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Abstract

The formation of finite time singularities in a nonlinear parabolic fourth order partial dif-
ferential equation (PDE) is investigated for a variety of two-dimensional geometries. The
PDE is a variant of a canonical model for Micro-Electro Mechanical systems (MEMS). The
singularities are observed to form at specific points in the domain and correspond to solu-
tions whose values remain finite but whose derivatives diverge as the finite time singularity
is approached. This phenomenon is known as quenching. An asymptotic analysis reveals
that the quenching set can be predicted by simple geometric considerations suggesting that
the phenomenon described is generic to higher order parabolic equations which exhibit finite
time singularity. These results suggest that MEMS devices could be constructed to perform
exotic tasks.

Keywords: Finite time singularity, MEMS, Bi-Laplace Equations, Singular Perturbation
Theory, Nanotechnology

1. Introduction

Micro-Electro Mechanical Systems (MEMS) are a combination of integrated circuits with
moving elastic components built on a miniature scale. The micro-meter and nano-meter
length-scales typical in the construction of MEMS necessitate the use of electrostatic forces
for actuation. Advances in manufacturing processes have enabled MEMS practitioners to
manipulate the interaction between elastic surfaces and electrostatic forces to fabricate a
variety of complex devices with applications in every area of science and industry [1]. In
such interactions, however, the elastic structures of the device can be overwhelmed if the
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electric forces acting on them are too strong. In such a case, an instability, called the pull-

in instability, occurs. Modelling its consequences has been a topic of recent mathematical
attention [13, 15, 16, 18, 19, 27, 20, 2, 4] and is also the purpose of this article.

In a capacitor type MEMS device, an elastic membrane is held fixed along its boundary
above an inelastic substrate. When an electric potential V is applied between these surfaces,
the upper elastic sheet deflects downwards towards the substrate. If V is small enough,
the deflection will reach an equilibrium; however, if V exceeds the pull-in voltage V ∗, no
equilibrium configuration is attainable and the top plate will touch down on the substrate.
Figure 1 shows a schematic representation of the device. A common model (c.f. [1, 3])
describing the behaviour of this device specifies that the dimensionless deflection u(x, t)
satisfies the parabolic fourth order partial differential equation

ut = −∆2u + δ∆u −
λ

(1 + u)2
, u(x, 0) = 0, x ∈ Ω, (1a)

together with the clamped boundary conditions

u = 0, ∂nu = 0, x ∈ ∂Ω. (1b)

The PDE (1) was derived in [1] via a narrow gap limit by modelling the deflecting surface as
a beam under tension being actuated by a Coulomb forcing term. The parameter δ quantifies
the relative strength of tensile and flexural forces acting on the beam while λ represents the
relative importance of electrostatic and elastic forces. Here Ω is a bounded region of R

2,
for example as shown in Fig.1. The existence of equilibrium solutions to equation (1a) with
the Navier or pinned condition u = ∆u = 0 on ∂Ω has been studied recently in [11, 12, 17].
Namely, it is known that under these boundary conditions there exists a λ∗ such that whenever
λ > λ∗, equation (1a) has no equilibrium solutions. For the clamped boundary condition (1b),
much less is known about the loss of existence of equilibrium solutions in a general Ω.

In the present work, we restrict our attention to the fourth order MEMS problem

ut = −ε2∆2u −
1

(1 + u)2
, u(x, 0) = 0, x ∈ Ω, (2)

with boundary conditions (1b). The particular form of (2) is obtained from (1a) by neglecting
the tension term ∆u (δ = 0), taking λt as a new time variable, and defining λ = ε−2.
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Figure 1: Schematic diagram of a MEMS capacitor (reproduced from [18]).

2



A recent study [13] considered the radially symmetric solutions of equation (2) in spatial
dimensions 1 and 2. The existence of a critical value ε∗ was established such that whenever
ε < ε∗, the observed solution of (2) does not attain an equilibrium and consequently u(x, t)
takes on the value −1 in a finite time tc. Correspondingly ut becomes infinite in finite time
- a phenomenon called quenching.

Further inspection of touchdown dynamics revealed the existence of a second threshold εc

such that whenever εc < ε < ε∗, the location of touchdown is unique, but when ε < εc and
in the absence of external noise, touchdown can occur at multiple points in the domain. In
the presence of noise, it is expected that one of these possible touchdown locations would be
randomly selected by the dynamics. For example, when Ω = [−1, 1] and ε < εc ≈ 0.066, the
surface described by the solution of (2) touches down at two points x±

c (ε) symmetric about
the origin, while for Ω ≡ {x ∈ R

2, |x| ≤ 1} with ε < εc ≈ 0.0566, radially symmetric solutions
of (2) touch down on a ring of inner points with radius rc(ε). The singular perturbation
analysis carried out in [13] provided the following predictions for x±

c (ε) and rc(ε) based on
the touchdown time tc:

x±
c (ε) ∼ ±

[

1 − ε
1

2 f(tc)
1

4 [η0 + f(tc)η1 + f2(tc)η2]
]

, f(t) = 1 − (1 − 3t)
1

3 (3a)

rc(ε) ∼ 1 − ε
1

2 f(tc)
1

4 η0 − εf(tc)
1

2 η 1

4

− ε
3

2 f(tc)
3

4 η 1

2

+ · · · , (3b)

where the values of the coefficients ηj in these expressions are determined quantities.
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(a) Strip domain and ε = 0.02.
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(b) Unit disc and ε = 0.02.

Figure 2: Full numerical (solid) and asymptotic (dashed) solutions of (2) for the strip (Panel (a))
and the unit disc under radially symmetric conditions (Panel (b)). The curves represent solutions
for increasing times from top to bottom with the propagating boundary layer visibly moving inwards
as time increases. [ Panel (a) reproduced from [13]]

The singular perturbation analysis described above additionally reveals that the underlying
cause of the multiple touchdown phenomenon is that the solution of (2) has a non-monotone
profile in a stretching boundary layer in the vicinity of the boundary points, as illustrated in
Fig. 2.

In the present work, we investigate the quenching set of equation (2) for a variety of bounded
regions Ω ⊂ R

2 in the limit as ε → 0. In this particular limit, the dynamics of the system
may be approximated by a solution comprised of a flat central region interior to Ω coupled
to a stretching boundary layer propagating normally from each boundary point toward the
interior of Ω.

