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Abstract. An indefinite weight eigenvalue problem characterizing the thresh-
old condition for extinction of a population based on the single-species diffu-
sive logistic model in a spatially heterogeneous environment is analyzed in a
bounded two-dimensional domain with no-flux boundary conditions. In this
eigenvalue problem, the spatial heterogeneity of the environment is reflected
in the growth rate function, which is assumed to be concentrated in n small
circular disks, or portions of small circular disks, that are contained inside
the domain. The constant bulk or background growth rate is assumed to be
spatially uniform. The disks, or patches, represent either strongly favorable
or strongly unfavorable local habitats. For this class of piecewise constant
bang-bang growth rate function, an asymptotic expansion for the persistence
threshold λ1, representing the positive principal eigenvalue for this indefinite
weight eigenvalue problem, is calculated in the limit of small patch radii by
using the method of matched asymptotic expansions. By analytically optimiz-
ing the coefficient of the leading-order term in the asymptotic expansion of λ1,
general qualitative principles regarding the effect of habitat fragmentation are
derived. In certain degenerate situations, it is shown that the optimum spatial
arrangement of the favorable habit is determined by a higher-order coefficient
in the asymptotic expansion of the persistence threshold.

1. Introduction. The diffusive logistic model, which describes the evolution of a

population with density u(x, t) diffusing with constant diffusivity D = 1/λ > 0

throughout some habitat represented by a bounded domain Ω ⊂ R
2, is formulated

as

ut = ∆u+ λu [m(x) − u] , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω ; (1.1a)

u(x, 0) = u0(x) ≥ 0 , x ∈ Ω . (1.1b)

The no-flux boundary condition in (1.1a) specifies that no individuals cross the

boundary of the habitat Ω. The initial population density u0(x) is non-negative and

not identically zero. The function m(x) represents the growth rate for the species,
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with m(x) > 0 in favorable parts of the habitat, and m(x) < 0 in unfavorable parts

of the habitat. The integral
∫

Ωmdx measures the total resources available in the

spatially heterogeneous environment. With respect to applications in ecology, this

model was first formulated in [26].

To determine the stability of the extinction equilibrium solution u = 0, we set

u = φ(x)e−σt in (1.1), where φ(x) ≪ 1, to obtain that φ satisfies

∆φ+ λm(x)φ = −σφ , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω . (1.2)

The threshold for species persistence is determined by the stability border of the

extinct solution u = 0. At this bifurcation point, the eigenvalue of the linearized

problem about the zero solution must pass through zero. Therefore, by setting σ = 0

in (1.2) the problem reduces to the determination of a scalar λ and a function φ

that satisfies the indefinite weight eigenvalue problem

∆φ+ λm(x)φ = 0 , x ∈ Ω ; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 . (1.3)

We say that λ1 > 0 is a positive principal eigenvalue of (1.3) if the corresponding

eigenfunction φ1 of (1.3) is positive in Ω. It is well-known (cf. [2], [13], [25]) that

(1.3) has a unique positive principal eigenvalue λ1 if and only if
∫

Ω
mdx < 0 and

the set Ω+ = {x ∈ Ω ; m(x) > 0} has positive measure. Such an eigenvalue is the

smallest positive eigenvalue of (1.3).

The positive principal eigenvalue λ1 is interpreted as the persistence threshold

for the species. It is well-known that if λ < λ1, then u(x, t) → 0 uniformly in Ω̄

for all non-negative and non-trivial initial data, so that the population tends to

extinction. Alternatively, if λ > λ1, then u(x, t) → u∗(x) uniformly in Ω̄ as t→ ∞,

where u∗ is the unique positive steady-state solution of (1.1). For this range of λ the

species will persist. Many mathematical results for (1.1) under different boundary

conditions are given in the pioneering works of [4], [5], and [6]. Related results for

multi-species interactions and other mathematical problems in ecology are given in

[7] (see also the survey article of [18]).

An interesting problem in mathematical ecology is to determine, among all func-

tions m(x) for which a persistence threshold exists, which m(x) yields the smallest

λ1 for a fixed amount of total resources
∫

Ωmdx. In other words, we seek to de-

termine the optimum arrangement of favorable habitats in Ω in order to allow the

species to persist for the largest possible diffusivity D. This optimization problem

was originally posed and studied in [4] and [6]. For (1.1) under Neumann boundary

conditions in a two-dimensional domain Ω, it was proved in Theorem 1.1 of [17]

that the optimum m(x) is piecewise continuous and of bang-bang type. An earlier

result showing the existence of a similar bang-bang optimal control for m(x) for the
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Dirichlet problem was given in [4]. For (1.1) posed in a one-dimensional interval

0 < x < 1, it was proved in Theorem 1.2 of [17] that the optimal m(x) consists

of a single favorable habitat attached to one of the two endpoints of the interval.

Related results were given in [6] under Dirichlet, Neumann, or Robin type boundary

conditions.

The minimization of λ1 in cylindrical domains was studied in [14]. For a rect-

angular domain, it was shown in [14] that if |
∫

Ωm(x) dx| is below some threshold

value, then the optimum λ1 occurs when the favorable habitat is concentrated near

one of the four corners of the domain. Otherwise, the optimum λ1 occurs when

the favorable habitat is attached to either of the two ends of the domain with the

shortest edge. For spatially periodic environments, the effect of fragmentation of

the favorable resources was studied in [1] using Steiner symmetrization, and some

results were obtained for Dirichlet boundary conditions. Related applications of

this symmetrization approach was given in [16]. A treatise on the modeling of bi-

ological invasions in periodic spatial environments is given [24]. In [22] stochastic

methods were used to determine the persistence threshold for the diffusive logistic

model for an infinitely periodic heterogeneous media. This study, which eliminated

the effect of boundary conditions, showed that habitat fragmentation decreases the

persistence of the species. For (1.1) in a bounded two-dimensional domain with

Neumann boundary conditions, the existence of an optimal configuration for m(x)

was proved in [21]. In [21], the growth rate function m(x) was chosen to be of

bang-bang type, in accordance with Theorem 1.1 of [17] described above. By dis-

tributing the favorable and unfavorable habitats on a grid, and then letting the

grid-spacing decrease, it was shown both numerically and analytically in [21] that

the globally optimal favorable spatial habitat configuration is either ball-shaped or

stripe-shaped, depending on the amount of available resources.

Although these previous studies give considerable insight into the effect of spa-

tial fragmentation of habitat resources on the persistence threshold in specific sit-

uations, such as cylindrical domains or periodic environments, the problem of the

optimum choice for m(x) in arbitrary two-dimensional domains with no periodicity

assumption is largely an open problem.

The goal of this paper is to asymptotically calculate, and then optimize, the per-

sistence threshold λ1 for a particular class of piecewise constant growth rate function

m = mε(x) in an arbitrary two-dimensional domain. We assume that mε(x) is lo-

calized to n small circular patches of radii O(ε), each of which is centered either

inside Ω or on ∂Ω. We assume that the boundary ∂Ω is piecewise differentiable,

but allow for the domain boundary to have a finite numbers of corners, each with
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a non-zero contact angle, which arises from a jump discontinuity of the slope of the

tangent line to the boundary. We denote ΩI ≡ {x1, . . . , xn} ∩ Ω to be the set of

the centers of the interior patches, while ΩB ≡ {x1, . . . , xn} ∩ ∂Ω is the set of the

centers of the boundary patches. We assume that the patches are well-separated

in the sense that |xi − xj | ≫ O(ε) for i 6= j and that the interior patches are not

too close to the boundary, i.e. dist(xj , ∂Ω) ≫ O(ε) whenever xj ∈ ΩI . To accom-

modate a boundary patch, we will associate with each xj for j = 1, . . . , n, an angle

παj representing the angular fraction of a circular patch that is contained within

Ω. More specifically, αj = 2 whenever xj = ΩI , αj = 1 when xj ∈ ΩB and xj is

a point where ∂Ω is smooth, and αj = 1/2 when xj ∈ ∂Ω is at a corner point of

∂Ω for which the two (one-sided) tangent lines to the boundary intersect at a π/2

contact angle (see Fig. 1). The growth rate function m = mε(x) in (1.3) is taken

to have the specific form

m = mε(x) ≡







mj/ε
2 , x ∈ Ωεj

, j = 1, . . . , n ,

−mb , x ∈ Ω\⋃n
j=1 Ωεj

.
(1.4)

Here Ωεj
≡ {x | |x− xj | ≤ ερj ∩ Ω}, so that each patch Ωεj

is the portion of a

circular disk of radius ερj that is strictly inside Ω. The constant mj is the local

growth rate of the jth patch, with mj > 0 for a favorable habitat and mj < 0 for

an unfavorable habitat. The constant mb > 0 is the background bulk decay rate

for the unfavorable habitat. In terms of this growth rate function, the condition

of [2], [13], and [25] for the existence of a persistence threshold is that one of the

mj for j = 1, . . . , n must be positive, and that the following asymptotically valid

inequality on the total resources hold as ε→ 0:

∫

Ω

mε dx = −mb|Ω| + π

2

n
∑

j=1

αjmjρ
2
j + O(ε2) < 0 . (1.5)

Here |Ω| denotes the area of Ω. We assume that the parameters are chosen so that

(1.5) is satisfied. A schematic plot of a domain with interior circular patches, and

with portions of circular patches on its boundary, is shown in Fig. 1.

This specific form for mε(x) is motivated by Theorem 1.1 of [17] that states that

the optimal growth rate function must be of bang-bang type, and the result of [21]

that shows that a sufficiently small optimum favorable habitat must be a circular

disk.

In §2 the method of matched asymptotic expansions is used to derive a two-term

asymptotic expansion for the persistence threshold λ1 for the case of either a single

favorable interior or boundary habitat. The asymptotic analysis is extended in §3 to

asymptotically calculate λ1 for (1.3) with growth rate function (1.4), which allows
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Figure 1. Schematic plot of a two-dimensional domain Ω with
localized strongly favorable (+) or unfavorable (−) habitats, or
patches, as described by (1.4). The patches inside the domain
are small circular disks. On the domain boundary, the patches
are the portions of circular disks that lie within the domain. The
unfavorable boundary habitat in the lower left part of this figure is
at a π/2 corner of ∂Ω.

for multiple interior or boundary habitats. Our analysis, which is summarized in

Principal Result 3.1 of §3, shows that λ1 has the two-term asymptotic expansion

λ1 = µ0ν + ν2µ1(x1, . . . , xn) + O(ν3) , ν(ε) = −1/ log ε . (1.6)

Here the leading-order coefficient µ0 is the unique positive root of B(µ0) = 0 on

0 < µ0 < 2/(mJρ
2
J ), where

B(µ0) ≡ −mb|Ω| + π

n
∑

j=1

αjmjρ
2
j

2 −mjρ2
jµ0

, mJρ
2
J ≡ max

mj>0
{mjρ

2
j | j = 1, . . . , n } .

(1.7)

The coefficient µ1, which depends explicitly on the spatial configuration {x1, . . . , xn}
of patches, is determined in terms of a matrix involving the Neumann Green’s

function and the surface Neumann Green’s function for Ω.

In §4 we study the effect of fragmentation of resources on the coefficients µ0

and µ1 in the asymptotic expansion of the persistence threshold. For a prescribed

amount of resources, for which
∫

Ωmε dx in (1.5) is fixed, we seek to determine the

patch configuration that minimizes µ0, or in certain degenerate situations, mini-

mizes the coefficient µ1 in (1.6).

From an analysis based on the leading-order coefficient µ0 in (1.6), in §4.2 we de-

rive some sufficient conditions characterizing the effect of habitat fragmentation on

the persistence threshold. There are several key qualitative principles that are es-

tablished. Firstly, the fragmentation of a favorable interior habitat into two smaller
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favorable interior habitats is shown to be deleterious to species persistence, whereas

the migration of an interior favorable habitat to the boundary of the domain is

always advantageous. The optimal boundary location to concentrate a favorable

resource is at a corner of the domain boundary with the smallest contact angle,

provided that this angle is less than π. Secondly, the fragmentation of a favorable

interior habitat into a smaller favorable interior habitat together with a favorable

boundary habitat is advantageous to species persistence only when the boundary

habitat is sufficiently strong. Further general principles, based on the optimization

of µ0, are summarized in Qualitative Results I–III of §4.2. An illustration of these

principles for certain patch distributions in the unit disk is given in §4.

In §4 we also show that in certain degenerate situations, the problem of deter-

mining the optimal location for a favorable resource requires the examination of the

coefficient µ1 of the second term in the asymptotic expansion of λ1. In particular,

such a problem occurs in optimizing λ1 with respect to the boundary location of a

single favorable boundary patch in a domain with a smooth boundary. In this case,

we show in Principal Result 4.1 that λ1 is minimized when the boundary patch

is centered at a point x0 ∈ ∂Ω at which the regular part of the surface Neumann

Green’s function attains its global maximum value on the boundary. The relation-

ship between the global maximum of the boundary curvature and the regular part

of the surface Neumann Green’s function for smooth perturbations of the unit disk

is investigated in Principal Results 4.2 and 4.3 of §4.

In §4.3 we consider the optimization of λ1 for the case where an additional

favorable resource is to be located inside a domain that has a pre-existing and

fixed patch distribution. In this case, we show in §4.3 that the optimization of λ1

typically requires the examination of the coefficient µ1 of the second-order term in

the asymptotic expansion of λ1. The theory in §4.3 is illustrated for two specific

examples involving the unit disk and the unit square, for which the required Green’s

functions are known analytically. Finally, a brief discussion is given in §5.

Related problems involving the asymptotic calculation and optimization of the

fundamental eigenvalue of the Laplacian have been studied in perforated two-

dimensional domains (cf. [9], [15], [19], [27], and [28]), in two-dimensional domains

with perforated boundaries (cf. [3], [10], [11], [20]), and under the effect of strongly

localized potentials (cf. [12], [28]).

2. Determination of the Persistence Threshold for One Patch. In this sec-

tion we use the method of matched asymptotic expansions to derive a two-term

asymptotic expansion for the positive principal eigenvalue λ of (1.3) for the case of
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one localized favorable habitat centered at either a point interior to Ω or a point on

∂Ω.

