction to a generating set
It turns out that the key to proving Theorem A is to construct (normal) generating
sets for Γn(ℓ). For distinct 1 ≤ i, j ≤ n, let eij ∈ Γn denote the elementary matrix
with 1’s along the diagonal and at position (i, j), and 0’s elsewhere. Observe that
eℓ

ij ∈ Γn(ℓ). Bass–Milnor–Serre proved the following theorem.

Theorem 1.1. For n ≥ 3 and ℓ ≥ 2, the group Γn(ℓ) is normally generated (as a
subgroup of Γn) by {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}.

The remaining sections of this note will be devoted to the proof of Theorem 1.1,
which will be completed in §5. Before we get to that, we will show how to derive
Theorem A from it.
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Proof of Theorem A. Let G be a finite-index subgroup of Γn. We wish to show that
G contains Γn(ℓ) for some ℓ ≥ 2. Passing to a deeper finite-index subgroup, we can
assume that G is a normal subgroup of Γn. For all distinct 1 ≤ i, j ≤ n, the fact that
G is finite-index in Γn implies that there exists some ℓij ≥ 1 such that e

ℓij

ij ∈ G. Define
ℓ to be the least common multiple of the ℓij, so eℓ

ij ∈ G for all distinct 1 ≤ i, j ≤ n.
Since G is a normal subgroup of Γn, we deduce that G contains the normal closure
of the set {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}, which by Theorem 1.1 is Γn(ℓ). Thus G is a
congruence subgroup, as desired.

2 Reduction to 2 × 2 matrices
The first step in proving Theorem 1.1 is to construct a larger generating set for Γn(ℓ).
Define EΓn(ℓ) to be the normal closure in Γn of {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}. For m < n,
we will regard Γm(ℓ) as a subgroup of Γn(ℓ) via the map

A↦ (A 0
0 1) . (2.1)

The following lemma is the main result of this section.

Lemma 2.1. For n ≥ 2 and ℓ ≥ 2, the group Γn(ℓ) is generated by Γ2(ℓ) and EΓn(ℓ).

For the proof of Lemma 2.1, we need the following lemma.

Lemma 2.2. For n ≥ 3, let a1, . . . , an ∈ Z satisfy gcd(gcd)(a1, . . . , an) = 1. Then there
exist c2, . . . , cn ∈ Z such that gcd(a2 + c2a1, . . . , an + cna1) = 1.

Remark. A ring R which satisfies the conclusion of Lemma 2.2 for n ≥ r is said
to satisfy Bass’s stable range condition SRr. We remark that in this more general
context, the condition gcd(a1, . . . , an) = 1 should be interpreted as asserting that
Ra1 +⋯ +Ran = R. Lemma 2.2 says that Z satisfies SR3.

Proof of Lemma 2.2. If any of the ai are zero then this is trivial, so we can assume
that ai ≠ 0 for all 1 ≤ i ≤ n. In this case, it will turn out that we can find a single
c ∈ Z such that gcd(a2 + ca1, a3, . . . , an) = 1. Set b = gcd(a3, . . . , an), and let p1, . . . , pk

be the distinct primes dividing b. For each 1 ≤ i ≤ k, we know that pi cannot divide
both a1 and a2, so there exists some λi ∈ {0, 1} such that

a2 + λia1 /≡ 0 (mod pi).

By the Chinese remainder theorem, there exists some c ∈ Z such that

c ≡ λi (mod pi)

for 1 ≤ i ≤ k, which implies that

a2 + ca1 /≡ 0 (mod pi)

for all 1 ≤ i ≤ k. We conclude that gcd(a2 + ca1, b) = 1, and thus that gcd(a2 +
ca1, a3, . . . , an) = 1.
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Proof of Lemma 2.1. By induction on n, it is enough to show that Γn(ℓ) is generated
by Γn−1(ℓ) and EΓn(ℓ). Consider M ∈ Γn(ℓ). Let the bottom row of M be (a1, . . . , an),
so

a1 ≡ ⋯ ≡ an−1 ≡ 0 (mod ℓ) and an ≡ 1 (mod ℓ).