3



In the limit ε → 0, an asymptotic analysis indicates that a point x ∈ Ω is a candidate for
touchdown if there are multiple boundary points y ∈ ∂Ω for which the straight line between
x and y meets ∂Ω normally at y. At such an interior point x, deformations due to the
stretching boundary layer associated with each point y can meet constructively and make
the solution near x enter the basin of attraction of a stable self-similar quenching solution
(c.f. §5) more quickly. However, when ε is sufficiently small there is no opportunity for the
boundary layers to interact constructively anywhere in Ω before touchdown, in which case
the singular points are selected by a combination of second order effects and numerical noise,
leading to symmetry breaking and/or instabilities. Consequently, the asymptotic predictions
are shown to be very effective in several non-degenerate cases and moderately effective on
some degenerate cases.

The outline of the paper is as follows. In §3, we construct a two term asymptotic solution to
(2) in the limit ε → 0 along the lines described previously. The validity of this asymptotic
description is demonstrated for a variety of test regions Ω in §4. To obtain numerical solutions
of (2) for a variety of regions, we use an adaptive finite element method with dynamic time-
stepping close to touchdown. See supplemental material for a detailed description of the
numerical algorithms. The leading order term of the expansion is shown to accurately predict
the touchdown set for many non-degenerate regions, while in some degenerate examples the
touchdown set is selected by effects that go beyond the leading order approximation and
such considerations are included in our discussion. In §5 we analyze the local behaviour of
solutions to (2) as the finite time singularity is approached. In §6 a summary of the main
findings is presented along with a discussion of possible future work emanating from this
study.

2. Numerics

Numerical simulations of equation (2) with boundary condition (1b) were performed in MAT-
LAB, with a finite element method. The domain Ω is approximated by a mesh consisting of
triangular cells, the size of which can be spatially adapted to maintain numerical accuracy
in regions where touchdown occurs. This is done by means of a double simulation process.
In the first simulation, an estimate of touchdown points is created. The grid is then refined
several times around those points, using a newest-vertex-bisection rule on the set of elements
that are close to the first estimates of touchdown points. The simulation is then run again
on the refined grid. Time stepping is performed dynamically to guarantee accuracy close to
touchdown.

We assume we have defined a triangulation Th of a two-dimensional polygonal domain Ω̃ that
approximates Ω, in addition to the space Vh of P1 finite elements which vanish on ∂Ω̃:

Vh = {uh ∈ C(Ω) : uh|∂Ω̃
= 0, uh|T ∈ P1 ∀T ∈ Th},

where P1 is the set of bivariate linear polynomials. A basis of Vh is easily constructed by
numbering the set of vertices of the triangulation {p1, . . . ,pJ} and considering the functions
ϕi ∈ Vh such that ϕi(pj) = δij . Associated to these functions, we can construct the stiffness
matrix (which is the natural approximation of the −∆ operator with Dirichlet boundary
conditions)

Sij =

∫

Ω

∇ϕi · ∇ϕj
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and the lumped mass matrix

Mij = δij

∫

Ω

ϕi.

As an approximation of ∆2, we will consider the matrix

∆2 := SM−1S,

which is sparse, symmetric, positive definite and relatively easy to compute. This discretiza-
tion is a slight variant of the bilaplacian approximation of Ciarlet and Raviart [7] (the original
method uses the full mass matrix instead of its lumped approximation, making the matrix ∆2

not directly computable). This method also appeared in [8] quoting [9] as the original source,
but its approximation properties were only recently clarified in the very detailed analysis of
[5].

To approximate u(x, t), we first assume that we have constructed a sequence of time steps

0 = t0 < t1 < t2 < . . . tn < . . .

and we let δn := tn+1 − tn. We approximate u(·, tn) ≈ un
h ∈ Vh for all n ≥ 0 and we identify

un
h with its set of coefficients un := (un

1 , . . . , un
J ) so that

un
h =

J
∑

j=1

un
j ϕj un

j = uh(pj , tn) ≈ u(pj , tn).

Discretization of the parabolic equation

∂tu + ε2∆2u + φ(u) = 0 φ(u) :=
1

(1 + u)2

with homogeneous Dirichlet (clamped) boundary conditions

u|∂Ω = ∂nu|∂Ω = 0 ∀t

is carried out using a Crank-Nicholson scheme for the linear part, a 2-step Adams-Bashforth
scheme for the non-linear term, with lumped mass approximation of the identity operator in
space and pointwise interpolation of the function φ. A time-step of the resulting method can
be described as

1

δn
M(un+1 − un) +

ε2

2
∆2(u

n+1 + un) + (1 + qn)Mφ(un) − qnMφ(un−1) = 0 n ≥ 1,

where in this equation we have employed the notation

qn =
δn

2δn−1

φ(v)i = φ(vi).

Note that M is a diagonal matrix. Its effect on the time-stepping system can be understood as
a rescaling of the equations to take into account the sizes of the elements around nodal points.
A variational formulation of equation (2) would lead to a sparse non-diagonal mass matrix:
the lumped mass version that we are using concentrates the values of the elements of the exact
mass matrix in the diagonal, thus making its inversion straightforward. For the first time

5



step, we apply a simple predictor-corrector strategy, first using a Taylor approximation that
is further corrected with a linearly implicit Crank-Nicolson step. Starting at u(·, 0) ≡ 0, since
∂tu(·, 0) ≡ −φ(0) = −1, the approximation u(·, t1) ≈ −δ0 can be discretized by constructing
the vector u1

◦ = −δ0(1, . . . , 1). This first guess is then corrected with

1

δ0

Mu1 +
ε2

2
∆2u

1 +
1

2
M(φ(u1

◦) + φ(0)) = 0.

The matrices
M

δn
+

ε2

2
∆2

are sparse, symmetric, positive definite. The time-stepping strategy is complemented with a
dynamic choice of the time step [28]. Given a starting parameter δτ , we construct

δn := δτg(un), where g(v) := min
j

|1 + vj |
3.

Note that this is the result of a forward Euler discretization at fixed time-step δτ of the
equation

dt

dτ
= min

x∈Ω
|1 + u(x, t)|3,

preceding the implicit time-stepping method for the associated PDE. Integration is carried
out until

min
j

un+1
j < −1 + δtol

for a predetermined tolerance δtol.