2.1. A Single Interior Patch. We first consider the case of one interior circular

patch centered at x0 ∈ Ω, with dist(x0, ∂Ω) ≫ O(ε). We asymptotically calculate

the positive principal eigenvalue λ > 0 and corresponding eigenfunction φ > 0 of

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 , (2.1a)

in the small patch radius limit ε → 0, where the growth rate function mε(x) is

defined as

mε(x) =







m+/ε
2 , x ∈ Ωε0

,

−mb, x ∈ Ω\Ωε0 .
(2.1b)

Here the patch Ωε0 is the circular disk Ωε0
≡ {x | |x− x0| ≤ ε }. In (2.1b), m+ > 0

is the local growth rate of the favorable habitat, while mb > 0 gives the background

bulk decay rate for the unfavorable habitat.

The condition
∫

Ω
mdx < 0 for the existence of a positive principal eigenvalue is

asymptotically equivalent to
∫

Ω

mdx = −mb|Ω| + πm+ + O(ε2) < 0 , (2.2)

in the limit ε → 0. We assume that mb and m+ are chosen so that this condition

holds.

We expand the positive principal eigenvalue λ of (2.1) as

λ ∼ µ0ν + µ1ν
2 + · · · , ν = −1/ log ε , (2.3)

for some coefficients µ0 and µ1 to be found. In the outer region, defined away from

an O(ε) neighborhood of x0, we expand the corresponding eigenfunction as

φ ∼ φ0 + νφ1 + ν2φ2 + · · · . (2.4)

Upon substituting (2.3) and (2.4) into (2.1), we obtain that φ0 is a constant. The

normalization condition
∫

Ω φ
2
0 dx = 1 yields φ0 = |Ω|−1/2, where |Ω| is the area of

Ω. In addition, we obtain that φ1 and φ2 satisfy

∆φ1 = µ0mbφ0 , x ∈ Ω\{x0} ; ∂nφ1 = 0 , x ∈ ∂Ω ;

∫

Ω

φ1 dx = 0 ,

(2.5a)

∆φ2 = µ1mbφ0 + µ0mbφ1 , x ∈ Ω\{x0} ; ∂nφ2 = 0 , x ∈ ∂Ω ;
∫

Ω

(

φ2
1 + 2φ0φ2

)

dx = 0 .
(2.5b)

The matching of φ1 and φ2 to an inner solution defined in an O(ε) neighborhood

of the patch at x0, as done below, will yield singularity conditions for φ1 and φ2 as

x→ x0.
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In the inner region near the patch centered at x0 we introduce the local variables

y and ψ by

y = ε−1(x − x0) , ψ(y) = φ(x0 + εy) . (2.6)

Then, (2.1) becomes

∆ψ =







−λm+ψ , |y| < 1 ,

O(ε2) , |y| > 1 .
(2.7)

We then represent the inner approximation to the eigenfunction as

ψ ∼ ψ0 + νψ1 + ν2ψ2 + · · · , ν = −1/ log ε . (2.8)

We substitute (2.8) and (2.3) into (2.7), and collect powers of ν, to obtain that ψ0

is an unknown constant, and that ψ1 and ψ2 satisfy

∆ψk =







Fk , |y| ≤ 1 ,

0 , |y| ≥ 1 .
(2.9a)

Here Fk for k = 1, 2 is defined by

F1 = −µ0m+ψ0 , F2 = −µ0m+ψ1 − µ1m+ψ0 . (2.9b)

We then calculate the solution ψ1 to (2.9) as

ψ1 =







A1ρ
2/2 + ψ̄1 , ρ ≤ 1 ,

A1 log ρ+ A1

2 + ψ̄1 , ρ ≥ 1 ,
(2.10a)

where ρ = |y|. Here ψ̄1 is an unknown constant, and A1 is given by

A1 =
F1

2
= −1

2
µ0m+ψ0 . (2.10b)

In addition, for the solution ψ2 to (2.9) we calculate its far-field behavior as

ψ2 ∼ A2 log ρ+ O(1) , as ρ→ ∞ , A2 ≡
∫ 1

0

F2 ρ dρ . (2.11a)

We then calculate A2 by using (2.10) and (2.9b) for F2 to get

A2 = −µ0m+

∫ 1

0

(

A1
ρ2

2
+ ψ̄1

)

ρ dρ− 1

2
µ1m+ψ0 =

A1

ψ0

(

A1

4
+ ψ̄1 +

µ1

µ0
ψ0

)

.

(2.11b)

The matching condition is that the near-field behavior as x → x0 of the outer

representation of the eigenfunction must agree asymptotically with the far-field

behavior of the inner eigenfunction as |y| = ε−1|x− x0| → ∞, so that

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0 + νψ1 + ν2ψ2 + · · · . (2.12)
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Upon using the far-field behavior of ψ1 and ψ2, as given in (2.10) and (2.11) respec-

tively, we obtain that (2.12) becomes

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0 +A1 + ν

(

A1 log |x− x0| +
A1

2
+ ψ̄1 +A2

)

+ ν2 (A2 log |x− x0| + O(1)) .

(2.13)

Since φ0 and ψ0 are constants, we obtain the first matching condition that

φ0 = ψ0 + A1 . (2.14)

Then, from the O(ν) terms in the matching condition (2.13), we obtain that φ1

satisfies (2.5a) subject to the singularity behavior

φ1 ∼ A1 log |x− x0| +
A1

2
+ ψ̄1 +A2 , as x→ x0 . (2.15)

We remark that the singularity behavior in (2.15) specifies both the regular and

singular part of a Coulomb singularity. Consequently, this singularity structure

provides one constraint relating A1, A2, and ψ̄1.

The problem for φ1 can be written in terms of the Dirac distribution as

∆φ1 = µ0mbφ0 + 2πA1δ(x − x0) , x ∈ Ω ; ∂nφ1 = 0 , x ∈ ∂Ω . (2.16)

The divergence theorem then yields

A1 = − 1

2π
(µ0mb|Ω|φ0) . (2.17)

Next, we write the solution to (2.16) in terms of the Neumann Green’s function

G(x;x0) as

φ1 = −2πA1G(x;x0) = µ0mb|Ω|φ0G(x;x0) . (2.18)

Here G(x;x0) is the unique solution to

∆G =
1

|Ω| − δ(x − x0) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫

Ω

Gdx = 0 ,

(2.19a)

G(x;x0) ∼ − 1

2π
log |x− x0| +R(x0;x0) , as x→ x0 , (2.19b)

where R(x0;x0) is the regular part of G(x;x0) at x = x0. By expanding φ1 in (2.18)

as x→ x0 and equating the non-singular part of the resulting expression with that

of (2.15), we obtain

− 2πA1R(x0;x0) =
A1

2
+ ψ̄1 +A2 . (2.20)

Finally, we obtain from the O(ν2) terms in the matching condition (2.13) that

φ2 ∼ A2 log |x− x0| as x → x0, where φ2 is the solution to (2.5b). In terms of the

Dirac mass, this problem for φ2 can be written as

∆φ2 = µ1mbφ0 + µ0mbφ1 + 2πA2δ(x− x0) , x ∈ Ω ; ∂nφ2 = 0 , x ∈ ∂Ω ,

(2.21)
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with normalization condition
∫

Ω

(

φ2
1 + 2φ0φ2

)

dx = 0. The divergence theorem,

together with
∫

Ω φ1 dx = 0, then yields that

2πA2 = −µ1mb|Ω|φ0 . (2.22)

The leading-order eigenvalue correction µ0 is obtained by combining (2.14) and

(2.17), together with using A1 = −µ0m+ψ0/2 from (2.10b). This yields that

φ0 =
πm+

|Ω|mb
ψ0 , φ0 =

(

1 − µ0m+

2

)

ψ0 . (2.23)

Therefore, since φ0 = |Ω|−1/2, we obtain

µ0 =
2

m+

[

1 − πm+

|Ω|mb

]

, ψ0 =
|Ω|mb

πm+
φ0 , φ0 = |Ω|−1/2 . (2.24)

Since
∫

Ωmdx < 0, then m+π/(|Ω|mb) < 1 from (2.2). Consequently, it follows

from (2.24) that µ0 > 0. Next, we combine (2.17) and (2.22) to evaluate the ratio

A2/A1 as A2/A1 = µ1/µ0. Upon using A2/A1 = µ1/µ0 in (2.20) and (2.11b), we

readily determine ψ̄1 and the eigenvalue correction µ1 as

ψ̄1 = −A1

4
, µ1 = −

(

1

4
+ 2πR(x0;x0)

)

µ0 . (2.25)

Finally, a two-term expansion for the eigenfunction in the outer region is obtained

from (2.4) by using (2.18) for φ1. The corresponding two-term inner approximation

to the eigenfunction is given by (2.8), where ψ1 is given in (2.10) with ψ̄1 = −A1/4.

We summarize our result as follows:

Principal Result 2.1: In the limit of small patch radius, ε→ 0, the positive prin-

cipal eigenvalue λ of (2.1) has the following two-term asymptotic expansion in terms

of the logarithmic gauge function ν = −1/ log ε:

λ = µ0ν − µ0ν
2

[

1

4
+ 2πR(x0;x0)

]

+ O(ν3) ; µ0 ≡ 2

m+

[

1 − πm+

|Ω|mb

]

. (2.26a)

A two-term asymptotic expansion for the corresponding eigenfunction in the outer

region |x− x0| ≫ O(ε) is

φ ∼ φ0 (1 + νµ0mb|Ω|G(x;x0)) . (2.26b)

Here G(x;x0) is the Neumann Green’s function of (2.19) with regular part R(x0;x0).

The corresponding inner approximation to the eigenfunction, with y = ε−1(x − x0)

and ρ = |y| = O(1), is

ψ ∼ mb|Ω|
m+π

φ0

(

1 − µ0m+

2
νψ̃1(ρ)

)

, (2.26c)

where φ0 = |Ω|−1/2, and ψ̃1(ρ) is defined by

ψ̃1(ρ) ≡







ρ2/2 − 1/4 , ρ ≤ 1 ,

log ρ+ 1/4 , ρ ≥ 1 .
(2.26d)
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The eigenvalue problem (2.1) is explicitly solvable only for the special case where

Ω is the unit disk with a circular patch of radius ε centered at the origin. For this

special case, the solution to (2.1), which is continuous across the patch boundary

r = ε, is

φ =























C

[

I0
(√
λmbr

)

− I ′0
(√
λmb

)

K ′
0

(√
λmb

)K0

(

√

λmbr
)

]

, ε ≤ r ≤ 1 ,

C

[

I0
(√
λmbε

)

− I ′0
(√
λmb

)

K ′
0

(√
λmb

)K0

(

√

λmbε
)

]

J0

(√

λm+r/ε
)

J0

(√

λm+

) , 0 ≤ r ≤ ε .

(2.27)

Here I0(z) and K0(z) are the modified Bessel functions of the first and second

kind of order zero. By imposing that φ is smooth across r = ε, and recalling

that J ′
0(z) = −J1(z), I

′
0(z) = I1(z) and K ′

0(z) = −K1(z), we obtain the following

transcendental equation for λ:

ε

√

mb

m+

J0

(√

λm+

)

J1

(√

λm+

) =
K0

(√
λmbε

)

I1
(√
λmb

)

+K1

(√
λmb

)

I0
(√
λmbε

)

K1

(√
λmbε

)

I1
(√
λmb

)

−K1

(√
λmb

)

I1
(√
λmbε

) .

(2.28)

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

ε

λ*

Figure 2. Plot of the two-term asymptotic expansion (dashed
curve) (2.29) for λ versus ε when Ω is the unit disk with a con-
centric circular patch of radius ε centered at the origin. The solid
curve is the eigenvalue λ as obtained from the exact transcendental
relation (2.28). The parameter values are mb = 2 and m+ = 1.

The first positive root of (2.28) is the positive principle eigenvalue of (2.1). For

ε→ 0, we expand this root as

λ = µ0ν + µ1ν
2 + · · · , ν ≡ −1/ log ε . (2.29a)

By using well-known asymptotic formulae for the Bessel and Modified Bessel func-

tions of small argument, we substitute (2.29a) into (2.28), and equate coefficients
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in powers of ν to obtain that

µ0 =
2

m+

[

1 − m+

mb

]

, µ1 =
µ0

2
. (2.29b)

For the special case where Ω is the unit disk containing a circular patch of radius

ε, we need only substitute |Ω| = π and R(0; 0) = −3/(8π), obtained from (B.1b) of

Appendix B, into (2.26a) of Principal Result 2.1. The resulting two-term expansion

for λ agrees with (2.29). In Fig. 2 we show a very favorable comparison between

the two-term expansion (2.29) for λ and the corresponding exact result obtained by

finding the first positive root of (2.28) numerically.

2.2. A Single Boundary Patch. Next, we let the center x0 of the circular patch

be on ∂Ω. We assume that ∂Ω is piecewise differentiable, but allow for ∂Ω to have

corners with nonzero contact angle. The boundary patch Ωε0
≡ {x | |x− x0| ≤ ερ0 ∩ Ω}

with x0 ∈ ∂Ω is the portion of a circular disk of radius ερ0 that is strictly contained

within Ω. Here ρ0 = O(1) is introduced in order to construct a boundary patch that

has the same area as an interior patch. As shown in §4.1 below, this then enables

us to compare the persistence threshold under a given fixed
∫

Ω
mdx for both the

boundary and interior patch cases.

In the limit ε → 0, and for x− x0 = O(ε), we define πα0 to be angular fraction

of the circular patch that is contained within Ω. More specifically, α0 = 1 whenever

x0 is at a smooth point of ∂Ω, and α0 = 1/2 when x0 is at a π/2 corner of ∂Ω. The

eigenvalue problem associated with this boundary patch is

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 , (2.30a)

where mε(x) is defined as

mε(x) =







m+/ε
2 , x ∈ Ωε0

,

−mb , x ∈ Ω\Ωε0 .
(2.30b)

The condition
∫

Ω
mdx < 0 is asymptotically equivalent when ε→ 0 to
∫

Ω

mdx = −mb|Ω| + α0π

2

(

m+ρ
2
0

)

+ O(ε2) < 0 . (2.31)

We assume that this condition on
∫

Ωmdx holds. Since the asymptotic calculation

of λ for a boundary patch is similar to that for the interior patch case, we mainly

highlight the new features that are required in the analysis.