Also, gcd(a1, . . . , an) = 1. Since ℓ ∣ a1, we have gcd(ℓa1, a2, . . . , an) = 1. By Lemma
2.2, we can find c2, . . . , cn ∈ Z such that gcd(a2 + c2ℓa1, . . . , an + cnℓa1) = 1. For
2 ≤ i ≤ n, set a′i = ai + ciℓa1. By multiplying M on the right by elements of
{eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}, we can perform column operations to convert its bottom
row into (a1, a′2, . . . , a

′
n). Next, since ℓ ∣ a1 we can multiply our matrix on the right

by elements of {eℓ
ij ∣ 1 ≤ i, j ≤ n distinct} to perform column operations and convert

its bottom row into (ℓ, a′2, . . . , a′n). The next step is the most subtle and is the
reason why we need to take the normal closure of {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}. Write
a′n = 1+kℓ. Multiplying our matrix on the right by ek

1n (which does not necessarily lie
in {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}) converts its last row to (ℓ, a′2, . . . , a′n−1, 1). Multiplying
our matrix on the right by elements of {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}, we can then perform
column operations and convert its last row into (0, . . . , 0, 1). Multiplying our matrix
on the right by e−k

1n then does not change its last row, and using the fact that EΓn(ℓ)
is the normal closure of {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct} we see that the resulting matrix is
the result of multiplying our original matrix M on the right by an element of EΓn(ℓ).
We now can multiply our matrix on the left by elements of {eℓ

ij ∣ 1 ≤ i, j ≤ n distinct}
to perform row operations and convert its last column to (0, . . . , 0, 1). Our matrix
now lies in Γn−1(ℓ) ⊂ Γn(ℓ), as desired.

3 The nature of the quotient
Define Qn(ℓ) = Γn(ℓ)/EΓn(ℓ). The main result of this section is as follows.

Lemma 3.1. For n ≥ 3, the group Qn(ℓ) is a finitely generated abelian group. More-
over, the action of Γn on Qn(ℓ) induced by the conjugation action of Γn on Γn(ℓ) is
trivial.

Remark. Lemma 2.1 implies that elements of Qn(ℓ) can be represented by 2 × 2
matrices; however, the condition n ≥ 3 in Lemma 3.1 is necessary.

Proof of Lemma 3.1. Since Qn(ℓ) is a quotient of the finitely generated group Γn(ℓ)
(we remark that the group Γn(ℓ) is finitely generated since it is a finite-index sub-
group of the finitely generated group Γn), it is itself finitely generated. The fact that
Qn(ℓ) is abelian will follow from the fact that the Γn-action on it is trivial since
Γn(ℓ) ⊂ Γn, so it is enough to prove this. The group Γn is generated by elemen-
tary matrices eij. Moreover, we have the easily-verified matrix identity eik = [eij, ejk]
when 1 ≤ i, j, k ≤ n are distinct. Since n ≥ 3, we see that Γn is actually generated by
{ein, eni ∣ 1 ≤ i ≤ n − 1}, so it is enough to prove that these generators act trivially on
Qn(ℓ). Lemma 2.1 implies that Qn(ℓ) is generated by the image of Γ2(ℓ), so it is
enough to prove that for 1 ≤ i ≤ n − 1 and M ∈ Γ2(ℓ), we have [ein, M] ∈ EΓn(ℓ) and
[eni, M] ∈ EΓn(ℓ). For i ≥ 3, we have [ein, M] = [eni, M] = 1, so we just have to deal
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with i = 1 and i = 2. All four of the necessary calculations are similar; we will give
the details for e1n, and in fact to simplify our notation we will assume that n = 3 (the
general case will be clear from this). Write

M =
⎛
⎜
⎝

a b 0
c d 0
0 0 1

⎞
⎟
⎠

.

We then have

[e13, M] =
⎛
⎜
⎝

1 0 1
0 1 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

a b 0
c d 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

1 0 −1
0 1 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

d −b 0
−c a 0
0 0 1

⎞
⎟
⎠

=
⎛
⎜
⎝

a b 1
c d 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

d −b −1
−c a 0
0 0 1

⎞
⎟
⎠

=
⎛
⎜
⎝

1 0 1 − a
0 1 −c
0 0 1

⎞
⎟
⎠

This clearly lies in EΓn(ℓ), as desired.

4 Mennicke symbols
The goal of this section is to show how to generate Qn(ℓ) in terms of “Mennicke sym-
bols” and to compute some relations between these Mennicke symbols. The starting
point is the following lemma.

Lemma 4.1. Fix n ≥ 2 and ℓ ≥ 2. Consider a, b ∈ Z which are relatively prime and
satisfy

a ≡ 1 (mod ℓ) and b ≡ 0 (mod ℓ). (4.1)
Then there exists some M ∈ Γ2(ℓ) whose first row is (a, b). Moreover, if M, M ′ ∈ Γ2(ℓ)
are matrices whose first rows are (a, b), then the images of M and M ′ in Q2(ℓ) are
the same.