3. Asymptotic description of small time solutions

If we assume that the one-dimensional features of solutions to (2) in small time and for small
ε can be extended to the two-dimensional problem, we anticipate a solution u(x, t) of (2)
that is flat in the interior of Ω coupled to a boundary layer propagating inwards from the
boundary ∂Ω. The uniform interior solution is determined from (2) by neglecting the ε2∆2u
term and considering the resulting problem:

ūt = −
1

(1 + ū)2
, ū(0) = 0; ū = −1 + (1 − 3t)1/3. (4)

To analyze the propagating boundary layer, we first introduce an orthogonal coordinate
system ρ, s, where ρ > 0 measures the distance from x ∈ Ω to ∂Ω, whereas on ∂Ω the
coordinate s denotes arc-length. In this co-ordinate system, (2) becomes

ut = −ε2

(

∂ρρ −
κ

1 − κρ
∂ρ +

1

1 − κρ
∂s

(

1

1 − κρ
∂s

))2

u −
1

(1 + u)2
, x ∈ Ω; (5a)

u = 0, uρ = 0, ρ = 0, (5b)

where κ(s) is the curvature of ∂Ω. The vicinity of the boundary is now rescaled with the
variables

u(x, t) = f(t) v(z) z =
ρ

φ(t; ε)
, φ(t; ε) = ε1/2f(t)1/4, f(t) = 1 − (1 − 3t)1/3, (6)
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to arrive at

ft ·
(

v −
z

4
vz

)

= − φ4

(

1

φ2
∂zz −

1

φ

κ

1 − κφz
∂z +

1

1 − κφz
∂s

(

1

1 − κφz
∂s

))2

v

−
1

(1 + f · v)2
.

(7)

The expansion
v(z) = v0(z) + φ v1(z) + · · · (8)

is substituted into (7) and terms equated to find at leading order that

v0zzzz −
z

4
v0z + v0 = −1, z > 0; v0 = v0z = 0, z = 0; v0 → −1, z → ∞. (9)

This leading order solution is the same as in the one-dimensional case [13] and has no depen-
dence on the curvature of the boundary; it depends only on the (perpendicular) distance from
∂Ω. The profile v0(z) is numerically obtained by solving (9) on the finite interval [0, L] with
boundary conditions v0z(L) = v0zzz(L) = 0 for L sufficiently large to ensure convergence.
The obtained profile is shown as a solid curve in Fig. 3.
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Figure 3: The profile v0(z), solution of (9) is displayed by the solid line, while v̄1, the
solution of (11) is displayed by the dotted line.

At the next order we have the following problem, which involves the curvature κ(s) of the
boundary,

v1zzzz −
z

4
v1z +

5

4
v1 = 2κ(s)v0zzz , z > 0;

v1 = v1z = 0, z = 0; v1 → 0, z → ∞.

(10)

Equation (10) is, as expected, consistent with the equation obtained in [13] for second-order
corrections to the asymptotic profile of radially symmetric solutions on the unit disk. Its
solution can be decomposed by writing v1 = κ(s)v̄1(z) where

v̄1zzzz −
z

4
v̄1z +

5

4
v̄1 = 2v0zzz, z > 0;

v̄1 = v̄1z = 0, z = 0; v̄1 → 0, z → ∞.

(11)
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The solution of (11) is displayed (dashed curve) in Fig. 3.

The previous analysis indicates that the solution of (2), in the limit of small φ(t; ε) = ε1/2f1/4,
consists of a flat solution ū(t) in the region interior to Ω, coupled to a boundary layer which
extends inwards normally to the boundary ∂Ω. Using this theory, we aim to predict the
touchdown set for various two-dimensional domains. For certain geometries considered, the
boundary admits the parametrization

∂Ω = {(x1, y1) = (r(θ) cos θ, r(θ) sin θ) | 0 < θ ≤ 2π}, r(θ) = 1 + δ χ(θ), (12)

where χ(θ) is a 2π periodic function. When δ is small, (12) describes a family of almost

circular domains. To construct the solution to (2) at a point x ∈ Ω, using the previous
asymptotic formulation, it is first necessary to determine all boundary points y ∈ ∂Ω such
that the straight line joining x and y meets the boundary orthogonally at y. The solution at
x ∈ Ω is then constructed by linearly superimposing the expanding boundary layer solution
described by (8) originating from each of these boundary points and then subtracting the far
field behaviour. As an example, suppose for the point x ∈ Ω there are n boundary points
{y1, . . . yn} ∈ ∂Ω such that the straight line between x and yi meets ∂Ω orthogonally at yi,
then the solution u(x, t) is given by

u(x, t) ∼ ū(t)+f(t)

[

n
∑

i=1

v0

(

|x − yi|

φ(t; ε)

)

+ φ(t; ε)κ(θi) v̄1

(

|x − yi|

φ(t; ε)

)

+ 1

]

, φ(t; ε) = ε
1

2 f(t)
1

4

(13)
where θi = arg(yi) and for domains Ω with boundary (12),

κ(θ) =
r2 + 2r2

θ − rrθθ

(r2 + r2
θ)

3/2
.

3.1. Skeleton and touchdown set

From the considerations discussed in the previous section and the form of (13), it is clear
that the distances si = |x− yi| play an important role in determining whether or not a given
point x ∈ Ω will be a touchdown point. Indeed, based on the analysis of the one-dimensional
problem [13] summarized previously, it is reasonable to assume that touchdown is more likely
to occur on the set of points x ∈ Ω where boundary layer contributions minimize the value
of u (i.e. make it closer to −1). In what follows, we use this assumption, together with the
first order approximation (13), to predict the location of touchdown points for a wide range
of domains Ω and then compare our predictions to the results of numerical simulations of
(2). As a first approximation, we therefore define the set of possible touchdown locations as

TΩ =
{

x ∈ Ω







s(x) = η0 φ(tc(ε); ε)

}

,

where s(x) = d(x, ∂Ω) denotes the shortest distance of x ∈ Ω to the boundary ∂Ω, η0 ≈ 3.7384
is the global minimum of the profile v0(η), and tc(ε) is the touchdown time of (2). The
asymptotic predictions formed in §3 suggest that points in TΩ that are equidistant from
two or more boundary points yi play a special role, since the terms in the sum of (13)
constructively interact to lower the value of u(x, t) at those points. Recall that the points
yi ∈ ∂Ω are such that the straight lines l(x, yi) through x and yi intersect ∂Ω orthogonally.
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Given a domain Ω, we therefore also define its skeleton SΩ as the set of points x ∈ Ω which
are equidistant to two or more such boundary points yi. In a more concise notation,

SΩ =
{

x ∈ Ω







∃y1 6= y2 ∈ ∂Ω, d(x, y1) = d(x, y2), l(x, y1) ⊥ ∂τ (y1), l(x, y2) ⊥ ∂τ (y2)

}

.
(14)

Here ∂τ (y) is a unit vector tangent to the boundary ∂Ω at y ∈ ∂Ω. For small values of ε,
small values of s(x), x ∈ SΩ, are of interest. As explained previously, for touchdown to occur
at x ∈ SΩ, the quantity s(x) should be such that s(x) = η0 φ(tc(ε); ε), i.e. x should also
belong to TΩ.

As t increases, the boundary layer extends from ∂Ω toward the interior of Ω and the minimum
of u(x, t), as described by (13), decreases toward −1. The points where u(x, t) attains its
minimum value however depend on whether or not the boundary layer has already reached
the skeleton SΩ. Consequently, there is a crucial distinction to be made between the two
cases d(S, ∂Ω) = 0 and d(S, ∂Ω) > 0. For a given value of ε and a given domain Ω, we define
ts as the smallest value of t for which there exists x ∈ SΩ such that s(x) = η0 φ(t; ε),

ts = min
{

t







s(x) = η0 φ(t; ε), x ∈ SΩ

}

.