We first expand λ as in (2.3) in terms of ν = −1/ log ε. In the outer region,

defined for |x−x0| ≫ O(ε), we expand the outer solution as in (2.4) to obtain that

φ0 is a constant, and that φ1 and φ2 satisfy (2.5a) and (2.5b) in Ω, respectively,

with ∂nφk = 0 for x ∈ ∂Ω\{x0} for k = 1, 2.
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Since the expansion of the inner solution is again in powers of ν = −1/ log ε as

in (2.8), we can neglect to any power of ν the effect of the curvature of the domain

boundary near x = x0, provided that this curvature is finite. Consequently, when

x0 is at a smooth point of ∂Ω, we can approximate ∂Ω near x = x0 by the tangent

line to ∂Ω through x = x0. Alternatively, when x0 is at corner point of ∂Ω, the

inner region is the angular wedge of angle πα0 bounded by the intersection of the

one-sided tangent lines to ∂Ω at x = x0. We then introduce the inner variable

y = ε−1(x−x0) so that the inner region is the angular wedge β0 < arg y ≤ α0π+β0

for some β0. The favorable habitat is the circular patch |y| ≤ ρ0 that lies within this

wedge. Since the no-flux boundary conditions ∂nψ = 0 holds on the two sides of

the wedge, we look for a local radially symmetric inner solution within the angular

wedge.

Therefore, in the inner region, we expand the inner solution as in (2.8) and obtain

that ψ0 is a constant, and that ψk for k = 1, 2 satisfies

∆ψk =







Fk , |y| ≤ ρ0 , β0 ≤ arg y ≤ πα0 + β0 ,

0 , |y| ≥ ρ0 , β0 ≤ arg y ≤ πα0 + β0 .
(2.32)

Here Fk for k = 1, 2 are defined in (2.9b). The solution for ψ1, with ρ = |y|, is

ψ1 =















A1

(

ρ2

2ρ2
0

)

+ ψ̄1 , 0 ≤ ρ ≤ ρ0 , β0 ≤ arg y ≤ πα0 + β0 ,

A1 log

(

ρ

ρ0

)

+
A1

2
+ ψ̄1 , ρ ≥ ρ0 , β0 ≤ arg y ≤ πα0 + β0 ,

(2.33)

where ψ̄1 is an unknown constant and A1 = F1ρ
2
0/2. For ψ2, we obtain that

ψ2 ∼ A2 log ρ as ρ → ∞. The calculation of A2 proceeds exactly as in (2.11b) to

obtain

A1 = −µ0

2
m+ρ

2
0ψ0 , A2 =

A1

ψ0

(

A1

4
+ ψ̄1 +

µ1

µ0
ψ0

)

. (2.34)

The matching condition between the outer solution as x → x0 and the inner

solution for |y| = ε−1|x − x0| → ∞ is given by (2.12). Upon using (2.33) for ψ1

when ρ≫ 1, together with ψ2 ∼ A2 log ρ for ρ≫ 1, we obtain that (2.12) becomes

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0 +A1 + ν
(

A1 log |x− x0| −A1 log ρ0 +
A1

2
+ ψ̄1 +A2

)

+ ν2 (A2 log |x− x0| + O(1)) .

(2.35)

The leading order matching condition from (2.35) is that

φ0 = ψ0 + A1 . (2.36)
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From the O(ν) terms in (2.35) and (2.5a), we obtain that φ1 satisfies

∆φ1 = µ0mbφ0 , x ∈ Ω ; ∂nφ1 = 0 , x ∈ ∂Ω\{x0} ;

∫

Ω

φ1 dx = 0 ,

(2.37a)

φ1 ∼ A1 log |x− x0| −A1 log ρ0 +
A1

2
+ ψ̄1 +A2 , as x→ x0 . (2.37b)

Moreover, from the O(ν2) terms in (2.35) and the problem for φ2 (2.5b), we get

that φ2 satisfies

∆φ2 = µ1mbφ0 + µ0mbφ1 , x ∈ Ω ; ∂nφ2 = 0 , x ∈ ∂Ω\{x0} ; (2.38a)

∫

Ω

(

φ2
1 + 2φ0φ2

)

dx = 0; φ2 ∼ A2 log |x− x0| + O(1) , as x→ x0 . (2.38b)

Next, we apply the divergence theorem to (2.37) over Ω\Ωσ, where Ωσ is a wedge

of angle πα0 and small radius σ ≪ 1 centered at x0 ∈ ∂Ω. Imposing the singularity

condition (2.37b) on |x−x0| = σ and taking the limit σ → 0, we readily derive that

µ0mb|Ω|φ0 = −α0πA1 . (2.39)

In a similar way, the divergence theorem applied to (2.38), and noting that
∫

Ω φ1 dx =

0, determines A2 as

µ1mb|Ω|φ0 = −α0πA2 . (2.40)

Therefore, we conclude from (2.39) and (2.40) that A2/A1 = µ1/µ0, which yields

ψ̄1 = −A1/4 from the equation for A2 in (2.34). Then, by combining (2.36), (2.34)

for A1, and (2.39), we readily obtain that

ψ0 =
2mb|Ω|
α0πm+ρ2

0

φ0 , µ0 =
2

m+ρ2
0

[

1 − α0πm+ρ
2
0

2mb|Ω|

]

. (2.41)

Since
∫

Ω
mdx < 0 from (2.31), it follows that µ0 > 0 in (2.41).

To solve (2.37), we introduce the surface Neumann Green’s function Gs(x;x0),

defined as the unique solution of

∆Gs =
1

|Ω| , x ∈ Ω ; ∂nGs = 0 , x ∈ ∂Ω\{x0} ;

∫

Ω

Gs dx = 0 ,

(2.42a)

Gs(x;x0) ∼ − 1

α0π
log |x− x0| +Rs(x0;x0) , as x→ x0 ∈ ∂Ω . (2.42b)

Here |Ω| is the area of Ω, and Rs(x0;x0) is the regular part of the surface Neumann

Green’s function at x = x0. Then, the solution to (2.37) is

φ1 = −α0πA1Gs(x;x0) . (2.43)

By expanding φ1 as x→ x0 using (2.42b), we equate the resulting nonsingular part

of φ1 as x→ x0 with that in (2.37b) to obtain

− α0πA1Rs(x0;x0) = −A1 log ρ0 +
A1

2
+ ψ̄1 +A2 . (2.44)



PERSISTENCE IN PATCHY SPATIAL ENVIRONMENTS 15

We then substitute ψ̄1 = −A1/4 and A2/A1 = µ1/µ0 into (2.44), and solve for µ1

to get

µ1 = µ0

[

log ρ0 −
1

4
− α0πRs(x0;x0)

]

. (2.45)

We summarize our result as follows:

Principal Result 2.2: In the limit of small boundary patch radius, ε → 0, a two-

term asymptotic expansion for the positive principal eigenvalue λ of (2.30) in terms

of ν = −1/ log ε is

λ = µ0ν − µ0ν
2

[

1

4
+ α0πRs(x0;x0) − log ρ0

]

+ O(ν3) ;

µ0 ≡ 2

m+ρ2
0

[

1 − α0πm+ρ
2
0

2|Ω|mb

]

.

(2.46a)

A two-term asymptotic expansion for the corresponding eigenfunction in the outer

region |x− x0| ≫ O(ε) is

φ ∼ φ0 (1 + νµ0mb|Ω|Gs(x;x0)) . (2.46b)

Here Gs(x;x0) is the surface Neumann Green’s function of (2.42) with regular part

Rs(x0;x0).

The implication of Principal Results 2.1 and 2.2 for the determination of the

persistence threshold is discussed in §4.1.

3. The Persistence Threshold for Multiple Patches. In this section we gen-

eralize the analysis of §2 to treat the case of an arbitrary but fixed number n of

circular patches, each of which is centered either inside Ω or on ∂Ω. To this end,

we asymptotically calculate the positive principal eigenvalue of

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 , (3.1a)

where the growth rate function mε(x) is defined by

mε(x) =







mj/ε
2 , x ∈ Ωεj

, j = 1, . . . , n ,

−mb , x ∈ Ω\⋃n
j=1 Ωεj

.
(3.1b)

Here Ωεj
≡ {x | |x− xj | ≤ ερj ∩ Ω}, so that the patches Ωεj

are the portions of

the circular disks of radius ερj that are strictly inside Ω. The constant mj is the

local growth rate of the jth patch, with mj > 0 for a favorable habitat and mj < 0

for an unfavorable habitat. The constant mb > 0 is the background bulk decay

rate for the unfavorable habitat. In terms of this patch arrangement, the condition
∫

Ωmdx < 0 is asymptotically equivalent for ε→ 0 to

∫

Ω

mdx = −mb|Ω| + π

2

n
∑

j=1

αjmjρ
2
j + O(ε2) < 0 . (3.2)



16 A. E. LINDSAY, M. J. WARD

We assume that the parameters are chosen so that this condition holds. The patches

are assumed to be well-separated in the sense mentioned in §1. The parameters

in the growth rate are the centers x1, . . . , xn of the circular patches, their radii

ερ1, . . . , ερn, the local growth rates m1, . . . ,mn, the angular fractions πα1, . . . , παn

of the circular patches that are contained in Ω, and the constant bulk growth rate

mb. Recall that αj = 2 whenever xj ∈ Ω, αj = 1 when xj ∈ ∂Ω and xj is a point

where ∂Ω is smooth, and αj = 1/2 when xj ∈ ∂Ω is at a π/2 corner of ∂Ω, etc.

To asymptotically analyze (3.1) we must incorporate both the Neumann Green’s

function and the surface Neumann Green’s function. As such, we define a general-

ized modified Green’s function Gm(x;xj) by

Gm(x;xj) ≡







G(x;xj) , xj ∈ Ω ,

Gs(x;xj) , xj ∈ ∂Ω .
(3.3a)

HereG(x;xj) is the Neumann Green’s function of (2.19), andGs(x;xj) is the surface

Neumann Green’s function of (2.42). Therefore, the local behavior of Gm(x;xj) is

Gm(x;xj) ∼ − 1

αjπ
log |x− xj | +Rm(xj ;xj) , as x→ xj ,

Rm(xj ;xj) ≡







R(xj ;xj) , xj ∈ Ω ,

Rs(xj ;xj) , xj ∈ ∂Ω .

(3.3b)

Here R(xj ;xj) and Rs(xj ;xj) are the regular part of the Neumann Green’s function

(2.19) and the surface Neumann Green’s function (2.42), respectively.

We now derive a two-term expansion for the positive principal eigenvalue of

(3.1). We expand λ as in (2.3), and we expand the outer representation for the

eigenfunction φ as in (2.4). Upon substituting (2.3) and (2.4) into (3.1), we obtain

that φ0 = |Ω|−1/2 is a constant, and that φ1 and φ2 satisfy

∆φ1 = µ0mbφ0 , x ∈ Ω\ΩI ; ∂nφ1 = 0 , x ∈ ∂Ω\ΩB ;

∫

Ω

φ1 dx = 0 ,

(3.4a)

∆φ2 = µ1mbφ0 + µ0mbφ1 , x ∈ Ω\ΩI ; ∂nφ2 = 0 , x ∈ ∂Ω\ΩB ;

∫

Ω

(

φ2
1 + 2φ0φ2

)

dx = 0 .
(3.4b)

In (3.4), we recall from §1 that ΩI ≡ {x1, . . . , xn}∩Ω denotes the set of the centers

of the interior patches, while ΩB ≡ {x1, . . . , xn}∩ ∂Ω denotes the set of the centers

of the boundary patches.

In the inner region, near the jth patch we introduce the local variables y =

ε−1(x − xj) and ψ(y) = φ(xj + εy). We then expand ψ for y = O(1) by

ψ ∼ ψ0j + νψ1j + ν2ψ2j + · · · , (3.5)
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where ψ0j is a constant to be determined. For an interior patch with xj ∈ ΩI , we

obtain that ψkj for k = 1, 2 satisfy

∆ψkj =







Fkj , |y| ≤ ρj ,

0 , |y| ≥ ρj ,
(3.6)

where F1j = −µ0mjψ0j and F2j = −µ0mjψ1j − µ1mjψ0j . The solution for ψ1j ,

with ρ = |y|, is

ψ1j =











A1j

(

ρ2

2ρ2

j

)

+ ψ̄1j , 0 ≤ ρ ≤ ρj ,

A1j log
(

ρ
ρj

)

+
A1j

2 + ψ̄1j , ρ ≥ ρj ,

(3.7)

where ψ̄1j is an unknown constant. In addition, ψ2j ∼ A2j log ρ as ρ → ∞. The

divergence theorem is used to calculate A1j and A2j from (3.6), as was done in §2,

to obtain

A1j = −µ0

2
mjρ

2
jψ0j , A2j =

A1j

ψ0j

(

A1j

4
+ ψ̄1j +

µ1

µ0
ψ0j

)

. (3.8)

For a boundary patch, for which xj ∈ ΩB , then (3.6) holds in the wedge βj <

arg(y) < βj + παj , for some βj and 0 < αj < 2. For this boundary case, the

constants A1j and A2j are also given by (3.8).

The matching condition between the outer solution as x → xj and the inner

solution as |y| = ε−1|x− xj | → ∞ is

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0j +A1j

+ ν

(

A1j log |x− xj | −A1j log ρj +
A1j

2
+ ψ̄1j +A2j

)

+ ν2 (A2j log |x− xj | + O(1)) .