Proof. Since gcd(a, b) = 1, there exist x, y ∈ Z such that ax + by = 1. Using (4.1), we
see that when we reduce ax + by = 1 modulo ℓ we get that x ≡ 1 (mod ℓ). Setting
c = ay − y and d = by + x and

M = ( a b
c d

) ,

we get that

det(M) = a(by + x) − b(ay − y) = (ax + by) + (aby − bay) = 1

and
c ≡ 1 ⋅ y − y ≡ 0 (mod ℓ) and d ≡ 0 ⋅ y + x ≡ 1 (mod ℓ),
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i.e. that M ∈ Γ2(ℓ). If

M ′ = ( a b
c′ d′

) ∈ Γ2(ℓ),

we get that

M(M ′)−1 = ( a b
c d

)( d′ −b
−c′ a

) = ( ad′ − bc′ −ab + ba
cd′ − dc′ −cb + da

) = ( 1 0
cd′ − dc′ 1 ) .

This is an element of EΓ2(ℓ), so we get that M and M ′ have the same image in
Q2(ℓ).

We can thus make the following definition. Assume that we have fixed n ≥ 3 and
ℓ ≥ 2. Consider a, b ∈ Z which are relatively prime and satisfy (4.1). Using Lemma
4.1, let M ∈ Γ2(ℓ) have first row (a, b). The Mennicke symbol [a, b]ℓ is the image
of M in Qn(ℓ). By Lemma 4.1, this does not depend on the choice of M . When we
say that some [a, b]ℓ is a Mennicke symbol, we are saying implicitly that a and b are
relatively prime and satisfy (4.1).

Remark. The usual convention is to reverse the order of a and b in a Mennicke
symbol, but we find the above ordering a little less confusing.

Remark. In all our calculations, we will manipulate matrices which either are 2 × 2
or 3 × 3 matrices; these are included in SLn(Z) via (2.1).

The following follows immediately from Lemmas 4.1 and 3.1.

Corollary 4.2. Fix n ≥ 2 and ℓ ≥ 2. Then Qn(ℓ) is a finitely generated abelian group
generated by the set of Mennicke symbols [a, b]ℓ.

Even though Qn(ℓ) is an abelian group, we will continue to write it multiplica-
tively; in particular, its unit will be written 1.

There are infinitely many distinct Mennicke symbols, so since Qn(ℓ) is a finitely
generated abelian group there must be many relations between different Mennicke
symbols. The following lemma gives some relations. We remark that Mennicke sym-
bols are usually defined abstractly via the relations in this lemma.

Lemma 4.3. Fix n ≥ 3 and ℓ ≥ 2, and let [a, b]ℓ be a Mennicke symbol. We then have
the following.

• [a, b]ℓ = [a, b + ta]ℓ for t ∈ ℓZ.
• [a, b]ℓ = [a + tb, b]ℓ for t ∈ Z.
• [a, bb′]ℓ = [a, b]ℓ[a, b′]ℓ whenever [a, b′]ℓ is a Mennicke symbol.

Proof. In all of the calculations in this proof, the reader should keep in mind that
elements of EΓn(ℓ) are trivial in Qn(ℓ). Choose a matrix

( a b
c d

) ∈ Γ2(ℓ)
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The first relation follows from the calculation

( a b
c d

)( 1 t
0 1 ) = (

a b + ta
c d + tc

) ;

here the second matrix lies in EΓn(ℓ) whenever t ∈ ℓZ.
The second relation is more complicated since we need it for t ∈ Z, not merely for

t ∈ ℓZ. Observe that

( 1 0
−t 1 )(

a b
c d

)( 1 0
t 1 ) = (

1 0
−t 1 )(

a + bt b
c + dt d

) = ( a + bt b
∗ ∗ ) ,

where ∗ are integers. Lemma 3.1 says that the action of Γn on Qn(ℓ) induced by
conjugation is trivial, so this calculation shows that [a, b]ℓ = [a + tb, b]ℓ.

The third and final relation is the most complicated of the three, and will take a
little work. Moreover, we will have to go up to 3 × 3 matrices. Choose a matrix

( a b′

c′ d′
)

that lies in Γ2(ℓ). Lemma 3.1 says that the action of Γn on Qn(ℓ) induced by conju-
gation is trivial, so [a, b′]ℓ can be represented by the matrix

