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Abstract

We give the most efficient proofs we know of a number of basic results in calculus:
Taylor’s theorem with remainder, L’Hôpital’s rule, the change of variables theorem (both
in single-variable calculus and in multi-variable calculus), and the two fundamental
theorems of calculus.

1 Introduction

Over the years, I have tried to collect efficient but non-standard proofs of many results in
elementary mathematics. The goal of these notes is to assemble some of these for calculus.
The outline is as follows:

• In §2, I will prove Taylor’s Theorem with the remainder in Lagrange form.
• In §3, I will prove L’Hôpital’s rule.
• In §4, I will prove the change of variable theorem for integrals. This has two parts:

in §4.1 I will deal with the one-variable case, and in §4.2 I will deal with the multi-
variable case.

• In §5, I will prove both fundamental theorems of calculus.

I will try to give sources when possible, but I do not always remember where I learned these
from. I would like to thank Anand Goyal for comments on a previous version.

2 Taylor’s Theorem

I will start with Taylor’s Theorem with the remainder written in Lagrange form. The idea
of this proof came from Tim Gowers’s blog [1], but also shares some ideas from a comment
on that blog by Pieter-Jan De Smet.

Theorem 2.1 (Taylor’s Theorem, Lagrange Form). Let f : U → R be a function defined on
an open connected set U ⊂ R. Assume that f is (n+ 1)-times differentiable and let x0 ∈ U .
Then for all x ∈ U \ {x0}, there exists some ζ in the interval between x0 and x such that

f(x) =
n∑
k=0

f (k)(x0)
k! · (x− x0)k + f (n+1)(ζ)

(n+ 1)! · (x− x0)n+1.
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Proof. To simplify the notation, we will assume that x > x0; the other case is similar. Since
(x− x0)n+1 6= 0, there exists some λ ∈ R such that

f(x) =
n∑
k=0

f (k)(x0)
k! · (x− x0)k + λ · (x− x0)n+1.

Our goal is to find some ζ ∈ (x0, x) such that

λ = f (n+1)(ζ)
(n+ 1)! . (2.1)

We will do this by repeatedly applying Rolle’s Theorem. Define g : U → R via the formula

g(t) = f(t)−
(

n∑
k=0

f (k)(x0)
k! · (t− x0)k + λ · (t− x0)n+1

)
.

We thus have g(0) = g(x) = 0, so by Rolle’s Theorem there exists some ζ1 ∈ (x0, x) such
that g′(ζ1) = 0. Since g′(0) = g′(ζ1) = 0, we can apply Rolle’s Theorem again to find some
ζ2 ∈ (x0, ζ1) such that g′′(ζ2) = 0. Repeating this process, we produce a decreasing sequence
ζ1 > ζ2 > · · · > ζn+1 of points in (x0, x) such that g(k)(ζk) = 0 for all 1 ≤ k ≤ n + 1. In
particular, setting ζ = ζn+1 we have

0 = g(n+1)(ζn+1) = f (n+1)(ζn+1)− λ · (n+ 1)!.

Rearranging this formula yields (2.1).

3 L’Hôpital’s rule

I now turn to L’Hôpital’s rule. To focus on the main idea here, I will only discuss limits that
are finite real numbers. Also, I will not worry about minimizing the degree of differentiability
of the functions involved. The following result will be what we prove:

Theorem 3.1 (L’Hôpital’s rule). Let f, g : R→ R be infinitely differentiable functions. For
some a ∈ R, assume that f (k)(a) = g(k)(a) = 0 for all 0 ≤ k < n and that g(n)(a) 6= 0.
Then

lim
x 7→a

f(x)
g(x) = f (n)(a)

g(n)(a)
.

This is often derived from Cauchy’s generalization of the mean value theorem, but I think
it is more enlightening to derive it from Taylor’s theorem (this is similar to how it was first
proved by Bernoulli; see the discussion [3] on MathOverflow). The main idea is one that is
familiar to anyone who has taught limits.

We first illustrate it in the special case where f(x) and g(x) are polynomials. The assump-
tion that f (k)(a) = g(k)(a) = 0 for 0 ≤ k < n implies that we can factor them as

f(x) = (x− a)nF (x) and g(x) = (x− a)nG(x) (3.1)
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for polynomials F (x) and G(x). We can then cancel the common factors (x− a)n and see
that

lim
x 7→a

f(x)
g(x) = lim

x 7→a
(x− a)nF (x)
(x− a)nG(x) = lim

x 7→a
F (x)
G(x) .