(3.9)

The leading-order matching condition from (3.9) yields

φ0 = ψ0j +A1j , j = 1, . . . , n . (3.10)

From the O(ν) terms in (3.9), we obtain that φ1 has the following singular behavior

as x→ xj

φ1 ∼ A1j log |x− xj | −A1j log ρj +
A1j

2
+ ψ̄1j +A2j , as x→ xj . (3.11)

In addition, from the O(ν2) terms in (3.9), we conclude that

φ2 ∼ A2j log |x− xj | + O(1) , as x→ xj . (3.12)

Next, by using the divergence theorem on the solution φ1 to (3.4a) with singular

behavior (3.11) we obtain

µ0mb|Ω|φ0 = −π
n
∑

j=1

αjA1j . (3.13)
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Similarly, the divergence theorem applied to (3.4b) with singular behavior (3.12),

and noting
∫

Ω φ1 dx = 0, yields

µ1mb|Ω|φ0 = −π
n
∑

j=1

αjA2j . (3.14)

By combining (3.10) and (3.8) for A1j , we obtain that

ψ0j =
2φ0

2 −mjρ2
jµ0

, A1j = −
mjρ

2
jµ0φ0

2 −mjρ2
jµ0

, j = 1, . . . , n . (3.15)

From (3.13), together with (3.15) for A1j , we obtain that the leading-order eigen-

value correction µ0 is a root of the nonlinear algebraic equation

mb|Ω|
π

=

n
∑

j=1

αjmjρ
2
j

2 −mjρ2
jµ0

. (3.16)

The properties of the roots to (3.16) are studied below following Principal Result

3.1.

Next, we write the solution φ1 to (3.4a) with singular behavior (3.11) in terms

of the modified Green’s function Gm(x;xj) of (3.3) as

φ1 = −π
n
∑

i=1

αiA1iGm(x;xi) . (3.17)

Then, by expanding φ1 as x → xj and by using (3.3b) for the local behavior of

Gm(x;xj), we obtain that

φ1 ∼ A1j log |x−xj |−παjA1jRmjj +Bj , as x→ xj ; Bj ≡ −π
n
∑

i=1

i6=j

αiA1iGmji ,

(3.18)

where Gmji ≡ Gm(xj ;xi). The requirement that the nonsingular terms in (3.11)

and (3.18) agree yields the constraints

− παjA1jRmjj +Bj = −A1j log ρj +
A1j

2
+ ψ̄1j +A2j , j = 1, . . . , n , (3.19)

where Rmjj ≡ Rm(xj ;xj) is the regular part of the generalized modified Green’s

function as defined in (3.3b).

Next, we combine (3.8), (3.15), and (3.19) to isolate A2j . Then, µ1 is determined

from (3.14). To do so, we first solve (3.19) for ψ̄1j . Upon substituting the resulting

expression for ψ̄1j , together with A1j/ψ0j = −mjρ
2
jµ0/2 from (3.8), into (3.8) for

A2j , we obtain for each j = 1, . . . , n that

A2j = −
mjρ

2
jµ0

2

(

−A1j

4
− παjA1jRmjj +Bj +A1j log ρj −A2j

)

+
µ1

µ0
A1j .

(3.20)
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Upon solving this equation for A2j , and using (3.18) for Bj , we isolate the product

αjA2j as

αjA2j = −
mjρ

2
jµ0

(

2 −mjρ2
jµ0

)











−πα2
jA1jRmjj + αjA1j log ρj

−αjA1j

4
− π

n
∑

i=1

i6=j

αiαjA1iGmji











+
µ1

µ0

( 2A1jαj

2 −mjρ2
jµ0

)

.

(3.21)

Next, it is convenient to introduce a new variable κj and to rewrite A1j of (3.15) in

terms of this variable as

κj ≡
√
αjmjρ

2
j

2 −mjρ2
jµ0

, A1j = −µ0κj√
αj
φ0 , j = 1, . . . , n . (3.22)

It is also convenient to introduce the symmetric n× n Green’s matrix Gm, and the

diagonal matrix P , with matrix entries Gmij and Pij defined by

Gmij =
√
αiαjGmij , i 6= j ; Gmjj = αjRmjj ;

Pij = 0 , i 6= j ; Pjj = log ρj .
(3.23)

In terms of κj , Gm, P , and the vector κ = (κ1, . . . , κn)t, (3.21) readily reduces to

αjA2j = −µ2
0φ0κj

[

π (Gmκ)j − (Pκ)j +
κj

4

]

−
2µ1κ

2
j

mjρ2
j

φ0 , (3.24)

where (Pκ)j and (Gmκ)j denote the jth component of the vectors Pκ and Gmκ,

respectively.

Finally, we substitute (3.24) into (3.14), and solve the resulting expression for µ1

to obtain

µ1





mb|Ω|
π

−
n
∑

j=1

2κ2
j

mjρ2
j



 = µ2
0

[

κt (πGm − P)κ+
1

4
κtκ

]

. (3.25)

The left-hand side of (3.25) is simplified by using the equation (3.16) for µ0 to

obtain

mb|Ω|
π

−
n
∑

j=1

2κ2
j

mjρ2
j

=

n
∑

j=1

αj
(

2 −mjρ2
jµ0

)

[

mjρ
2
j −

2mjρ
2
j

(

2 −mjρ2
jµ0

)

]

,

= −
n
∑

j=1

αj
(

2 −mjρ2
jµ0

)

[

µ0m
2
jρ

4
j

(

2 −mjρ2
jµ0

)

]

= −µ0κ
tκ . (3.26)

This determines µ1 from (3.25) in terms of a Rayleigh-type quotient. We summarize

our result as follows:

Principal Result 3.1: In the limit of small patch radius, ε→ 0, the positive prin-

cipal eigenvalue λ of (3.1) has the following two-term asymptotic expansion in terms

of the logarithmic gauge function ν = −1/ log ε:

λ = µ0ν − µ0ν
2

(

κt (πGm − P)κ

κtκ
+

1

4

)

+ O(ν3) . (3.27)
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Here µ0 > 0 is the first positive root of B(µ0) = 0, where B(µ0) is defined by

B(µ0) ≡ −mb|Ω| + π

n
∑

j=1

αjmjρ
2
j

2 −mjρ2
jµ0

. (3.28)

In (3.27), κ = (κ1, . . . , κn)t, where κj is defined in (3.22), while Gm and P are the

n×n matrices as defined in (3.23). In addition, a two-term expansion for the outer

solution is given by

φ ∼ φ0

(

1 + νπµ0

n
∑

j=1

√
αjκjGm(x;xj)

)

. (3.29)

Next, we show the existence of a unique root µ0 to (3.28) on a certain interval

with µ0 > 0 to be determined. Since
∫

Ωmdx < 0 from (3.2), it follows that B(0) < 0

from (3.28). In addition, B(µ0) → +∞ as µ0 → 2/(mJρ
2
J) from below, where mJρ

2
J

is defined by

mJρ
2
J = max

mj>0
{mjρ

2
j | j = 1, . . . , n } . (3.30)

There must be at least one j for which mj > 0, so that (3.30) is attained at some

j = J . Moreover, (3.28) readily yields that B′(µ0) > 0 on 0 < µ0 < 2/(mJρ
2
J).

Therefore, there exists a unique root µ0 = µ⋆
0 on 0 < µ0 < 2/(mJρ

2
J) to B(µ0) = 0.

The corresponding leading-order eigenfunction in the inner region, ψ0j , satisfies

ψ0j > 0 from (3.15). Therefore, µ⋆
0 is the leading-order term in the asymptotic

expansion of the positive principal eigenvalue of (3.1).

Although the required root to (3.28) must in general be computed numerically,

there are two special cases where it can be found analytically. In the symmetric

case where mj = mc and ρj = ρc for j = 1, . . . , n, then, the root of (3.28) is simply

µ0 =
2

mcρ2
c

[

1 − παsmcρ
2
c

2mb|Ω|

]

, αs ≡
n
∑

j=1

αj . (3.31)

In addition, if there are only two types of patches, such as mjρ
2
j = mcρ

2
c for j =

1, . . . , n − 1 and mnρ
2
n, then (3.28) reduces to a quadratic equation for µ0, which

can be solved explicitly.

Finally, we remark that our asymptotic analysis leading to Principal Result 3.1

has two limitations. Firstly, it is valid only when all interior or boundary patches

are well-separated in the sense that |xi−xj| ≫ O(ε) for i 6= j. Therefore, if we allow

the distance between any two interior patches to depend on ε, our analysis is not

valid for the case where this distance is O(ε). The case of two interior patches with

an O(ε) center-to-center separation leads to an inner patch problem that does not

appear to be tractable analytically. In addition, in our analysis we required that all

interior patches are not too close to the boundary, in the sense that |x−xj | ≫ O(ε)

for xj ∈ ΩI and x ∈ ∂Ω.
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4. The Effect of Fragmentation and Location of Resources on Species

Persistence. In this section, the formulae derived in §2 and §3 for the persistence

threshold, λ(ε), are used to determine the optimal strategy for distributing a fixed

quantity of resources in some domain where favorable and unfavorable patches may

already be present. The constraint that the resources being distributed are fixed is

expressed mathematically by

−mb|Ω| + π

2

n
∑

j=1

αjmjρ
2
j + O(ε2) =

∫

Ω

mdx = −K , (4.1)

where K > 0 is kept constant as mb, or αj , mj , and ρj , for j = 1, . . . , n are varied.

4.1. The Persistence Threshold for One Patch. We first consider the case of

one favorable habitat. For an interior patch of area πε2, we recall that λ is given

in (2.26a) of Principal Result 2.1. For a boundary patch of the same area, we must

set πα0ε
2ρ2

0/2 = πε2 in (2.46a) of Principal Result 2.2. Thus, ρ0 =
√

2/α0, so that

(2.46a) becomes

λ = µ0ν − µ0ν
2

[

1

4
+ α0πRs(x0;x0) −

1

2
log

(

2

α0

)]

+ O(ν3) ;

µ0 ≡ α0

m+

[

1 − πm+

|Ω|mb

]

.

(4.2)

By comparing the leading-order O(ν) terms in (4.2) and (2.26a), and noting that

α0 < 2 for a boundary patch, we obtain the following main result:

Principal Result 4.1: For a favorable habitat of area πε2, the positive principal

eigenvalue λ is always smaller for a boundary patch than for an interior patch.

For a domain boundary with corners, λ is minimized when the boundary patch is

centered at the corner with the smallest corner contact angle πα0, as opposed to a

patch on the smooth part of the boundary, only if α0 < 1. For a domain with smooth

boundary, for which α0 = 1 for any x0 ∈ ∂Ω, then λ in (4.2) is minimized when

the center x0 of the boundary patch is located at the global maximum of the regular

part Rs(x0;x0) of the surface Neumann Green’s function of (2.42) on ∂Ω.

We remark that the condition α0 < 1 in the second sentence of Principal Result

4.1 is necessary since one can readily construct a nonconvex domain with a boundary

that has exactly one corner, with this corner being re-entrant, i.e. with corner

contact angle larger than π. For a square, Principal Result 4.1 shows that the best

choice for the favorable habitat is to concentrate resources near one of the four

corners of the square. However, for a domain Ω with a smooth boundary ∂Ω, it is

not clear whether the maximization of Rs(x0;x0), as required to minimize λ, has an

obvious geometrical interpretation. When Ω is a smooth perturbation of the unit

disk, we now examine whether the global maximum of Rs(x0;x0) must necessarily



22 A. E. LINDSAY, M. J. WARD

coincide with the global maximum of the curvature of the boundary. To do so, we

require the following result of [20] determining the critical points of Rs(x0;x0) for

domains that are smooth perturbations of the unit disk:

Principal Result 4.2: [From [20]]: Let Ω be a smooth perturbation of the unit

disk with boundary given in terms of polar coordinates by

r = r(θ) = 1 + δσ(θ) , σ(θ) =

∞
∑

n=1

(an cos(nθ) + bn sin(nθ)) , δ ≪ 1 . (4.3)

We assume that σ(θ) is 2π periodic and is at least C2 smooth. Let x0 = x0(θ0) =

(r0 cos θ0, r0 sin θ0) be a point on the boundary where r0 = 1 + δσ(θ0). For x ∈ ∂Ω

we define

ρ(θ) ≡ Rs(x;x0) and ρ(θ0) ≡ Rs(x0;x0) , (4.4)

where Rs(x;x0) is the regular part of the Green’s function defined by

Rs(x;x0) = Gs(x;x0) +
1

π
log |x− x0| , x ∈ Ω . (4.5)

Then, for δ ≪ 1, ρ′(θ0) satisfies

ρ′(θ0) =
δ

π

∞
∑

n=1

(

n2 + n− 2
)

(bn cosnθ0 − an sinnθ0) + O(δ2) . (4.6)

The proof of this result was given in [20]. For the convenience of the reader this

proof is given in Appendix A.

We first take the domain boundary to be r = 1 + δ sin(2θ), so that ρ′(θ0) =

4δπ−1 cos(2θ0) from (4.6). In contrast, for δ ≪ 1, we calculate the curvature of the

domain boundary as

κ(θ) =
r2 + 2r2θ − rrθθ

(r2 + r2θ)
3/2

∼ 1 − δ (σ + σθθ) + O(δ2) . (4.7)

Therefore, for r = 1 + δ sin(2θ), we obtain that

ρ(θ) =
2δ

π
sin(2θ) + C , κ(θ) = 1 + 3δ sin(2θ) , (4.8)

where C is some constant. For this example the global maxima of ρ and κ over

0 ≤ θ < 2π do coincide, and are attained at θ = π/4 and θ = 5π/4.

Next, we use Principal Result 4.2 to establish the following result:

Principal Result 4.3: The global maximum of Rs(x0, x0) for x0 ∈ ∂Ω does not

necessarily coincide with the global maximum of the curvature κ(θ) of the boundary

of a smooth perturbation of the unit disk. Consequently, for ε → 0, the persistence

threshold λ(ε) from Principal Result 2.2 is not necessarily minimized when the center

of the circular patch is located at the global maximum of the curvature of the smooth

boundary ∂Ω.
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To prove this result we take a2 = 1, b3 = b, with an = 0 for n 6= 2 and bn = 0

for n 6= 3 in (4.3), so that

σ(θ) = cos(2θ) + b sin(3θ) . (4.9)

For δ ≪ 1, we use (4.7) for the curvature κ of ∂Ω to calculate

κ = 1 + δ [3 cos(2θ) + 8b sin(3θ)] , κ′(θ) = −6δ [sin(2θ) − 4b cos(3θ)] ,

κ′′(θ) = −12δ [cos(2θ) + 6b sin(3θ)] .
(4.10)

From (4.6) we calculate ρ′(θ) and its derivative as

ρ′(θ) = −4δ

π

[

sin(2θ) − 5b

2
cos(3θ)

]

, ρ′′(θ) = −8δ

π

[

cos(2θ) +
15b

4
sin(3θ)

]

.