⎛
⎜
⎝

0 0 1
−1 0 0

0 −1 0

⎞
⎟
⎠

−1
⎛
⎜
⎝

a b′ 0
c′ d′ 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

0 0 1
−1 0 0

0 −1 0

⎞
⎟
⎠

=
⎛
⎜
⎝

0 −1 0
0 0 −1
1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

a b′ 0
c′ d′ 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

0 0 1
−1 0 0

0 −1 0

⎞
⎟
⎠

=
⎛
⎜
⎝

0 −1 0
0 0 −1
1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

−b′ 0 a
−d′ 0 c′

0 −1 0

⎞
⎟
⎠

=
⎛
⎜
⎝

d′ 0 −c′
0 1 0
−b′ 0 a

⎞
⎟
⎠

It follows that [a, b]ℓ[a, b′]ℓ is represented by the matrix

⎛
⎜
⎝

a b 0
c d 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

d′ 0 −c′
0 1 0
−b′ 0 a

⎞
⎟
⎠
=
⎛
⎜
⎝

ad′ b −ac′

∗ ∗ ∗
−b′ 0 a

⎞
⎟
⎠

,

where the ∗ are integers. Multiplying this on the left or right by elementary matrices
in EΓ3(ℓ), we can perform (certain) row and column operations without changing the
image in Qn(ℓ). The sequence of operations we perform is as follows; the “r” or “c”
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above the arrows indicates whether it is a row or column operation. We remark that
the 1 in the upper left hand corner of the second matrix appears because ad′−b′c′ = 1.

⎛
⎜
⎝

ad′ b −ac′

∗ ∗ ∗
−b′ 0 a

⎞
⎟
⎠

r→
⎛
⎜
⎝

1 b 0
∗ ∗ ∗
−b′ 0 a

⎞
⎟
⎠

r→
⎛
⎜
⎝

1 b 0
∗ ∗ ∗
0 bb′ a

⎞
⎟
⎠

c→
⎛
⎜
⎝

1 0 0
∗ ∗ ∗
0 bb′ a

⎞
⎟
⎠

r→
⎛
⎜
⎝

1 0 0
0 ∗ ∗
0 bb′ a

⎞
⎟
⎠

Next, we can conjugate by any element of SL3(Z) without changing the image in
Qn(ℓ). Conjugating by a permutation matrix (with determinant +1), our matrix
becomes

⎛
⎜
⎝

a bb′ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠

,

which represents [a, bb′]ℓ, as desired.

5 Killing Mennicke symbols
Theorem 1.1 is equivalent to the assertion that Qn(ℓ) = 0 for all n ≥ 3 and ℓ ≥ 2.
By Corollary 4.2, this is equivalent to the assertion that [a, b]ℓ = 0 for all Mennicke
symbols [a, b]ℓ, which will be the main result of this section (see Lemma 5.3 below).
The proof of this will only use the relations from Lemma 4.3. Since we will use
these relations constantly, we will not refer explicitly to this lemma in our proofs.
Throughout this section, we will fix n ≥ 3 and ℓ ≥ 2.

We begin with the following observation.

Lemma 5.1. Let [a, b]ℓ be a Mennicke symbol such that b ≡ ±1 (mod a). Then
[a, b]ℓ = 1.

Proof. Write b = ±1 + ka for some k ∈ Z. Since b ≡ 0 (mod ℓ), we have

[a, b]ℓ = [a, b − ab]ℓ = [a, b(1 − a)]ℓ = [a, (±1 + ka)(1 − a)]ℓ = [a,±(1 − a) + ka(1 − a)]ℓ.

Since 1 − a ≡ 0 (mod ℓ), this equals

[a,±(1 − a)]ℓ = [1,±(1 − a)]ℓ.

Again using the fact that 1 − a ≡ 0 (mod ℓ), this equals [1, 0]ℓ = 1, as desired.

This has the following corollary. Recall that the Euler totient function is the
function ϕ that takes a nonzero integer a to the number of units in Z/a. If a, a′ ∈ Z
are relatively prime, then the Chinese remainder theorem says that Z/aa′ ≅ Z/a⊕Z/a′,
so ϕ(aa′) = ϕ(a)ϕ(a′). Moreover, if p is prime and k ≥ 1, then ϕ(pk) = pk − pk−1. It
follows that if a = ±pk1

1 ⋯pkm
m is the prime factorization of a, then

ϕ(a) = (pk1
1 − pk1−1

1 )⋯(pkm
m − pkm−1

m ).

Corollary 5.2. Let [a, b]ℓ be a Mennicke symbol. Then [a, b]ϕ(a)ℓ = 1.
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Proof. Since gcd(a, b) = 1, the integer b projects to an element of the group of units
of Z/a, and thus bϕ(a) projects to the identity in Z/a, i.e. bϕ(a) ≡ 1 (mod a). Applying
Lemma 5.1, we see that

[a, b]ϕ(a)ℓ = [a, bϕ(a)]ℓ = 1.

This corollary implies that Qn(ℓ) is a finite abelian group. We now come to the
main result of this section.