This is the time at which the boundary layer that extends toward the interior of Ω first
reaches SΩ. If ts = 0, then d(S, ∂Ω) = 0 and we expect the touchdown points to be in SΩ.
However, if ts is bounded away from 0, then for t < ts, the first order solution v0 leads to
an approximation of u(x, t) that reaches its minimum value on a closed curve ω(t), which is
at the distance η0 φ(t; ε) from the boundary ∂Ω. If touchdown occurs before t = ts, i.e. if
tc < ts, the touchdown points will be selected among points in ω(tc) by the correction v1 to
v0, which is curvature dependent. If on the other hand ts < tc, touchdown occurs after the
boundary layer reaches SΩ and the first order approximation predicts that the touchdown
points will be selected among those points in SΩ for which s = η0 φ(tc(ε); ε). In other words,
if we define τd as the touchdown set, we have

τd(Ω) =

{

TΩ ∩ SΩ if ts ≤ tc
TΩ ∩ CΩ if ts > tc

,

where CΩ denotes the set of points in ω(tc) that are favoured by curvature effects. Figure 4
illustrates how ω(t) and the skeleton S are defined.
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ω
(t)

(a) ω(t)

ω
(t)

(b) x ∈ S

Figure 4: The two structures, ω(t) and S . (a) The set ω(t) consists of the points in Ω that are at the
distance η0 φ(t; ε) from ∂Ω. (b) The skeleton S is the set of points in Ω that are equidistant to two
or more points on ∂Ω such that the line segments between x and those points meet ∂Ω orthogonally.

In all of the above situations, if the predicted touchdown set τd(Ω) is degenerate, in the
sense that symmetries of the domain Ω lead to a set τd(Ω) that contains more than one
point, randomness in the initial conditions or in the dynamics is expected to select one of
the possible touchdown locations. In other words, we do not expect solutions that have
the same symmetries as τd(Ω) to be stable. Finally, since the above is based on a series of
approximations, the actual touchdown location is expected to be in the vicinity of points in
τd(Ω). From a physical point of view, using an initial condition perturbed by small amplitude
noise is an effort to mimic the inherent variability in the material properties of the deflecting
surface and to understand the touchdown dynamics of (2) in its presence.

In what follows, we illustrate these ideas for various domains Ω. We first compare the
predictions of the small-time asymptotic description with numerical simulations of (2) in the
case of a semicircle of radius 1. In this situation, ts = 0 and SΩ can be calculated analytically.
The leading order asymptotic theory predicts that as ε is increased, the touchdown points
lie on SΩ and satisfy s(x) ≃ η0 φ(tc(ε); ε). Numerical results are in good agreement with this
prediction, particularly when ε is small.

Next, the asymptotic theory of §3 is applied to the case where Ω is the disk of radius 1. For
this example, SΩ consists of one point, the centre of the disk, and ts is therefore bounded
away from zero. As a consequence, we see that for t < tc < ts, the numerical solution
is minimum on ω(t), which is a circle of approximate radius r(t) = 1 − η0 φ(t; ε). The
touchdown set τd(Ω) is equal to ω(tc) since the curvature of the boundary is constant, and
is therefore a circle of radius r(tc). Using an initial condition given by u(x, 0) = gη(x) where
gη is a uniformly distributed random variable on [−η, 0] with η small, we see that different
realizations of u(x, 0) lead to different touchdown points on τd(Ω). Moreover, we observe
an instability of the radially symmetric solution in the azimuthal direction. More precisely,
unstable modes, initially seeded by random initial conditions, grow exponentially in time,
leading to an instability of the solution along ω(t). When the resulting changes in u(x, t) are
strong enough, nonlinearities come into play and locally drive the solution to touchdown.
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Our third example is an ellipse. As for the disk, ts > 0, but SΩ now consists of the section of
the major axis of the ellipse between the two centres of curvature of its boundary. For tc < ts,
touchdown occurs on the major axis as opposed to anywhere on ω(tc) because of curvature
effects. For tc > ts, touchdown occurs, with equal probability, at one of two points in SΩ

symmetric with respect to the minor axis of the ellipse. In the absence of noise, touchdown
would occur at these two points simultaneously.

The next example is the stadium, for which SΩ is a straight line joining the centres of the
two semicircles that, together with a central rectangular region, form the domain Ω. This is
an interesting example for two reasons: first, SΩ is “far away” from the boundary ∂Ω and
as a consequence there is a reasonably large range of ε values for which tc < ts. In this
case, the instability along ω(t) may lead to touchdown at any point along ω(tc), depending
on the intensity of the initial noise. However, for sufficiently small noise (or alternatively
sufficiently large values of ε while the initial amount of noise is kept constant), it is observed
that τd(Ω) consists of two arcs in the interior of Ω, which can be numerically identified by
running simulations of (2) with different noisy realizations of the initial conditions. Second,
the curvature is discontinuous at the points of ∂Ω that connect the rectangular region of the
stadium with the semicircles. We believe that, when the initial noise is small enough for
this effect to be observed, it is this discontinuity in κ that determines the location of the
endpoints of the two arcs that comprise τd(Ω).

Our fifth example, a potato-shaped domain, allows us to test our theory on a domain Ω that
does not have any particular symmetry. In this case, the skeleton is calculated numerically
and we observe that touchdown occurs at one point, which moves along SΩ as ε varies. We
conclude with a brief summary of our approach, which is illustrated on two other star-shaped
domains, a gingerbread man and a square.

4. Application of the asymptotic theory

The theory developed in §3 is now demonstrated on a variety of test regions to illustrate its
ability to predict qualitative and quantitative features of the touchdown set of (2).

4.1. Example 1: Semicircle

In the semi-circle case where Ω = {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1, x2 ≥ 0}, an analytical

parameterization of the skeleton S is available. The simple geometric steps required to
obtain S are displayed in Fig. 5(a), and lead to

S =

{(

cos θ

1 + sin θ
,

sin θ

1 + sin θ

)
















0 < θ < π

}

. (15)
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(a) Construction of S for semicircle.
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(b) Touchdown points coincide with S .

0 0.005 0.01 0.015 0.02 0.025 0.03
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

c

ε

(c) Comparison of analytical and numerical
touchdown point predictions.
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(d) Profile just before touchdown for ε =
0.02.