Therefore, in terms of an unknown constant C, we obtain that

ρ(θ) =
δ

π

[

2 cos(2θ) +
10b

3
sin(3θ)

]

+ C . (4.11)

We observe that θ = π/2 and θ = 3π/2 are the only two critical points shared by κ

and ρ. The nature of these local extrema depend on the values of

κ′′ (π/2) = 12δ(1 + 6b) , ρ′′ (π/2) =
8δ

π

(

1 +
15b

4

)

,

κ′′ (3π/2) = 12δ(1 − 6b) , ρ′′(3π/2) =
8δ

π

(

1 − 15b

4

)

.

Therefore, when b is chosen to satisfy −4/15 < b < −1/6, then κ has a local

maximum while ρ has a local minimum at θ = π/2. Similarly, for this range of b, κ

has a local minimum while ρ has a local minimum at θ = 3π/2.

Since the only critical points shared by κ and ρ are local minima of ρ, we conclude

that the absolute maximum value of ρ occurs at a point where κ′(θ) 6= 0. Therefore,

in general, the point(s) where the absolute maximum value of ρ is attained do not

coincide precisely with the maximum curvature of the boundary of the domain. In

Fig. 3(a) we plot the domain boundary when δ = 0.1 and b = −1/5. In Fig. 3(b)

we plot ρ(θ) − C and κ(θ) − 1 from (4.11) and (4.10), respectively, for δ = 0.1 and

b = −1/5 showing that the global maxima of ρ and κ − 1 occur at different, but

nearby, locations.

In §3.3 of [20] a boundary element method (BEM) was formulated and imple-

mented to numerically compute the regular part of the surface Neumann Green’s

function for an arbitrary bounded two-dimensional domain with smooth boundary.

In Fig. 4 we show a very favorable comparison between full numerical results for

ρ(θ) and the perturbation formula (4.11) for δ = 0.1 and b = −1/5. The constant

C in (4.11) was fitted to the full numerical results at θ = 0. This figure provides a

numerical validation of our perturbation result (4.11).
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Figure 3. Left figure: plot of the unit disk (dashed curve) and
the perturbed unit disk (solid curve) with boundary r = 1 +
δ (cos(2θ) + b sin(3θ)), where δ = 0.1 and b = −1/5. Right fig-
ure: plot of the curvature perturbation κ(θ) − 1 (solid curve) and
the regular part ρ(θ) of the surface Neumann Green’s function de-
fined in (4.11) (dashed curve) with C = 0. The absolute maximum
of κ− 1 and ρ are observed to occur at distinct, but nearby points,
as indicated in the figure.
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Figure 4. Plot of ρ(θ) ≡ R(x0(θ), x0(θ)) computed by the BEM
method (heavy solid curve) and the perturbation formula (4.11)
(dashed curve) versus θ/π for a domain with boundary r = 1 +
δ [cos(2θ) + b sin(3θ)] with δ = 0.1 and b = −1/5. The curvature
perturbation κ(θ) − 1 is given by the dotted curve.

We conjecture that the relationship between the maximum of the boundary cur-

vature and the location of the favorable habit that yields the minimum value of λ

for a fixed
∫

Ωmdx < 0 is qualitatively similar to that for steady-state bubble-type

transition-layer solutions for the Cahn-Hilliard model studied in [8]. In this latter
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context, it was shown from variational considerations in [8] that the minimal-energy

bubble solution attaches orthogonally to the domain boundary at two points, with

the global maximum of the boundary curvature located somewhere between these

two points. The transition layer associated with this bubble solution is the arc of

a circle connecting these two attached boundary points. Similarly, for our bound-

ary patch problem, we expect that for ε small but fixed, the maximum boundary

curvature is located somewhere along the curved boundary segment that connects

the points where the circular patch intersects the boundary, but is not necessarily

at the midpoint of this segment.

4.2. Multiple Patches and the Effect of Fragmentation. Next, for a fixed

value of the constraint in (4.1), we consider the effect of both the location and

the fragmentation of resources on the leading-order term, µ0, in the asymptotic

expansion of λ in (3.27) of Principal Result 3.1. The analysis below leads to three

specific qualitative results. The following simple lemma is central to the derivation

of these results:

Lemma 4.4: Consider two smooth functions Cold(ζ) and Cnew(ζ) defined on 0 ≤
ζ < µoldm and 0 ≤ ζ < µnew

m , respectively, with Cold(0) = Cnew(0) < 0, and

Cold(ζ) → +∞ as ζ → µoldm from below, and Cnew(ζ) → +∞ as ζ → µnew
m from

below. Suppose further that there exist unique roots ζ = µold0 and ζ = µnew
0 to

Cold(ζ) = 0 and Cnew(ζ) = 0 on the intervals 0 < ζ < µoldm and 0 < ζ < µnew
m ,

respectively. Then,

• Case I: If µnew
m ≤ µoldm and Cnew(ζ) > Cold(ζ) on 0 < ζ < µnew

m , then

µnew
0 < µold0 .

• Case II: If µnew
m ≥ µoldm and Cnew(ζ) < Cold(ζ) on 0 < ζ < µoldm , then

µnew
0 > µold0 .

The proof of this lemma is a routine exercise in calculus and is omitted. We now

use this simple lemma to obtain our three main qualitative results.

First, we suppose that the center of the jth patch of radius ερj with associated

angle παj is moved to an unoccupied location, with the new patch having radius

ερk and associated angle παk. To satisfy (4.1), we require that αjmjρ
2
j = αkmkρ

2
k.

The change in B(ζ), with B(ζ) as defined in (3.28), induced by this action is

Bnew(ζ) − Bold(ζ) =
παkmkρ

2
k

2 − ζmkρ2
k

−
παjmjρ

2
j

2 − ζmjρ2
j

= π

(

αj

αk

)

m2
jρ

4
jζ

(

2 − ζmjρ2
j

)

(2 − ζmkρ2
k)

(αj − αk) .

(4.12)



26 A. E. LINDSAY, M. J. WARD

Recall from §3 that Bold(ζ) = 0 has a positive root ζ = µold
0 on 0 < ζ < µold

m ≡
2/(mJρ

2
J), where mJρ

2
J was defined in (3.30).

Assume that αj > αk. For instance, this occurs when the center of an interior

patch, for which αj = 2, is moved to a smooth point on the domain boundary,

for which αk = 1. First, suppose that the patches are favorable so that mj > 0

and mk > 0. When αj > αk, it follows from the constraint αjmjρ
2
j = αkmkρ

2
k

that mkρ
2
k > mjρ

2
j , and so the first vertical asymptote for Bnew(ζ) cannot be

larger than that of Bold(ζ). Consequently, we define mKρ
2
K ≡ max{mJρ

2
J ,mkρ

2
k},

and from §3 we conclude that there is a unique root ζ = µnew
0 to Bnew(ζ) = 0

on 0 < ζ < µnew
m ≡ 2/(mKρ

2
K). Since µnew

m ≤ µold
m , and (4.12) shows that

Bnew(ζ) > Bold(ζ) for 0 < ζ < µnew
m , then Case I of Lemma 4.4 proves that

µnew
0 < µold

0 . Alternatively, for the situation where habitats are unfavorable,

so that mj < 0 and mk < 0, then the first vertical asymptotes of Bold(ζ) and

Bnew(ζ) must be the same, since these asymptotes are defined only in terms of the

favorable patches. For this case, (4.12) again shows that Bnew(ζ) > Bold(ζ) for

0 < ζ < 2/(mJρ
2
J). Case I of Lemma 4.4 then establishes that µnew

0 < µold
0 . �

Therefore, we conclude that moving the center of an interior patch to a point

on the domain boundary will decrease the leading-order term µ0 in the asymptotic

expansion of the principal eigenvalue λ in (3.27) of Principal Result 3.1. Moreover,

for a convex domain with piecewise smooth boundary, Qualitative Result I together

with Principal Result 4.1 shows that µ0 will be reduced the most by the movement of

an interior patch to a non-smooth boundary point with the smallest corner contact

angle. Since this patch was chosen arbitrarily, it is clear that µ0 is minimized by

the placement of all interior patches to the boundary of the domain. We interpret

this result qualitatively as follows:

Qualitative Result I: The movement of either a single favorable or unfavorable

habitat to the boundary of the domain is advantageous for the persistence of the

species.

Next, we consider the effect of fragmentation on species persistence. More specif-

ically, we consider the effect of splitting the ith patch, of radius ερi and growth rate

mi, into two distinct patches, one with radius ερj and growth rate mj , and the

other with radius ερk and growth rate mk. The condition miρ
2
i = mjρ

2
j +mkρ

2
k is

imposed to satisfy the constraint (4.1). We assume that αi = αj = αk, so that we

are either splitting an interior patch into two interior patches, or a boundary patch

into two boundary patches, with each boundary patch centered at either a smooth

point of ∂Ω or at a corner point of ∂Ω with the same contact angle. This action

leads to the following qualitative result:
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Qualitative Result II: The fragmentation of one favorable interior habitat into

two separate favorable interior habitats is not advantageous for species persistence.

Similarly, the fragmentation of a favorable boundary habitat into two favorable

boundary habitats with each either centered at either a smooth point of ∂Ω, or at

a corner point of ∂Ω with the same contact angle, is not advantageous. Finally,

the fragmentation of an unfavorable habitat into two separate unfavorable habitats

increases the persistence threshold λ.

We prove this result for αi = αj = αk as follows. First, consider the case where

we are fragmenting one favorable habitat into two smaller favorable habitats. Then,

mi > 0, mj > 0, and mk > 0. For the original patch distribution, it follows from §3
that Bold(ζ) = 0 has a positive root ζ = µold

0 on 0 < ζ < µold
m ≡ 2/(mJρ

2
J), where

mJρ
2
J was defined in (3.30). Since, clearly, the first vertical asymptote for Bnew(ζ)

cannot be smaller than that of Bold(ζ) under this fragmentation, it follows from §3
that Bnew(ζ) = 0 has a positive root ζ = µnew

0 on 0 < ζ < µnew
m with µnew

m ≥ µold
m .

From (3.28), we then calculate under the constraint miρ
2
i = mjρ

2
j +mkρ

2
k that the

change in B(ζ) induced by this fragmentation action is

Bnew(ζ) − Bold(ζ) =
παimjρ

2
j

(2 − ζmjρ2
j)

+
παimkρ

2
k

(2 − ζmkρ2
k)

− παimiρ
2
i

(2 − ζmiρ2
i )

=
−παiζ

(

mjρ
2
jmkρ

2
k

) [(

2 − ζmjρ
2
j

)

+
(

2 − ζmkρ
2
k

)]

(2 − ζmiρ2
i )
(

2 − ζmjρ2
j

)

(2 − ζmkρ2
k)

.

(4.13)

Hence, from (4.13), we have that Bnew(ζ) < Bold(ζ) on 0 < ζ < µold
m ≡ 2/(mJρ

2
J).

Since, in addition µnew
m ≥ µold

m , it follows from Case II of Lemma 4.4 that µnew
0 >

µold
0 . This proves the first two statements of Qualitative Result II.

To prove the final statement of this result, we suppose that we are fragmenting

an unfavorable habitat into two smaller unfavorable habitats, so that mi < 0,

mj < 0, and mk < 0. For this situation, the first vertical asymptotes of Bold(ζ)

and Bnew(ζ) are the same, and (4.13) again shows that Bnew(ζ) < Bold(ζ) on

0 < ζ < µold
m ≡ 2/mJρ

2
J . By Case II of Lemma 4.4, we conclude that µnew

0 > µold
0 ,

which proves the last statement of Qualitative Result II. �

The combination of Qualitative Results I and II show that, given some fixed

amount of favorable resources to distribute, the optimal strategy is to clump them

all together at a point on the boundary of the domain, and more specifically at the

corner point of the boundary (if any are present) with the smallest contact angle

less than π degrees. This strategy will ensure that the value of µ0, and consequently

the leading-order term for λ, is as small as possible, thereby maximizing the range

of diffusivities D in (1.1) for the persistence of the species.
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Our final qualitative result addresses whether it is advantageous to fragment a

single interior favorable habitat into a smaller interior favorable habit together with

a favorable boundary habitat. To study this situation, we introduce the constraint

miρ
2
i = mjρ

2
j +

αk

2
mkρ

2
k , (4.14)

with αi = αj = 2, and αk < 2. The subscript i represents the original interior habi-

tat, whereas j and k represent the new smaller interior habitat and new boundary

habitat, respectively. It is not clear apriori whether this action is advantageous,

given that fragmentation of a favorable interior habitat into two favorable interior

habitats increases the persistence threshold λ, but the relocation of a favorable in-

terior habitat to the boundary decreases λ. A sufficient condition to treat this case,

together with two additional related results, are summarized as follows:

Qualitative Result III: The fragmentation of one favorable interior habitat into

a new smaller interior favorable habitat together with a favorable boundary habitat,

is advantageous for species persistence when the boundary habitat is sufficiently

strong in the sense that

mkρ
2
k >

4

2 − αk
mjρ

2
j > 0 . (4.15)

Such a fragmentation of a favorable interior habitat is not advantageous when the

new boundary habitat is too weak in the sense that

0 < mkρ
2
k < mjρ

2
j . (4.16)

Finally, the clumping of a favorable boundary habitat and an unfavorable interior

habitat into one single interior habitat is not advantageous for species persistence

when the resulting interior habitat is still unfavorable.