Lemma 5.3. Let [a, b]ℓ be a Mennicke symbol and let p be prime. Then p does not
divide the order of [a, b]ℓ. Consequently, [a, b]ℓ = 1.

Proof. We will accomplish this in three steps.

Step 1. The order of [a, b]ℓ is a power of 2.

Since gcd(a, b) = 1, Dirichlet’s theorem on primes in arithmetic progressions im-
plies that there exists some prime p such that p ≡ a (mod b), and thus [a, b]ℓ = [p, b]ℓ.
Corollary 5.2 implies that the order of [a, b]ℓ = [p, b]ℓ divides ϕ(p) = p − 1. Let
q1, . . . , qm be the odd prime factors of p − 1. Both b and all the qi are coprime to p,
so by Dirichlet’s theorem there exists a prime p1 such that

p1 ≡ −p (mod bq1q2⋯qm).

A final application of Dirichlet’s theorem yields a prime p2 such that

p2 ≡ −1 (mod bq1q2⋯qm).

We have
p1p2 ≡ (−p)(−1) ≡ p (mod b),

so [p, b]ℓ = [p1p2, b]ℓ. Corollary 5.2 implies that the order of [a, b]ℓ = [p, b]ℓ = [p1p2, b]ℓ
divides

ϕ(p1p2) = (p1 − 1)(p2 − 1).

For 1 ≤ i ≤m, we have

(p1 − 1)(p2 − 1) ≡ (−p − 1)(−1 − 1) ≡ 2(p + 1) (mod qi).

Since qi is an odd prime which divides p − 1, it cannot divide 2(p + 1). We deduce
that qi does not divide (p1 − 1)(p2 − 1), and thus cannot divide the order of [a, b]ℓ =
[p, b]ℓ = [p1p2, b]ℓ. Since the qi are all the odd prime factors of p − 1 and we proved
above that the order of [a, b]ℓ divides p − 1, we deduce that the only prime that can
divide the order of [a, b]ℓ is 2, as desired.

Step 2. If either a ≡ 3 (mod 4) or b ≢ 0 (mod 4), then [a, b]ℓ = 1.

We first find some a′ ∈ Z such that [a′, b]ℓ is a Mennicke symbol satisfying [a′, b]ℓ =
[a, b]ℓ and such that a′ ≡ 3 (mod 4). If a ≡ 3 (mod 4), then we can take a′ = a.
Assume now that a ≢ 3 (mod 4). If b ≡ 1 (mod 4) or b ≡ 3 (mod 4), then we can find
some k ∈ Z such that a + kb ≡ 3 (mod 4), and we can take a′ = a + kb. Finally, if b ≡ 2
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(mod 4), then since gcd(a, b) = 1 we must have a odd, and thus a ≡ 1 (mod 4). We
can therefore take a′ = a + b.

Since a′ ≡ 3 (mod 4) and gcd(a′, b) = 1, we have gcd(a′, 4b) = 1. Dirichlet’s
theorem on primes in arithmetic progressions thus implies that there exists some
prime p such that p ≡ a′ (mod 4b). We then have [p, b]ℓ = [a′, b]ℓ = [a, b]ℓ and p ≡ 3
(mod 4). The number p−1

2 is thus odd. We have

b
p−1

2 ≡ ±1 (mod p),

so using Lemma 5.1 we have

[a, b]
p−1

2
ℓ = [p, b]

p−1
2

ℓ = [p, b
p−1

2 ]ℓ = 1.

This implies that the order of [a, b]ℓ divides the odd number p−1
2 , and thus that the

order of [a, b]ℓ is odd. Combining this with the first step, we see that [a, b]ℓ = 1, as
desired.

Step 3. If a ≡ 1 (mod 4) and b ≡ 0 (mod 4), then [a, b]ℓ = 1.

This is very similar to the previous step (but with a slight twist). Since gcd(a, b) =
1, Dirichlet’s theorem on primes in arithmetic progressions implies that there exists
some prime p such that p ≡ −a (mod b). We then have [a, b]ℓ = [−p, b]ℓ and

p ≡ −a ≡ −1 ≡ 3 (mod 4).

The number p−1
2 is thus odd. We have

b
p−1

2 ≡ ±1 (mod − p),

so using Lemma 5.1 we have

[a, b]
p−1

2
ℓ = [−p, b]

p−1
2

ℓ = [−p, b
p−1

2 ]ℓ = 1.

This implies that the order of [a, b]ℓ divides the odd number p−1
2 , and thus that the

order of [a, b]ℓ is odd. Combining this with the first step, we see that [a, b]ℓ = 1, as
desired.
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