Figure 5: Panel (a) shows a schematic diagram indicating how to parameterize the skeleton S (dotted
curve) of a semicircle. Panel (b) shows numerically obtained touchdown points for various values of
ε (solid dots) lying directly on top of the skeleton S (dashed line). Panel (c) displays a comparison
of numerical (solid dots) and asymptotic (dashed) predictions of the touchdown points location as ε

varies. Panel (d) displays the solution profile just before touchdown (minx∈Ω u = −0.99) for ε = 0.02.

In this example ts = 0 and the leading order analysis of §3 predicts that touchdown only
occurs on S. In numerical experiments shown in Fig. 5(b), touchdown points (solid dots)
are observed to lie on the skeleton (dashed curve), in agreement with the theory. The initial
conditions were chosen to be u = 0 at t = 0 and the simulation was run for values of ε
between 0.00001 and 0.03. For each value of ε the location of the global minimum in each
half of the semi-circle was recorded along with an estimate for tc(ε) (details of how tc(ε) is
estimated are given in §5).

The next test is to predict which point(s) of S are selected for touchdown for a given ε. For
a fixed value of ε, an approximation for the touchdown set is formed by finding the points
on S whose distance to the boundary is s = η0φ(tc(ε); ε), which corresponds to points where
multiple depressions from the boundary meet constructively, as explained previously. A short
calculation therefore provides the leading order prediction

x±

1c(ε) =

{

±
√

1 − 2η0φc(ε), η0φc(ε) ≤ 1/2

0, η0φc(ε) ≥ 1/2
, φc(ε) = φ(tc(ε); ε) (16)

for the two touchdown points and also gives an estimate of εc, the threshold for multiple point
touchdown as the implicit solution of 2η0φc(εc) = 1. In Fig. 5(c), a comparison between the
asymptotic prediction (16) and results of numerical simulations is displayed, which shows
good agreement for small ε, but less favourable agreement when ε ≈ εc. However, this is to
be expected since when ε ≈ εc, the touchdown points are very close together (see Fig. 5(d)),
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and so the assumptions underpinning the asymptotic analysis leading to the prediction (16)
are violated.

4.2. Example 2: Disk

For a disc of radius 1 centred at the origin, SΩ = {(0, 0)} and so ts > 0. The leading
order theory predicts that touchdown should occur on ω(tc(ε)), which is a circle of radius
1 − η0φ(tc(ε); ε). Indeed, experiments show that in the absence of initial noise, radially
symmetric solutions of (2) touchdown simultaneously on all points of ω(tc(ε)) when ε < εc.

However, when non-radially symmetric solutions are considered the solution along ω(t) is
not necessarily stable, and touchdown can therefore occur at one or more isolated points,
should the radial symmetry be broken. Fig. 6(a) shows the profile close to touchdown for a
simulation of (2) initialized with small random noise. This solution touches down at a single
point. In Fig. 6(b), we show the touchdown locations (solid dots) for 100 realizations of
(2) initialized with uniformly distributed random data on the interval (−0.005, 0), for values
ε = 0.005, 0.015, 0.035. The dashed curves indicate the set ω(tc(ε)) for the different values of
ε, where in each case tc(ε) has been numerically obtained from the simulations of (2) with
zero initial conditions in the absence of noise. In the presence of noise, touchdown therefore
occurs at a single point of ω(tc).

(a) Profile with single point touchdown, ε =
0.01.
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(b) 100 realizations for each ε = 0.005,
0.015 and 0.035.

Figure 6: Left Panel: the profile close to touchdown on a disc is shown for a simulation of (2)
initialized with small noise and ε = 0.01. Right panel: touchdown locations (small dots) for 100
realizations and ε = 0.005, 0.015, 0.035 are shown overlaid on ω(tc(ε)) (dashed lines).

4.2.1. Azimuthal instability along ω(t)

The dependence of the solution u of (2) on the polar angle θ, along the ring ω(t) is now
investigated. To do this, the numerical solution is interpolated onto a polar grid, which
readily enables the temporal evolution of u on ω(t) to be followed. In Fig. 7, the deviation
along ω(t) of the solution u(r(t), θ, t) from its average ū(r(t), t) in the azimuthal direction,
is displayed for the case ε = 0.0037 and small initial noise of amplitude 10−4. Here, r(t) is
the radius of ω(t), numerically estimated as the distance from the origin of the point where
u reaches its minimum value at time t.

The small scale noise of the initial condition is observed to be smoothed out by the initial
dynamics of the system. However, some of the modes seeded by the noise grow exponentially,
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indicating the presence of an instability in the θ direction. As u(r(t), θ, t) deforms in the az-
imuthal direction, nonlinear terms “pull down” the solution in those regions where u(r(t), θ, t)
is closer to −1, thereby leading to touchdown at a single point along ω(tc). Instabilities of
line singularities have also been observed in rupture problems for thin film equations (c.f.
[22]).

Figure 7: Plot of u(r(t), θ, t) − ū(r(t), t) as a function of time t and azimuthal variable θ, where
r(t) is the radius of ω(t) and the bar denotes average in θ. This figure illustrates the presence of an
instability along ω(t), leading to a symmetry breaking of the solution in the azimuthal direction θ,
and ultimately to touchdown at a single point on ω(tc).

4.3. Example 3: Ellipse

The skeleton of an elliptical domain Ω of equation
(x1

a

)2

+
(x2

b

)2

≤ 1, with a > b, may

be found analytically as follows. The straight line between a point x ∈ R
2 of coordinates

(x1, x2) and a point on the boundary of Ω with coordinates (a cos θ, b sin θ) is perpendicular
to ∂Ω provided that

(b2 − a2) sin θ cos θ + ax1 sin θ − bx2 cos θ = 0, θ ∈ [0, 2π). (17)

A point x ∈ Ω is in SΩ if there exists two distinct points y1 = (a cos θ1, b sin θ1) and y2 =
(a cos θ2, b sin θ2) on the boundary of Ω that satisfy (17). Such a condition defines a linear
system for x1 and x2, with determinant

δ = ab sin(θ2 − θ1).

Since θ1 6= θ2, the determinant δ vanishes only when |θ2 − θ1| = π. After substituting the
condition |θ2 − θ1| = π into equation (17), it follows that

x1 = x2 = 0, θ1 ∈
{

−
π

2
, 0,

π

2
, π

}

. (18)
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For δ 6= 0, the values of x1 and x2 are given by:

x1 =
a2 − b2

b

sin θ1 sin θ2 (cos θ2 − cos θ1)

sin(θ2 − θ1)
,

(19)

x2 =
a2 − b2

a

cos θ1 cos θ2 (sin θ2 − sin θ1)

sin(θ2 − θ1)
.