To prove this result, we first impose the constraint (4.14), and then calculate

from (3.28) that

Bnew(ζ) − Bold(ζ) =
2πmjρ

2
j

(2 − ζmjρ2
j)

+
παkmkρ

2
k

(2 − ζmkρ2
k)

− 2πmiρ
2
i

(2 − ζmiρ2
i )
,

=
παkζβk

(2 − ζβi)(2 − ζβj)(2 − ζβk)





(2 − αk)βk − 4βj

+ζβj

(

βj +
αk

2
βk

)



 ,

(4.17a)

=
παkζβk

(2 − ζβi)(2 − ζβj)(2 − ζβk)





2(βk − βj) − βj(2 − ζβj)

−αkβk

2
(2 − ζβj)



 ,

(4.17b)

where we have defined βi ≡ miρ
2
i , βj ≡ mjρ

2
j , and βk ≡ mkρ

2
k. There are three

parameter ranges of interest, corresponding to the three statements in Qualitative

Result III.
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We first suppose that βi > 0 and βk >
4

2−αk
βj > 0. Then, from (4.14), it follows

that βi > βj , and

βi <
(2 − αk)

4
βk +

αk

2
βk = βk − 1

2

(

1 − αk

2

)

βk ,

so that βi < βk since 0 < αk < 2. It then readily follows that the first verti-

cal asymptote µnew
m and µold

m for Bnew(ζ) and Bold(ζ), respectively, must satisfy

µnew
m ≤ µold

m . Furthermore, it follows from (4.17a) that Bnew(ζ) > Bold(ζ) on

0 < ζ < µnew
m . Consequently, Case I of Lemma 4.4 ensures that µnew

0 < µold
0 .

This establishes the first statement of Qualitative Result III.

Secondly, we suppose that βi > 0 and βj > βk > 0. Then, from (4.14), it follows

that βi > βj , and βi > βk + αkβk/2 > βk since 0 < αk < 2. The condition

that βi > βj and βi > βk ensures that the first vertical asymptotes of Bnew(ζ)

and Bold(ζ) must satisfy µnew
m ≥ µold

m . Furthermore, it follows from (4.17b) that

Bnew(ζ) < Bold(ζ) on 0 < ζ < µold
m . Consequently, Case II of Lemma 4.4 yields

that µold
0 < µnew

0 . This establishes the second statement of Qualitative Result III.

Finally, we suppose that βj < 0, βk > 0, and βi = βj + αkβk/2 < 0. Then,

since βi < 0, it follows that the first vertical asymptote µold
m for Bold(ζ) cannot

occur from the ith patch. The condition βk > 0 then ensures that µnew
m ≤ µold

m ,

where µnew
m is the vertical asymptote of Bnew(ζ). Furthermore, it follows from

(4.17a) that Bnew(ζ) > Bold(ζ) on 0 < ζ < µnew
m . Consequently, Case I of Lemma

4.4 establishes that µold
0 < µnew

0 , which proves the final statement of Qualitative

Result III. �

As a remark, we now give an interpretation of the first statement of Qualitative

Result III in terms of the areas of the patches for the special case where mj =

mk = 1. Then, from (4.15) it follows that the fragmentation of a favorable interior

habitat is advantageous when the area ε2Ak ≡ πε2ρ2
k/2 of a new favorable habitat

centered at a smooth point of the boundary is at least twice as large as the area

ε2Aj ≡ πε2ρ2
j of the new smaller favorable interior habitat. If the new boundary

habit is located at a π/2 corner of the domain, for which αk = 1/2, then a sufficient

condition for this fragmentation to be advantageous is when the area ratio satisfies

Ak/Aj = ρ2
k/(4ρ

2
j) > 2/3.

We now give a specific example to illustrate Qualitative Results I–III.

Example I: (The Unit Disk): Let Ω be the unit disk for which the Neumann

Green’s function and its regular part are explicitly available (see (B.1) and (B.2) of

Appendix B). We will compare the two-term asymptotic formula for λ in (3.27) of

Principal Result 3.1 for three different arrangements of favorable resources inside

Ω with mb = 2 and mj = 1 for j = 1, . . . , n. For each of the three arrangements
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below, we have fixed the common value
∫

Ωmdx = −π for the constraint in (4.1).

First, we consider clumping the favorable resources into one interior patch centered

at the origin of radius ε. Then, we substitute m+ = 1, mb = 2, |Ω| = π, and

R(0; 0) = −3/(8π) from (B.1b) of Appendix B, into (2.26a) to get

λ ∼ ν + ν2/2 , (interior patch) , (4.18)

where ν = −1/ log ε. Next, consider the optimal case where the favorable resources

are all concentrated at a patch of radius
√

2ε that is centered on the boundary of

the unit disk. Since Ω is a disk, any such boundary point x0 yields the minimum

value of λ. For this case, we substitute m+ = 1, mb = 2, |Ω| = π, α0 = 1, ρ0 =
√

2,

and Rs(x0;x0) = 1/(8π) from (B.2) of Appendix B, into (2.46a), to obtain

λ ∼ ν

2
− ν2

2

(

3

8
− log

√
2

)

, (boundary patch) . (4.19)

Next, we suppose that n favorable patches of a common smaller radius ε/
√
n

have centers at the equally spaced points xj = re2πij/n on a ring of radius r < 1,

where i =
√
−1. In this case, we set mb = 2, |Ω| = π, mj = 1, ρj = 1/

√
n, and

αj = 2 for j = 1, . . . , n, in (3.31) for µ0 and (3.27) for λ. In this way, we get µ0 = n,

and that (3.27) reduces to

λ ∼ nν − nν2

(

qn(r) +
1

2
logn+

1

4

)

, qn(r) ≡ 2π

n2
pn(r) , (4.20a)

where pn(r) ≡ netG(N)e. Here e = (1, . . . , 1)t, and G(N) is the n × n Neu-

mann Green matrix with matrix elements
(

G(N)
)

ij
= G(xi;xj) for i 6= j and

(

G(N)
)

jj
= R(xj ;xj), where G(xi;xj) and R(xj ;xj) are the Neumann Green’s

function of (2.19), given explicitly for the unit disk in (B.1). For n equally spaced

patch centers on a ring of radius r < 1, pn(r) can be calculated explicitly, and is

given in Proposition 4.3 of [15]. In this way, we obtain that qn(r) in (4.20a) is given

explicitly by

qn(r) = r2 − 3

4
− 1

n
log
(

nrn−1
)

− 1

n
log
(

1 − r2n
)

. (4.20b)

In Fig. 5(a) we compare the three different two-term expansions for λ versus ε,

given in (4.18), (4.19), and (4.20) with n = 4 and ring radius r = 1/2, representing

the three different spatial arrangements of favorable resources. In agreement with

our predictions in Qualitative Results I and II, the best choice is to concentrate

resources on the boundary of the domain, while clumping resources at the center of

the domain provides a better alternative than fragmenting the favorable resources

into four separate patches on a ring.

Next, we illustrate Qualitative Result III. We consider fragmenting a single inte-

rior patch solution of radius ε centered at the origin into a boundary patch of radius
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(a) λ versus ε
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•

•

(b) µ0 versus ρ1

Figure 5. Example 1: Choose mb = 2, and mj = 1 for j =
1, . . . , n, in the unit disk with

∫

Ωmdx = −π. Left figure: λ versus
ε for three different cases: a single boundary patch (4.19) (heavy
solid curve); a single interior patch centered at the origin (4.18)
(solid curve); four small patches equally spaced on a ring of ra-
dius r = 0.5 (4.20) (dashed curve). The boundary patch gives the
smallest λ, followed by the non-fragmented interior patch solution.
Right figure: the leading order coefficient µ0 versus ρ1 from (4.21b)
for the partial fragmentation of an interior patch of radius ε into
a smaller interior patch of radius ερ1 together with a boundary
patch of radius ερ0, while maintaining

∫

Ωmdx = −π. The bullets
indicate the bounds from (4.15) and (4.16) of Qualitative Result

III. Fragmentation is advantageous only when ρ1 <
√

2/5.

ερ0 and a smaller interior patch of radius ερ1, while maintaining
∫

Ω
mdx = −π.

Thus, we require that ρ0 and ρ1, with 0 < ρ1 < 1, satisfy the constraint

1 = ρ2
1 +

1

2
ρ2
0 . (4.21a)
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As remarked following (3.31), for a two-patch problem (3.28) reduces to a quadratic

equation. We obtain that

µ2
0ρ

2
1

(

1 − ρ2
1

)

+ µ0

(

−2 +
5

2
ρ2
1 −

3

2
ρ4
1

)

+ 1 = 0 . (4.21b)

Notice that µ0 = 1 when ρ1 = 1, and µ0 = 1/2 when ρ1 = 0, as expected. A plot

of the smallest root to (4.21b) versus ρ1 is shown in Fig. 5(b). The bound (4.16)

in Qualitative Result III states that the partial fragmentation of the interior patch

into a boundary patch is undesirable when ρ1 > ρ0, which yields ρ1 >
√

2/3 from

(4.21a). Alternatively, (4.15) together with (4.21a) shows that such a fragmentation

is advantageous when ρ1 < 1/
√

3. These two bounds are shown by the bullets in

Fig. 5(b). For this simple two-patch case, we can readily show from the exact

result (4.21b) that µ0 = 1 when ρ1 =
√

2/5, or equivalently ρ0 =
√

6/5. Thus,

fragmentation is advantageous when ρ1 <
√

2/5, or equivalently ρ0 >
√

6/5.

Finally, we illustrate Qualitative Result III for the case where the unit disk

has one pre-existing favorable interior patch of radius ε and growth rate m+ = 1,

together with one pre-existing unfavorable interior patch of radius ε and growth rate

m− = −1. We then introduce an additional favorable resource with local growth

rate m0 = 1 that can occupy an area ε2A0 if it is separated from the other two

patches. We choose the bulk decay rate as mb = 3. We then compare three different

options for using this additional favorable resource, subject to the constraint that
∫

Ω
mdx = −3π + A0 remains fixed. If we concentrate the additional favorable

resource at a smooth point on the boundary, then from (3.28) µ0 satisfies

− 3 + 2

(

1

2 − µ0
− 1

2 + µ0

)

+
A0/π

1 − µ0A0/π
= 0 . (4.22a)

Alternatively, if the additional favorable resource is used to strengthen the pre-

existing favorable interior patch, then from (3.28) µ0 satisfies

− 3 +
2ρ2

+

2 − ρ2
+µ0

− 2

2 + µ0
= 0 , ρ2

+ = 1 +A0/π . (4.22b)

Finally, if the additional favorable resource is used to diminish the strength of the

unfavorable pre-existing interior patch, then µ0 satisfies

− 3 +
2

2 − µ0
+

m−

2 −m−µ0
= 0 , m− = −1 +A0/π . (4.22c)

In Fig. 6 we plot the three curves for µ0 versus A0/π as obtained from (4.22a)–

(4.22c). A zoom of Fig. 6(a) for a subrange of A0/π is shown in Fig. 6(b). We

conclude that inserting a favorable boundary patch is preferable only when it has

a sufficiently large size, and that if one only has a limited amount of an additional

favorable resource it is preferable to re-enforce the pre-existing favorable habitat.

In addition, Fig. 6(b) shows that it is not optimal for any range of A0/π to use
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the additional favorable resource to mitigate the effect of the unfavorable interior

patch.
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(a) µ0 versus A0/π
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A0/π

(b) µ0 versus A0/π

Figure 6. Example 1: Choose mb = 3 and consider a pre-existing
patch distribution of one favorable interior patch of local growth
rate m+ = 1 and radius ε and an unfavorable interior patch of
local growth rate m− = −1 and radius ε. Assume that we have an
additional favorable resource of local growth rate m0 = 1 that can
occupy an area ε2A0 if it separated from the two pre-existing inte-
rior patches. We plot µ0 versus A0/π when the additional resource
is on the domain boundary (4.22a) (heavy solid curve), when it
is used to re-enforce the existing favorable interior patch (4.22b)
(solid curve), and when it is used to mitigate the effect of the un-
favorable interior patch (4.22c) (dashed curve).

4.3. Optimization at Second Order. The minimization of λ in (3.27) is typically

accomplished from the optimization of the coefficient µ0 of the leading-order O(ν)
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term in its asymptotic expansion. However, in certain degenerate cases, such as if a

fixed distribution of interior patches is already present in the domain, the problem

of optimizing the persistence threshold λ can require a careful examination of the

coefficient µ1 of the O(ν2) term in the asymptotic expansion of λ in (3.27). The

coefficient µ1 has an explicit dependence on the patch locations and accounts for

interaction effects between the patches. An optimization problem of this type occurs

in choosing the best location to place an additional favorable resource in a square

domain. If this resource is sufficiently strong, then to minimize µ0 it should be

centered on the boundary of the square at a π/2 corner, and should not be used to

strengthen a pre-existing favorable interior patch. In the situation where no other

interior patches are present, each of the four corners of the square offers an equally

good location to concentrate resources. However, if a distribution of fixed patches

is already present in the domain, the best choice of corner to place an additional

favorable patch is not clear apriori, and will depend on the spatial configuration of

the fixed pre-existing patch distribution. In this case, the information required to

make the optimal choice is provided by µ1, which takes into account the interaction

between the patches.

To formulate this restricted optimization problem, we let xj for j = 1, . . . , n be

the fixed pre-existing configuration of the centers of n circular patches in the interior

of the domain with local growth rates mj for j = 1, . . . , n, where mj is either

positive (favorable habitat) or negative (unfavorable habit). We then introduce

a new favorable habitat, and we assume that µ0 is smallest when this additional

habitat is located on the boundary of the domain. We then consider the problem

of determining the optimal boundary location, x0, of the center of one additional

circular patch of radius ερ0 and local growth rate m0 > 0 and angle πα0. We

showed earlier that to optimize µ0, x0 should be centered at a boundary point with

the smallest contact angle πα0. In degenerate situations where this point is not

uniquely determined, we must optimize the coefficient of the O(ν2) term in (3.27).