Differentiating f(x) = (x− a)nF (x) a total of n times using the product rule and plugging
in x = a leads to f (n)(a) = F (a). Similarly, g(n)(a) = G(a). Using this, we see that

lim
x7→a

f(x)
g(x) = lim

x 7→a
F (x)
G(x) = F (a)

G(a) = f (n)(a)
g(n)(a)

,

as desired.

Where did we use the fact that f(x) and g(x) were polynomials? The only step where
that was relevant was the factorizations (3.1). The following theorem shows that this holds
for general infinitely differentiable functions, so in fact the above argument is completely
general:

Theorem 3.2. Let f : R → R be an infinitely differentiable function. For some a ∈ R,
assume that f (k)(a) = 0 for all 0 ≤ k < n. We can then write f(x) = (x− a)nF (x) for an
infinitely differentiable function F (X).

Proof. Immediate from Taylor’s theorem.

4 Change of variables

We now turn to the change of variables theorem for integrals.

4.1 The one-variable case

The one-variable change of variables theorem is often derived from the second fundamental
theorem of calculus, but I think the following direct proof is enlightening. Doing it this way
also allows this theorem to be used in the proof of the first fundamental theorem of calculus,
which is necessary for the traditional proof (otherwise, it is not clear that all functions have
anti-derivatives!). I came up with this proof myself, but I doubt that I was the first to
notice it.

Theorem 4.1 (Change of variables, one variable). Let φ : [a, b] → [c, d] be a continuously
differentiable orientation-preserving homeomorphism and let f : [c, d] → R be a Riemann
integrable function. Then ∫ d

c
f(x) dx =

∫ b

a
f(φ(y))φ′(y) dy .
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Proof. Set I =
∫ d
c f(x) dx and J =

∫ b
a f(φ(y))φ′(y) dy. Fix some ε > 0. Since f(φ(y))φ′(y)

is Riemann integrable, we can find some partition

a = y1 < y2 < · · · < yn = b (4.1)

that is fine enough such that for all choices of zi ∈ [yi, yi+1] for 1 ≤ i < n, we have

‖J −
n−1∑
i=1

f(φ(zi))φ′(zi)(yi+1 − yi)‖ < ε.

Moreover, since f(x) is Riemann integrable and φ is an orientation-preserving homeomor-
phism, we can make (4.1) even finer and ensure that the partition

c = φ(y1) < φ(y2) < · · · < φ(yn) = d

of [c, d] is fine enough such that for all choices of wi ∈ [φ(yi), φ(yi+1)] for 1 ≤ i < n, we have

‖I −
n−1∑
i=1

f(wi)(φ(yi+1)− φ(yi))‖ < ε.

The key trick is now to observe that by the mean value theorem, we can find some zi ∈
[yi, yi+1] for 1 ≤ i < n such that

φ′(zi) = φ(yi+1)− φ(yi)
yi+1 − yi

.

Setting wi = φ(zi), we then have that

n−1∑
i=1

f(φ(zi))φ′(zi)(yi+1 − yi) =
n−1∑
i=1

f(wi)(φ(yi+1)− φ(yi)).

The left hand side is within ε of I, and the right hand side is within ε of J . Since ε > 0 was
arbitrary, we conclude that I = J , as desired.

4.2 The multi-variable case

We now turn to the multi-variable change of variables theorem. Here we give a proof that
is inspired by the proof of Sard’s Theorem in Milnor’s differentiable topology textbook [2].
To avoid trying to pin down the precise conditions under which the theorem holds, we will
only deal with compactly supported continuous functions. More general functions can be
dealt with using a limiting process.

Theorem 4.2 (Change of variables, multi-variable). Let U, V ⊂ Rn be open sets and let
φ : U → V be an orientation-preserving diffeomorphism. Then for all compactly supported
continuous functions f : V → R we have∫

V
f dx =

∫
U

(f ◦ φ) · J(φ) dx,

where J(φ) : U → R is the determinant of the Jacobian of φ.
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Proof. The proof will be by induction on n. We dealt with the base case n = 1 in the
previous section, so assume that n > 1 and that the theorem is true for all smaller n.