When (19) is substituted into the condition d(x, y1) = d(x, y2), we obtain

0 = (b2 − a2) (sin θ1 − sin θ2)

(

sin θ1 + sin θ2 + 2
cos(θ1 − θ2)

sin(θ1 − θ2)
(cos θ1 − cos θ2)

)

. (20)

which is equivalent to either

x1 = 0, x2 =
b2 − a2

b
sin θ1, θ2 = π − θ1; (21)

x1 =
a2 − b2

a
cos θ1, x2 = 0, θ2 = −θ1. (22)

Points x whose coordinates are given by (18) are such that d ≡ d(x, y1) = d(x, y2) satisfies
d = a or d = b. Points x satisfying (21) are such that

d2 = a2

(

1 − sin2 θ1

(

1 −
a2

b2

))

, (23)

which implies a ≤ d ≤ aa
b . Finally, points x whose coordinates satisfy (22) are such that

d2 = b2

(

1 − cos2 θ1

(

1 −
b2

a2

))

, (24)

which implies b b
a ≤ d ≤ b. A comparison of expressions (23) and (24) reveals that under

the assumption a > b, the skeleton points of (22) correspond to values of d smaller than
those of (21). The asymptotic theory of §3 can now be applied to predict the location(s)
xc(ε) of touchdown by seeking points in the skeleton with d = η0φ(tc(ε), ε). Note that if
b b

a ≤ η0φ(tc(ε), ε) ≤ b, then touchdown is predicted to occur on the skeleton and equation
(24) can be rearranged for cos θ1 and x1c(ε) obtained from (21). If η0φ(tc(ε), ε) < b2/a, then
touchdown is predicted to occur away from the skeleton and to leading order on ω(tc(ε)).
However, the boundary of the domain attains its global maximum of curvature at points
(−a, 0), (a, 0) and so points along the major axis of the ellipse will receive a more negative
contribution from terms in (13) and therefore touch down more quickly. In summary, a
leading order approximation of the touchdown points based on the asymptotic theory of §3
is given by

x±

1c(ε) =























±(a − η0φc), η0φc ≤ b2/a;

±

√

(

a2

b2
− 1

)

(b2 − η2
0
φ2

c), b2/a ≤ η0φc ≤ b

0, b ≤ η0φc

; x±

2c(ε) = 0. (25)
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In (25), the expression for x±

1c(ε) is a piecewise continuous function of ε and φc = φ(tc(ε), ε).
Figure 8 shows simulated profiles with touchdown on ω(tc(ε)) and S, as well as the skeleton
S. The bottom right panel shows a comparison between numerically observed touchdown
locations and the predictions of the leading order theory. As expected, the agreement is very
good for small values of ε.

(a) Profile close to touchdown, ε = 0.01
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(b) Profile close to touchdown, ε = 0.05
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(c) Domain with S
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(d) Comparison of analytical (dashed) and
numerical (solid dots) touchdown points.

Figure 8: Panels (a) and (b) show touchdown away from and on S respectively, in the case of an
elliptical domain. The profiles shown are for ε = 0.01 and ε = 0.05 respectively and correspond to
minx∈Ω u = −0.99. Panel (c) shows the skeleton S for the ellipse with the colouring of each x ∈ S

indicating the distance to the closest contributing boundary points with red being larger and blue
lower. Panel (d) shows a comparison of the analytical (dashed) prediction for x±

1c
given by (25) and

the numerically obtained touchdown points (dots). The vertical line indicates the border between
touchdown away from and on S .

4.4. Example 4: Stadium

The stadium domain considered in this example is the interior of the region formed by joining
two semicircles of unit radius on either end of a rectangle with side-lengths 1 and 1.5. The
skeleton of this domain consists of the line segment along the y-axis joining the centres of
the two semicircles. With our choice of coordinates, the end points of S have coordinates
(0, 0) and (1.5, 0) (see dashed curve of Fig. 9). In this case ts > 0, and so for tc(ε) < ts,
the asymptotic theory developed in §3 predicts touchdown on the set ω(tc(ε)). For the
stadium, this set has the shape of a smaller stadium, located at a distance η0φ(tc(ε), ε) from
the boundary ∂Ω. However, numerical simulations initiated with zero initial conditions and ε
small enough so that tc(ε) < ts, indicate touchdown at two isolated points along the horizontal
axis, as opposed to anywhere on ω(tc(ε)).
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This example is therefore interesting because the asymptotic theory of §3 does not capture the
touchdown properties of (2) due to a combination of factors not included in the leading order
theory. In the presence of initial noise, the touchdown location is expected to be selected as
the result of a competition between the instability along ω(t) (as in the disc case) and higher
order effects. For initial noise of sufficiently strong magnitude, touchdown should thus be
able to occur anywhere on ω(tc(ε)). This is illustrated in Fig. 9, in which the touchdown
location is shown for the results of several hundred simulations of (2), for five different values
of ε. In each case, the value of ε is such that tc(ε) < ts, and touchdown is recorded at a single
point only. We see that for the smallest value of ε (outer curve), the 200 realizations of (2)
initialized with random data allow us to recover most of ω(tc(ε)). Due to corrections that
depend on curvature, touchdown is however more likely to occur on the semicircular sections
of ω(tc(ε)). Figure 9 confirms this expectation, but also shows that for larger values of ε,
points on the semicircular sections of ω(tc(ε)) that are closer to the stadium axis appear to be
preferred touchdown locations. We believe that this is a consequence of the discontinuity in
curvature at those points of ∂Ω where the rectilinear and semicircular sections of the domain
boundary meet; as the effect of the noise diminishes (i.e. as ε increases), the touchdown set
depends more strongly on curvature effects and becomes confined to two arcs of a circle.
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Figure 9: Solid dots represent touchdown points inside the stadium for various values of ε. From
inside out, ε = 0.01, 0.005, 0.0025, 0.001, 0.0005. The magnitude of the initial noise (10−4) is the
same for all realizations of initial conditions and all values of ε.

4.5. Example 5: Potato

In this example, the touchdown set is investigated for a domain with no symmetries. The
domain is the region interior to the parameterized boundary

∂Ω = {(x1, y1) = (r(θ) cos θ, r(θ) sin θ) | 0 < θ ≤ 2π}, r = 1 + 0.3 (cos θ + sin 2θ). (26)

We whimsically refer to this domain as the potato due to its appearance which is displayed
in Fig. 10(a), along with its numerically obtained skeleton, S. The colouring of x ∈ S in
Fig. 10(a) indicates the distance to the nearest boundary points which contribute to x ∈ S
with red being larger and blue lower (c.f. (14) for the definition of boundary contributions).
According to the asymptotic theory of §3, touchdown should occur at the point of largest
curvature on ω(tc(ε)) for small values of ε, and on S when ε is such that tc(ε) > ts. This is
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confirmed by the simulations of Fig. 10(b), which show the touchdown points observed for a
range of ε values between 0.0025 and 0.150, with zero (and thus noiseless) initial conditions.
For tc(ε) > ts, the touchdown location on S jumps from the left side of S to its right side as
ε increases above a critical value numerically estimated at εp ≈ 0.04855. Why this happens
may be understood from the simulations of Fig. 11(a-c), which show the solution u(x1, x2, t)
near touchdown for values of ε below, near, and above εp respectively. In all cases, the profile
of u has two minima, but their relative depths depend on ε, so that touchdown occurs at the
location of the left minimum for ε < εp and at the location of the right minimum for ε > εp.
When ε = εp, touchdown can occur simultaneously at two points in the absence of noise as
suggested by Fig. 11(b).
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(a) Domain with Full Skeleton
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(b) Touchdown points with partial
skeleton.