To do so, we label xn+1 = x0 and block the (n+1)× (n+1) matrices in (3.27) into

an n×n block, labeled by Gm and P , representing the fixed patch distribution, and

a term p(x0) representing the interaction of the fixed patch distribution with the

additional favorable resource. This determines µ1 in (3.27) as

µ1 = µ0

(

−1

4
+
κt (P − πGm) κ+ κ2

0 log ρ0 − πp(x0)

κtκ+ κ2
0

)

. (4.23a)

In terms of the fixed distribution of patches, κ = (κ1, . . . , κn)t, where κj for j =

1, . . . , n is defined in (3.22), while Gm and P are the n × n matrices as defined in

(3.23). The scalar p(x0) in (4.23a), representing the interaction of the additional
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favorable boundary patch, centered at x0, with the fixed patch distribution is given

by

p(x0) = α0κ
2
0Rm(x0;x0) + 2

n
∑

j=1

√
α0αjκ0κjGm(xj ;x0) , κ0 ≡

√
α0m0ρ

2
0

2 − µ0m0ρ2
0

,

(4.23b)

where αj = 2 for j = 1, . . . , n. From (3.28), the leading-order coefficient µ0 in the

asymptotic expansion of λ is the smallest positive root of

−mb|Ω| + π
√
α0κ0 + π

n
∑

j=1

√
αjκj = 0 , κj ≡

√
αjmjρ

2
j

2 − µ0mjρ2
j

, j = 1, . . . , n .

(4.24)

The minimization of the persistence threshold λ corresponds to determining the

location of the maximum of p(x0) for x0 ∈ ∂Ω. We now illustrate the problem of

maximizing p(x0) for two specific examples.

Example 2: Pre-Existing Patch Distribution (Unit Disk): We first let Ω be

the unit disc and x0 ∈ ∂Ω, for which α0 = 1. Since x0 ∈ ∂Ω, then Gm(xj ;x0) =

Gs(xj ;x0) and Rm(x0;x0) = Rs(x0;x0) are the surface Neumann Green’s function

and its regular part given explicitly in (B.2). Now consider placing the centers xj

for j = 1, . . . , n of the fixed patches on a ring of radius r so that xj = r exp (2πij/n)

and αj = 2 for j = 1, . . . , n, with 0 < r < 1. Then, from (4.23b) and (B.2), and

with α0 = 1, we obtain

p(x0) =
κ2

0

8π
+ 2κ0

n
∑

j=1

√
αjκj

[

r2

4π
− 1

8π
− 1

2π
log |xj − x0|2

]

,

=
κ2

0

8π
+
κ0

2π

(

r2 − 1

2

) n
∑

j=1

√
αjκj −

√
2κ0

π

n
∑

j=1

κj log |xj − x0|2 ,

=
κ2

0

8π
+
κ0

2π

(

r2 − 1

2

)

(mb − κ0) −
√

2κ0

π

n
∑

j=1

κj log |xj − x0|2 , (4.25)

where in the last equality we have used the identity
∑n

j=1

√
αjκj = mb − κ0 from

(4.24). Finally, we write x0 = eiθ0 and calculate the logarithmic interaction term

in (4.25) to get p = p(θ0), where

p(θ0) =
κ2

0

8π
+
κ0

2π

(

r2− 1

2

)

(mb − κ0)−
√

2κ0

π

n
∑

j=1

κj log
(

r2 +1−2r cos
(

θ0−
2πj

n

))

.

(4.26)

We now determine the location of the maximum value of p(θ0) in (4.26), corre-

sponding to the optimum location to insert the additional favorable resource on the

boundary of the unit disk.
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7

6

5

4

3

2

1

0

1.00.80.60.40.20.0

µ0

A0/π

Figure 7. Example 2: Choose mb = 3 and center five patches
each of radius ε/

√
5 equidistantly on a ring of radius r = 1/2 in

the unit disk with mj = 1 for j = 1, . . . , 5. Plot of µ0, defined
as the root of (3.28), versus A0/π for an additional patch of area
ε2A0 located on the boundary of the domain (heavy solid curve) or
used to re-enforce any one of the interior patches (solid curve). The
boundary patch is preferable when A0/2 = 1/2, which corresponds
to the boundary patch radius ρ0 = 1. The bound (4.15) states that

the boundary patch is favorable when its radius satisfies ρ0 > 2/
√

5
(or A0/π > 2/5), while from (4.16) the boundary patch is not

favorable when ρ0 < 1/
√

5 (or A0/π < 1/10).

We first suppose that mj = mc for j = 1, . . . , n, so that κj = κc for j = 1, . . . , n.

Then, we write (4.26) as

p(θ0) =
κ2

0

8π
+
κ0

2π

(

r2 − 1

2

)

(mb − κ0) −
√

2κ0κc

π
χ(θ0) ,

χ(θ0) ≡
n
∑

j=1

log

[

r2 + 1 − 2r cos

(

θ0 −
2πj

n

)]

.

(4.27)

We then calculate that

χ(θ0) =

n
∑

j=1

log

[

(

r − cos
(

θ0 −
2πj

n

)

)2

+ sin2
(

θ0 −
2πj

n

)

]

= 2 log
(

n
∏

j=1

|r − zj |
)

= 2 log |rn − einθ0 | = log
[

(rn − cos(nθ0))
2 + sin2(nθ0)

]

,

(4.28)

where zj ≡ ei(θ0−2πj/n). In obtaining the second to last equality in (4.28), we used

the fact that zj are the roots of rn−einθ0 = 0. Upon differentiating (4.28), it readily

follows that the critical points of χ(θ0), and therefore p(θ0), satisfy sin(nθ0) = 0,

which admits the 2n solutions

θ0 =
2πj

n
, θ0 =

π(2j − 1)

n
, j = 1, . . . , n , (4.29)
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on the interval 0 < θ0 ≤ 2π. When κc > 0 in (4.27), then θ0 = 2πj/n for j =

1, . . . , n, clearly correspond to maxima of p(θ0), while the remaining critical points in

(4.29) are minima of p(θ0). This result shows that when κc > 0, for which the ring is

composed of n equally distributed favorable patches, the optimal boundary locations

for the one additional favorable patch centered at x0 is at the shortest distance to

any of the n favorable habits on the ring. This result for p(θ0) is illustrated by the

heavy solid curve of Fig. 8(a) for n = 5 pre-existing patches for the parameter set

mb = 3, m0 = 1, ρ0 = 1, and with mj = 1 and ρj = 1/
√

5 for j = 1, . . . , 5. For

this parameter set, where the favorable boundary patch is sufficiently strong in the

sense of (4.15) of Qualitative Result III, µ0 is indeed minimized when the favorable

resource is concentrated on the boundary of the domain, rather than being used to

re-enforce an interior favorable habitat. In Fig. 7 we plot µ0 versus A0/π, where

ε2A0 is the area of the additional favorable habitat for the case where the habitat

is located on the boundary, and for the case when it is used to re-enforce one of the

pre-existing favorable interior habitats. From this plot, we observe that a boundary

habitat with ρ0 = 1 and A0/π = 1/2 provides µ0 = 1.455, which is the smaller of

the two values for µ0.

Alternatively, when κc < 0, only the locations θ0 = π(2j − 1)/n for j = 1, . . . , n

correspond to maxima of p(x0). For this case, where the ring is composed of n

equally spaced unfavorable habitats, the optimal boundary locations for the one

additional favorable patch centered at x0 is such that it maximizes the distance to

any of the n unfavorable habitats on the ring. This result for p(θ0) is illustrated

by the solid curve in Fig. 8(a) for n = 5 pre-existing patches for the parameter set

mb = 3, m0 = 1, ρ0 = 1, and with mj = −1 and ρj = 1/
√

5 for j = 1, . . . , 5. For

this parameter set µ0 = 1.740.

Finally, we consider n patches of a common radius ερc but with mj = −mc for

j = 1, . . . , n−1, and mn > 0, where mc > 0. Therefore, there are n−1 unfavorable

habitats on the ring, with the only favorable habitat on the ring being centered at

xn = (r, 0). For this case, p(θ0) is given by (4.26) provided that we replace κj in

(4.26) with

κj ≡ −
√

2mcρ
2
c

2 + µ0mcρ2
c

, j = 1, . . . , n− 1 , κn ≡ mnρ
2
c

2 − µ0mnρ2
c

. (4.30)

A simple calculation from (4.26) shows that the maximum of p(θ0) occurs at θ0 = 0.

Therefore, the best location for the favorable boundary habitat is to insert it as

close as possible to the only favorable interior habitat on the ring, which effectively

decreases the effect of fragmentation. This result for p(θ0) is illustrated by the

dashed curve in Fig. 8(b) for n = 5 pre-existing patches for the parameter set



38 A. E. LINDSAY, M. J. WARD

0.8

0.6

0.4

0.2

0.0
6543210

p(θ0)

θ0

(a) p(θ0) versus θ0

1.2

1.0

0.8

0.6

0.4

0.2

0.0
6543210

p(θ0)

θ0

(b) p(θ0) versus θ0

Figure 8. Example 2: Choose mb = 3 and center five patches
each of radius ε/

√
5 equidistantly on a ring of radius r = 1/2 in

the unit disk. Insert a favorable boundary patch of radius ρ0 = 1
and growth rate m0 = 1 at x0 = eiθ0 on the boundary of the
unit disk. Left figure: p(θ0) versus θ0 from (4.26) for favorable
interior patches (heavy solid curve) with mj = 1 for j = 1, . . . , 5,
and for unfavorable interior patches (solid curve) with mj = −1
for j = 1, . . . , 5. Right figure: p(θ0) versus θ0 for four unfavorable
interior patches with mj = −1 for j = 1, . . . , 4 and one favorable
interior patch at x1 = (r, 0) with m5 = 1.

mb = 3, m0 = 1, ρ0 = 1, mj = −1 and ρj = 1/
√

5 for j = 1, . . . , 4, and m5 = 1

with ρ5 = 1/
√

5. For this parameter set µ0 = 1.709. From this figure we observe

that p(θ0) is minimized when θ0 = π, corresponding to the location on ∂Ω furthest

from the only favorable interior habitat.

Example 3: Pre-Existing Patch Distribution (The Unit Square) For our fi-

nal example we consider the problem of optimizing the location of one additional
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favorable resource in the unit square domain Ω = [0, 1] × [0, 1] given a certain dis-

tribution of pre-existing patches. This optimization problem is somewhat simpler

than the previous example for the unit disk, since if the patch is sufficiently strong,

the optimization of µ0 requires that the additional resource be located at the cor-

ner x0 of the square that maximizes p(x0) in (4.23b). For the unit square, explicit

analytical formulae for the Neumann Green’s function and its regular part required

to optimize p(x0) in (4.23b) are given in Appendix B.

Let x0 be the location of a patch of favorable resource with radius ερ0 with ρ0 = 1

and local growth ratem0 = 1. We assume that there are four pre-existing patches in

Ω centered at x1 = (1/4, 1/4), x2 = (1/4, 3/4), x3 = (3/4, 1/4), and x4 = (3/4, 3/4).

Let each patch have a common radius ε/2 (i.e. ρj = 1/2 for j = 1, . . . , 4) with local

growth rate m1 = m2 = m3 = −1, m4 = 1, and the background decay rate mb = 3.

For this parameter set, where the favorable boundary patch is sufficiently strong

in the sense of (4.15) of Qualitative Result III, µ0 is minimized when the favorable

resource is concentrated at one of the four corners on the square, rather than being

used to re-enforce the only favorable interior habitat. By determining the root µ0

of (3.28) numerically, we obtain that µ0 = 1.605 when the additional favorable

resource is at a corner of the square, and µ0 = 2.681 when the additional favorable

resource is used to strengthen the favorable resource at x4. Therefore, µ0 is smallest

when x0 is at a corner of the square. Then, by varying x0 over the four corners of

the square, we obtain the following numerical results for p(x0) from (4.23b):

x0 = (0, 0) p(x0) = −0.8522 ; x0 = (1, 1) p(x0) = −0.2100 .

x0 = (1, 0) or x0 = (0, 1) p(x0) = −0.7163 ;

The largest value for p(x0) occurs when x0 = (1, 1). Therefore, these results show

that the persistence threshold λ is smallest when the additional favorable habitat is

positioned at the corner of the square that is closest to the only favorable interior

habitat. This action effectively decreases the effect of fragmentation.

5. Discussion. We have asymptotically calculated a two-term asymptotic expan-

sion for the persistence threshold λ for the diffusive logistic model (1.1) in a highly

patchy environment with spatially heterogeneous growth rate (1.4). The asymp-

totic result for λ is given in Principal Result 3.1 of §3. In the context of localized

habitats, we have allowed for a relatively arbitrary spatial configuration of favor-

able and unfavorable habitats that are either interior to or on the boundary of a

two-dimensional domain. We have examined in detail the effect of habitat fragmen-

tation on the coefficient of the leading-order term in the asymptotic expansion of

λ. Some general principles regarding the effect of fragmentation are summarized in
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Qualitative Results I–III of §4. A few cases where the optimization of λ requires the

examination of the higher-order coefficient in the asymptotic expansion of λ were

also investigated.

There are two key problems that warrant further study. Firstly, it is highly desir-

able to provide a rigorous derivation of the asymptotic expansion for λ in Principal

Result 3.1. Such a derivation could possibly be based on variational considerations

and gamma convergence theory, similar to that used in [8] (see also the references

therein) to analyze bubble solutions for the Cahn-Hillard equation of phase transi-

tion theory. Secondly, it would be interesting to extend our single-species analysis to

the case of multi-species interaction, such as predator-prey interactions, for which

a partial fragmentation of the prey habitat may become more beneficial for the

persistence of the prey, rather than clumping the prey into a single habitat.
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Appendix A. The Regular Part of the Surface Neumann Green’s Func-

tion for a Perturbed Disk. In this appendix we give the proof of Principal

Result 4.2 as obtained in [20]. In (2.42), we define Rs(x;x0) by Rs(x;x0) =

Gs(x;x0) + π−1 log |x − x0| for x ∈ ∂Ω, where x0 is at a smooth point of ∂Ω.

Then, we readily obtain from (2.42) that Rs(x;x0) satisfies

∆Rs(x;x0) =
1

|Ω| , x ∈ Ω ; ∇Rs(x;x0) · n̂ =
1

π

(x− x0) · n̂
|x− x0|2

, x ∈ ∂Ω .

