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Abstract

We sketch the proof of the Brown representability theorem and give a few appli-
cations of it, the most important being the construction of the classifying space for
principal G-bundles.

Let G be a topological group and let CW be the homotopy category of based connected
CW-complexes. A classifying space for GG is a space BG such that for all X € CW, there
exists a bijection between the set of based principal G-bundles on X and the set [X, BG]|
of all homotopy classes of basepoint-preserving maps from X to BG. This determines the
homotopy groups of BG in the following way.

Theorem 0.1. For alln > 1, we have m,(BG) = m,—1(G).
Remark. For instance, if G is a discrete group, we deduce that BG is a K(G,1).

Proof of Theorem 0.1. A based map S™ — BG is the same as a based principal G-bundle
on S™. Via the clutching construction, this is the same as a based map S" ' — G. O

Theorem 0.1 might suggest to the reader that the following is true.
Theorem 0.2. The group G is homotopy equivalent to QBG.
Proof. Let us give two equivalent descriptions of the map f: G — QBG.

e A map f: G — QBG is the same as a map G — BG, which is the same as a based
principal G-bundle on ¥ G. There is an obvious choice of such a bundle, again arising
from the clutching construction.

e More directly, we define f: G — QBG as follows. Consider g € G. Define f(g) € QBG
to be the based loop f(g): S — BG that classifies the G-bundle on S! obtained by
gluing the ends of the trivial G-bundle on [0, 1] together using g.

To prove that f is a homotopy equivalence, we show that it induces an isomorphism on all
homotopy groups. In other words, for all n > 1 the map [S™, G] — [S™, QBG] induced by f
is an isomorphism. Now, using the clutching construction an element of [S™, G] is the same
as a principle G-bundle on S"*! i.e. an element of [S"*! BG] = [£S", BG] = [S™, QBdG).
It is easy to see that this bijection is induced by f. O

Of course, it is not obvious that a classifying space BG for G exists! There are several
explicit constructions of BG, the first being due to Milnor [M]. Our next task is to give an
abstract nonsense reason why BG must exist. The key is the following theorem, which was
first proved by Brown [Bro].

Theorem 0.3 (Brown representability). Let F': CW — Set be a contravariant functor
satisfying the following two properties.

1. Given any collection {X,} of elements of CW, we have F(VoXo) =1, F(Xa).-



2. Let X be an object of CW. Consider a cover X =Y U Z by subcomplexes such that
Y,Z,YNZ e CW. Then for ally € F(Y) and z € F(Z) that restrict to the same
element of F(Y N Z), there exists some x € F(X) that restricts to y € F(Y) and
ze€ F(Z).

Then there exists some C € CW and some ¢ € F(c) such that for all X € CW, the map
[X,C] — F(X) taking f: X — C to f*(c) is a bijection.

Remark. It is absolutely necessary for us to consider based connected CW-complexes. The
theorem is false without these assumptions; see [Bra].

Before we prove Theorem 0.3, let us give several examples of how it can be used.

Example. If G is a topological group, then we can apply Theorem 0.3 to the functor taking
X to the set of based principal G-bundles; the result is the classifying space BG for G.

Example. For all n > 1, we can apply Theorem 0.3 to the cohomology functor H" (-, A);
the result is a K(A,n) (as can be seen by plugging spheres into the statement).

Example. If T is a based connected topological space, then we can apply Theorem 0.3 to
the functor [, T]. The result is a CW-approximation for T, i.e. a based connected CW-
complex C' such that [X,C] = [X,T] for all X € CW. We remark that the image in [C,T]
of the identity in [C, C] is the usual map that arises in a CW-approximation theorem.

We now sketch the proof of Theorem 0.3.

Proof sketch of Theorem 0.3. We begin by observing that it is enough to construct C € CW
and ¢ € F(C) that satisfy the conclusion of the theorem for all spheres S™ with n > 1.
Indeed, if X € CW is arbitrary, then for x € F/(X) we can construct f: X — C satisfying
f*(c) = = by the usual “cell by cell” procedure, and similarly if f, f': X — C satisfy
f*(e) = (f")*(c) = x, then we can construct a homotopy from f to f’ cell by cell.

We will construct C' as follows. Start with Cy = {x} and ¢y the unique element of
F(Cp). Assume that C,_; and ¢,—1 € F(Cp—1) has been constructed such that for all
1 <k <n-—1, we have [S¥,C,_1] = F(S*) via pullback of ¢, ;. We will construct a
CW-complex C,, containing C,,_1 as a subcomplex together with ¢, € F(C,,) that restricts
to ¢p—1 € F(Cp—1). The complex C), will be obtained from C),_; by attaching n-cells and
(n +1)-cells, and from this it is easy to see that we still have [S*, C,,] = F(S*) via pullback
of ¢, for all 1 <k <n —1. We just have to find the right cells to attach to make this true
for S™ as well. There are two parts to this (generators and relations):

e First, we wedge on an n-sphere for each element of F(S™) to get a complex CJ,.
Using the first condition in the theorem, we can extend ¢,—1 to ¢, € F(CJ) such
that the map f,: S™ — CJ, taking S™ to the sphere representing x € F(S™) satisfies
(fz)*(c),) = . This implies that the map [S™, C]] — F(S™) is surjective.

e We now want to make it injective. Observe that the cogroup structure on S™ (the
same one that makes homotopy groups into groups) makes F'(S™) into a group. The
map [S™,C)] — F(S™) is then a group homomorphism. To construct C,, we attach
cells to CJ, to kill off the kernel. Extending ¢, over C), requires the second condition
in the theorem.



Repeating this procedure, we get an increasing sequence
ChocCicCyC---
of based connected CW-complexes. Define
C =U;2,Cy.

We now come to the final subtle point of the proof, namely constructing an element ¢ € F(C')
that restricts to ¢, € F(Cy,) for all n. The issue here is that we have not assumed any kind
of “continuity” for our functor F'. Indeed, there is a map

F(C) - lim F(Cy),

but this map need not be bijective. However, it is surjective, which is good enough for us.
To prove that it is surjective, replace C' by the telescoping collection of mapping cylinders
M(C,, — Cy41) (with the basepoints all collapsed to points so that everything is based).
This does not change the homotopy type of C'; however, we can now decompose C' as X UY,
where X is the union of the even mapping cylinders M (C2, — C2,+1) and Y is the union
of the odd mapping cylinders M (Cap4+1 — Copt2). Since we have collapsed basepoints,
X is actually the wedge of the spaces M (Cy, — Ca,41), and similarly for Y. The space
M(C,, — Cp41) is homotopy equivalent to C),41, so we can view ¢,41 as an element of
F(M(C,, — Cp41)). Using the first condition in the theorem, we can then construct
elements ¢, € F'(X) and ¢, € F(Y) restricting to the various ¢,. It is clear that ¢, and ¢,
restrict to the same element of F/(X NY') (here X NY is another wedge!), so the second
condition in the theorem allows us to glue ¢, and ¢, together to an element ¢ € F(C). O
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