Figure 10: Panel (a): Numerically obtained skeleton for the potato domain with blue indicating small
and red larger distances. Panel (b): numerically obtained touchdown set indicated with coloured
dots where blue corresponds to small and red large values of ε. The arrows point in the direction of
increasing ε values. For comparison, the portion of S associated with smaller values of s = d(x, ∂Ω) is
shown as a solid black line.
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(a) ε = 0.047 (b) ε = 0.04915

(c) ε = 0.055
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(d) Minima of u and touchdown loca-
tion

Figure 11: Panels (a)-(c) show the profile of u for ε below, near, and above εp ≈ 0.04855, respec-
tively. Panel (d) shows the location of the two minima of u, the touchdown point being marked
with a cross and the other minimum with a circle.

4.6. Summary

In this section, we summarize our approach to predict the touchdown set of (2) for general,
star-shaped geometries. To infer the touchdown set from the asymptotic theory of §3, the
first step is to construct the skeleton S for the domain Ω. If S touches ∂Ω, ts = 0; if not,
ts > 0. In the latter case, we predict touchdown on ω(tc(ε)) for tc(ε) < ts and on S when
tc(ε) > ts.

When tc(ε) < ts, touchdown typically occurs at a single point on ω(tc), selected by curvature
effects as well as by any long-range instability that can break the translational symmetry
along ω(t). When tc(ε) > ts, touchdown occurs on S.

If S is invariant under some symmetry, the possible touchdown set is typically a collection
of points also invariant under that same symmetry. Touchdown generically occurs at one
of these points, selected by randomness in the initial conditions or numerical noise. In the
absence of symmetry breaking effects however, touchdown could occur simultaneously at all
of the points in the touchdown set. As an example, we consider the gingerbread man domain
Ω defined as the region enclosed by the curve

∂Ω = {(x1, y1) = (r(θ) cos θ, r(θ) sin θ) | 0 < θ ≤ 2π}, r(θ) = 1 + 0.2 cos 5θ. (27)

The partial skeleton, such that s = d(x, ∂Ω) < 0.8, is displayed in Fig. 12(a). We see that the
portion of S corresponding to small s values does not touch ∂Ω and that S has, as expected,
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a fivefold symmetry. In the absence of noise and with ε large enough for touchdown to occur
on S, touchdown may occur at five points simultaneously, provided the numerical grid has
the same symmetry as Ω. This is illustrated in Fig. 12(b), which shows the solution of (2)
for ε = 0.02 and infx∈Ω u(x, t) = −0.99.
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(a) Partial skeleton, s < 0.8. (b) Solution close to touchdown, ε =
0.02.

Figure 12: The left figure displays the partial skeleton for the gingerbread man for values d(x, ∂Ω) :=
s < 0.8. Blue colours indicate smaller values of s while red indicating larger. The right panel shows
the solution of (2) close (infx∈Ω u(x, t) = −0.99) to touchdown for ε = 0.02. In the absence of
noise, touchdown occurs at five distinct points on S .

If on the other hand ts = 0, touchdown always occurs on S. As an example, we consider the
square region Ω ≡ [−1, 1]× [−1, 1]. Its partial skeleton for s < 1 consists of its two diagonals
and is shown in Fig. 13(a). If the numerics preserves the fourfold symmetry, we expect
touchdown at four points along the diagonals of the square as demonstrated in Fig. 13(b).
As the value of ε increases to εc, the four touchdown points merge at the origin.
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(a) Square skeleton. (b) Solution close to touchdown, ε =
0.03.

Figure 13: The left panel displays the skeleton for the square with blue colours indicating smaller
values of s and red indicates larger. The right panel shows the solution of (2) close (infx∈Ω u(x, t) =
−0.99) to touchdown. In the absence of noise, touchdown occurs at four distinct points along S .
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5. Local behaviour near touchdown

We now turn to the asymptotic profile of the solution near touchdown. The discussion below
follows that developed in [13] for touchdown at the origin, in the case of two-dimensional
radially symmetric solutions. For more general treatments of singularity formation in higher
order PDEs, the reader is referred to [21, 23, 24, 25, 26, 14] and the references therein.

We assume the solution u has a local self-similar profile of the form

u(x, t) = −1 + (tc − t)1/3v(η, s), η =
x − xc

ε1/2(tc − t)1/4
, s = − log |tc − t| (28)

near the touchdown point xc ∈ R
2. This assumption leads to an equation for v(η, s), obtained

by substituting (28) into (2). It reads

vs = −∆2
ηv −

1

4
η · ∇ηv +

v

3
−

1

v2
, (s, η) ∈ R × R

2. (29)

Since quenching occurs locally near x = xc, the solution may be expected to satisfy ut = O(1)
far from xc, as t → t−c . Since

ut = (tc − t)−2/3
[

vs +
η

4
vη −

v

3

]

, (30)

enforcing ut = O(1) means that

vs +
η

4
vη −

v

3
= O((tc − t)2/3), t → t−c . (31)

Since |η| → ∞ as t → t−c for x 6= xc, (31) provides a far field condition for (29). The similarity
profile v(η, s) is thus expected to solve

vs = −∆2
ηv −

1

4
η · ∇ηv +

v

3
−

1

v2
, (s, η) ∈ R × R

2; (32a)

∇ηv = ∇η∆ηv = 0, η = 0; vs =
v

3
−

η

4
· ∇ηv, |η| → ∞. (32b)

The touchdown profile of (2) as t → t−c is thus given by the solution of (32) in the limit
s → ∞ for fixed η. To investigate the existence of self-similar solutions, i.e. those satisfying
vs → 0 as s → ∞, we consider the problem

−∆2
ηv −

1

4
η · ∇ηv +

v

3
−

1

v2
= 0, η ∈ R

2; (33a)

∇ηv = ∇η∆ηv = 0, η = 0;
v

3
−

η

4
· ∇ηv = 0, |η| → ∞. (33b)