(A.1)

In polar coordinates we write x0 = (r0 cos θ0, r0 sin θ0), x = (r cos θ, r sin θ), and

r0 = r0(θ0). We then calculate that |x− x0|2 = r2 + r20 − 2rr0 cos(θ − θ0), and

n̂ =
1

√

(r′)2 + r2

(

r′ sin θ + r cos θ
−r′ cos θ + r sin θ

)

,

(x− x0) · n̂ =
1

√

(r′)2 + r2

[

r2 − r0r
′ sin(θ − θ0) − r0r cos(θ − θ0)

]

.
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By writing r = 1 + δσ and r0 = 1 + δσ0, the right-hand side of the boundary

condition in (A.1) for δ ≪ 1 becomes

1

π

(x− x0) · n̂
|x− x0|2

=
1

2π

(

1 + δ

[

σ cos(θ − θ0) − σ0 − σ′ sin(θ − θ0)

1 − cos(θ − θ0)

])

+ O(δ2) . (A.2)

The expression in the square brackets above is bounded for θ → θ0. Therefore,

(A.2) is uniformly valid for all θ ∈ [0, 2π). Next, we let f(θ) denote the term in the

square brackets in (A.2) and we expand it in a Fourier series as

f(θ) ≡ σ cos(θ − θ0) − σ0 − σ′ sin(θ − θ0)

1 − cos(θ − θ0)

=

∞
∑

m=1

[Am cosm(θ − θ0) +Bm sinm(θ − θ0)] ,

(A.3)

where Am and Bm for m ≥ 1 are defined in terms of integrals I1 and I2, which must

be calculated, by

I1 ≡ πAm =

∫ 2π

0

f(θ) cosm(θ − θ0) dθ , I2 ≡ πBm

∫ 2π

0

f(θ) sinm(θ − θ0) dθ .

(A.4)

Firstly, we consider the case where σ = cosnθ = Re
(

einθ
)

. We write I1 in (A.4)

as

I1 = Re

∫ 2π

0

(

cos(θ − θ0)e
inθ − einθ0 − ineinθ sin(θ − θ0)

1 − cos(θ − θ0)

)

cosm(θ − θ0) dθ .

Let z = eiθ, z0 = eiθ0 , and w = z
z0

. Then, I1 = Re(I), where I is the following

contour integral over the unit disk:

I = izn
0

∫

|w|=1

G(w)
(

wm + w−m
)

dw ,

G(w) ≡
(

(1 − n)

2
wn+1 +

(1 + n)

2
wn−1 − 1

)

(1 − w)−2 .

Since (1 − w)2 = d
dw

∑∞
n=0 w

n, then

G(w) = −
(

1 + 2w + 3w2 + · · · + (n− 1)wn−2 +
(n− 1)

2
wn−1 + · · ·

)

.

From the residue theorem we calculate

I = zn
0

{

2πm , 1 ≤ m < n
π(n− 1) , m = n
0 , m > n

, (A.5)

so that I1 = Re(I). Similarly, we can obtain I2 when σ = cos(nθ0). In this way, we

obtain

I1 = cos(nθ0)

{

2πm , 1 ≤ m < n
π(n− 1) , m = n
0 , m > n

, I2 = − sin(nθ0)

{

2πm , 1 ≤ m < n
π(n− 1) , m = n
0 , m > n

.
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Alternatively, for σ = sin(nθ0), we get

I1 = sin(nθ0)

{

2πm , 1 ≤ m < n
π(n− 1) , m = n
0 , m > n

, I2 = cos(nθ0)

{

2πm , 1 ≤ m < n
π(n− 1) , m = n
0 , m > n

.

This determines An and Bn as An = 1
π I1 and Bn = 1

π I2. Therefore, for σ =

cos(nθ0), (A.3) becomes

f(θ) = (n− 1) (cosnθ0 cosn(θ − θ0) − sinnθ0 sinn(θ − θ0))

+
n−1
∑

m=1

2m [cosnθ0 cosm(θ − θ0) − sinnθ0 sinm(θ − θ0)] .
(A.6a)

Alternatively, for σ = sin(nθ0), (A.3) becomes

f(θ) = (n− 1) (cosnθ0 sinn(θ − θ0) + sinnθ0 cosn(θ − θ0))

+

n−1
∑

m=1

2m [cosnθ0 sinm(θ − θ0) + sinnθ0 cosm(θ − θ0)] .
(A.6b)

Since σ =
∑∞

n=1 (an cosnθ + bn sinnθ) from (4.3), we determine f(θ) by sum-

ming (A.6) over n. We then interchange the order of summation by using

∞
∑

n=1

n−1
∑

m=1

χmn =

∞
∑

n=1

∞
∑

m>n

χnm

to obtain

f(θ) =

∞
∑

n=1

(An cosn(θ − θ0) +Bn sinn(θ − θ0)) ,

An = (n− 1) (an cosnθ0 + bn sinnθ0) + 2n
∞
∑

m>n

(am cosmθ0 + bm sinmθ0) ,

(A.7)

Bn = (n− 1) (bn cosnθ0 − an sinnθ0) + 2n

∞
∑

m>n

(bm cosmθ0 − am sinmθ0) .

Next, we introduce S(x;x0) by

Rs(x;x0) = S(x;x0) +
|x|2
4|Ω| . (A.8)

By combining (A.8) and (A.1), we obtain that S(x;x0) satisfies

∆S(x;x0) = 0 , x ∈ Ω ;

∂nS(x;x0) = ∂n

[

Rs(x;x0) −
|x|2
4|Ω|

]

∼ δ

2π
(f(θ) − σ(θ)) + O(δ2) , x ∈ ∂Ω .

(A.9)

In deriving the boundary condition in (A.9) we used (A.2), (A.3), |Ω| ≈ π, and

∂n

(

|x|2
)

= 2r
(

1 + (r′)2/r2
)−1/2

. The O(δ) term in the boundary condition for S
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in (A.9) suggests that we introduce S0(x;x0) by

S(x;x0) =
δ

2π
S0(x;x0) . (A.10)

To leading order we get ∂nS0 = ∂rS0|r=1 +O(δ). From (A.9) and (A.10), we obtain

that S0 satisfies

∆S0(x;x0) = 0 , 0 ≤ r ≤ 1 , 0 ≤ θ < 2π;

∂rS0(x;x0)|r=1 = f(θ) − σ(θ) , r = 1 .
(A.11)

The solution to (A.11) is written as

S0 = D0 +

∞
∑

n=1

rn [Dn cosn(θ − θ0) + En sinn(θ − θ0)] . (A.12)

To determine the coefficients Dn and En we must use the boundary condition in

(A.11). To this end, we must re-write σ, given by equation (4.3), in terms of

cosn(θ − θ0) and sinn(θ − θ0). This yields,

σ =

∞
∑

n=1

[an cosnθ0 + bn sinnθ0] cosn(θ − θ0)

+

∞
∑

n=1

[bn cosnθ0 − an sinnθ0] sinn(θ − θ0) .

(A.13)

Then, we differentiate (A.12) at r = 1, and use (A.7), (A.11), and (A.13), to

determine Dn and En for n ≥ 1 as

nDn = An − [an cosnθ0 + bn sinnθ0] , nEn = Bn − [bn cosnθ0 − an sinnθ0] .

(A.14)

We remark that the constantD0 in (A.12) can be chosen to ensure that
∫

Ω
G(x;x0) dx =

0.

In summary, it follows from (A.8) and (A.10) that for x ∈ ∂Ω,

Rs(x;x0) = S(x;x0) +
|x|2
4π

=
δ

2π
S0(x;x0) +

1

4π
+
δσ

2π
+ O(δ2) , x ∈ ∂Ω .

By using the definition (4.4), and the reciprocity property of Rs, we calculate ρ′(θ0)

as

ρ′(θ0) =
d

dθ0
Rs(x0(θ0), x0(θ0)) = 2

d

dθ
Rs(x(θ), x0(θ0))|θ=θ0

∼ δ

π

[

d

dθ
S0(x(θ), x0(θ0))|θ=θ0

+ σ′(θ0)

]

+ O(δ2) .

Then, by using (A.12) and (A.13), we obtain

ρ′(θ0) =
δ

π

∞
∑

n=1

(nEn + n [bn cosnθ0 − an sinnθ0]) .
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Finally, we use (A.14) to relate En to Bn, and then recall (A.7) for Bn. This yields

that

ρ′(θ0) =
δ

π

∞
∑

n=1

(

2(n− 1)γn + 2n

∞
∑

m>n

γm

)

, γm = bm cosmθ0 − am sinmθ0 .

(A.15)

To simplify (A.15) we use the identity
∑∞

n=1

∑∞
m>n 2nγm =

∑∞
m=2 γm

∑m−1
n=1 2n =

∑∞
n=1 n(n − 1)γn. This yields the final result (4.6), and completes the proof of

Principal Result 4.2. �

Appendix B. The Neumann and Surface Neumann Green’s Function for

a Disk and Square. In this appendix we give analytical formulae for both the

Neumann Green’s function of (2.19) and the surface Neumann Green’s function of

(2.42) for the unit disk and the unit square.

Let Ω := {x | |x| ≤ 1} be the unit disk and represent the point x ∈ Ω as a

complex number. Then, when x0 ∈ Ω, we obtain from equation (4.3) of [15] that

the Neumann Green’s function of (2.19) and the self-interaction term R of (2.19b)

are given explicitly by

G(x;x0) =
−1

2π

(

log |x− x0| + log

∣

∣

∣

∣

x|x0| −
x0

|x0|

∣

∣

∣

∣

− 1

2
(|x|2 + |x0|2) +

3

4

)

, (B.1a)

R(x0;x0) =
−1

2π

(

log
(

1 − |x0|2
)

− |x0|2 +
3

4

)

. (B.1b)

For x0 ∈ ∂Ω, we obtain that the surface Green’s function solution of (2.42) and its

regular part in (2.42b) are given by

Gs(x;x0) = − 1

π
log |x− x0| +

|x|2
4π

− 1

8π
, Rs(x0;x0) =

1

8π
. (B.2)

For the unit square Ω, we label x = (x1, x2) as the observation point in Ω ≡
{(x1, x2) | 0 < x1 < 1 , 0 < x2 < 1}, while the singular point has coordinates ξ =

(ξ1, ξ2). Then, from Section §3.2 of [20], the Neumann Green’s function with an

interior singularity is given by

G(x; ξ) = − 1

2π
log |x− ξ| +R(x; ξ) , (B.3a)

where the regular part R(x; ξ) is given explicitly by

R(x; ξ) = − 1

2π

∞
∑

n=0

log(|1 − qnz+,+||1 − qnz+,−||1 − qnz−,+||1 − qnζ+,+|

× |1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

− 1

2π
log

|1 − z−,−|
|r−,−|

+H(x1, ξ1) −
1

2π

∞
∑

n=1

log |1 − qnz−,−| .

(B.3b)
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Here the eight complex constants z±,± and ζ±,± are defined in terms of additional

complex constants r±,±, ρ±,± by

z±,± ≡ eπr±,± , ζ±,± ≡ eπρ±,± , q ≡ e−2π < 1 , (B.4a)

r+,± ≡ −|x1 + ξ1| + i(x2 ± ξ2) , r−,± ≡ −|x1 − ξ1| + i(x2 ± ξ2) , (B.4b)

ρ+,± ≡ |x1 + ξ1| − 2 + i(x2 ± ξ2) , ρ−,± ≡ |x1 − ξ1| − 2 + i(x2 ± ξ2) . (B.4c)

In (B.3) and (B.4), |ω| is the modulus of the complex number ω. In (B.3b), H(x1, ξ1)

is defined by

H(x1, ξ1) ≡
1

12
[h(x1 − ξ1) + h(x1 + ξ1)] , h(θ) ≡ 2 − 6|θ| + 3θ2 . (B.5)

The self-interaction term R(ξ; ξ), required in (2.19b) is obtained by setting x = ξ

in (B.3b).

Now suppose that the singular point is located on the bottom side of the square

so that ξ = (ξ1, 0) with 0 < ξ1 < 1. Then, the term log |1− z−,+| in (B.3b) also has

a singularity at x = (ξ1, 0), and must be extracted from the sum. In this case, the

explicit solution to (2.19) is obtained by re-writing (B.3) as

Gs(x; ξ) = − 1

π
log |x− ξ| +Rs(x; ξ) , (B.6a)

where the regular part Rs(x; ξ) is given explicitly by

Rs(x; ξ) = − 1

2π

∞
∑

n=0

log(|1 − qnz+,+||1 − qnz+,−||1 − qnζ+,+|

× |1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

− 1

2π
log

|1 − z−,−|
|r−,−|

− 1

2π
log

|1 − z−,+|
|r−,+|

+H(x1, ξ1)

− 1

2π

∞
∑

n=1

log (|1 − qnz−,−||1 − qnz−,+|) .

(B.6b)

The self-interaction term Rs(ξ; ξ), required in (2.42b), is obtained by taking the limit

x→ ξ in (B.6b). By using L’Hopital’s rule to calculate the terms log |1 − z−,±|/|r−,±|,
we obtain with q = e−2π that

Rs(ξ; ξ) = − 1

π

∞
∑

n=0

log
[

(

1 − qne−2ξ1π
)

(

1 − qne−2π(1−ξ1)
)]

− 2

π

∞
∑

n=0

log (1 − qn) − log π

π
+

(

ξ1 −
1

2

)2

+
1

12
.

(B.7)

A similar analysis can be done when ξ is on any of the other sides of the square.

Finally, suppose that x0 = (0, 0) is at a corner of the square. Then, it is readily

shown from (B.3) that Gs(x; ξ) is

Gs(x; ξ) = − 2

π
log |x| +Rs(x; 0) , (B.8a)
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where the regular part Rs(x; 0) is given explicitly by

Rs(x; 0) = − 1

2π

∞
∑

n=1

log (|1 − qnz+,+||1 − qnz+,−||1 − qnz−,+||1 − qnz−,−|)

− 1

2π

∞
∑

n=0

log (|1 − qnζ+,+||1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

− 1

2π
log

( |1 − z+,+|
|r+,+|

|1 − z+,−|
|r+,−|

|1 − z−,+|
|r−,+|

|1 − z−,−|
|r−,−|

)

+H(x1, 0) . (B.8b)

Moreover, the self-interaction term Rs(0; 0), required in (2.42b), is given by

Rs(0; 0) = − 4

π

∞
∑

n=1

log (1 − qn) − 2 logπ

π
+

1

3
, q = e−2π . (B.9)
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