Burnside’s p®q’-theorem

Andrew Putman

Abstract

We prove Burnside’s theorem saying that a group of order p®q® for primes p and ¢
is solvable.

In this note, we discuss the proof of the following theorem of Burnside [1].
Theorem A. Let G be a group with |G| = p®q® for primes p and q. Then G is solvable.

The key to the proof is showing that such a group must contain a nontrivial normal sub-
group. The subgroups we will construct will be of the following form. All representations
in this note are finite-dimensional and defined over C.

Definition 0.1. Let V' be a representation of a group GG. The V-central subgroup of G,
denoted Z(V'), is the subgroup consisting of all ¢ € G that act on V' by homotheties, i.e.
such that there exists some A € C such that g - ¥ = A\v for all v € V. O

Remark. It is clear that Z (V') is a normal subgroup of G; indeed, for g € Z(V') and A as
above, for all h € G we have

hlgh-T=h"1-(Ah-0))=Xh'h) - T=X0 forallvcV.
so h™igh € Z(G).

How can we detect nontrivial Z(V')? With respect to an appropriate basis, the matrices
representing the action of elements of G on V are algebraic integers (see, e.g., [2]). It
follows that for g € Z(V), the action of g on V is a homothety with scaling factor an
algebraic integer. Letting x be the character of V', this scaling factor is precisely x(g)/n,
where n = dim(V'). This must therefore be an algebraic integer. The following lemma is a
converse to this:

Lemma 0.2. Let G be a finite group and let V' be an n-dimensional representation of G
with character x. For some g € G, assume that x(g)/n is a nonzero algebraic integer. Then
ge Z(V).

Proof. Let Aq,..., A\, € C be the eigenvalues of the action of g on V. Our goal is to prove
that the \; are all equal. Assume otherwise. Each of the ); is a root of unity, so this implies
that

X(9)l = A+ + M| <.

This can be improved as follows. Let k/Q be a Galois extension containing each of the A;.
For each ¢ € Gal(k/Q), the elements ¢(A1),...,d(A\,) € C are also roots of unity that are
not all equal, so we have

lp(x(9))] = |¢(A1) + -+ - 4+ d(A\n)| < 7.

T 1e(X2) 1<

peGal(k/Q)

Since x(g)/n is a nonzero algebraic integer contained in k, the left hand side lies in Z, and
thus must be 0, a contradiction. O

We thus see that



The following technical lemma will help us verify the hypotheses of Lemma 0.2. For
g € G, let cl(g) denote the conjugacy class of g.

Lemma 0.3. Let G be a finite group and let V' be an n-dimensional irreducible represen-
tation of G with character x. For all g € G, the number |cl(g)|x(g)/n is an algebraic
integer.

Proof. Fix some g € G, and define

w= Y heC[qG]
hecl(g)
The element w lies in the center of the ring C[G], so it acts on V' by C[G]-module endomor-

phisms. Since V is irreducible, Schur’s Lemma says that EndC[G}(V) = C, so there exists
some A € C such that w- v = Av for all ¥ € V. Taking traces, we see that

M= xw) = 3 x(h) = |cl(g)x(9).

hecl(g)
SO

A = |cl(g)|x(g)/n-

With respect to an appropriate basis, the entries of the matrices representing the action of
G on V are algebraic integers (see, e.g., [2]). It follows that X is an algebraic integer, and
the lemma follows. O

We will use these results to prove the following key proposition:

Proposition 0.4. Let G be a finite group such that there exists some g € G with | cl(g)| = p”
for some prime p and some k > 1. Then there exists some nontrivial representation V of

G such that Z(V') # 1.

Proof. Let Vi,...,V, be the irreducible representations of G, ordered such that Vj is the
trivial representation. For 1 <i <r, let x; be the character of V; and n; = dim(V;). Since
|cl(g)| # 1, we have g # 1, so the orthogonality of the columns of the character table says
that

0= zr:xl(g)xli(l) = XT:WM(Q) =1+ XT:WX@(Q)
i=1 i=1 i=2

Thus

-1 zr: nixi(9)

P = p

From this, we see that there must exist some 2 < j < r such that n;yx;(g)/p is not an
algebraic integer. Since x;(g) is a sum of roots of unity, it is an algebraic integer. We
deduce that p does not divide n; and that x;(g) # 0. Sine | cl(g)| = p* and n; are coprime,
we can find a,b € Z such that

1 =alcl(g)| + bn;.

Multiplying this by x;(g)/n;, we get that

xi(9) _ 1<l9)Ix;(9)

bxi(g).
n n; + bx;(9)
Lemma 0.3 implies that this first term is an algebraic integer, and since x;(g) is an algebraic
integer the second term is as well. We conclude that x;(g)/n; is an algebraic integer, so by
Lemma 0.2 we have that g € Z(V}), as desired. O



Proof of Theorem A. Consider a group G with |G| = p®q® for primes p and ¢q. Our goal is
to prove that G is solvable. By induction, we can assume that this holds for all such groups
of smaller order. We can also assume that G is nonabelian since abelian groups are trivially
solvable. Finally, we can assume that p and g are distinct and that a,b > 1 since otherwise
G has prime power order and hence is nilpotent. It is enough to prove that under these
circumstances, there exists a normal subgroup N <1 G that is nontrivial in the sense that
1 € N C G. Indeed, our inductive hypothesis will then imply that both N and G/N are
solvable, so G is as well.

Let H < G be a Sylow g-subgroup. Since |H| = ¢, the group H is a g-group and thus
is nilpotent. In particular, its center Z(H ) satisfies Z(H) # 1. Let g € Z(H) be nontrivial.
The centralizer C(g) thus contains H, so

|cl(g)| = GI/|Ca(g)l =p"  for some k < a.

If k=0, then g € Z(G), so Z(@G) is our desired nontrivial normal subgroup. If k£ > 1, then
instead Proposition 0.4 says that there exists a nontrivial representation V of G such that
Z(V) # 1. If V is not a faithful representation of G, then its kernel is the desired nontrivial
normal subgroup. If V' is faithful, then Z(V') # G since G is nonabelian, so Z(V') is the
desired nontrivial normal subgroup. O
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