The existence and multiplicity of symmetric and asymmetric solutions to (33) is a challenging
open problem. Additionally, the stability of any solutions to (33) under dynamics (32) must
be addressed. Equations (32) and (33) are non-variational, non-constant coefficient, non-
linear PDEs and are accordingly challenging to study analytically. For these reasons we
rely on numerical simulations to glimpse their solution properties. If one seeks a radially
symmetric solution to (33) in terms of a single variable r = |η|, then we have the problem

−

(

vrrrr +
2

r
vrrr −

1

r2
vrr +

1

r3
vr

)

−
r

4
vr +

v

3
−

1

v2
= 0, r > 0, (34a)

vr = vrrr = 0, r = 0;
v

3
−

r

4
vr = 0, r → ∞. (34b)
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The far field condition of (34b) generates the asymptotic behaviour v ∼ αr4/3 as r → ∞ where
α is a nonlinear eigenvalue which is expected to take on a discrete number of values, each
corresponding to a discrete solution of (34). After discretization of (34), Newton iterations
are performed with initial guess

v0(r;α) =
3
√

α3r4 + 3, α > 0,

over a range of α. Convergence is observed to precisely two profiles v̄1(r) and v̄2(r) with
corresponding values of α, α1 = 0.7265 and α2 = 0.0966. The numerical investigation of the
stability of these solutions was performed in [13], where it was shown that only v̄1(r), shown
as a dashed curve in Fig. 14(d), is dynamically stable. It is therefore expected that if the
touchdown profile is self-similar, it should locally be given by the solution v̄1(r). We remark
that the existence of precisely two self-similar profiles has been observed (c.f. [25, 14]) in
related higher order finite time singularity problems.

We now numerically investigate the validity of this assumption in the case of touchdown in
an elliptical domain given by

(x1

a

)2

+
(x2

b

)2

≤ 1; a = 1.5, b = 0.75.

Note that this elliptical region is the same considered in §4.3. For our comparison, the value
ε = 0.05 is used and the solution of (2) is numerically advanced until minx∈Ω u(x, t) = −0.999.
From equation (28), we expect the touchdown profile to satisfy the asymptotic relationship

min
x∈Ω

(1 + u(x, t))3 ∝ (tc − t) (35)

as t → t−c . As a consequence, the touchdown time tc can be accurately estimated by finding
the intercept of a linear fit between minx∈Ω(1 + u(x, t))3 and t with the horizontal axis.
Indeed, this linear fit is found to be very good with a residual value of r = −0.999998 and
a resulting touchdown time of tc = 0.311028113536382. This good agreement suggests that
there are no logarithmic corrections to the quenching rate in this problem, however, such
corrections in blow-up/quenching rates are notoriously difficult to rigorously establish and
numerically verify, as for instance was discussed in [13].

In this example, the solution u is minimum at two distinct points located on the horizontal
axis and symmetrically about the origin, as shown in Fig. 14(a-b). The touchdown point
(x1c, x2c) ∼ (0.57, 0.0) is isolated for comparison with the self-similar profile v̄1(r). The
contours of the solution are seen to approach circles as (x1, x2) → (x1c, x2c), as shown in
Fig. 14(c). This suggests the limiting profile near touchdown is radially symmetric. Indeed,
good agreement is observed between v̄1(r) and the numerical solution (c.f. Fig. 14(d)). A
refined numerical study of the dynamics of (2) very close to the singularity would be necessary
to confirm the self-similar nature of the touchdown profile. However, this is beyond the scope
of the present work and of the numerical method employed in this article.
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Figure 14: Comparison of asymptotic predictions with full numerics of (2) with ε = 0.05 on the
ellipse. In Fig. 14(a), the numerical solution of (2) for tc − t = 9.357e−10 is shown with refinement
in regions where 1+u(x, t) is close to 0. In Fig. 14(b), an enlargement of the solution profile in the
vicinity of the touchdown point is shown. The minimum is attained at (x1c, x2c) = (0.5702, 0.0002)
with a corresponding value u(xc1, xc2) = −0.999. Fig. 14(c) shows the contours of the solution in
the vicinity of the touchdown point with the ratio of major to minor axis for the best-fit ellipse
(c.f. [10]) overlaid. This ratio appears to be approaching 1 as (x1, x2) → (x1c, x2c) indicating
that solutions are represented by a radially symmetric function close to touchdown. In Fig. 14(d),
solution profiles (solid) taken radially through the touchdown point are compared with the stable
radially symmetric self similar profile v̄1(η) (dashed) satisfying (34). Good agreement is observed.

6. Conclusions

In the present work, we have investigated the formation of singularities in a fourth order
nonlinear parabolic partial differential equation in two-dimensions. We have shown that an
asymptotic description of small time solutions provides a framework for establishing quali-
tative and quantitative predictions of the touchdown set based on two structures, ω(tc(ε))
and S. The efficacy of the predictive ability of this framework was demonstrated on a wide
variety of domains and found to be very good, particularly for ε small.
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One of the main conclusions of this work is that the leading order approximation of the solu-
tion profile reaches a local minimum either at a discrete set of points or on a one dimensional
curve ω(t). In the absence of noise, touchdown would thus occur simultaneously at a finite
number of points on S or everywhere on ω(tc(ε)). Curvature effects however favour touch-
down at points on ω(tc(ε)) of highest curvature. Noise typically leads to the selection of one
of the points on ω(tc(ε)) as the touchdown location. Moreover, an instability along ω(t) also
culminates in touchdown at a single point on ω(tc(ε)). The various examples discussed in
this paper were chosen to illustrate how the above effects combine or compete to select the
touchdown location. The numerical simulations confirm the robustness of our approach and
the predictive power of the leading order theory discussed in this article.

As a nonlinear PDE, equation (2) has very rich dynamics, since touchdown may result from
the combination of an instability along ω(t) and the effect of a singular nonlinearity. This
phenomenon is interesting in its own right and deserves further study in a separate line of
work. It is also likely that the multiple touchdown phenomenon discussed in this article is
a generic feature of fourth order PDEs which form singularities in finite time. The theory
developed in the present work should therefore be applicable to equations with more general
nonlinearities.

At the level of applications, the theory developed herein may have several ramifications
for the design of MEMS devices. The most relevant feature is that touchdown may occur
simultaneously at several points throughout the domain and that these touchdown locations
can be parameterized through the applied voltage. This phenomenon may allow the life
of MEMS devices to be extended by spreading the wear out over the extent of the device.
Additionally, the potato example shows that it is possible for the touchdown location to
switch abruptly from one point to another in Ω as ε is varied. More exotic MEMS devices
could thus be built by extending these ideas to other types of domains. An interesting inverse
problem would be to construct regions Ω for a given touchdown set τd(Ω).
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