The first step is to observe that for all points p0 ∈ U , it is enough to prove that there exists
a cube C containing p0 such that∫

φ(C)
f dx =

∫
C

(f ◦ φ) · J(φ) dx for all compactly supported functions f : U → R.

Fix such a point p0 and write φ in coordinates as φ = (φ1, . . . , φn). Permuting the coor-
dinates if necessary and multiplying some of them by −1 if necessary (remember that we
require φ to be orientation-preserving!), we can assume that ∂φ1

∂x1
> 0. Define ψ : U → Rn

via the formula

ψ(x1, . . . , xn) = (φ1(x1, . . . , xn), x2, . . . , xn) for (x1, . . . , xn) ∈ U.

By the inverse function theorem, ψ is a local diffeomorphism at p0. We can thus find
a cube C containing p0 such that setting D = ψ(C), we can restrict ψ to C and get a
diffeomorphism ψ : C → D. Define ζ : D → V by setting ζ = φ ◦ ψ−1. The key fact about
ζ is that

ζ(x1, . . . , xn) = (x1, ζ2(x1, . . . , xn), . . . , ζn(x1, . . . , xn)) for (x1, . . . , xn) ∈ D.

We have φ(C) = ζ(D), and the map φ : C → f(C) factors as

C
ψ−→ D

ζ−→ h(D).

Since
J(φ)(q) = J(ψ ◦ ζ)(q) = J(ψ)(ζ(q)) · J(ζ)(q) for q ∈ C,

proving that the theorem holds for the diffeomorphisms ψ and ζ will imply that it also holds
for φ. This is an easy application of Fubini’s theorem. For both cases you slice the domain
using R1 × Rn−1. For ψ, you first integrate the R1 factor using the one-variable case, and
for ζ you first integrate the Rn−1 factor using the inductive hypothesis.

5 The fundamental theorems of calculus

We conclude by proving the two fundamental theorems of calculus. It is traditional to derive
the second from the first, but I think it is very enlightening to prove both independently. I
learned these proofs from Tao’s book on measure theory [4].

Theorem 5.1 (First fundamental theorem of calculus). Let f : [a, b] → R be a continuous
function. Then

d

dx

∫ x

a
f(t) dt = f(x) for x ∈ [a, b].

Proof. Define F : [a, b]→ R via the formula

F (x) =
∫ x

a
f(t) dt for x ∈ [a, b].
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For any x ∈ [a, b] and h 6= 0 such that x+ h ∈ [a, b], we have

F (x+ h)− F (x)
h

= 1
h

∫ x+h

x
f(t) dt =

∫ 1

0
f(x+ th) dt,

where the last equality follows from a change of coordinates. As h 7→ 0, the function
t 7→ f(x+ th) uniformly approaches the constant function f(x). It follows that

lim
h7→0

F (x+ h)− F (x)
h

= lim
h7→0

∫ 1

0
f(x+ th) dt =

∫ 1

0
f(x) dt = f(x).

Theorem 5.2 (Second fundamental theorem of calculus). Let f : [a, b] → R be a differen-
tiable function whose derivative f ′(x) is Riemann integrable. Then∫ b

a
f ′(x) dx = f(b)− f(a).

Proof. Set C =
∫ b
a f
′(x) dx, and fix some ε > 0. We can then find a sufficiently fine partition

a = x1 < x2 < · · · < xn = b

such that for all choices of yi ∈ [xi, xi+1] for 1 ≤ i < n, we have∣∣∣∣∣C −
n−1∑
i=1

f ′(yi) · (xi+1 − xi)
∣∣∣∣∣ < ε. (5.1)

By the mean value theorem, for all 1 ≤ i < n we can find some zi ∈ [xi, xi+1] such that

f ′(zi) = f(xi+1)− f(xi)
xi+1 − xi

.

We therefore see that we have a telescoping sum

n−1∑
i=1

f ′(zi) · (xi+1 − xi) =
n−1∑
i=1

(f(xi+1)− f(xi)) = f(xn)− f(x1) = f(b)− f(a).

Plugging this into (5.1), we get that

|C − (f(b)− f(a))| < ε.

Since ε > 0 was arbitrary, we conclude that

f(b)− f(a) = C =
∫ b

a
f ′(x) dx .
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